SUPPORTING INFORMATION Exploiting a Dual ...

7 downloads 0 Views 49KB Size Report
Department of Chemistry, Durham University,. Durham DH1 3LE (UK). E-mail: [email protected]. I. I. Perepichka. Department of Chemistry, University of ...
SUPPORTING INFORMATION

Exploiting a Dual Fluorescence Process in Fluorene–Dibenzothiophene-S,Sdioxide Co-polymers to give Efficient Single Polymer LEDs with Broadened Emission **

By Simon M. King, Irene I. Perepichka, Igor F. Perepichka,* Fernando B. Dias, Martin R. Bryce,* and Andrew P. Monkman*

[*] Dr. I. F. Perepichka, Prof. M. R. Bryce, I. I. Perepichka Department of Chemistry, Durham University, Durham DH1 3LE (UK) E-mail: [email protected] I. I. Perepichka Department of Chemistry, University of Montreal, Montreal, Quebec H3C 3J7 (Canada) Dr. I. F. Perepichka Centre for Materials Science, Faculty of Science and Technology, University of Central Lancashire, Preston PR1 2HE (UK) E-mail: [email protected] Prof. A. P. Monkman, Dr. S. M. King, Dr. F. B. Dias Department of Physics, Durham University, Durham DH1 3LE (UK) E-mail: [email protected]

Table S1. Data for the electron absorption spectra of p(F-S)x co-polymers. Polymer

p(F-S)2 p(F-S)5 p(F-S)15 p(F-S)30

λmax [nm]

(Eg [eV])a toluene 384 (3.00) 385 (2.98) 389 (2.94) 392 (2.91)

λmax [nm]

(Eg [eV])a dichloromethane 388 (2.98) 387.5 (2.96) 391 (2.92) 394.5 (2.89)

λmax [nm]

(Eg [eV])a film 386 (2.90) 386 (2.88) 393 (2.81) 398 (2.77)

[a] Eg is optical band gap estimated from the red edge of absorption spectra.

S1

Normalized absorbance / a.u.

1.0

0.8

p(F-S)2 p(F-S)5 p(F-S)15 p(F-S)30

0.6

0.4

0.2

0.0 300

320

340

360

380

400

420

440

Wavelength / nm

Figure S1. Electron absorption spectra of p(F-S)x co-polymers in toluene.

Normalized absorbance / a.u.

1.0 0.8 0.6

p(F-S)2 p(F-S)5 p(F-S)15 p(F-S)30

0.4 0.2 0.0 250

300

350

400

450

Wavelength / nm

Figure S2. Electron absorption spectra of p(F-S)x co-polymers in dichloromethane.

S2

Normalized absorbance / a.u.

1.0

p(F-S)2 p(F-S)5 p(F-S)15 p(F-S)30

0.8 0.6 0.4 0.2 0.0 300

320

340

360

380

400

420

440

460

Wavelength /nm

Normalized photoluminescence / a.u.

Figure S3. Electron absorption spectra of p(F-S)x co-polymers in films.

p(F-S)2

1.0

p(F-S)5 0.8

p(F-S)15 p(F-S)30

0.6 0.4 0.2 0.0 400

450

500

550

Wavelength / nm Figure S4. Photoluminescence spectra of p(F-S)x co-polymers in toluene.

S3

Energy / eV

Normalized photoluminescence / a.u.

3

2.8

2.6

2.4

2.2

1.0 1

0.8 A

2

p(F-S)2 p(F-S)5 p(F-S)15 p(F-S)30

0.6 0.4 0.2 0.0 400

450

500

550

600

650

Wavelength / nm

Figure S5. Photoluminescence spectra of p(F-S)x co-polymers in film normalized at the maxima of the most intense PL band.

p(F-S)2 at 5 V (CIE x,y = 0.16, 0.22) p(F-S)5 at 5 V (CIE x,y = 0.16, 0.22) p(F-S)15 at 5 V (CIE x,y = 0.17, 0.28) p(F-S)30 at 5 V (CIE x,y = 0.17, 0.34) p(F-S)15 at 10 V (CIE x,y = 0.22, 0.39) p(F-S)30 at 10 V (CIE x,y = 0.24, 0.41)

Electroluminescence Intensity / a.u.

3

2

1

0 400

500

600

700

800

Wavelength /nm

Figure S6. Electroluminescence spectra of p(F-S)x co-polymers for device structures ITO/PEDOT:PSS/p(F-S)x/Ba/Al measured at 5 V (recorded while the bias increased, as in Figure 4 in the text) and at 10 V (when the emission color is stabilized). The EL spectra are normalized at the isosbestic point, λ = 450 nm.

S4