1. Supplementary Information. A versatile genome-scale PCR-based pipeline for
high-definition DNA FISH. Magda Bienko1–3,7, Nicola Crosetto1–3,7, Leonid ...
Supplementary Information
A versatile genome-scale PCR-based pipeline for high-definition DNA FISH
Magda Bienko1–3,7, Nicola Crosetto1–3,7, Leonid Teytelman1–3, Sandy Klemm4, Shalev Itzkovitz1–3 & Alexander van Oudenaarden1–3,5,6 1
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 2Department
of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 3Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. 4
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts, USA.
5
Hubrecht Institute–KNAW (Royal Netherlands Academy of Arts and
6
Sciences). University Medical Center Utrecht, Utrecht, The Netherlands. 7These authors contributed equally to this work. Correspondence should be addressed to A.v.O. (
[email protected]).
Nature Methods: doi: 10.1038/nmeth.2306
1
Supplementary Item Supplementary Figure 1
Title or Caption Distribution of HD-FISH amplicons along the human and mouse genomes
Supplementary Figure 2
HD-FISH cost analysis
Supplementary Figure 3
Distribution of spot counts for HER2 probes of decreasing size
Supplementary Figure 4
Spotting of chromosome 1 and 17 using HD-FISH probes
Supplementary Figure 5
Frequency distribution of HER2 mRNA counts
Supplementary Note Supplementary Video 1
3D rendering of Chr17 in HME cells, visualized with ten HDFISH probes evenly spaced every 8 Mb and labeled with two alternating fluorophores (green: AlexaFluor594; magenta: AlexaFluor647). The nucleus displayed is the same as in the Z-projection shown in Figure 3a (mid panel).
Supplementary Video 2
3D animation of Chr17 in HME cells, visualized with sixteen HD-FISH probes spaced evenly every 5 Mb and labeled with two alternating fluorophores (green: AlexaFluor594; magenta: AlexaFluor647) together with a Chr17 paint probe (blue).
Nature Methods: doi: 10.1038/nmeth.2306
2
Nature Methods: doi: 10.1038/nmeth.2306 4 5 q15
6 q22
7 q23.3
q23.2
11
8
q33.3
q33.2
12
q34.11 q34.12 q34.13 q34.2 q34.3
q21
13
12
9
q27
q26
q25.3
q22.32 q22.33 q23.1 q23.2 q23.3 q24.1 q24.2 q24.3 q25.1 q25.2
q22.1 q22.2 q22.31
16
q24.33
0
q15
50
q16.1 q16.2 q16.3
q14.2 q14.3
q14.1
q13
p12.3 p12.2 p12.1 p11.2 p11.1 q11.1 q11.2 q12
p21.1
15
q24.32
q33.1
q31.3 q32
q31.2
q31.1
q21.2 q21.31 q21.32 q21.33 q22.1 q22.2 q22.31 q22.32 q22.33
q21.13
q13 q21.11 q21.12
11
q24.31
10
q24.11 q24.12 q24.13 q24.21 q24.22 q24.23
9
q23.1
8
q21.32 q21.33
q21.31
q21.2
q21.1
7
10
14
q29
q26.2 q26.31 q26.32 q26.33 q27.1 q27.2 q27.3 q28
q24 q25.1 q25.2 q25.31 q25.32 q25.33 q26.1
p12.3 p12.2 p12.1 p11.2 p11.1 q11.1 q11.2 q12.1 q12.2 q12.3 q13.11 q13.12 q13.13 q13.2 q13.31 q13.32 q13.33 q21.1 q21.2 q21.3 q22.1 q22.2 q22.3 q23
