[31]http://chemwiki.ucdavis.edu/Inorganic_Chemist ry/Descriptive_Chemistry/Periodic_Table_of_the_El ements/Periodic_Trends.` [32] GORYUNOVA N.A. ...
Adv. Mat. Sci. & Technol. Nº7 Art 3 pp 23-38, 2013 ISSN 1316-2012 Depósito Legal pp 96-0071
Recibido 16 07 2013 Aceptado 07 08 2013 Publicado 31 08 2013 © 2013 CIRES
SYNTHESIS, X-RAY DIFFRACTION AND DIFFERENTIAL THERMAL ANALYSIS OF Cu2(Ge1-xSnx)Se3+ ALLOYS (=1 and x=0, 0.25, 0.50, 0.75, 1) R. PEÑA1, P. GRIMA-GALLARDO 1, L. NIEVES1 , G. MARCANO1 , M. QUINTERO1 , E. MORENO1, M.A. RAMOS2, J.A. HENAO3 & J.M. BRICEÑO4 . 1: Centro de Estudios en Semiconductores (C.E.S.). Departamento de Física, 4: Laboratorio de Análisis Químico y Estructural (LAQUEM) Dpto Física Facultad de Ciencias, Universidad de Los Andes, Mérida 5101-Venezuela 2: Laboratorio de Difracción y Fluorescencia de Rayos-X. Instituto Zuliano de Investigaciones Tecnológicas (INZIT), La Cañada de Urdaneta, Estado Zulia, Venezuela. 3: Laboratorio de Difracción de Rayos-X. Escuela de Química. Universidad Industrial de Santander. Bucaramanga, Colombia.
ABSTRACT Polycrystalline samples (weight ~ 1g), belonging to the Cu2(Ge1-xSnx)Se3+ alloy system, with =1, and in the composition range 0≤x≤1, were prepared by the usual melt and anneal method and characterized by X-Ray Diffraction (XRD) and Differential Thermal Analysis (DTA) techniques. Compositions x=0 (Cu2GeSe4) and 0.25 showed two phases, both indexed in an orthorhombic structure analogue to that observed by Parthé et al (1971) for Cu2GeSe3 [1]. Compositions x=0.50 and 0.75 showed two phases with cubic structure, analogue to that reported by Berger et al for Cu2SnSe3 [2]. Composition x=1 (Cu2SnSe4) showed several cubic phases. This behavior is typical of a spinodal system. All the compositions studied show an incongruent melting point and a solid-to-solid phase transition near of the melting point. Key Words: Semiconductor alloys. X-ray diffraction. Differential Thermal Analysis. Phase diagram.
SÍNTESIS, DIFFRACTION RAYOS-X Y ANÁLYSIS TÉRMICO DIFFERENTIAL DE Cu2(Ge1-xSnx)Se3+ ALEACIONES (=1 and x=0, 0.25, 0.50, 0.75, 1) RESUMEN Por el método tradicional de fusión y recocido, fueron preparadas muestras policristalinas (peso ~ 1g), pertenecientes a la familia de aleaciones Cu2(Ge1-xSnx)Se3+ cony en el rango de composiciones 0≤x≤1; los productos se caracterizaron por las técnicas de Difracción de Rayos X (DRX) y Análisis Térmico Diferencial ATD). Las composiciones x=0 y x=0.25 muestran dos fases que indexan ambas en una estructura ortorrómbica análoga a la reportada por Parthé et al para el compuesto Cu2GeSe3 [1]. Las composiciones x=0.50 y 0.75 muestran también dos fases pero de estructura cívica, análoga a la reportada por Berger et al para el compuesto Cu2SnSe3 [2]. La composición x=1 (Cu2SnSe4) muestra varias fases cúbicas. El comportamiento de este sistema es típico de una descomposición espinodal. Todas las composiciones estudiadas muestran un punto de fusión incongruente y una transición sólido-sólido cercana al punto de fusión. Palabras clave: Aleaciones semiconductoras. Difracción de Rayos X (DRX). Análisis Térmico Diferencial (ATD). Diagrama de fase. FICHA PEÑA, R.; P. GRIMA-GALLARDO; L. NIEVES; G. MARCANO; M. QUINTERO; E. MORENO; M.A. RAMOS J.A. HENAO &J.M BRICEÑO, 2013.- SYNTHESIS, X-RAY DIFFRACTION AND DIFFERENTIAL THERMAL ANALYSIS OF Cu2(Ge1-xSn x)Se3+ ALLOYS (=1 and x=0, 0.25, 0.50, 0.75, 1) Adv. Mat. Sci. & Technol 7(2): 23-38, ISSN 1316-2012
