Supplement - Atmos. Chem. Phys

1 downloads 261 Views 1MB Size Report
blue, S1 posterior = red). The full site names and details are provided in Table 1. 1800. 1900. 2000. 2100. 2200. 2300. CH. 4. (ppb). CHL. 1800. 1900. 2000.
Supplement of Atmos. Chem. Phys., 17, 3553–3572, 2017 http://www.atmos-chem-phys.net/17/3553/2017/ doi:10.5194/acp-17-3553-2017-supplement © Author(s) 2017. CC Attribution 3.0 License.

Supplement of Methane fluxes in the high northern latitudes for 2005–2013 estimated using a Bayesian atmospheric inversion Rona L. Thompson et al. Correspondence to: Rona L. Thompson ([email protected])

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

Table 1. Inversion cost a priori and a posteriori for the three different scenarios shown for 2009 (other years were analogous). Scenario S1 S2 S3

Cost a priori 57737 57278 51472

Cost a posteriori 17531 17378 13352

Table 2. Comparison of the prior and posterior mixing ratios (scenario S1) with observations shown for 2009 (other years were analogous). Note the mean error is calculated as the mean of the prior (or posterior) minus the observed mixing ratio. Site ID ZEP PAL IGR YAK DEM KRS AZV VGN ZOT CHL LLB ETL FSD CHM ESP CBA MHD BAL

Prior R 0.36 0.65 0.49 0.35 0.68 0.63 0.38 0.49 0.55 0.51 0.66 0.49 0.35 0.10 0.08 0.18 0.45 0.44

NSD 0.95 1.25 0.34 0.68 0.78 0.64 1.39 0.89 0.75 0.70 0.21 0.29 0.71 0.64 0.44 0.42 1.25 0.92

mean error -4.66 2.29 -81.55 -6.96 -33.02 -38.11 -20.15 -13.10 -12.26 -4.97 -68.10 -24.41 -13.95 -10.89 -5.40 -6.66 1.81 3.89

Posterior R 0.40 0.68 0.67 0.68 0.75 0.82 0.42 0.74 0.72 0.74 0.80 0.74 0.57 0.35 0.20 0.54 0.45 0.62

NSD 0.89 1.05 0.83 0.83 1.13 1.00 1.39 0.98 1.14 1.04 0.67 0.89 0.80 0.67 1.10 0.58 0.93 0.88

mean error -3.71 0.51 -27.93 -0.83 -5.89 -7.11 -14.21 -1.94 0.54 -5.90 -21.48 -0.64 -8.97 -7.55 -1.20 -2.09 -0.37 0.20

Figure 1a. Comparison of atmospheric CH4 mixing ratios in winter 2008 – 2009 (left) and in summer 2009 (right). The error bars show the calculated observation uncertainty used in the inversions (observations = black, background = green, S1 prior = blue, S1 posterior = red). The full site names and details are provided in Table 1.

2200

2300

CHL

CH4 (ppb)

CH4 (ppb)

2300 2100 2000 1900 1800 2200 2000 1900 1800

2000 1900 1800

2000 1900 1800

2000 1900 1800

2100 2000 1900

2200

CBA

2100 2000 1900

2200

LLB

2100 2000 1900 2300

2100 2000 1900 1800 01/12

BAL

1800

VGN

CH4 (ppb)

CH4 (ppb)

2200

2200

2300

LLB

2100

2300

1900

1800

CH4 (ppb)

CH4 (ppb)

2200

2000

2300

CBA

2100

2300

KRS

2100

1800

CH4 (ppb)

CH4 (ppb)

2200

2200

2300

2100

2300

1900

1800

BAL

CH4 (ppb)

CH4 (ppb)

2200

2000

2300

KRS

2100

2300

CHL

2100

1800

CH4 (ppb)

CH4 (ppb)

2300

2200

2200

VGN

2100 2000 1900 1800

11/12

21/12

31/12

10/01

20/01

30/01

09/02

19/02

01/06

11/06

21/06

01/07

11/07

21/07

31/07

10/08

20/08

30/08

Figure 1b. Same as Fig. 1a but for a different set of sites.

