Synthetic Approaches to 2-Arylbenzimidazoles: A

0 downloads 0 Views 261KB Size Report
Current Organic Chemistry, 2012, 16, 1905-1919. 1905 ...... Forseca, T.; Gigante, B.; Gilchrist, T. L. A short synthesis of phenanthro[2,3- d]imidazoles from ...
Current Organic Chemistry, 2012, 16, 1905-1919

1905

Synthetic Approaches to 2-Arylbenzimidazoles: A Review Siva S. Panda,a,b* Ritu Malikb and Subhash C. Jainb a

Department of Chemistry, University of Florida, Gainesville 32611, Florida, USA

b

Department of Chemistry, University of Delhi, Delhi 110007, India Abstract: Benzimidazoles are very useful building blocks for the development of molecules that are important in medicinal chemistry. 2Substituted benzimidazole derivatives have found applications as diverse therapeutic agents, including antiulcers, antihypertensives, antivirals, antifungals, anticancers, and antihistaminics. Because of their importance, the methods for their synthesis have become a focus of Synthetic Organic Chemists. However, we failed to locate report in the literature that covers various efforts that have been made for the synthesis of 2-arylbenzimidazoles. Therefore, in the present review, we have tried to compile some of the important synthetic techniques and methodologies used for its synthesis during the last decade.

Keywords: 2-Arylbenzimidazoles, Methodologies, Synthetic routes, o-phenylenediamine. 1. INTRODUCTION The synthesis of benzimidazoles has gained importance in recent years, because they exhibit illustrious biological and pharmacological activities and are used as selective neuropeptide YY1 receptor antagonists [1], factor Xa inhibitors [2], smooth muscle cell proliferation inhibitors [3], antitumor [4], antiviral [5], and antimicrobial agents [6], and for HIV [7], herpes (HSV-1) [8], RNA [9], influenza [10], and human cytomegalovirus (HCMV) [7]. They are also used in diverse areas of chemistry [11] and are very important intermediates in various organic reactions [12]. The structural similarities between benzimidazole nucleus and various biological compounds such as the purine base of the DNA and its presence in vitamin B12 have made it important in pharmaceutical industry. This similarity is believed to help easy recognition of benzimidazole by various biological systems. As a result of this, benzimidazoles have been termed as “privileged structures” for drug design. Moreover, it has been also reported that benzimidazole exhibit high affinity for enzyme and protein receptors. Thus, because of its increasing medicinal importance, great efforts have been made time to time to develope an efficient and economical method for the synthesis of its large number of new derivatives, in a hope to obtain a potent pharmacophore for the future. Commonly employed methods for the synthesis of benzimidazoles involve reaction between o-phenylenediamines and carboxylic acids or their derivatives (nitriles, amidates, orthoesters) in the presence of strong acids such as polyphosphoric acid [13] or mineral acids [14]. Other methodologies like thermal or acid promoted cyclization of N-(N-arylbenzimidoyl)-1,4-benzoquinoneimines [15] or direct N-alkylation of an unsubstituted benzimidazole [16, 17] have been also reported. Recently, strategies have been directed toward its synthesis involving cyclocondensation of ophenylenediamines with aldehydes under oxidative conditions [18– 21]. In many of these methods, stoichiometric amount of oxidizing agents such as, amino-acid based prolinium nitrate ionic liquid [22],

*Address for correspondence to this author at the Department of Chemistry University of Florida, Florida FL 32611, USA; Tel: +1-352-870-9288; E-mail: [email protected]

1385-2728/12 $58.00+.00

K3Fe(CN)6 under basic conditions [23], Mn(OAc)3 in AcOH [16], CAN–H2O2 [18], Cu3/2PMo12O40/SiO2 [19], Fe(NO3)3–H2O2 [20], ZrOCl2-nH2O/montmorillonite K-10 [21], nano CuO in DMSO [24] etc. have been employed. Ibrahim has recently reported a review on the synthetic utilities of o-phenylenediamines for the synthesis of benzimidazoles [25]. Besides above methodologies, many reports have also appeared in the literature, for the synthesis of 2-arylbenzimidazoles, using eco-friendly technologies as well, like use of microwave, sonicator or ultrasound. Some methods were also reported where organic solvents have been replaced by water. In the last ten years, a large number of scientific publications have appeared in the literature describing the synthesis of 2arylbenzimidazoles (Fig. 1, as per SciFinder® structure search). This indicated clearly the importance of 2-arylbenzimidazoles for a Chemist, a Researcher or an Industrialist. Unfortunately, there is not a single review which describes various synthetic strategies that were developed and reported from time to time in the literature. In fact there are two methods which are generally used for the synthesis of 2-substituted benzimidazoles. One is the coupling of ophenylenediamines with carboxylic acids or their derivatives (nitriles, imidates, or orthoesters). This often requires strong acidic conditions, and sometimes very high temperature. The other involves two-step procedure that includes oxidative cyclodehydrogenation of aniline Schiff bases, often generated in situ from the condensation of o-phenylenediamines with aldehydes. 2. SYNTHESIS OF 2-ARYLBENZIMIDAZOLES FROM OPHENYLENEDIAMINES AND ARYL ACIDS o-Phenylenediamines (1) are the common starting material for the synthesis of 2-arylbenzimidazoles (3). Table 1 highlights the different synthetic strategies used for the synthesis of 2arylbenzimidazole (3) starting from o-phenylenediamine (1) and aryl acids (2) under different conditions. Bhatt et al. have reported the synthesis of N-[4-(1Hbenzimidazol-2-yl)phenyl]-10H-phenothiazines (5), as antibacterial and antifungal agents, from o-phenylenediamine (1) and 4-[(10Hphenothiazin-10-yl-(substituted)-methyl)amino]benzoic acid (4) under reluxing condition in pyridine for 6 hours (Scheme 2) [56]. © 2012 Bentham Science Publishers

1906

Current Organic Chemistry, 2012, Vol. 16, No. 16

Panda et al.

Fig. (1). Number of publications identified by structure search “2-phenylbenzimidazole (allow variability only as specified) as a product” plotted against publication year; Search results from 2000 to 2011.

Fig. (2). General synthetic strategy for the synthesis of 2-arylbenzimidazole. NH2 R1

COOH

R2

N R1

+ R

2

N H

NH2 1

2

for RXN cond. see table 1

3

R1 = alkyl, alkoxy; R2 = alkyl, alkoxy, halide, nitro

Scheme 1. Table 1. Synthesis of 2-arylbenzimidazoles from o-phenylenediamines and aryl acids

S.No.

Solvent

Reagent (Catalyst)

Temp. ( oC)

Time

Yield (%)

Ref.

1

-

PPA

MWI

8 min

39-78

[26]

2

H2O

-

350

4h

91

[27]

3

(CH2OH) 2

-

reflux

5-6 h

82

[28,29]

4

PhMe

AlMe3

0 - rt- reflux

25 h

99

[30]

5

MeCHOH-CH2OH

-

160

12-18 h

64-70

[31]

6

Dioxane

SnCl2

180

10 h

68

[32]

7

DMF

Zeolite

MWI

2-6 min

-

[33]

8

MeCN

PPh3 (polymer-supported); Cl3CCN

150

15 min

69-89

[34]

9

H2O

H3PO4

rt - 90 - 200

6h

12-70

[35]

Synthetic Approaches to 2-Arylbenzimidazoles

Current Organic Chemistry, 2012, Vol. 16, No. 16

1907

Table 1. contd… Reagent

Temp. ( oC)

S.No.

Solvent

10

C5H5N

P(OPh) 3

11

-

PPA

175

1.5 h

90

[37]

12

-

HCl

192 (MWI)

10 min

62-96

[38]

(Catalyst)

220 MWI (1 bar)

Time

Yield (%)

Ref.