23
that the tetragonal phase is only obtained if the samples have been annealing for a long period time [21-22]
INTRODUCTION The Cu2GeSe3 and Cu2SnSe3 are compounds of the AI2B IVC VI3 family with potential applications in solar cells, thermal to electric conversion and electro-optic devices [3-13]. Apart the scientific interest of these compounds for their technological applications, an academic interest is added by the fact that there was some disagreement about the unit cell size and symmetry of Cu2GeSe3 and also a controversy about the nature of the crystallographic structure of Cu2 SnSe3. Moreover, the compound Cu2GeSe3+with =1 (nominally Cu2GeSe4 ) could not be formed whereas for Cu2SnSe3+, the value =1 (nominally Cu2SnSe4) has been reported by several authors [14-17].
With respect to the pseudobinary system Cu2SeSnSe2 only the compound Cu2SnSe3 has been reported [23]. However, controversy exists about the nature of the crystallographic structure of Cu2 SnSe3. It has been indicated that this compound has no tetragonality and crystallizes in a zinc blende structure with fcc lattice [24]. On the other hand it was proposed that up to 723K, Cu2SnSe3 , has orthorhombic symmetry and at this temperature an order-disorder transformation takes place [25]. The structure of this modified phase was found to be of the sphalerite type. The data of the latest investigations showed that this compound could crystallize in a monoclinic structure with a sphalerite superstructure [24]. Some authors indicated the existence of Cu2SnSe4 in the Cu2Se-SnSe2 section [14-17] but the crystal structure and lattice parameter (a=5.6878Å) of this compound is the same of that of Cu2SnSe3. Actually, Cu2SnSe3 and Cu2SnSe4 are considered to be the two terms of the solid solution Cu2SnSe3+ (0≤≤1). There is agreement in the phase diagrams of the quasibinary system Cu2Se-SnSe2 that have been reported by several authors [26-29]; the compound Cu2SnSe3 has a congruent melting point of 968K and the and interactions between Cu2Se-Cu2SnSe3 Cu2SnSe3 -SnSe2 are of the eutectic type, with invariant point coordinates (in % mol SnSe2 and K) of (21, 938) and (84, 861), respectively.
A recent report about the phase relations on the pseudobinary system Cu2Se-GeSe2 have clarify the disagreement about the unit cell and symmetry of Cu2GeSe3 [18]. It was found than there are only two definite compounds in this section: Cu8GeSe6 (at 20 mol % of GeSe2) and Cu2GeSe3 (at 50 mol % of GeSe2). Cu8GeSe6 has two modifications, corresponding to the low and high temperature range, both hexagonal. Cu2GeSe3 shows also two modifications, the high temperature modification is orthorhombic, space group Imm2 (No 44), with lattice parameters a=11.860 Å, b=3.960 Å and c=5.485 Å, whereas the low temperature modifica(No 122). The tion is tetragonal, space group compound Cu2GeSe3 melts incongruently at 1054K and the solid to solid polymorphic transition (tetragonal to orthorhombic) occurred at 893K. The interactions between Cu8GeSe6 -Cu2GeSe3 and Cu2GeSe3-GeSe2 are of the eutectic type, and their respective invariant point coordinates (in % mol GeSe2 and K) are (38, 1033) and (83, 960), respectively.
