Supporting Information Facile synthesis of Cu2O microstructures and

0 downloads 0 Views 390KB Size Report
Figure S1 EDS spectra of the Cu2O (a) microcubes and (b) microspheres. (b) ... 3M KOH. 6M KOH. -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6. -0.06. -0.04. -0.02 .... Y. Li, Q. Wang, P. Liu, X. Yang, G. Dun and Y. Liu, Ceramics International, 2015,.
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information Facile synthesis of Cu2O microstructures and their morphology dependent electrochemical supercapacitor properties Rudra Kumar, Prabhakar Rai,* Ashutosh Sharma* Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India *Corresponding authors; Email: [email protected], [email protected]

Calculation of the Specific Capacitance; (a) By using galvanostatic charge discharge method C= (I×∆t)/ (m×∆v) = (1×10-3 ×264)/ (1×10-3× 0.4) =660 F/g (b) By cyclic voltammetry Cm=(1/m×R×∆V)× ∫I(v)dV = (1/1×10-3×2×10-3×0.7)× 0.000903 = 645 F/g

1

Figure S1 EDS spectra of the Cu2O (a) microcubes and (b) microspheres.

(a)

Cu

cps

Cu O Al

Cu

Energy (keV)

cps

O

Cu

(b) Cu

Al

Cu

Energy (keV)

2

Figure S2 Nitrogen adsorption and desorption isotherms and corresponding pore size distribution curves (insets) of Cu2O (a) microcubes and (b) microspheres.

Volume@STP (cc/g)

(a)

Relative Pressure (P/Po) Volume@STP (cc/g)

(b)

Relative Pressure (P/Po)

Figure S3 Specific capacitance of Cu2O microcubes and microspheres at different scan rate.

Specific Capacitance (F/g)

700

Microcubes Microspheres

600 500 400 300 200 100 0

0

20

40

60

80

Scan rate (mV/s)

3

100

Figure S4 Cycling behaviour of Cu2O microcubes at 5 and 10 A/g current density.

Specific Capacitance (F/g)

600 5A/g

400 10A/g

200

0

0

200

400

600

800

No of Cycle

1000

Figure S5 (a) CV curve at different electrolyte concentration at 50 mV/s scan rate, (b) cycling stability up to 500 cycle at 50 mV/s scan rate in 6M KOH, (c) Charge-discharge behaviour at different electrolyte concentration at 1A/g current density and (d) specific capacitance at different KOH concentration at 1A/g current density for Cu2O microcubes. (a)

1M KOH 3M KOH 6M KOH 0.04 Scan Rate- 50mV/s 0.08

0.08 0.06

Current (A)

Current (A)

0.06 0.02 0.00 -0.02 -0.04 -0.06

-0.08 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.04 0.02 0.00 -0.02 -0.04 -0.06

1M KOH 3M KOH 6M KOH

Potential (V)

(c)

0.3 0.2 0.1 0.0

0

100

200

300

400

Time (sec.)

500

Specific Capacitance (F/g)

Potential (V)

0.4

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Potential (V)

700 600

4

(d)

500 400 300 200 100 0

600

(b)

Cycle Number 1 100 Scan Rate-50mV/s 300 400 500

1

2

3

4

5

KOH Concentration

6

Coulombic Efficiency (%)

Figure S6 Coulombic efficiency of Cu2O microcubes.

100 80 60 40 20 0

0

200

400

600

No of cycle

5

800

1000

Figure S7 Nyquist plots of Cu2O microcubes and microspheres. 80

(a)

70

Microcubes Microspheres

Z"(ohm)

60 50 40 30 20 10 0

1.2

0

5

10 15 20 25 30 35 40 45 50

Z' (ohm)

(b)

Microcube

Z"(ohm)

1.0 0.8 0.6 0.4 0.2 1.2

3.5

1.4

1.6

1.8

Z' (ohm)

(c)

2.0

2.2

Microsphere

Z"(ohm)

3.0 2.5 2.0 1.5 1.0 0.5 1.5

2.0

2.5

3.0

Z' (ohm)

6

3.5

4.0

Figure S8 I-V curve measurement of Cu2O microcubes and microspheres.

Current (mA)

25

Microspheres Microcubes

20 15 10 5 0

0

2

4

6

8

Voltage (mV)

7

10

Table 1 Comparison of supercapacitor properties of Cu2O microcubes with similar system reported in literature. S. N.

Materials

1.

Synthesis route

Specific Capacitance (F/g)

Capacitance Retention

RGO–Cu2O–TiO2 Hydrothermal ternary Nanocomposite,

80 F/g@ 0.2 A/g

increases from 80

2.