10 min

43-78

[36]

13

H2O

HCl

reflux

15 h

57-72

[39]

14

CH2Cl2

Me 2N+=CHSO2Cl•Cl-; C5H5N

0 to rt

6h

91-97

[40]

15

-

Al2O3; MeSO3H

MWI

10 min

77-96

[41]

16

PhMe

Lipase

rt - 45

60 h

6

[42]

17

PhMe

C24 B F 20. C 19 H15

90-95

24 h

75

[43]

18

-

C8H15N2 . BF4 (ionic liquid)

100

90-120 min

80-96

[44]

19

DMF

Silphox [POCl3-n(SiO2)n]

MWI

8 min

72-93

[45]

20

H2O; PhMe

Bu4N+Cl-

160 (MWI)

17-23 min

76-90

[46]

21

-

Vanadyl acetylacetonate

MWI

2-5 min

85-91

[47]

22

EtOH

K2CO3

reflux

10 min

86

[48]

23

AcOH

-

reflux

15 min

-

[49]

24

-

POCl3; C5H 5N

MWI

5 min

-

[50]

25

-

Zeolite

MWI

7-9 min

26-88

[51]

26

CH2Cl2; DMF

EtN(Pr-i)2; DCC

rt

12 h

-

[52]

27

CH2Cl2

BF3-Et2O

rt

-

-

[53]

28

PhMe

PCl3

reflux

36-72 h

-

[54]

MWI

3 min

82-96

[55]

29

Wells–Dawson heteropolyacid

PhMe

(H6P2W 18O6 . 24H2O)

O

OH HN

NH2

N

C5H5N +

R

NH2

NH

ref lux, 6 h R

NH

N

1

N S S

4

5 R = H, C6H5O-C6H4, 3-Br-4-OH-5-MeO-C6H2, 3-Me-4-HO-C6H3, 3,4,5-(MeO) 3-C6H2, 2-HO-C6H4, 4-Et2N-C6H4

Scheme 2. CN CN NH2

H N

HO

AcONa, AcOH

1

NH

HOOC

NH

N

ref lux, 3 h NH

OH

O

O

+ NH2

H N

HO

OH

O

O 6

7

Scheme 3.

Abdel-Razik has reported the synthesis of 6-(1H-benzimidazol2-yl)-1,2,3,4-tetrahydro-5,7-dihydroxy-2,4-dioxo-8-quinazolinecarbonitrile (7) from o-phenylenediamine (1) and 8-cyano-1,2,3,4-

tetrahydro-5,7-dihydroxy-2,4-dioxo-6-quinazolinecarboxylic acid (6) in presence of sodium acetate in acetic acid under refluxing condition for 3 hours in 79% yield (Scheme 3) [57].

1908

Current Organic Chemistry, 2012, Vol. 16, No. 16

Panda et al.

N NH2 R

+

N

H N

HOOC

N

NH2

N

(PrP(=O)O)3, NMP H N

AcOEt, MW, 25 min., 150oC

N

N Me

R

Me

1

HN

N

8

9 R = H, Br, Cl, SO2Me, Me, Et, CF3, t-Bu Scheme 4. NH2

COCl

R1

N H

NH2 1

R2

N R1

+ R2 10

f or RXN cond. see table-2

3

R 1 = alkyl, alkoxy; R 2 = alkyl, alkoxy, halide, nitro

Scheme 5.

Table 2. Synthesis of 2-arylbenzimidazoles from o-phenylenediamines and aryl acid chlorides Reagent/Catalyst

Temp. ( oC)

CH2Cl2

-

0 - rt - reflux

2h

90-95

[60]

AcOH

Heteropolyacid

reflux

4h

77-98

[61]

p-C6H4Me 2

-

rt - 110

30 min

-

[62]

Dioxane

Zeolites

0 - rt - 100

3.5 h

69-83

[63]

-

rt

10-20 min

84-96

[64]

S. No.

Solvent

1 2 3 4 5

1-Butyl-tetrafluoroborate-1Himidazole

Time

Yield (%)

Ref.

6

PhMe

Et2AlCl

0 – rt- reflux

1-42 h

33-63

[30]

7

CH3CON(CH3)2

-

rt - reflux

-

-

[65]

8

Me2CO

-

0-5

-

-

[66]

9

DMF

-

200; MWI

15 min

19

[67]

10

MeCN

reflux

4h

86-98

[68]

11

Dioxane

-

rt - reflux

7h

30

[69]

12

CH2Cl2

Et3N; AcOH

-

-

32

[70]

13

Pyridine

DMAP

60 (MWI),

15 min

91-99

[71]

(Sodium tungsten hydroxide oxide phosphate) H. 1/14 Na O110 P5 W30

Li et al. have reported the synthesis of substituted pyridylpyramidinamines (9), c-kit and PDGFR kinase inhibitors, in good yield, from substituted o-phenylenediamine (1) and 4-methyl3-[[4-(3-pyridinyl)-2-pyrimidinyl]amino]benzoic acid (8) in presence of 2,4,6-tripropyl-, 2,4,6-trioxide 1,3,5,2,4,6trioxatriphosphorinane and 1-methyl-2-pyrrolidinone in ethylacetate under microwave irradiation for 25 minutes at 150 oC (Scheme 4) [58]. Alinezhad et al. have reported the conversion of formic acid to benzimidazoles selectively and efficiently in the presence of NAPZnO, using mechanochemical processing [59]. Mechanochemical processing is a novel method for the production of nanosized materials, where separated nanoparticles can be prepared. The method has been widely applied to the syntheses of a large variety

of nanoparticles, including ZnS, CdS, ZnO, LiMn2O4, SiO2, and CeO2. 3. SYNTHESIS OF 2-ARYLBENZIMIDAZOLES FROM OPHENYLENEDIAMINES AND ARYL ACID CHLORIDES Aryl acid chlorides (10) were also used in place of aryl acids for the synthesis of 2-arylbenzimidazoles (3). However there are very few reports using aryl acid chlorides as compare to aryl acids (Scheme 5, Table 2). Kadri et al. have reported the synthesis of novel antitumor agent, 2-phenyl-(3,4-methylenedioxy)benzimidazole (12) from ophenylenediamine (1) and 1,3-benzodioxole-5-carbonyl chloride (11), by stirring at 0oC in triethylamine and THF for 1 h. The resi-

Synthetic Approaches to 2-Arylbenzimidazoles

Current Organic Chemistry, 2012, Vol. 16, No. 16

NH2 ClOC

NH2

N

O

1. Et3N, THF

O

2. AcOH, ref lux

+

O N H

O

12

11

1

1909

Scheme 6.

NH2 1

R

CHO

+

N H

NH2 1

R2

N R1

R2 13

3

for RXN cond. see table

Scheme 7.

due obtained from the reaction was refluxed with acetic acid for 12 h to obtain the desired product in 46-59% yield (Scheme 6) [72]. 4. SYNTHESIS OF 2-ARYLBENZIMIDAZOLES FROM OPHENYLENEDIAMINES AND ARYL ALDEHYDES Synthesis of 2-arylbenzimidazoles (3) using o-phenylenediamine (1) and aryl aldehydes (13) is the most accepted route. For

this, number of reagents, catalysts and solvents were explored from time to time using different reaction conditions (Scheme 7, Table 3). Kim et al. have reported the synthesis of 2-arylbenzimidazoles (3) by one-pot, three-component reaction of 2-haloanilines (14), aldehydes (13), and NaN3 in presence of CuCl/TMEDA in DMSO at 120 oC (Scheme 8) [184].

Table 3. Synthesis of 2-arylbenzimidazoles from o-phenylenediamines and aryl aldehydes S. No.

Temp. ( oC)

Solvent

Reagent/Catalyst

Time

Yield (%)

Ref.

1

-

H2O2; SiO2; FeCl3

150

30 min

72-95

[73]

2

PhMe

ZnBr2

110

10-15 min

83-96

[74]

3

H2O

-

100

2-3.5 h

85-98

[75]

4

H2O

D-Glucose

60

5.5-10 h

88-94

[76]

5

H2O

Manganese acetylacetonate; SiO2

70

3-5 h

88-95

[77]

6

-

Cerium zirconium oxide (CeZrO4); MoO3

MWI

3 min

92-94

[78]

7

H2O

-Cyclodextrin

60

4h

48-95

[79]

8

-

Vanadyl acetylacetonate

MWI

2.5 min

83-91

[47]

9

EtOH

N-Ethylpyridinium tetrafluoroborate

MWI

2h

90-98

[80]

10

H2O

Laccase (p-diphenol oxidase)

rt

18 h

50-99

[81]

11

MeCN

Samarium tris(trifluoromethane sulfonate)

rt

4h

85-95

[82]

12

-

PbO2

rt

10 min

86-96

[83]

13

H2O; MeCN

rt

2.5 h

69-94

[84]

14

PhMe

I2

65

6h

90

[85]

15

-

N,N'-Diiodo-N,N'-1,2ethanediylbis(p-toluene sulfonamide)

rt

20 min

82-96

[86]

16

H2O

K2S 2O8; Me(CH2) 11OSO3 - Na+; CuSO4

60

50 min

81-90

[87]

17

MeCN

Aluminatesilicate

reflux

4h

70-95

[88]

18

HOCH2CH2OH polymer

Ce(NH4) 2(NO3) 6

50

2h

90-98

[89]

19

EtOH

Aniline polymer; FeCl3

rt

30 min

70-92

[90]

ZnCl2-loaded K-10 montmorillonite support catalyst

20

-

PhI(OAc) 2

rt

3 min

82-98

[91]

21

H2O

(NH4) 2S2O8; Me(CH2) 11OSO3- Na+

25

22 min

94-98

[92]

22

S:EtOH

Scolecite (Al2CaH4(SiO 4)3.H2O)

70

55 min

79-94

[93]

23

DMF

Na2SO4; KI

< 60

400 s

67-90

[94]

24

PhMe

FeCl3

110

24 h

85

[95]

1910

Current Organic Chemistry, 2012, Vol. 16, No. 16

Panda et al.