EXPERIMENTAL PROCEDURE Preparation of the samples. The samples were synthesized using the melt and annealing technique. Stoichiometric quantities of Cu, Ge, Sn and Se elements with purity of 99.99% were charged in an evacuated quartz ampoule, which was previously subjected to pyrolysis in order to avoid reaction of the starting materials with quartz. Then, the ampoule was sealed under vacuum (~10-4 Torr) and the fusion process was carried out inside a furnace (vertical
The previous confusion with the crystal structure and unit cell of Cu2GeSe3 was probably partially produced by the fact that Cu2GeSe3 is very sensitive to Ge concentration: a slight deficiency lowers the cell symmetry to a monoclinic (nominal composition Cu2Ge0.85Se3 , lattice parameters a=5.512 Å, b=5.598 Å, c=5.486 Å, =89.7o), while an excess raises it to a cubic (nominal composition Cu2Ge1.55Se3, lattice parameter a=5.569 Å) [19-20]. In addition, it is seem 24
position) heated up to 1500K at a rate of 20o/h, with a stop of 48 h at 490K (melting temperature of Se) in order to maximize the formation of binary species at low temperature and minimize the presence of unreacted Se at high temperatures. The ampoule was shaken using a mechanical system during all the heating process in order to help the complete mixing of all the elements. The maximum temperature (1500K) was keeping for other 48 hours with the mechanical shaken system on. Then, the mechanical shaken system was turning off and the temperature was gradually down, at the same rate of 20o/h, until 800K. The ampoule was kept at this temperature for a period of 30 days. Finally, the sample was cooled to room temperature at a rate of 10o/h.
DTA-7 with aluminum and gold used as reference materials. The charge was of powdered alloy of approximately 100-mg weight. Both heating and cooling runs were carried out on each sample, the average rates of these runs being approximately 10 K/min. The error in determining these temperatures is of about ±10 K. The temperature values of the thermal transitions were obtained using the criteria of the interception of the base line with the beginning of the corresponding peak.
The obtained ingots were gray color and homogeneous; moreover, the absence of the characteristic Se smell when the capsules were opened were an indication that the whole Se had been reacted.
In Figure 1, the experimental patterns obtained by XRD are displayed. At first sight, in Figure 1a (left), we observe, for all compositions, a single phase with very close lattice parameters; however, when the strongest peak is amplified (Figure 1b, right), we can observe that:
ANALYSIS AND DISCUSSION 3.1 XRD measurements.
XRD measurements. A small amount of each compound was gently ground in an agate mortar and sieved to a grain size of less than 38 μm. Each sample was mounted on a zero-background specimen holder for the respective measurement. Xray powder diffraction patterns of the samples were recorded using a D8 FOCUS BRUKER Rigaku D/MAX IIIB diffractometer operating in BraggBrentano geometry equipped with an X-ray tube (CuKα radiation: λ = 1.5406 Å, 40 kV and 40 mA) using a nickel filter and an one dimensional LynxEye detector. A fixed antiscatter slit of 8 mm, receiving slit of 1 mm, soller slits of 2.5° and a detector slit of 3 mm were used. The scan range was from 2 to 70° (2θ) with a step size of 0.02° (2θ) and a counting time of 0.4 s/step.
a) The strongest peak of Cu2GeSe4, Cu2(Ge0.75Sn0.25)Se4 , Cu2(Ge0.5Sn0.5)Se4 and Cu2(Ge0.25Sn0.75)Se4 are double. b) The strongest peak of Cu2 SnSe4 is triple.
This behavior is typical of a spinodal system. Effectively, the diffraction pattern of Cu2GeSe4 and Cu2(Ge0.75Sn0.25)Se4 can be fully indexed with two orthorhombic phases (named as 1 and 2 in the text), with the same structure and very close lattice parameters; the diffraction patterns of Cu2(Ge0.5Sn0.5)Se4 and Cu2(Ge0.25Sn0.75)Se4 can be fully indexed with two cubic phases (named 1 and 2 in the text); and the diffraction pattern of Cu2SnSe4 can be indexed with three cubic phases (1, 2 and 3 ). The respective lattice parameters were obtained indexing with the computer program DICVOL04 [30].