p13
p14.1
p24.2 p24.1 p23 p22.3 p22.2 p22.1 p21.33 p21.32 p21.31 p21.2 p21.1 p14.3 p14.2
p24.3
p26.3 p26.2 p26.1 p25.3 p25.2 p25.1
Number of Probes per 100KB
18
q26.3
3
9
13
17
q26.2
2 q12
p22.3 p22.2 p22.1 p21.33 p21.32 p21.31 p21.2
100
12
16
q26.1
0 150
11
15
q25.3
50 1 6
8
14
q25.2
100
200
10
13
q25.1
150
250
9
q23
200 0 5
7
12
q24.1 q24.2 q24.3
300
6
11
q22.31 q22.32 q22.33
10
8
q22.1 q22.2
Genomic Position Along Chromosome 14 (10MB) 4
10
q21.3
0 3
5
9
q21.2
50 4
7
q14.2 q14.3
100 2
6
q21.1
150 1
5
8
q14.1
200 0
4
7
q15.1 q15.2 q15.3
300
6
q13.11 q13.12 q13.13 q13.2 q13.3
13
5
q14
Genomic Position Along Chromosome 11 (10MB) 3
p13.3 p13.2 p13.1 p12 p11.2 p11.1 q11
0
3
q12
50
4
q12 q13.1 q13.2 q13.3
100 2
q11.2
150 1
p21.1
200 0
3
p11.23 p11.22 p11.21 p11.1 q11
Genomic Position Along Chromosome 8 (10MB)
q11.1
300
p23
14
2
p21.2
0
1
p21.3
50
0
p22.3 p22.2 p22.1
Genomic Position Along Chromosome 5 (10MB)
p12.1
100
300
2
p12.2
18
1
p12.3
150
Number of Probes per 100KB
200
p25.3 p25.2 p25.1 p24.3 p24.2 p24.1 p23
0
p13.2 p13.1
250
Number of Probes per 100KB
250
p24.3 p24.2
50
p24.1
100
p12
250
Number of Probes per 100KB
q35 q36.1 q36.2 q36.3 q37.1 q37.2 q37.3
150
p13.33 p13.32
q34 q35.1 q35.2 q35.3
200
0
p13.31
12 q24.3
q24.23
q31.1 q31.2 q31.3 q32.1 q32.2 q32.3 q33.1 q33.2 q33.3 q34
p11.2 p11.1 q11.1 q11.2 q12.1 q12.2 q12.3 q13 q14.1 q14.2 q14.3 q21.1 q21.2 q21.3 q22.1 q22.2 q22.3 q23.1 q23.2 q23.3 q24.1 q24.2 q24.3
250
300
p11.1
9 q24.22
q24.21
17
q25
q24.13
13
q24.3
q32 q33.1 q33.2 q33.3
q31.2 q31.3
q31.1
q23.3
q23.2
16
q24.2
q24.11 q24.12
q23.3
q23.1 q23.2
q22.3
q22.2
q22.1
q21.1 q21.2 q21.3 q22.1 q22.2 q22.3 q23.1
q15
q14.3
q12.1 q12.2 q12.3 q13.1 q13.2 q13.3 q14.1 q14.2
q11.2
Genomic Position Along Chromosome 2 (10MB)
p11.2
250
Number of Probes per 100KB
8 q24.1
11
q23.3
10
q23.1 q23.2
q22.3
q22.1 q22.2
q21
q14.3
q21.3
q21.11 q21.12 q21.13 q21.2
q12.1 q12.2 q12.3 q13.1 q13.2 q13.3
p13.1 p12 p11 q11.1
p13.2
p13.3
p15.1 p14.3 p14.2 p14.1
Number of Probes per 100KB
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
p13
7 12
q32.2
6 q14.2
q14.1
q13.5
q13.4
9
15
q32.31 q32.32 q32.33
5 11
q32.11 q32.12 q32.13
0 4 8
14
q31.3
50 3 10
q31.2
100 2 9
13
q31.1
150 1 7
12
q24.3
200 0 8
q24.2
300 6
11
q24.1
11 5 7
q23.3
Genomic Position Along Chromosome 13 (10MB) 6
10
q23.2
0 4
9
q23.1
50 3 5
8
q22.1 q22.2 q22.3
100 2
7
q21.3
150 1 4
9
q21.2
200 0
6
p11.12 p11.11 q11 q12.1 q12.2 q12.3 q13.1 q13.2 q13.3
300
5
8
q21.1
13 3
7
p11.2
Genomic Position Along Chromosome 10 (10MB)
6
q13.1 q13.2 q13.3
0 4
p12
50 2
p12
100 1
p11.23 p11.22 p11.21 p11.1 q11.1 q11.21 q11.22 q11.23
150 0
3
p13
200 2
5
q12
300
4
q11.2
15 p15.2
0
p22
50 1
3
p21.2 p21.1
100 0
p21.3
150 300
p23.1