Table 3. contd… S. No.

Solvent

Reagent/Catalyst

Temp. ( oC)

Time

Yield (%)

Ref.

25

Dioxane

Tungstate; ZrO2

rt to 100

5h

90-96

[96]

26

H2O

rt

25-45 min

92-98

[97]

90

12 h

82

[98]

3-[[4-[Bis(acetyloxy) iodo]phenyl]methyl]-1methyl-1H-imidazolium tetrafluoroborate (C15H18IN2O4 .BF4) 27

DMF

Na2S2O3

28

THF

PhI(OAc) 2

rt

3 min

83-98

[99]

29

MeCN

Cu(CF3SO3) 2

reflux

3.5 h

85-95

[100]

30

H2O; DMF

Na 2S2O5

90

82

[101]

31

EtOH

H2NSO3H

85

3h

72

[102]

32

CH3CONMe 2

NaHSO 3

MWI

10 min

67-99

[103]

33

-

Phosphotungstic acid

rt

15 min

80-98

[104]

rt

10 min

80-90

[105]

MWI

5 min

-

[106]

over night

1,1,1-Tris(acetyloxy)-1,1-dihydro-1,234

H2O; Dioxane

benziodoxol-3(1H)-one (Martin's reagent); Na2S2O3

35

S: EtOH

-

36

H2O

DOWEX 50W

70

4h

70-93

[107]

37

THF

MgSO4; Vanadyl acetylacetonate; Ti(OBu)4

0 - rt

24 h

71

[108]

38

DMF

-

70-80

1.5-8.5 h

64-90

[109]

39

-

25

4-7 h

80-94

[110]

40

CH3CONMe 2

Na 2S2O5

100

2h

92-100

[111]

41

EtOH

NH4VO3

rt

20-35 min

79-91

[112]

42

MeCN

COCl2

rt

3-6 h

78-88

[113]

rt

3-10 min

98

[22]

43

H2O

1H-Imidazolium, 1-methyl-3-pentyl- tetrafluoroborate (C9H17N2.B F 4)

Zirconium dichloride oxide hydrate (ZrOCl2.nH2O); Montmorillonite

44

H2O

H3BO3; Glycerol

80

3-11 h

60-91

[114]

45

Xylene

Carbon

120

0.5 h

60-79

[115]

46

-

50

2-12 min

92-97

[18]

47

EtOH

rt

30 min

90-96

[116]

48

MeCN

Cu . 2/3 Mo12 O40 P; SiO2

-

15 min

98

[19]

49

-

mortar and pestle

rt -140

0.5-2 h

65-92

[117]

50

MeOH

NH4Br

rt

4-18 h

65-94

[118]

51

CH2Cl2

rt

5-10 min

93-95

[119]

52

Xylene

120

10-11 h

89-91

[120]

53

H2O; DMF

80; MWI

15-30 min

75-82

[121]

54

-

30

50 min

76-95

[22]

55

EtOH

rt

2-8 h

80-95

[122]

80

20-45 min

70-84

[123]

H2O2; C: Fe(NO 3) 3•9H2O Cobalt(III)-salen complex supported on activated carbon

Bis(acetato-O)-iodate (polystyrenesupported) 2,2,6,6-tetramethyl-4-methoxy-1piperidinyloxy KHSO4 Amino acid-based prolinium nitrate ionic liquid [N,N'-bis[2-(hydroxy- O)phenyl]-2,6Copper (C19 H13 Cu N3 O 4)

56

DMF

NaHSO3

Synthetic Approaches to 2-Arylbenzimidazoles

Current Organic Chemistry, 2012, Vol. 16, No. 16

1911

Table 3. contd… S. No.

Solvent

Reagent/Catalyst

Temp. ( oC)

Time

Yield (%)

Ref.

57

CH2Cl2

Ce(NH4) 2(NO3) 6

50

45 min

75-78

[124]

90

6h

92-99

[125]

rt

1-4 h

85-95

[126]

58

Octadecafluorodecahydronaphthalene; PhMe

1-Octanesulfonic acid; 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8heptadecafluoro- ytterbium Porphyrinatoiron(III) complex

59

EtOH

60

-

HOCH2CH2OH polymer

110

4-9 h

82-95

[127]

61

EtOH

NaY (Zeolite)

rt

48 h

26-71

[128]

62

EtOH

Graphite; PhNMe2

75

3-20 h

67-93

[129]

63

H2O

H2O2; Ce(NH4)2(NO3) 6

50

9-70 min

93-98

[20]

64

CH2Cl2

SiO2

rt

1h

74-88

[130]

65

DMF

KI

MWI

480-750 s

68-95

[131]

66

Xylene

Carbon (Darco KB)

110-115

1h

82-87

[132]

supported on activated silica

67

EtOH

NH4OAc

rt -75

2-10 h

83-95

[133]

68

ClCH2CH2Cl

Polyaniline-sulfate

rt

2h

90-94

[134]

69

DMF

Na2S2O5

reflux

3-4.5 h

56-83

[135]

70

-

Na2S2O5

MWI

24-60 s

65-96

[135]

71

DMF

Fe(NO3) 3. 9H2O

60

25-55 min

73-88

[136]

reflux

-

84-94

[137]

Monoammonium salt of 1272

ClCH2CH2Cl

tungstophosphoric acid (H4N.2HO40PW12)

73 74

Xylene

Zeolite (Ersorb-4)

130

8-10 h

54-81

[138]

DMF

p-MeC6H4SO3H

80

10-15 min

80-85

[139]

PhI(OAc)2

rt

3-5 min

78-98

[140]

1.4-2.9 h

85-96

[141]

Dioxane/MeOH/EtOH/MeCN/ 75

DMF/THF/ DCM

76

H2O

H2O2; HCl; LiCl

100

77

MeCN

Bromodimethylsulfonium bromide

rt

4-8 h

72-86

[142]

78

-

Zirconyl(IV) chloride

rt

30 min

80-95

[143]

79

DMF

KHSO4

80

15 min

73-87

[144]

80

H2O

I2; K2CO 3; KI

90

45 min

75-78

[145]

81

DMF

I2

rt to 40

6-7 h

68-81

[146]

82

-

BF3-Et2O

rt

0.5 h

84-90

[147]

rt

30 min

74-95

[148]

100

2-50 h

79-90

[149]

rt

44 h

95-97

[150]

rt

30 min

73-93

[151]

Indium trifluoromethylsulfonate

83

-

84

Dioxane

85

THF

86

-

87

CH2Cl2

SOCl2; SiO2

rt

5h

80-98

[152]

88

MeCN

N-Hydroxyphthalimide, C:Co(OAc)2

rt

18 h

59-85

[153]

89

Dioxane

Isocyanuric chloride

rt

70-110 min

60-88

[154]

90

-

K3Fe(CN) 6; PPA

-

-

76

[155]

91

EtOH

p-Benzoquinone

rt

-

30

[156]

(CHF3O3S. 1/3 In) Scandium trifluoro methanesulfonate (CHF 3O3S. 1/3 Sc) Ytterbium trifluoro methanesulfonate (CHF3O3S. 1 /3 Yb)

1912

Current Organic Chemistry, 2012, Vol. 16, No. 16

Panda et al.

Table 3. contd… S. No.

Temp. ( oC)

Time

Cyanoacetonitrile

100

5 min

-

[157]

-

reflux

2.5 h

-

[158]

Solvent

Reagent/Catalyst

92

-

93

S: MeCN

Yield (%)

Ref.