RGO/Cu2O Hydrothermal composite films on Cu foil

98.5 F/g @1 A/g

3

Cu@Cu2O/graphe Solvothermal ne nanocomposites

100.9 F/g at 0.1 Capacitance 3 A/g, 33.4 F/g increases from 100 F/g to 257 F/g after 1000 cycle

4

Cu2O/RGO/Ni(O H)2Nanocomposit e

923.1 A/g

5

Cu2O@Reduced Hydrothermal graphene oxide composite

Hydrothermal

Refe renc e 1

in 6 M KOH to 91.5 F/g electrolyte, 41.4 after 1000 cycles F/g, 32.7 F/g 50% after 1000 2 cycles

F/g @7.0 92.4% retention 4 even after 4,000 cycles

31.0, 26.0, and 24.0 100 % retention 5 F/g @ 100, 200, even after 5,000 and cycles 400 mA/g

6

Threedimensionally ordered macroporous Cu2O/Ni inverse opal electrodes

Electrodepositi on and Template method combined

502 F/g for 3DOM Cu2O/Ni and 191 F/g Cu2O/ flat Ni electrode

7

Cu2O/CuO/RGO nanocomposite

Hydrothermal

173.4 F/g @ 1 A/g 98.2% retention 7 to 136.3 F/g @ 10 after 100,000 A/g cycles at 10 A/g

8

3D binder-free Anodization of 862.4 F/g @ 1 A/g Cu2O@Cu Cu foam and nanoneedle arrays subsequent electrooxidation

8

85% capacitance 6 retention after 500 cycle at 10 mV/s

92% after 8 retention after 10 000 cycles

9

mesoporous Silica template 380 F/g @ 96% retention 9 2 carbon electrodes based 1mA/cm with 20 after 5000 cycles with copper oxide wt % copper @ 3mA/cm2 nanoparticles loading

10

CuO nanowires

Electrospinnin g

620 F/g @ 2 100 % retention 10 A/g,710 F/g @ after 2000 cycles 2mV/s

11

CuO nanosheet Template-free arrays grown on growth method nickel foam

569 F/g @ a 82.5% retention 11 current density of after 500 cycles 5mA/cm2

12

Graphene-Like Anodisation Copper Oxide process Nanofilms

919 F/g @ 1 A/g 93% retention 12 and 748 F/g @ 30 after 5000 cycles A/g

13

CuO nanosheet Hydrothermal clusters

535 F/g @5 mV/s

90% retention 13 after 1000 cycles

14

Cu2O Microcubes

660 F/g @ 1 A/g

80% retention This after 1000 cycle wor @ 5 A/g k

Hydrothermal

References; 1.

D. Luo, Y. Li, J. Liu, H. Feng, D. Qian, S. Peng, J. Jiang and Y. Liu, J. Alloys Comp.,

2013, 581, 303–307. 2.

X. Dong, K. Wang, C. Zhao, X. Qian, S. Chen, Z. Li, H. Liu and S. Dou, J. Alloys

Comp., 2014, 586, 745–753. 3.

Y. Li, Q. Wang, P. Liu, X. Yang, G. Dun and Y. Liu, Ceramics International, 2015,

41, 4248–4253. 4.

K. Wang, C. Zhao, S. Min and X. Qian, Electrochimica Acta, 2015, 165, 314–322.

5.

B. Li, H. Cao, G. Yin, Y. Lu and J. Yin, J. Mater. Chem., 2011, 21, 10645–10648.

9

6.

M.-J. Deng, C.-Z. Song, P.-J. Ho, C.-C. Wang, J.-M. Chen and K.-T. Lu, Phys. Chem.

Chem. Phys., 2013, 15, 7479—7483. 7.

K. Wang, X. Dong, C. Zhao, X. Qian and Y. Xu, Electrochimica Acta, 2015, 152,

433–442. 8.

C. Dong, Y. Wang, J. Xu, G. Cheng, W. Yang, T. Kou, Z. Zhang and Y. Ding, J.

Mater. Chem. A, 2014, 2, 18229–18235. 9.

K. P. S. Prasad, D. S. Dhawale, S. Joseph, C. Anand, M. A. Wahab, A. Mano, C.I.

Sathish, V. V. Balasubramanian, T. Sivakumar and A. Vinu, Microporous Mesoporous Materials, 2013, 172, 77–86. 10.

B. Vidyadharan, I. I. Misnon, J. Ismail, M. M. Yusoff and R. Jose, J. Alloys Comp.,

2015, 633, 22–30. 11.

G. Wang, J. Huang, S. Chen, Y. Gao and D. Cao, J. Power Sources, 2011, 196, 5756–

5760. 12.

Y. Lu, X. Liu,K. Qiu, J. Cheng, W. Wang, H. Yan, C. Tang, J.-K. Kim and Y. Luo,

ACS Appl. Mater. Interfaces, 2015, 7, 9682−9690. 13.

G. S. Gund, D. P. Dubal, D. S. Dhawale, S. S. Shindea and C. D. Lokhande, RSC

Adv., 2013, 3, 24099–24107.

10

Suggest Documents