Genomic Position Along Chromosome 4 (10MB)
p14.3 p14.2 p14.1
19
2
p15.1
0
1
p15.3 p15.2
200 p25.3 p25.2 p25.1 p24.3 p24.2 p24.1 p23.3 p23.2 p23.1 p22.3 p22.2 p22.1 p21 p16.3 p16.2 p16.1 p15 p14 p13.3 p13.2 p13.1 p12
50
p15.4
250
Number of Probes per 100KB
100
p15.33 p15.32 p15.31
150 0
p12
250
Number of Probes per 100KB
200
p23.3 p23.2
q44
Genomic Position Along Chromosome 1 (10MB)
p11.1 q11.1
250
Number of Probes per 100KB
q32.2 q32.3
q32.1
q41 q42.11 q42.12 q42.13 q42.2 q42.3 q43
250
p15.5
q35.1 q35.2
q32.1 q32.2 q32.3 q33 q34.1 q34.2 q34.3
Number of Probes per 100KB
300
p11.2
250
Number of Probes per 100KB
10 q26.3
12 q36.1 q36.2 q36.3
14
q26.2
q35
q34
q33
q28.3 q31.1 q31.21 q31.22 q31.23 q31.3
q21.1 q21.2 q21.3 q22 q23.1 q23.2 q23.3 q24.1 q24.2 q24.3 q25.1 q25.2 q25.3 q31.1 q31.2 q31.3
q12
p22.3 p22.2 p22.1 p21.3 p21.2 p21.1 p13.3 p13.2 p13.1 p12 p11.2 p11.1 q11
p31.1
p36.33 p36.32 p36.31 p36.23 p36.22 p36.21 p36.13 p36.12 p36.11 p35.3 p35.2 p35.1 p34.3 p34.2 p34.1 p33 p32.3 p32.2 p32.1 p31.3 p31.2
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
p13
q25.3
11 18
q34
9 q25.2
10 17
q33.3
8 13
q26.11 q26.12 q26.13
q31.1
12 16
q33.1 q33.2
7 15
q32.1 q32.2 q32.3
9 q31.2 q31.31 q31.32 q31.33 q32.1 q32.2 q32.3
11
q25.1
10 14
q31.3
q26
q25
q27 q28.1 q28.2
13
q31.2
6 q22.1 q22.2 q22.3
q21.12 q21.13 q21.2 q21.3
q21.11
12
q31.1
8
q23.2 q23.31 q23.32 q23.33 q24.1 q24.2 q24.31 q24.32 q24.33
7
q23.1
9
q22.1 q22.2 q22.3
5 11
q21.33
q11.23
8
q22.3
q13.3 q21.1 q21.21 q21.22 q21.23 q21.3 q22.1 q22.2 q22.3 q23 q24
10
q22.2
6
q22.1
q21.3
5
q21.2
7
q21.1
4 9
q21.32
4 q11.22
6
q21.2
5 8
q21.31
3 q13.2
7
q21.1
4 q13.1
q12
p14 p13 p12 p11 q11
6
q11.23
p13 p12.3 p12.2 p12.1 p11.2 p11.1 q11.1 q11.21
p15.1
p15.2
5
q11.22
3
8
q14.3
2 p14.1
3
7
q13.3
2
6
q14.12 q14.13 q14.2
1 4
p11.21 p11.1 q11.1 q11.21
1 p14.2
2
p12.1
Number of Probes per 100KB
3
p11.23 p11.22
p15.33 p15.32 p15.31
1
p15.3 p15.2 p15.1 p14.3
p16.3 p16.2 p16.1
Genomic Position Along Chromosome 7 (10MB)
0
5
q14.11
0 p21.2 p21.1
p21.3
Number of Probes per 100KB
2
4
q12.12 q12.13 q12.2 q12.3 q13.1 q13.2
0
3
q12.11
300 1
p13
300
p14
p22.3 p22.2 p22.1
0
2
p12.33 p12.32 p12.31 p12.2
Number of Probes per 100KB 300 1
p11.1 q11
p15.3 p15.2 p15.1
300 0
p11.2
Number of Probes per 100KB 300
p12
p13
a Genomic Position Along Chromosome 3 (10MB)
250
19
200
150
100
50
0
Genomic Position Along Chromosome 6 (10MB) 17
Genomic Position Along Chromosome 9 (10MB) 14
250
200
150
100
50
0
Genomic Position Along Chromosome 12 (10MB) 13
250
200
150
100
50
0
Genomic Position Along Chromosome 15 (10MB)
10
250
200
150
100
50
0
1
3
Nature Methods: doi: 10.1038/nmeth.2306 Genomic Position Along X Chromosome (10MB) 15
200
150
100
50
0 300 0 1 2 3 4
q23
q22.3
q22.2
q22.1
q21.33