94

EtOH

-

reflux

14 h

65

[159]

95

H2O; THF

I2

rt

2h

18

[160]

96

AcOH

Mn(OAc) 3

rt

6-36 h

38-87

[161]

80

over night

30

[162]

97

H2O; EtOH

(CO2H) 2

98

H2O

H2O2; Ce(NH4)2(NO3) 6

50

10 min

-

[163]

99

S: PhMe

-

110

1h

73

[164]

100

H2O; DMF

Oxone

rt

1h

-

[165]

PhNO2

150

over night

-

[166] [167]

101

-

102

EtOH

H2NSO3H

rt

15-30 min

75-76

103

H 2O, S:EtOH

Amberlite IR 120

rt

3.3 h

86

[168]

104

MeOH

PdCl2(CH3CN)2

rt

4h

78

[169]

105

EtOH

AcOH

reflux

over night

12-47

[170]

106

MeOH

NaHSO 3

-

1h

73

[171]

107

DMF

K 3Fe(CN) 6

60

10 h

78

[172]

108

EtOH

Na 2S2O3

reflux

4h

54-67

[173]

Pd

reflux

over night

26

[174]

109

MeOH

110

-

ZnCl2

MWI

4 min

72-90

[175]

111

MeCN

HMTA-Bromine 10 mol %

rt

4-6.5 h

78-85

[176]

112

DMF

TMSCl (4 equ.); Fe(NO3)3 (1 equ.)

60 (Ultrasound)

30 min

84-97

[177]

113

EtOH

Copper nanoparticles

rt

3-18 h

84-97

[178]

114

Toluene

B(OH) 3

reflux

24-72 h

60-71

[179]

115

DMF

FeCl3; Al2O3

38-41

1.4 h

81-100

[180]

116

EtOH

Fe/CeO2–ZrO2 nano fine particles

rt

2h

82-95

[181]

117

Xylene

PPA

150

6h

45-65

[182]

118

-

LnCl3

Ultrasound irradiation

8h

82-99

[183]

NH2 R1

5 mol % CuCl 5 mol % TMEDA

O +

X 14 X = I, Br

R2

H

N R1

R2

NaN3, DMSO, 120 oC

13

3

N H

R 2= aromatic, heteroaromatic

Scheme 8. NH2 + NH2 1

p-Benzoquinone

H N

EtOH, reflux, 4-6 h

N

CN

CN

OHC

15

16

Scheme 9.

Gangadharmath et al. have reported the synthesis of 4'-(1Hbenzimidazol-2-yl)- [1,1'-biphenyl]-4-carbonitrile in 50% yield from o-phenylenediamine and 4'-formyl-[1,1'-biphenyl]-4-carbonitrile in presence of p-benzoquinone in ethanol under refluxing condition (Scheme 9) [67]. 2-(1,2-Dihydro-5-acenaphthylenyl)-1H-benzimidazole (18) was synthesized by Xu et al. from o-phenylenediamine (1) and 1,2-

dihydro-5-acenaphthylenecarboxaldehyde (17) in pyridine at 60oC for 1h (Scheme 10) [185]. Huang et al. have synthesized 2-phenyl-1H-anthra[1,2d]imidazole-6,11-dione (20) in 76% yield by the reaction of 1,2diaminoanthraquinone (19) and benzaldehyde (13) in presence of 2,2,2-trifluoroacetic acid in ethanol under refluxing condition (Scheme 11) [186]. This compound was also prepared by Saha et

Synthetic Approaches to 2-Arylbenzimidazoles

Current Organic Chemistry, 2012, Vol. 16, No. 16

1913

C5H5N

NH2

N

60 oC, 1h

+

NH

NH2 17

1

CHO

18

Scheme 10.

O

CF3COOH, EtOH, reflux, 12h or H 2SO 4, DMF, rt, 1h or AcONa, AcOH, ref lux or Cu(OAc)2, AcOH, 90oC, 2h

NH2 CHO

NH2

O

HN N

+ 13

O

O

19

20

Scheme 11.

NH2

HN NH 2

HO3S

CHO +

OH

21

NaHSO 4

N

HO3S

EtOH, ref lux, 3h OH

13

22

Scheme 12. NH2 R1

CHO

N H

NO2 13

23

R2

N R1

+ R2

f or RXN cond. see table-4

3

R1 = alkyl, alkoxy; R 2 = alkyl, alkoxy, halide, nitro

Scheme 13. Table 4. Synthesis of 2-arylbenzimidazoles from 2-nitroanilines and aryl aldehydes S. No.

Solvent

Reagent/Catalyst

Temp. ( oC)

Time

Yield (%)

Ref.

1

-

PPh3

MWI

2.5-4 min

78-82

[191]

2

H2O; DMF

Na 2S2O4

MWI

2 min

65-92

[192]

3

H2O; EtOH

Na 2S2O4

70°C

5-12 h

74-95

[193]

al. using the same starting material under different reaction conditions. Saha et al. have used sulphuric acid in DMF instead of 2,2,2trifluoroacetic acid in ethanol and stirred the contents for 1h at room temperature (Scheme 11) [187]. Various derivatives of 2phenyl-1H-anthra[1,2-d]imidazole-6,11-dione (20) were also prepared using methyl and hydroxy substituted benzaldehyde (13) in presence of sodium acetate in acetic acid under refluxing condition (Scheme 12) [188]. However, N,N-diethyl amino derivative of this compound was prepared by Ooyama et al. from corresponding benzaldehyde by heating at 90 °C, in presence of copper acetate in acetic acid, for 2h (Scheme 11) [189].

Foster and Bradbury have reported the synthesis of 6-hydroxy2-phenyl-1H-naphth[1,2-d]imidazole-8-sulfonic acid (22) in 80% yield, starting from 7,8-diamino-4-hydroxy-2-naphthalenesulfonic acid (21) and benzaldehyde (13), under refluxing conditions in the presence of NaHSO4 in ethanol (Scheme 12) [190]. 5. SYNTHESIS OF 2-ARYLBENZIMIDAZOLES FROM 2NITROANILINES AND ARYL ALDEHYDES 2-Nitroanilines (23) were also used for one pot synthesis of 2arylbenzimidazoles (3) under different reaction conditions (Scheme 13, Table 4).

1914

Current Organic Chemistry, 2012, Vol. 16, No. 16

Panda et al.

Et NH2

N +

N

210-215oC, 8h

Et

N H

NO2

3

24

23 Scheme 14.

NH2 R1

OMe + MeO

Ph

NO2

N In, AcOH

R1

Ph

EtOAc, ref lux

OMe 25

23 R = Me, OMe, Br, I 1

3

N H

Scheme 15. EtOOC EtOOC

NO2

N

Na2S2O4, DMSO/H2O

R1

+ R1CHO R2 26

N H

N

90 oC, 3 h 27

13

R2

R1 = aryl, heteroaryl; R2 = cyclohexyl Scheme 16. COOH NH2

PhNO2, 130oC

N COOH

+ N H

NH2 1

CHO 28

29

Scheme 17. NH2

COOH

N COOH

FeCl3, DMF NH2 +

N

N

N

N H

N

Me 30

CHO 28

Me 31

Scheme 18.

Nishioka et al. have reported the synthesis of 2-phenylbenzimidazole (3) from 2-nitro aniline (23) and N,N-diethylaniline (24) by heating them at 210-215oC for 8h (Scheme 14) [194]. Kim et al. one-pot reduction-triggered heterocyclization of 2nitroanilines (23) or 1,2-dinitroarenes to 2-phenylbenzimidazoles (3) in excellent yield when refluxed in presence of indium/AcOH in ethyl acetate, (Scheme 15) [195]. Oda et al. have reported the reductive cyclization of onitroarylamine with aldehyde using sodium dithionite (Na2S2O4). The reaction was accelerated by addition of H2O for the one-Pot Synthesis of N-1- and C-2-substituted benzimidazole (Scheme 17) [196]. Literature survey has revealed that the reactivity of the formyl group, for the synthesis of 2-arylbenzimidazole, is more than the acid group when both are present in the same moiety. Pan et al.

have reported the synthesis of 4-(1H-benzimidazol-2-yl)benzoic acid (27) from o-phenylenediamine (1) and 4-formylbenzoic acid (26), in nitrophenol, under heating condition at 130oC (Scheme 17) and confirmed that the formyl group was utilized in the reaction instead of the acid group [197]. The reactivity of formyl group was also confirmed by Singh et al., who have reported the synthesis of 4-[6-(4-methyl-1piperazinyl)-1H-benzimidazol-2-yl]benzoic acid (29) by carrying out the reaction of 1,2,4-(4-methyl-1-piperazinyl)benzenediamine (28) with 4-formylbenzoic acid (26) in presence of FeCl3 in DMF (Scheme 18) [198]. Synthesis of 2-substituted benzimidazoles were also reported by the reaction of o-phenylenediamines or amines with orthoesters using various catalyst such as hexafluoroisopropanol [199], Lewis acids [200], sulfamic acid [201], iodine [202] (Scheme 19).