DTA measurements. Phase transition temperatures were obtained from differential thermal analysis (DTA) measurements, in the temperature range between 300 and 1500K, using a Perkin-Elmer 25
Figure 1. Figure 1a (left): Experimental diffraction patterns of the Cu2(Ge1-xSnx)Se3+ alloy system; Figure 1b (right): Amplification around the strongest peak. Table I. Indexation of the 1 phase of Cu2GeSe4 2obs(o) dobs(Å)
(I/I0)obs
hkl
2cal(o) dcal(Å)
2(o)
27.799 45.878
3.20665 1.97639
100.0 12.7
101 002
27.795 45.887
3.20706 0.004 1.97602 -0.009
46.336 54.492
1.95791 1.68257
32.0 13.0
211 112
46.333 54.499
1.95803 0.003 1.68238 -0.007
55.290 66.895
1.66016 1.39756
6.8 2.1
301 022
55.290 66.904
1.66015 0.000 1.39739 -0.009
68.305 73.914 74.598
1.37211 1.28124 1.27117
1.2 1.2 3.0
400 103 312
68.309 73.932 74.602
1.37204 -0.004 1.28096 -0.018 1.27112 -0.004
85.243 86.228
1.13756 1.12707
2.8 1.6
213 402
85.261 86.234
1.13736 -0.018 1.12700 -0.006
91.530 92.193
1.07511 1.06910
1.0 0.7
123 303
91.549 92.202
1.07493 -0.019 1.06902 -0.009
93.486
1.05769
0.6
501
93.496
1.05760 -0.010
Figures of merit [30]: M (14) =129.8; F (14) =55.2 (0.0040, 64) Lattice parameters: a= (5.4882±0.0002) Å; b= (3.9528±0.0001) Å; c= (11.856±0.001) Å
Table II. Indexation of the 2 phase of Cu2GeSe4 26
2obs(o) dobs(Å)
(I/I0)obs
hkl
2cal(o) dcal(Å)
2(o) 0.010
27.873
3.19830
100.0
101
27.863
3.19938
46.010 46.458 54.636
1.97102 1.95306 1.67847
15.2 27.5 13.1
002 211 112
46.001 46.451 54.637
1.97140 0.009 1.95334 0.007 1.67844 -0.001
55.440 67.085
1.65602 1.39407
5.8 2.0
301 022
55.439 67.079
1.65605 1.39418
68.497 74.137
1.36873 1.27793
0.9 1.8
400 103
68.504 74.136
1.36861 -0.007 1.27795 0.001
74.815 85.505
1.26802 1.13474
2.7 2.6
312 213
74.813 85.511
1.26806 0.002 1.13468 -0.006
86.493 91.816 92.490
1.12430 1.07251 1.06645
1.3 1.0 0.6
402 123 303
86.498 91.824 92.488
1.12425 -0.005 1.07244 -0.008 1.06646 0.002
0.001 0.006
Figures of merit [30]: M (13) =127.4; F (13) =45.2 (0.0046, 62) Lattice parameters: a= (5.4745±0.0004) Å; b= (3.9439±0.0002) Å; c= (11.828±0.002) Å
Figure 2. Indexation of the sample Cu2GeSe4. The diffraction pattern has been divided in two parts for clarity. The labels correspond to the hkl-Miller indices and the respective phases (1 or 2). Table III. Indexation of the 1 phase of Cu2(Ge0.75 Sn0.25)Se4. 27
2obs(o)
dobs(Å)
(I/I0)obs
hkl
2cal(o)
dcal(Å)
2(o)
27.866
3.19908
100.0
101
27.898
3.19552
-0.032
45.937
1.97399
23.3
002
45.916
1.97483
0.021
46.211
1.96292
32.4
211
46.220
1.96257
-0.009
54.443
1.68398
19.4
112
54.464
1.68336
-0.022
54.951
1.66958
8.4
301
54.953
1.66953
-0.002
67.672
1.38340
7.4
400
67.673
1.38338
-0.001
73.766
1.28345
2.4
103
73.747
1.28373
0.019
74.188
1.27719
3.5
312
74.239
1.27643
-0.051
84.893
1.14135
4.3
213
84.912
1.14114
-0.019
85.536
1.13441
3.7
402
85.567
1.13407
-0.032