2200

2300

ETL

CH4 (ppb)

CH4 (ppb)

2300 2100 2000 1900 1800 2200 2000 1900 1800

2000 1900 1800

2000 1900 1800

2000 1900 1800

2100 2000 1900

2200

CHM

2100 2000 1900

2200

ESP

2100 2000 1900 2300

2100 2000 1900 1800 01/12

FSD

1800

ZOT

CH4 (ppb)

CH4 (ppb)

2200

2200

2300

ESP

2100

2300

1900

1800

CH4 (ppb)

CH4 (ppb)

2200

2000

2300

CHM

2100

2300

MHD

2100

1800

CH4 (ppb)

CH4 (ppb)

2200

2200

2300

2100

2300

1900

1800

FSD

CH4 (ppb)

CH4 (ppb)

2200

2000

2300

MHD

2100

2300

ETL

2100

1800

CH4 (ppb)

CH4 (ppb)

2300

2200

2200

ZOT

2100 2000 1900 1800

11/12

21/12

31/12

10/01

20/01

30/01

09/02

19/02

01/06

11/06

21/06

01/07

11/07

21/07

31/07

10/08

20/08

30/08

Figure S1c. Same as Fig. 1a but for a different set of sites. 2200

2300

ZEP

CH4 (ppb)

CH4 (ppb)

2300 2100 2000 1900 1800 2200 2000 1900 1800

2000 1900 1800

2000 1900 1800

2000 1900 1800

PAL

2100 2000 1900

2200

IGR

2100 2000 1900

2200

YAK

2100 2000 1900 2300

2100 2000 1900 1800 01/12

2200

1800

DEM

CH4 (ppb)

CH4 (ppb)

2200

1900

2300

YAK

2100

2300

2000

1800

CH4 (ppb)

CH4 (ppb)

2200

TER

2100

2300

IGR

2100

2300

2200

1800

CH4 (ppb)

CH4 (ppb)

2200

1900

2300

PAL

2100

2300

2000

1800

CH4 (ppb)

CH4 (ppb)

2200

2100

2300

TER

2100

2300

ZEP

1800

CH4 (ppb)

CH4 (ppb)

2300

2200

2200

DEM

2100 2000 1900 1800

11/12

21/12

31/12

10/01

20/01

30/01

09/02

19/02

01/06

11/06

21/06

01/07

11/07

21/07

31/07

10/08

20/08

30/08

Figure 2. Calculated uncertainties by site and month (units of ppb) for the transport within the domain (a) and for the background mixing ratios (b).

VGN AZV KRS DEM YAK IGR NOY ZOT TER PAL ZEP ESP CHM FSD CDL ETL LLB CHL MHD CBA BAL TIK

70

a)

50 40 30 20

uncertainty (ppb)

60

10 0 0

VGN AZV KRS DEM YAK IGR NOY ZOT TER PAL ZEP ESP CHM FSD CDL ETL LLB CHL MHD CBA BAL TIK

2

4

6

8

10

12 70

b)

50 40 30 20 10 0 0

2

4

6

8

10

12

uncertainty (ppb)

60

Figure 3. Distribution of the observation-model CH4 mixing ratio mismatches a priori (blue) and a posteriori (red). Also shown are the assumed observation uncertainty distributions (grey). 12 10

CHL

60 50

8

40

6

30

4

20

2

10

0 −100

0

100

200

FSD

30 20 10 0

12

−100

0

100

CBA

CHM

20

40

10

20

−100

0

100

200

−100

0

100

200

ZEP

20

20

0

0 −200

−100

0

100

200

YAK

30

0

100

200

PAL

25

−100

0

100

200

−100

0

100

200

DEM

2

0

100

200

0

100

200

−200 40

−100

100

200

0

100

200

ZOT

30 20 10

0 −100

0

KRS

0 −100

10

−200

200

10

1 0

100

20

20

3

−100

30

30

4

0

IGR

−200 40

VGN

5

200

0

−200

AZV

100

5

0 −200

0

10

5

0

−100

15

10

2

200

20

15

4

−200 30

20

6

100

0 −100

25

8

0

5

−200 35

−100

10

40

40

200

BAL

60

60

100

15

−200 80

0

ESP

−200

MHD

0 −200

−100

0 −200

10

0

−200

80

20

2

6

200

30

4

7

100

40

6

10

0

60

50

8

12

0 −100

30

200

10

80

20

0 −200

ETL

40

−200

40

40

14

60

0 −200

50

LLB

0 −200

−100

0

100

200

obs - model (ppb)

−200

−100

Figure 4. Temporal distribution of atmospheric observations (number of observations per month).

ZEP TIK TER PAL NOY IGR YAK ZOT DEM CHL KRS BAL CBA LLB AZV VGN ETL CDL MHD FSD CHM 30 2005

2006

2007

2008

2009

2010

Year

2011

2012

2013

2014

Figure 5. Correlation of CH4 fluxes with different environmental parameters for 2005 to 2013. Shown are the correlations with soil temperature (a), soil water volume (b), precipitation (c) and snow depth (d). (Note white means no significant correlation).

a)

b) 1.0

0.0

Correlation

0.5

−0.5 −1.0

d) 1.0 0.5 0.0 −0.5 −1.0

Correlation

c)