Synthetic Approaches to 2-Arylbenzimidazoles

catalyst

+ R1C(OR2)3 1

NH2

[2]

N

NH2 R

Current Organic Chemistry, 2012, Vol. 16, No. 16

R1

R

32

N H

[3]

3

R = H, Me, Cl, NO2; R1 = H, Me, Et, butyl; R3 = Me, Et

[4]

Scheme 19.

2-Arylbenzimidazoles have been synthesizing using various methods. The two extensively used methods employ 1,2diaminoarene as the starting material. One involved coupling with carboxylic acids [26-59] and the other condensation with aldehydes [73-190]. The former required strongly acidic conditions and sometimes high reaction temperatures while the later method required the use of a stoichiometric oxidant for dehydration. In addition 2arylbenzimidazoles were also synthesized by replacing aryl acids with aryl chlorides [60-71]. Efficient one-pot syntheses of 2arylbenzimidazoles starting from 2-nitroaniline have been also reported [191-196]. A large number of reagents with different combination of solvents under different reaction conditions were explored from time to time in order to find an economical and efficient method for the synthesis of 2-arylbenzimidazoles. Despite many recent advances such as the use of variety of catalysts, nano particles, reusable catalytic systems and eco-friendly methodologies, the quest for a newer simpler method for the synthesis of such an important biological molecule is still on, to overcome the limitations of the existing procedures.

[5]

[6]

[7]

6. CONCLUSION Since 2-arylbenzimidazoles possess a wide spectrum of pharamacological activities and are also utilized as ligands in various biologically modelled transition metal complexes, a number of methods have been developed from time to time for their synthesis using acidic, basic or neutral condition and even enzymes. We have made here efforts to compile most of these methods, that have been reported in the literature from time to time during 2000 to 2011. This review will be very useful to the researcher, working in this field, as he will get the first hand information to the various methods used for the synthesis of 2-arybenzimidazole at one place and would help him to develop a new eco-friendly, efficient and economical method by himself, taking lead from this communication. This is necessary from today’s point of view as we need an environmentally clean protocol for the large scale production of such an important biological moiety, that may be used further in many reactions to develop a potent pharmacophore for the future.

[8]

[9] [10]

[11]

[12]

[13]

[14]

CONFLICT OF INTEREST The author(s) confirm that this article content has no conflicts of interest. ACKNOWLEDGEMENT

[15] [16]

[17]

Declared none. [18]

REFERENCES [1]

Zarrinmayeh, H.; Nunes, A. M.; Ornstein, P. L.; Zimmerman, A.; Gackenheimer, S. L.; Bruns, R. F.; Hipskind, A.; Britton, T. C.; Cantrell, B. E.; Gehlert, D. R. Synthesis and evaluation of a series of novel 2-[(4chlorophenoxy)-methyl]benzimidazoles as selective neuropeptide YY1 receptor antagonists. J. Med. Chem., 1998, 41, 2709–2719.

[19]

[20]

1915

Zhao, J.; Arnaiz, D.; Griedel, B.; Sakata, B.; Dallas, J.; Whitlow, M.; Trinh, L.; Post, J.; Liang, A.; Morrissey, M.; Shaw, K. Design, synthesis, and in vitro biological activity of benzimidazole based factor Xa inhibitors. Bioorg. Med. Chem. Lett., 2000, 10, 963–966. Elokdah, H. M.; Chai, S. Y.; Sulkowski, T. S. Use of 2-substituted benzimidazoles as smooth muscle cell proliferation inhibitors. US 5763473 A 19980609, 1998; Chem. Abstr., 1998, 129, 58784g. Denny, W. A.; Rewcastle, G. W.; Bagley, B. C. Potential antitumor agents, 59: Structure–activity relationships for 2-phenylbenzimidazole-4carboxamides, a new class of “minimal” DNA-intercalating agents which may not act via topoisomerase I1. J. Med. Chem., 1990, 33, 814–819. (a) Tebbe, M. J.; Spitzer, W. A.; Victor, F.; Miller, S. C.; Lee, C. C.; Sattelberg, T. R.; Mckinney, E.; Tang, C. J. Antirhino/enteroviral vinylacetylene benzimidazoles: a study of their activity and oral plasma levels in mice. J. Med. Chem., 1997, 40, 3937–3946; (b) Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted5,6-dichlorobenzimidazoles as nonnucleoside analogues of 2,5,6-trichloro-1(a-D-ribofuranosyl) benzimidazole. J. Med. Chem., 1998, 41, 1252–1262; (c) Roth, M.; Morningstar, M. L.; Boyer, P. L.; Hughes, S. H.; Bukheit, R. W.; Michejda, C. J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase: 2-aryl-substituted benzimidazoles. J. Med. Chem., 1997, 40, 4199–4207; (b) Migawa, M. T.; Giradet, J. L.; Walker, J. A.; Koszalka, G. W.; Chamberlain, S. D.; Drach, J. C.; Townsend, L. B. Design, synthesis, and antiviral activity of R-nucleosides: D-and LIsomers of lyxofuranosyl- and (5-deoxylyxofuranosyl) benzimidazoles. J. Med. Chem., 1998, 41, 1242–1251; (c) Tamm, I. Inhibition of influenza and mumps virus multiplication by 4,5,6- (or 5,6,7-) trichloro-1- -Dribofuranosylbenzimidazole. Science, 1954, 126, 1235–1236. Forseca, T.; Gigante, B.; Gilchrist, T. L. A short synthesis of phenanthro[2,3d]imidazoles from dehydroabietic acid: application of the methodology as a convenient route to benzimidazoles. Tetrahedron, 2001, 57, 1793–1799; (b) Parikh, A. R.; Khunt, M. D. Proceedings of the 222nd ACS National Meeting, Chicago, IL, 2001, 73. Porcari, A. R.; Devivar, R. V.; Kucera, L. S.; Drach, J. C.; Townsend, L. B. Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2substituted-5,6-dichlorobenzimidazoles as nonnucleoside analogus of 2,5,6trichloro-1-( -D-ribofuranosyl)benzimidazole. J. Med. Chem., 1998, 4, 12521262. (b) Roth, T.; Morningstar, M. L.; Boyer, P. L.; Hughes, S. H.; Buckheit, R. W.; Michejda, C. J. Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-aryl-substituted benzimidazoles. J. Med. Chem., 1997, 40, 4199-4207. Migawa, M. T.; Girardet, J. L.; Walker, J. A.; Koszalka, G. W.; Chamberlain, S. D.; Drach, J. C.; Townsend, L. B. Design, synthesis, and antiviral activity of -nucleosides: D- and L-isomers of lyxofuranosyl- and (5deoxylyxofuranosyl)benzimidazoles. J. Med. Chem., 1998, 41, 1242-1251. Tamm, I.; Sehgal, P. B. Halobenzimidazole ribosides and RNA synthesis of cells and viruses. Adv. Virus Res., 1978, 22, 187-258. Hisano, T.; Ichikawa, M.; Tsumoto, K.; Tasaki, M. Synthesis of benzoaxazoles, benzothiazoles and benzimidazoles and evaluation of their antifungal, insecticidal and herbicidal activities. Chem. Pharm. Bull., 1982, 30, 29963004. Stevenson, C.; Davies, R.; Jeremy, H. Photosensitization of guanine-specific DNA damage by 2-phenylbenzimidazole and the sunscreen agent 2phenylbenzimidazole-5-sulfonic acid. Chem. Toxicol., 1999, 12, 38-45. (a) Bai, Y.; Lu, J.; Shi, Z.; Yang, B. Synthesis of 2,15-hexadecanedione as a precursor of muscone. Synlett, 2001, 544–546; (b) Hasegawa, E.; Yoneoka, A.; Suzuki, K.; Kato, T.; Kitazume, T.; Yangi, K. Reductive transformation of , - epoxy ketones and other compounds promoted through photoinduced electron transfer processes with 1,3-dimethyl-2-phenylbenzimidazoline (DMPBI). Tetrahedron, 1999, 55, 12957–12968. Preston, P. N. Benzimidazoles and congeneric tricyclic compounds. In: Weissberger A, Taylor EC (eds) In the chemistry of heterocyclic compounds, vol 40. Wiley, New York, Part 1, 1981, pp 6–60. Grimmett, M. R. Imidazoles and their benzo derivatives. In: Katritzky AR, Rees CW (eds) In Comprehensive heterocyclic chemistry, vol 5. Pergamon, Oxford, 1984, pp 457–487. Benincori, T.; Sannicolo, F. New benzimidazole synthesis. J. Heterocycl. Chem., 1988, 25, 1029-33. Kim, B. H.; Han, R.; Kim, J. S.; Jun, Y. M.; Baik, W.; Lee, B. M. Indiummediated reductive intermolecular coupling reaction of 2-nitroaniline with aromatic aldehydes to benzimidazoles. Heterocycles, 2004, 63, 41-54. Tumelty, D.; Cao, K.; Holmes, C. P. Traceless solid-phase synthesis of substituted benzimidazoles via a base-cleavable linker. Org. Lett., 2001, 3, 83-86. Bahrami, K.; Khodaei, M. M.; Naali, F. Mild and highly efficient method for the synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. J. Org. Chem., 2008, 73, 6835-6837 and references cited therein. Fazaeli, R.; Aliyan, H. A Heterogeneous catalyst for efficient and green synthesis of 2-arylbenzothiazoles and 2-arylbenzimidazoles. Appl. Catal., A: General, 2009, 353, 74-79. Bahrami, K.; Khodaei, M. M.; Naali, F. H2O 2/Fe(NO3)3promoted synthesis of 2-arylbenzimidazoles and 2-arylbenzothiazoles. Synlett, 2009, 569-572 and references cited therein.