Figures of merit [30]: M (12) =46.1; F (14) =18.4 (0.0126, 52) Lattice parameters: a= (5.5528±0.0011) Å; b= (3.9714±0.0006) Å; c= (11.889±0.001) Å
Table IV. Indexation of the 2 phase of Cu2(Ge0.75 Sn0.25)Se4. 2obs(o)
dobs (Å)
(I/I0)obs
hkl
2cal(o)
dcal (Å)
2(o)
27.866
3.19908
100.0
101
27.852
3.20069
0.014
46.044
1.96964
14.3
002
46.030
1.97023
0.014
46.346
1.95754
17.7
211
46.304
1.95921
0.042
54.554
1.68080
15.1
112
54.503
1.68226
0.051
55.103
1.66536
6.1
301
55.112
1.66510
-0.009
66.953
1.39649
6.0
022
66.946
1.39663
0.007
74.000
1.27996
2.9
103
74.021
1.27965
-0.021
74.411
1.27391
2.8
312
74.389
1.27423
0.022
85.065
1.13948
3.5
213
85.075
1.13938
-0.010
85.820
1.13139
2.2
402
85.832
1.13125
-0.013
Figures of merit [30]: M (10) =35.1; F (10) =10.9 (0.0177, 52) Lattice parameters: a= (5.524±0.002) Å; b= (3.955±0.002) Å; c= (11.893±0.001) Å
28
Figure 3. Indexation of the sample Cu2Ge0.75Sn0.25Se4. The diffraction pattern has been divided in two parts for clarity. The labels correspond to the hkl-Miller indices and the respective phases (1 or 2).
Table V. Indexation of the phase of Cu2(Ge0.5Sn0.5)Se4. 2obs(o)
dobs (Å)
(I/I0)obs
hkl
2cal(o)
dcal (Å)
2(o)
27.656
3.22288
100.0
111
27.494
3.24153
0.162
45.723
1.98271
31.1
220
45.667
1.98503
0.056
54.181
1.69149
18.8
311
54.134
1.69284
0.047
66.512
1.40469
4.7
400
66.569
1.40363
-0.057
73.424
1.28858
5.1
331
73.458
1.28805
-0.035
84.437
1.14634
3.5
422
84.464
1.14606
-0.026
90.768
1.08214
2.0
511
90.943
1.08051
-0.175
Figures of merit [30]: M (7) =16.5; F (7) =3.1 (0.0797, 28) Lattice parameter: a= (5.615±0.003) Å.
29
Table VI. Indexation of the phase of Cu2(Ge0.5Sn0.5)Se4. 2obs(o) dobs (Å) (I/I0)obs h k l 2cal(o)
dcal (Å)
2(o)
27.671
3.22122
100.0
111
27.571
3.23261
0.099
45.848
1.97761
46.7
220
45.800
1.97956
0.048
54.331
1.68716
18.1
311
54.296
1.68818
0.035
66.881
1.39782
3.6
400
66.776
1.39976
0.105
73.629
1.28550
6.8
331
73.694
1.28451
-0.066
84.661
1.14389
4.4
422
84.751
1.14290
-0.090
91.036
1.07965
2.2
511
91.265
1.07754
-0.229
Figures of merit [30]: M (7) =12.4; F (7) =2.6 (0.0962, 28) Lattice parameter: a= (5.599±0.003) Å.
Figure 3. Indexation of the sample Cu2Ge0.5Sn0.5Se4. The diffraction pattern has been divided in two parts for clarity. The labels correspond to the hkl-Miller indices and the respective phases (1 or 2). 30
Table VII. Indexation of the phase of Cu2(Ge0.25Sn0.75)Se4. 2obs(o)
dobs (Å)
(I/I0)obs
hkl
2cal(o)
dcal (Å)
2(o)
27.517
3.23885
100.0
111
27.504
3.24031
0.013
45.531
1.99065
44.1
220
45.520
1.99110
0.011
53.905
1.69951
23.3
311
53.907
1.69944
-0.002
66.184
1.41085
4.7
400
66.211
1.41033
-0.028
73.038
1.29443
6.1
331
73.022
1.29468
0.016
83.886
1.15247
4.5
422
83.883
1.15250
0.003
90.270
1.08681
2.1
511
90.267
1.08684
0.003
Figures of merit [30]: M (7) =107.4; F (7) =21.5 (0.0108, 30) Lattice parameter: a= (5.6587±0.0006) Å.