6
q22.3
3
q22.2
q21.32
Number of Probes per 100KB
5
q22.13
q22.12
2
q21.31
q21.2
q21.1
q12.3
q12.2
q12.1
q11.2
p11.1 q11.1
p11.21
p11.22
p11.23
p11.31
p11.32
4
q22.11
q21.3
0
1
q21.2
50
q21.1
100
q11.2
150
0
q11.1
300
p11.1
Genomic Position Along Chromosome 20 (10MB)
p11.2
6
p12
200
Number of Probes per 100KB
250
p13
q25.3
q25.2
q25.1
q24.3
0
3
q12
14
q13.33
q24.2
50
q11.23
13
q13.32
100
2
q11.223
12
q13.31
q22
q23.3 q24.1
q23.1 q23.2
150
1
q11.222
11
q13.2
q13.13
q21.33
200
0
q11.221
10
q13.12
q21.32
q21.31
q21.1 q21.2
q12
q11.2
p11.1 q11.1
250
300
p11.1 q11.1 q11.21
9
q13.11
q12
q11.23
q11.22
q11.21
q11.1
p11.1
p11.21
p11.22
p11.2
p12
p13.1
Genomic Position Along Chromosome 17 (10MB)
p11.2
8
8
p11.31
250
Number of Probes per 100KB
7
7
p11.32
6
5
q28
5
q25
4
6
q26.3 q27.1 q27.2 q27.3
0 3
4
q26.1 q26.2
50 2
5
q24
100 1 3
q23
150 0
4
q22.1 q22.2 q22.3
200 300
2
q21.2 q21.31 q21.32 q21.33
5
3
q21.1
Genomic Position Along Chromosome 22 (10MB) p11.23
0
p11.3
50 2
p11.21 p11.1 q11.1 q11.2 q12 q13.1 q13.2 q13.3
100
p11.22
150 1
p11.23
200 0
p12.1
300
1
p11.4
5
p12.2
Genomic Position Along Chromosome 19 (10MB)
p21.1
0 0
p21.3 p21.2
50
p13.2
100
p13
150 300
p12.3
200
Number of Probes per 100KB
250
p13.3
9
p22.2
250
Number of Probes per 100KB
q24.2 q24.3
q24.1
q23.3
q23.2
q23.1
Genomic Position Along Chromosome 16 (10MB)
p22.13 p22.12 p22.11
250
Number of Probes per 100KB
q13.43
q13.42
q13.41
q21
q22.2 q22.3
q22.1
8
p22.33 p22.32 p22.31
4
q13.33
q13.32
q13.33
4
q13.2
q13.32
7
q13.31
3 q13.31
q13
q12.2
q12.1
6
q13.1
3
q13.2
q13.13
q13.12
q11.2
p11.1 q11.1
5
q12.3
2
q12.2
q13.11
2
q12
q11
p11.2
4
q12.1
q11.23
1 p11
p12.1
p12.2
p12.3
3
q11.22
1
p12
p13.11
p13.13 p13.12
p13.2
p13.3
2
q11.21
0
q11.1
0 p13.12 p13.11
p13.13
Number of Probes per 100KB
1
p11.1
300 p13.2
300 0
p11.2
p13.3
Number of Probes per 100KB 300
p12
p13
Number of Probes per 100KB
a Genomic Position Along Chromosome 18 (10MB) 7
250
200
150
100
50
0
Genomic Position Along Chromosome 21 (10MB) 4
250
200
150
100
50
0
Genomic Position Along Y Chromosome (10MB)
250
5
200
150
100
50
0
4
Nature Methods: doi: 10.1038/nmeth.2306 12
200
150
100
50
0 200
150
100
50
0
300 0 1 2 3 4 5 6 7
10
8 9
11
qF4
qF3
10
qF2
qF1
qB3
qG3
qG2
qG1
qF3
qF2
qF1
qE3
qE1 qE2
qD3
qD2
qD1
qC3
qC2
qC1
13
qF2
9
qE4
9
qE
qE2
qE3.3
qE3.2
qE3.1
qB1 qB2.1 qB2.2 qB2.3
12
qF1
8
qD3
qE1
qD
qC
qB
qA5.3
8
qD2
qD1
qC3
7
qC2
250 6
11
Number of Probes per 100KB 100
50
0
qH4
qH3
qH2
qH1
qG3
qG2
qG1
qF3
qF2.3
qF2.2
qF2.1
qF1
qE3
qE2
qE1
qD
qC
qB
qA3
qA2
150
qA1
qH4
qH3
qH2
qH1
14
11
qF2 qF3
11 5
7
10
13
qF1
Genomic Position Along Chromosome 14 (10MB) 4
6
9
12
qE3
0 3
8
11
qE2
50 2
5
10
qE1
100 1
4
7
9
qD3
150 0
6
8
qD2
200 300
5
7
qC
12
6
qD1
Genomic Position Along Chromosome 11 (10MB) qA5.2