1916 [21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37] [38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Current Organic Chemistry, 2012, Vol. 16, No. 16 Rostamizadeh, S.; Amani, A. M.; Aryan, R.; Ghaieni, H. R.; Norouzi, L. Very fast and efficient synthesis of some novel substituted 2arylbenzimidazoles in water using ZrOCl2.nH2O on montmorillonite K-10 as catalyst. Monatsh. Chem., 2009, 140, 547-552. Rostamizadeh, S.; Aryan, R.; Ghaieni, H. R.; Amani, A. M. Solvent-free chemoselective synthesis of some novel substituted 2-arylbenzimidazoles using amino acid-based prolinium nitrate ionic liquid as catalyst. J. Heterocycl. Chem., 2009, 46, 74-78. Hutchinson, I.; Stevens, M. F. G.; Westwell, A. D. Antitumor benzothiazoles. The regiospecific synthesis of 5- and 7-monosubstituted and 5,6disubstituted 2-arylbenzothiazoles. Tetrahedron Lett., 2000, 41, 425-428. Saha, P.; Ramana, T.; Purkait, N.; Ali, M. A.; Paul, R.; Punniyamurthy, T. Ligand-free copper-catalyzed synthesis of substituted benzimidazoles, 2aminobenzimidazoles, 2-aminobenzothiazoles, and benzoxazoles. J. Org. Chem., 2009, 74, 8719-8725. Ibrahim, M. A. Synthetic utilities of o-phenylenediamines: synthetic approaches for benzimidazoles, quinoxalines and benzo 1,5 diazepines. Heterocycles 2011, 83 (12), 2689-2730. Lu, J.; Ge, H. G.; Bai, Y. J. Solvent-free synthesis of 2-substituted benzimidazoles under microwave-irradiation using PPA as a catalyst. Synth. Commun., 2002, 32, 3703-3709. Dudd, L. M.; Venardou, E.; Garcia-Verdugo, E.; Licence, P.; Blake, A. J.; Wilson, C.; Poliakoff, M. Synthesis of benzimidazoles in high-temperature water. Green Chem., 2003, 5, 187-192. Bhatt, A. K.; Karadiya, H. G.; Shah, P. R.; Parmar, M. P.; Patel, H. D. Synthesis and characterization of 2-substituted benzimidazole derivatives and study of their antibacterial and antifungal activities. Oriental J. Chem., 2003, 19, 493-494. Bei, F. L.; Chen, H. Q.; Yang, X. J.; Lu, L. D.; Wang, X. Synthesis, crystal structure and quantum chemical calculation of benzimidazole derivatives. Youji Huaxue, 2004, 24, 300-305. Matsushita, H.; Lee, S. H.; Joung, M.; Clapham, B.; Janda, K. D. Smart cleavage reactions: The synthesis of benzimidazoles and benzothiazoles from polymer-bound esters. Tetrahedron Lett., 2004, 45, 313-316. Zhou, Z.; Yu, W.; Zhang, J.; Zhao, X.; Yu, C. Synthesis of six new 2-aryl-Nbiphenyl benzimidazoles and crystal structure of methyl 4'-[(2-pchlorophenyl-1H-benzimidazole-1-yl)-methyl]biphenyl-2-carboxylate. J. Heterocycl. Chem., 2004, 41, 621-625. Ho, S. L.; Tran, H. T.; Le, T. H.; Nguyen, D. H.; Nguyen, T. T. X. Tin(II) chloride-catalyzed synthesis of 2-alkylbenzimidazole. Tap Chi Hoa Hoc, 2004, 42, 415-418. Peng, Y.; Chen, Z.; Liu, Y.; Mu, Q.; Chen, S. Synthetic zeolite: an efficient catalyst for the synthesis of 2-aryl derivatives of benzimidazole under microwave irradiation. Sichuan Daxue Xuebao, Ziran Kexueban, 2005, 42, 1054-1056. Wang, Y.; Sarris, K.; Sauer, D. R.; Djuric, S. W. A simple and efficient one step synthesis of benzoxazoles and benzimidazoles from carboxylic acids. Tetrahedron Lett., 2006, 47, 4823-4826. Kuebel-Pollak, A.; Ruttimann, S.; Dunn, N.; Melich, X.; Williams, A. F.; Bernardinelli, G. A minimalist approach to C-H activation by copper. Helvetica Chimica Acta, 2006, 89, 841-853. Lin, S. Y.; Isome, Y.; Stewart, E.; Liu, J. F.; Yohannes, D.; Yu, L. Microwave-assisted one step high-throughput synthesis of benzimidazoles. Tetrahedron Lett., 2006, 47, 2883-2886. Lee, I. S. H.; Kil, H. J.; Ji, Y. R. Reactivities of acridine compounds in hydride transfer reactions. J. Physic. Org. Chem., 2007, 20, 484-490. Wang, R.; Lu, X.; Yu, X.; Shi, L.; Sun, Y. Acid-catalyzed solvent-free synthesis of 2-arylbenzimidazoles under microwave irradiation. J. Mol. Catal. A: Chem., 2007, 266, 198-201. Singh, K.; Jagbir; Gautam; Jain, A. K.; Mishra, P. K. Synthesis of benzimidazole derivatives and study of their antimicrobial and antifungal activities. Oriental J. Chem., 2007, 23, 641-646. Kaul, S.; Kumar, A.; Sain, B.; Bhatnagar, A. K. Simple and convenient onepot synthesis of benzimidazoles and benzoxazoles using N,Ndimethylchlorosulfitemethaniminium chloride as condensing agent. Synth. Commun., 2007, 37, 2457-2460. Niknam, K.; Fatehi-Raviz, A. Synthesis of 2-substituted benzimidazoles and bis-benzimidazoles by microwave in the presence of aluminamethanesulfonic acid. J. Iranian Chem. Soc., 2007, 4, 438-443. Renard, G.; Lerner, D. A. First simple and mild synthesis of 2alkylbenzimidazoles involving a supported enzymatic catalyst. New J. Chem., 2007, 31, 1417-1420. Hagitani, H. Preparation of benzimidazole compounds by reaction of orthosubstituted aromatic amines in the presence of triarylcarbenium compounds. Jpn. Kokai Tokkyo Koho, 2008, JP 2008266292 A 20081106. Maradolla, M. B.; Allam, S. K.; Mandha, A.; Chandramouli, G. V. P. Onepot synthesis of benzoxazoles, benzthiazoles, and benzimidazoles from carboxylic acids using ionic liquids. ARKIVOC, 2008, 15, 42-46. Hasaninejad, A.; Niknam, K.; Zare, A.; Farsimadan, E.; Shekouhy, M. Silphox [POCl3-n(SiO 2)n] as a new, efficient, and heterogeneous reagent for the synthesis of benzimidazole derivatives under microwave irradiation. Phos. Sul. Sil. Relat. Elem., 2009, 184, 147-155. Karuvalam, R. P.; Siji, M.; Divia., N.; Haridas, K. R. Tetrabutyl ammonium chloride catalyzed synthesis of substituted benzimidazoles under microwave conditions. J. Korean Chem. Soc., 2010, 54, 589-593.