Table VIII. Indexation of the phase of Cu2(Ge0.25Sn0.75)Se4. 2obs(o)
dobs (Å)
(I/I0)obs
hkl
2cal(o)
dcal (Å)
2(o)
27.517
3.23887
100.0
111
27.481
3.24303
0.036
45.600
1.98779
36.5
220
45.620
1.98698
-0.020
54.043
1.69548
15.7
311
54.069
1.69472
-0.026
66.475
1.40537
4.4
400
66.475
1.40537
0.000
73.324
1.29008
4.0
331
73.348
1.28973
-0.024
84.355
1.14725
3.4
422
84.321
1.14763
0.034
90.772
1.08210
1.8
511
90.780
1.08203
-0.008
Figures of merit [30]: M (7) =58.4; F (7) =11.1 (0.0210, 30) Lattice parameter: a= (5.6241±0.0009) Å.
31
Figure 4. Indexation of the sample Cu2Ge0.25Sn0.75Se4. The diffraction pattern has been divided in two parts for clarity. The labels correspond to the hkl-Miller indices and the respective phases (1 or 2). Table IX. Indexation of the phase of Cu2SnSe4 . 2obs(o) dobs (Å) (I/I0)obs
hkl 2cal(o)
dcal (Å)
2(o)
27.101
3.28761
100.0
111 27.114
3.28611 -0.013
45.020
2.01204
41.7
220 45.013
2.01233
53.367
1.71535
18.6
311 53.341
1.71612 0.026
65.524
1.42345
3.5
400 65.551
1.42293 -0.027
72.312
1.30562
4.7
331 72.303
1.30577 0.010
83.057
1.16185
3.4
422 83.060
1.16182 -0.003
89.371
1.09539
2.0
511 89.374
1.09537 -0.002
Figures of merit [30]: M (7) =92.4; F (7) =18.8 (0.0124, 30) Lattice parameter: a= (5.6917±0.0006) Å.
32
0.007
Table X. Indexation of the phase of Cu2SnSe4. 2obs(o)
dobs (Å)
(I/I0)obs
hkl
2cal(o)
dcal (Å)
2(o)
27.160
3.28065
100
111
27.184
3.27778
-0.024
45.149
2.00658
28.4
220
45.134
2.00722
0.015
53.493
1.71161
12.5
311
53.488
1.71177
0.005
65.695
1.42015
2.8
400
65.739
1.41932
-0.043
72.520
1.30239
3.1
331
72.516
1.30246
0.004
83.343
1.15859
2.2
422
83.318
1.15887
0.024
Figures of merit [30]: M (6) =67.6; F (6) =12.9 (0.0194, 24) Lattice parameter: a= (5.6773±0.0009) Å.
Table XI. Indexation of the phase of Cu2SnSe4 . 2obs(o)
dobs (Å)
(I/I0)obs
hkl
2cal(o)
dcal (Å)
2(o)
27.025
3.29671
100
111
27.050
3.29374
-0.025
44.882
2.01790
50.9
220
44.907
2.01684
-0.025
53.264
1.71842
30.6
311
53.214
1.71993
0.051
65.417
1.42553
4.7
400
65.389
1.42607
0.028
72.130
1.30847
5.8
331
72.119
1.30864
0.010
82.800
1.16481
3.9
422
82.839
1.16435
-0.039
Figures of merit [30]: M (6) =43.7; F (6) =8.4 (0.0296, 24) Lattice parameter: a= (5.704±0.001) Å.
33
Figure 4. Indexation of the sample Cu2SnSe4 . The diffraction pattern has been divided in two parts for clarity. The labels correspond to the hkl-Miller indices and the respective phases (1 , 2 or 3 ). Finally, The cell parameters of 1 and 2 himself as 1, 2 and 3 phases are very close as it was be expected for a spinodal decomposition.
In Figure 5 we show the variation of the lattice parameters with composition for x=0, 0.25, 0.5, 0.75 and 1. It can be seen that the a lattice parameter follows a linear behavior in the compositions range 0≤x