0 3
qB3
50 2
4
qB2
100 1
5
qC1
150 0
3
qA5.1
200 300
4
qB1
13
qA4
0
2
qA3
50
1
qA2
100
qA2
150
0
qA3
12
qA1
200
300
qA3.1 qA3.2 qA3.3
15
qA2
250
Number of Probes per 100KB
Genomic Position Along Chromosome 5 (10MB)
qA1.3
11 qA1
Genomic Position Along Chromosome 9 (10MB)
qG3
qF3
qF2
0
qA1.2
250
Number of Probes per 100KB
Genomic Position Along Chromosome 8 (10MB) qG2
11
qE2
qE1
qG1.1 qG1.2 qG1.3
qG1 qG2 qG3
50
3
qB3.3
10
14
qA1.1
250
Number of Probes per 100KB
10
qE2
9
qE1
10
qD3
qF1
qE5
qE4
qE3
100
200
2
qB3.2
9 qD2
qD1
qF
qE5
qE4
qE3
qE2
qE2
qE1
qD
qC3
qC2
150
250
1
qB3.1
8 qD
qC
qC4 qC5
qC3
qC2
qC1
qE1
qD
qC3.2 qC3.3
qC1.2 qC1.3
200
0
qB2
7 qB5
qB4
qC2
qC1
qC3.1
qB
qC1.1
250
300
qB1
6 qB3.3
qB3.2
qB3.1
qB2
qB1.3
qB1.2
qB1.1
qB3
qA3
qA2
Genomic Position Along Chromosome 2 (10MB)
qA2
5 8
13
18
qA1
250
Number of Probes per 100KB
4 7
12
17
qE5
0
3 6 9
16
qE4
50
2 8
11
15
qE3
100
1 7
10
14
qE2.3
150
0 9
13
qE2.2
200
300
8
12
qE2.1
12
5
11
qE1
Genomic Position Along Chromosome 13 (10MB) 4 6
10
qD3
0 5
9
qD2
50 3
7
qB3
100 2
8
qD1
150 1
6
qB2
200 0 4
qB1.3
300
5
qC3
12
7
qC2
Genomic Position Along Chromosome 10 (10MB)
qA5
0 3
6
qB1.2
50 2
4
qB1.1
100 1
5
qC1
150 0
3
qA4
200 300
qA4
Genomic Position Along Chromosome 7 (10MB)
4
qB
15
2
qB2
0
3
qA3
50
2
qA3.3
100 1
qB1
150 0
qA3
300
qA2
Genomic Position Along Chromosome 4 (10MB)
qA2
15
qA1.2 qA1.3
0
1
qA3.2
200
qA1.1
Number of Probes per 100KB
50
qA1
100
qA2
250
Number of Probes per 100KB
150
qA1
qH6
qH5
qH4
qH3
200 0
qA3
11 qE2
qE1
qD3
qG1 qG2 qG3 qH1 qH2.1 qH2.2 qH2.3
qF
qE4
qE3
qE2.3
250
qA1
250
Number of Probes per 100KB
14
qF5
14
300
qA3.1
250
Number of Probes per 100KB
11 qF4
qD2.3
qD2.2
qD
qE2.2
qE2.1
Genomic Position Along Chromosome 1 (10MB)
qA2
10 qF3
13
19
qA1
250
Number of Probes per 100KB
9
13
qD3
10
qD2
12
18
qD2.3
8 qD2.1
12
17
qD2.2
9 qF2
11
qF1
qD1
qC7
qC6
qC5
11
16
qD2.1
7
15
qD1
8
14
qD1
10
qE3
9
qE2
10
qC3
7 qE1
9
13
qC3
6 qD3
8
12
qC2
8
qC1
qC4
qC5
qC4
qE1.1 qE1.2
11
qC2
6 qD2
qC3
qC3
qC2
qC1.2 qC1.3
qC1.1
qB
qA5
qA4
qA3
Number of Probes per 100KB
10
qC1
5 qD1
7
qB5.3
5 qC2
qC1
7
qB3
4 qC
6
qB5.1 qB5.2
4 qB3
6
qB4
5
9
qB2
3 qB2
qB1
5
qB5
4
qB4
4
8
qB1
2
7
qB3
3
qB2
3
6
qA5
3
qB3
qA5
qA4
qA2
qA1
5
qA4
1
2
qB1
1 qB2
2
qB1
1
4
qA3.3
0 qA3
2
qA4
0 qA2
qA1
Number of Probes per 100KB
1
qA3
0
3
qA3.2
300
2
qA3.1
300 0
qA2
qA1
300 1
qA3
Number of Probes per 100KB 300 0
qA2
qA1
Number of Probes per 100KB 300
qA2
qA1
Number of Probes per 100KB
b Genomic Position Along Chromosome 3 (10MB) 15
Genomic Position Along Chromosome 6 (10MB) 14
250
200
150
100
50
0
12
250
200
150
100
50
0
Genomic Position Along Chromosome 12 (10MB) 12
Genomic Position Along Chromosome 15 (10MB)
10
250
200
150
100
50
0
5
b Genomic Position Along Chromosome 16 (10MB)