Panda et al. [47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57] [58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Dey, M.; Deb, K.; Dhar, S. S. VO(acac)2 catalyzed condensation of ophenylenediamine with aromatic carboxylic acids/aldehydes under microwave radiation affording benzimidazoles. Chin. Chem. Lett., 2011, 22, 296299. Sahoo, B. M.; Behera, T. P.; Kumar, B. V. V. R. Microwave irradiation versus conventional method: synthesis of benzimidazolyl chalcone derivatives. Inter. J. Chem. Tech. Res., 2010, 2, 1634-1637. Leonard, J. T.; Jeyaseeli, L.; Shivakumar, R.; Gunasekaran, V. Synthesis, anti-inflammatory and antibacterial activities of 2-hydroxyphenyl benzimidazole. Asian J. Chem., 2005, 17, 2674-2678. Jiang, H.; Ma, J.; Chen, C. Rapid synthesis of substituted 2-(2hydroxyphenyl)benzimidazole derivatives under microwave irradiation. Huaxue Yanjiu Yu Yingyong, 2002, 14, 477-478. Mobinikhaledi, A.; Zendehdel, M.; Jamshidi, F. Hasanvand. Zeolitecatalyzed synthesis of substituted benzimidazoles under solvent-free conditions and microwave irradiation. Synth. Reac. Inorg., Metal-Org., NanoMetal Chem., 2007, 37, 175-177. Charton, J.; Girault-Mizzi, S.; Debreu-Fontaine, M. A.; Foufelle, F.; Hainault, I.; Bizot-Espiard J. G.; Caignard, D. H.; Sergheraert, C. Synthesis and biological evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators. Bioorg. Med. Chem., 2006, 14, 4490-4518. Sharma, M. C.; Kohli, D. V.; Sharma, S.; Sharma, A. D. Synthesis and antihypertensive activity of some new benzimidazole derivatives of 4'-(6methoxy-2-substituted-benzimidazole-1-ylmethyl)-biphenyl-2-carboxylic acid in the presences of BF3.OEt2. Pharmacia Sinica, 2010, 1, 104-115. Vazquez, S. R.; Rodriguez, M. C. R.; Mosquera, M.; Rodriguez-Prieto, F. Rotamerism, Tautomerism, and excited-state intramolecular proton transfer in 2-(4'-N,N-diethylamino-2'-hydroxyphenyl)benzimidazoles: Novel benzimidazoles undergoing excited-state intramolecular coupled proton and charge transfer. J. Phy. Chem. A, 2008, 112, 376-387. Keri, R. S.; Hosamani, K. M.; Reddy, H. R. S.; Shingalapur, R. V. Wellsdawson heteropolyacid: an efficient recyclable catalyst for the synthesis of benzimidazoles under microwave condition. Catal. Lett. 2009, 131, 552-559. Bhatt, A. K.; Karadia, H. G.; Shah, P. R.; Parmar, M. P.; Patel, H. D. Synthesis of benzimidazolylphenothiazines and their antibacterial and antifungal activities. Ind. J. Heterocycl. Chem., 2004, 13, 281-282. Abdel-Razik, H. H. Synthesis of some quinazoline-2,4(1H,3H)-dione derivatives. J. Chin. Chem. Soc., 2005, 52, 141-148. Li, X.; Liu, X.; Molteni, V. Preparation of substituted pyridylpyramidinamines as c-kit and PDGFR kinase inhibitors. PCT Int. Appl., 2008, WO 2008137770 A1 20081113. Alinezhad, H.; Salehian, F.; Biparva, P. Synthesis of benzimidazole derivatives using heterogeneous Zno nanoparticles. Synth. Commun. 2012, 42, 102108. Heravi, M. M.; Baghernejad, B.; Oskooie, H. A.; Malakooti, R. Mesoporous molecular sieve MCM-41 as a novel and efficient catalyst to synthesis of 2substituted benzimidazoles. J. Chin. Chem. Soc., 2008, 55, 1129-1132. Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Heteropolyacids as heterogeneous and recyclable catalysts for the synthesis of benzimidazoles. Catal. Commun., 2007, 9, 504-507. Rustamov, M. A.; Eivazova, Sh. M.; Nabieva, R. F. Synthesis of polyfunctionally substituted nitrogen-containing organic compounds and study of their properties. Kimya Problemlari Jurnali, 2005, 4, 101-104. Heravi, M. M.; Tajbakhsh, M.; Ahmadi, A. N.; Mohajerani, B. Zeolites efficient and eco-friendly catalysts for the synthesis of benzimidazoles. Monat. Chem., 2006, 137, 175-179. Nadaf, R. N.; Siddiqui, S. A.; Daniel, Thomas; Lahoti, R. J.; Srinivasan, K. V. Room temperature ionic liquid promoted regioselective synthesis of 2arylbenzimidazoles, benzoxazoles and benzothiazoles under ambient conditions. J. Mol. Catal. A: Chem., 2004, 214, 155-160. Wongjuntaramanee, K.; Tsuchiya, M.; Ishimaru, K.; Kojima, T. Effects of dilution with PMMA and network formation on fluorescence from benzimidazolylphenylenes linked to PMMA network. J. Appl. Poly. Sci., 2010, 115, 1841-184. Zhang, R.; Lei, L.; Xu, Y. G.; Hua, W. Y.; Gong, G. Q. Benzimidazol-2-yl or benzimidazol-2-ylthiomethyl benzoylguanidines as novel Na+/H+ exchanger inhibitors, synthesis and protection against ischemic-reperfusion injury. Bioorg. Med. Chem. Lett., 2007, 17, 2430-2433. Gangadharmath, U. B.; Kolb, Hartmuth C.; Scott, Peter J. H.; Walsh, Joseph C.; Zhang, Wei; Szardenings, Anna Katrin; Sinha, Anjana; Chen, Gang; Wang, Eric; Mocharia, Vani P. U.S. Pat. Appl. Publ., 2010, US 20100239496 A1 20100923. Heravi, M. M.; Sadjadi, S.; Oskooie, H. A.; Shoar, R. H.; Bamoharram, F. F. Heteropoly acids as green and reusable catalysts for the synthesis of 1,3,5benzoxadiazepines. Molecules, 2007, 12, 255-262. Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg. Med. Chem., 2010, 18, 2937-2953. Dinnell, K.; Elliott, J. M.; Hollingworth, G. J.; Shaw, D. E. Preparation of indoles and azaindoles as tachykinin antagonists. U.S. Pat. Appl. Publ., 2002, US 20020022624 A1 20020221. Keurulainen, L.; Salin, O.; Siiskonen, A.; Kern, J. M.; Alvesalo, J.; Kiuru, P.; Maass, M.; Yli-Kauhaluoma, J.; Vuorela, P. Design and synthesis of 2-

Synthetic Approaches to 2-Arylbenzimidazoles

[72]

[73]

[74]

[75] [76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85] [86]

[87]

[88]

[89]

[90]

[91] [92]

[93]

[94]

[95]

[96]