Genomic Position Along Chromosome 17 (10MB)
Genomic Position Along Chromosome 18 (10MB)
8
9
250
200
150
100
50
300
250
200
150
100
50
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
5
6
7
8
9
150
100
50
qE4
qE3
16
Genomic Position Along Y Chromosome (10MB) 300
250
200
150
100
50
0
1
250
200
150
100
50
qF5
qF4
qF3
qF2
qF1
qE3
qE2
qE1
qD
qC3
qC2
qC1
qB
qA6
qA7.1 qA7.2 qA7.3
qA5
qA4
qA2
qA3.1 qA3.2 qA3.3
qA1.2 qA1.3
0
qA1.1
qD3
qD2
qD1
qC3
qC2
qC1
qB
qA
4
qE2
15
0
0
3
200
qA1
qE3
qE2
qE1.3
qE1.2
qD
qE1.1
qC
qB3
qB2
qB1
qA3.3
qA3.2
qA2 qA3.1
qA1
6
2
250
Genomic Position Along X Chromosome (10MB)
5
1
qE
4
Number of Probes per 100KB
3
qE5
2
qE4
1
Number of Probes per 100KB
0
0
0
qC4
qC3.3
qC2
qC3.2
qC3.1
qC1.3
qB5
qC1.2
qC1.1
qB4
qB3
qB2
qB1
qA3
qA2
0
qA1
Number of Probes per 100KB
7
300
Genomic Position Along Chromosome 19 (10MB) 300
6
qD
0
5
qE1
50
4
qD3
100
3
qC3
150
2
qC2
200
1
qC
250
0
qD2
300
qD1
9
qB3
8
qC1
7
qB2
6
qB1
5
qB
4
qA2
3
qA2
2
qA1
1
Number of Probes per 100KB
0
Number of Probes per 100KB
Number of Probes per 100KB
300
Supplementary Figure 1: Density of unique HD-FISH amplicons along the human (a) and mouse (b) genome. G-bands ideograms are displayed.
Nature Methods: doi: 10.1038/nmeth.2306
6
b 24 22 20 18 16 14 12 10 8 6 4 2 0
10 probes (24 amplicons / probe)
1 probe (24 amplicons / probe)
cumulative cost x 1,000 (USD)
20 probes (48 amplicons / probe)
0 20 0 40 0 60 0 80 10 0 0 12 0 0 14 0 0 16 0 0 18 0 0 20 0 0 22 0 0 24 0 00
cumulative cost x 1,000 (USD)
a
tests / probe
48 amplicons / probe 150 24 amplicons / probe 100 12 amplicons / probe 50
0 0
500
1000
# probes
Supplementary Figure 2: HD-FISH cost analysis. (a) Cumulative cost as a function of the number of tests per probe in three different scenarios. Costs include synthesis of PCR primers and reagents for PCR, PCR purification, labeling, and preparation of hybridization solutions. Costs for other consumables (e.g. gloves, pipette tips, etc.) as well as for instrument depreciation and personnel are excluded. (b) Linear dependence of primer synthesis cost on the number of probes and amplicons per probe.
Nature Methods: doi: 10.1038/nmeth.2306
7
relative frequency (%)
24 amplicons (4.8 kb) 50 40
19 amplicons (3.8 kb)
40
n = 92
40
10 amplicons (2 kb) 50
50
50 n = 99
15 amplicons (3 kb) n = 134
40
30
30
30
30
20
20
20
20
10
10
10
10
0
0
0
1 2 3 4 5 # spots / nucleus
1 2 3 4 5 # spots / nucleus
1 2 3 4 5 # spots / nucleus
0
n = 75
0 1 2 3 4 # spots / nucleus
Supplementary Figure 3: Distribution of spot counts for HER2 probes of decreasing size in HME cells. The number of amplicons from which each probe was derived is shown. Numbers in brackets represents ETS values. n: number of cells analyzed.
Nature Methods: doi: 10.1038/nmeth.2306
8
a
p36.33 p36.32 p36.31 p36.23 p36.22 p36.21
p13.3
p13.3
p13.2
p13.2
p13.1
p13.1
c
b
p36.13
p32.3 p32.2 p32.1
p12
p11.2
p11.1 q11.1
p11.1 q11.1
q11.2
q11.2
q12
q12 q21.1 q21.2
q21.1 q21.2
q21.31
q21.31
q21.32
q21.32
q21.33
q21.33
q22
q22
p21.1
q23.1 q23.2 q23.3 q24.1
q23.1 q23.2 q23.3 q24.1
p13.3
q24.2
q24.2
p13.2 p13.1 p12 p11.2 p11.1 q11
q24.3
q24.3
q25.1
q25.1
q25.2
q25.2
p31.3 p31.2 p31.1
p22.3 p22.2 p22.1 p21.3 p21.2
q25.3
m = 0.96
14
20
10 6
10
2
0 0
10
20
30
AlexaFluor 647 x 10
x 10
q25.3
30
# observations
p34.2 p34.1 p33
p12
p11.2
AlexaFluor 594
p36.12 p36.11 p35.3 p35.2 p35.1 p34.3
q12
d
q21.1 q21.2 q21.3 q22 q23.1 q23.2 q23.3 q24.1 q24.2 q24.3 q25.1 q25.2
relative frequency (%)
Chr17
q25.3 q31.1 q31.2 q31.3 q32.1 q32.2 q32.3 q41 q42.11 q42.12 q42.13
25 20
n = 744
15 10 5
q42.2 q42.3 q43
0
q44
-12 -8 -4 Chr1
0
4
8 12
difference between AF647 and AF594 spot counts
e Spotting
AF647 + AF594
Paint
AF647
AF594
AF647 + AF594
Paint
f
Supplementary Figure 4: (a) Genomic location of individual probes forming the spotting probes for Chr1 and Chr17 described. Magenta: AlexaFluor647-labeled probes. Green: AlexaFluor594-labeled probes. G-bands ideograms and band names are displayed. (b) Chr1 spotting with twenty-two alternatively labeled HD-FISH probes (green and magenta), and simultaneous Chr1 painting (blue) in HME cells. (c) Inter-channel concordance for spot counts shown in Figure 3b. The linear regression fit line of slope m is shown. (d) Single-cell distribution of the difference between error estimates of HD-FISH spot counts measured Nature Methods: doi: 10.1038/nmeth.2306
9
simultaneously in the AlexaFluor 594 and 647 channels. These data reflect gene copy number-invariant noise and demonstrate that the respective channel estimates are unbiased relative to each other (median value = 0) and symmetric (quartile skewness = 0). n: number of cells analyzed. (e) Representative field of view with HME cells simultaneously hybridized with a Chr17 spotting probe consisting of sixteen HD-FISH probes (left) and with a paint probe (right). Small panels: zoom-in view of the area marked by the white dashed square. AF647: AlexaFluor647; AF594: AlexaFluor594. (f) Comparison of Chr17 spotting (green and magenta) and painting (blue) in several Z-projections.
Nature Methods: doi: 10.1038/nmeth.2306
10
Relative frequency (%)
25 20
n = 445
15 10 5 0
0
10
20
30
40
# mRNA
Supplementary Figure 5: Frequency distribution of HER2 mRNA counts in HME cells with 2 (purple), 3 (orange), or 4 (brown) HER2 loci detected by HD-FISH. Gaussian fits are superimposed onto histograms. n: number of cells analyzed.
Nature Methods: doi: 10.1038/nmeth.2306
11
SUPPLEMENTARY NOTE In order for HD-FISH to attract a wide audience (including diagnostics laboratories and industrial parties), economic measures of its performance must be obtained in addition to scientific ones. For this purpose, we have performed cost effectiveness analysis in the following three scenarios. The first case is relevant to both research laboratories that occasionally need to perform DNA FISH on loci for which there are no ready-to-use probes commercially available, as well as to cytogenetics laboratories that wish to rapidly generate probes for rare rearrangements for which no commercial probes are available. The second case is relevant to diagnostics laboratories that perform a high volume of routine hybridizations against a limited number of loci, and that wish to reduce reagents costs. The third case is relevant to policy makers and healthcare systems organizers that are willing to financially support initiatives aiming at improving the efficiency of high quality diagnostics by cutting reagents costs and optimizing processes. CASE 1. Let us imagine the case in which a particular locus (or a small number of loci) for which no commercial probes are available needs to be analyzed for research or diagnostic purposes. An investment of approx. $1,880 allows purchase of primers for 24 amplicons (which allows robust signal quantification as shown in the new Supplementary Fig. 2a) and for all the reagents needed for PCR, labeling, purification, and hybridization. This investment enables approx. 900 tests (i.e. hybridizations with 20 ng of probe in 20 µL buffer) at no extra costs, after which the cumulative cost grows in a pseudo-linear, step-wise manner at very slow pace, mostly driven by the need to periodically replenish PCR and labeling reagents (Supplementary Fig. 2a). An extra starting investment of $900, for example, enables ten HD-FISH probes to be simultaneously prepared in the same cost-effective manner as outlined above, allowing 90 tests per probe to be performed at no extra cost (Supplementary Fig. 2a). In comparison, custom design and BACs-based synthesis of ready-to-use probes for the same number of loci enabling at least 90 tests per probe would at minimum require $8,000-10,000 (data based on quote requests to several DNA FISH probes manufacturers, including Empire Genomics, Kreatech Diagnostics, and Abnova). CASE 2. Let us imagine the case in which a limited set of probes (e.g. 20) is routinely used for diagnostic purposes. An investment of less than $5,800 allows purchasing primers sets for 20 probes, each consisting of 48 amplicons (which based on our results allows robust signal quantification in cells as well as tissues), as well as reagents needed for PCR, labeling,
Nature Methods: doi: 10.1038/nmeth.2306
12
purification, and hybridization. After 45 initial tests per probe at no extra cost, the cumulative cost rises in a pseudo-linear, step-wise manner, mostly driven by the need to periodically replenish PCR and labeling reagents (Supplementary Fig. 2a). The cost effectiveness of this approach is obvious by examining the cumulative cost (approx. $8,000) after 200 tests per probe (i.e. 4,000 tests in total, assuming that each probe is used with the same frequency), a figure perfectly within the range of average annual volume of tests performed by mediumsized cytogenetics laboratories. In contrast, performing the same volume of tests for 20 different ready-to-use probes periodically purchased from existing commercial providers would require a budget at least 5-fold higher (as an example, $2,500 is the price charged by a top manufacturer for a ready-to-use probe for 50 tests. Even assuming a 20% discount from the price list for large order volumes, purchase of probes for 20 different loci for 200 tests/probe would require $160,000). CASE 3. Though surely cost effective in the cases depicted above, the start-up cost of HDFISH linearly grows with the number of primers (i.e. probes), quickly exceeding the financial capabilities of a single laboratory (Supplementary Fig. 2b). Moreover, even at the lowest possible synthesis scale, a large fraction of primers would remain unused, as it is basically impossible for a single laboratory to reach the maximum number of tests (> 8 millions hybridizations using 20 ng of probe in 20 µL buffer per test) that can be performed from a 96well plate containing 12 nmol primers per well. Instead, a consortium funded by public resources and administered as a non-profit repository could build up a primers stock covering the human and mouse genomes for less than $20 million. This budget is well within the average funding that public agencies have been granting to such type of initiatives in the U.S. as well as in the E.U. This would enable laboratories worldwide to purchase primers or even pre-made PCR reactions at low price, therefore greatly facilitating high-quality FISH-based research and diagnostics services, especially in emerging economies.
Nature Methods: doi: 10.1038/nmeth.2306
13
SUPPLEMENTARY VIDEO LEGENDS All movies are in .mov format and can be played for example using QuickTime Player. Supplementary Video 1: 3D rendering of Chr17 in HME cells, visualized with ten HD-FISH probes evenly spaced every 8 Mb and labeled with two alternating fluorophores (green: AlexaFluor594; magenta: AlexaFluor647). The nucleus displayed is the same as in the Zprojection shown in Figure 3a (mid panel). Supplementary Video 2: 3D animation of Chr17 in HME cells, visualized with sixteen HDFISH probes spaced evenly every 5 Mb and labeled with two alternating fluorophores (green: AlexaFluor594; magenta: AlexaFluor647) together with a Chr17 paint probe (blue).
Nature Methods: doi: 10.1038/nmeth.2306
14