arylbenzimidazoles and evaluation of their inhibitory effect against chlamydia pneumoniae. J. Med. Chem. 2010, 53, 7664-7674. Kadri, H.; Matthews, C. S.; Bradshaw, T. D.; Stevens, M. F. G.; Westwell, A. D. Synthesis and antitumour evaluation of novel 2-phenylbenzimidazoles. J. Enzyme Inhib. Med. Chem., 2008, 23, 641-647. Fazlinia, A.; Mosslemin, M. H.; Sadoughi, H. An efficient procedure for the synthesis of benzimidazoles using H2O2/SiO2-FeCl3 system. J. Korean Chem. Soc., 2010, 54, 579-581. Riadi, Y.; Mamouni, R.; Azzalou, R.; El Haddad, M.; Routier, S.; Guillaumet, G.; Lazar, S. An efficient and reusable heterogeneous catalyst Animal Bone Meal for facile synthesis of benzimidazoles, benzoxazoles, and benzothiazoles. Tetrahedron Lett., 2011, 52, 3492-3495. Panda, S. S.; Jain, S. C. Synthesis of 2-arylbenzimidazoles in water. Synth. Commun., 2011, 41, 729-735. Rostamizadeh, S.; Aryan, R.; Ghaieni, H. R. Aqueous 1 M glucose solution as a novel and fully green reaction medium and catalyst for the oxidant-free synthesis of 2-arylbenzimidazoles. Synth. Commun., 2011, 41, 1794-1804. Sodhi, R. K.; Paul, S. Nanosized Mn(acac) 3 anchored on amino functionalized silica for the selective oxidative synthesis of 2-arylbenzimidazoles, 2arylbenzothiazoles and aerobic oxidation of benzoins in water. Catal. Lett., 2011, 141, 608-615. Rathod, S. B.; Lande, M. K.; Arbad, B. R. Synthesis, characterization and catalytic application of MoO3/CeO2-ZrO2 solid heterogeneous catalyst for the synthesis of benzimidazole derivatives. Bull. Korean Chem. Soc., 2010, 31, 2835-2840. Ji, H.; Huang, L.; Shen, H.; Zhou, X. -Cyclodextrin-promoted synthesis of 2-phenylbenzimidazole in water using air as an oxidant. Chem. Eng. J., 2011, 167, 349-354. Zhang, X.; Fu, Y.; Zu, Y.; Yu, P.; Chen, Y.; Liu, X. Microwave assisted and ionic liquid [Etpy]BF4 catalyzed synthesis of benzimidazole compounds with antibacterial activity. Hecheng Huaxue, 2010, 18, 691-694. Leutbecher, H.; Constantin, M. A.; Mika, S.; Conrad, J.; Beifuss, U. A new laccase-catalyzed domino process and its application to the efficient synthesis of 2-aryl-1H-benzimidazoles. Tetrahedron Lett., 2011, 52, 605-608. Narsaiah, A. V.; Reddy, A. R.; Yadav, J. S. Mild and highly efficient protocol for the synthesis of benzimidazoles using samarium triflate [Sm(OTf) 3]. Synth. Commun., 2011, 41, 262-267. Patil, V. D.; Patil, J.; Rege, P.; Dere, G. Mild and efficient synthesis of benzimidazole using lead peroxide under solvent-free conditions. Synth. Commun., 2011, 41, 58-62. Dhakshinamoorthy, A.; Kanagaraj, K.; Pitchumani, K. Zn 2+-K-10 clay (clayzic) as an efficient water-tolerant, solid acid catalyst for the synthesis of benzimidazoles and quinoxalines at room temperature. Tetrahedron Lett., 2011, 52, 69-73. Osowska, K.; Miljanic, O. S. Oxidative kinetic self-sorting of a dynamic imine library. J. Am. Chem. Soc., 2011, 133, 724-727. Veisi, Hojat; Ghorbani-Vaghei, Ramin; Faraji, Alireza; Ozturk, Turan. Application of N,N'-Diiodo-N,N'-1,2-ethanediylbis(p-toluene sulfonamide) as a new reagent for synthesis of 2-arylbenzimidazoles and 2arylbenzothiazoles under solvent-free conditions. Chin. J. Chem., 2010, 28, 2249-2254. Kumar, A.; Maurya, R. A.; Saxena, D. Diversity-oriented synthesis of benzimidazole, benzoxazole, benzothiazole and quinazolin-4(3H)-one libraries via potassium persulfate-CuSO4-mediated oxidative coupling reactions of aldehydes in aqueous micelles. Mol. Div., 2010, 14, 331-341. Chari, M. A.; Shobha, D.; Kenawy, E. R.; Al-Deyab, S. S.; Reddy, B. V. S.; Vinu, A. Nanoporous aluminosilicate catalyst with 3D cage-type porous structure as an efficient catalyst for the synthesis of benzimidazole derivatives. Tetrahedron Lett., 2010, 51, 5195-5199. Kidwai, M.; Jahan, A.; Bhatnagar, D. Polyethylene glycol: a recyclable solvent system for the synthesis of benzimidazole derivatives using CAN as catalyst. J. Chem., Sci., 2010, 122, 607-612. Abdollahi-Alibeik, M.; Moosavifard, M. FeCl3-Doped polyaniline nanoparticles as reusable heterogeneous catalyst for the synthesis of 2-substituted benzimidazoles. Synth. Commun., 2010, 40, 2686-2695. Du, L. -H.; Luo, X. P. Efficient one-pot synthesis of benzimidazoles under solvent-free conditions. Synth. Commun., 2010, 40, 2880-2886. Bahrami, K.; Khodaei, M. M.; Nejati, A. Synthesis of 1,2-disubstituted benzimidazoles, 2-substituted benzimidazoles and 2-substituted benzothiazoles in SDS micelles. Green Chem., 2010, 12, 1237-1241. Gadekar, L. S.; Arbad, B. R.; Lande, M. K. Eco-friendly synthesis of benzimidazole derivatives using solid acid scolecite catalyst. Chin. Chem. Lett., 2010, 21, 1053-1056. Mao, Z.; Wang, Z.; Li, J.; Song, X.; Luo, Y. Rapid and cheap synthesis of benzimidazoles via intermittent microwave promotion: a simple and potential industrial application of air as oxidant. Synth. Commun., 2010, 40, 19631977. Cao, K.; Tu, Y. Q.; Zhang, F. M. Synthesis of substituted benzoxazoles by the iron(III)-catalyzed aerobic oxidation process. Sci. China: Chem., 2010, 53, 130-134. Shingalapur, R. V.; Hosamani, K. M. An efficient and eco-friendly tungstate promoted zirconia (WOx/ZrO2) solid acid catalyst for the synthesis of 2arylbenzimidazoles. Catal. Lett., 2010, 137, 63-68.

Current Organic Chemistry, 2012, Vol. 16, No. 16 [97]

[98]

[99] [100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117] [118] [119]

[120]

[121]

1917

Wang, X. K.; Tian, M. Synthesis of benzimidazole derivatives in aqueous catalyzed by imidazolium salt iodobenzene diacetate. Gaodeng Xuexiao Huaxue Xuebao, 2010, 31, 296-302. Xu, H.; Cai, J.; Han, C.; Yu, D. Organic electroluminescent iridium complex and its preparation and application. Faming Zhuanli Shenqing Gongkai Shuomingshu, 2010, CN 101759685 A 20100630. Tian, M.; Wang, X. Iodobenzene diacetate assisted synthesis of benzimidazole derivatives. Youji Huaxue, 2009, 29, 1654-1658. Chari, M. A.; Sadanandam, P.; Shobha, D.; Mukkanti, K. A simple, mild, and efficient procedure for high-yield synthesis of benzimidazoles using copper triflate as catalyst. J. Heterocycl. Chem., 2010, 47, 153-155. Xu, H.; Yu, D. H.; Liu, L. L.; Yan, P. F.; Jia, L. W.; Li, G. M.; Yue, Z. Y. Small molecular glasses based on multiposition encapsulated phenyl benzimidazole iridium(III) complexes: toward efficient solution-processable host-free electrophosphorescent diodes. J. Phy. Chem. B, 2010, 114, 141150. Yu, C.; Lin, W.; Zheng, X.; Li, D.; Zheng, C.; Xie, J.; Li, B. Synthesis of 2phenylbenzimidazole catalyzed by the prepared aminosulfamic acid. Huaxue Gongye Yu Gongcheng, 2008, 25, 419-423. Lopez, S. E.; Restrepo, J.; Perez, B.; Ortiz, S.; Salazar, J. One pot microwave promoted synthesis of 2-aryl-1H-benzimidazoles using sodium hydrogen sulfite. Bull. Korean Chem. Soc., 2009, 30, 1628-1630. Aliyan, H.; Fazaeli, R.; Fazaeli, N.; Mssah, A. R.; Naghash, H. J.; Alizadeh, M.; Emami, G. Facile route for the synthesis of benzothiazoles and benzimidazoles in the presence of tungstophosphoric acid impregnated zirconium phosphate under solvent-free conditions. Heteroatom Chem., 2009, 20, 202207. Dabhade, S. K.; Bora, R. O.; Farooqui, M.; Gill, C. H. DMP (1,1,1triacetoxy-1,1-dihydro-1,2-benziodoxol-3(1H)-one): A novel catalyst for synthesis of 2-substituted benzimidazoles derivatives. Chin. Chem. Lett., 2009, 20, 893-897. Liu, B.; Wu, Y.; Chen, Y.; Hong, H.; Zhou, L.; Lv, W. Synthesis and application of 2-phenylbenzimidazole under microwave irradiation. Guangzhou Huagong, 2009, 37, 50-53. Mukhopadhyay, C.; Tapaswi, P. K. Dowex 50W, a highly efficient and recyclable green catalyst for the construction of the 2-substituted benzimidazole moiety in aqueous medium. Catal. Commun., 2008, 9, 2392-2394. Maiti, D. K; Halder, S.; Pandit, P.; Chatterjee, N.; De, J. D.; Pramanik, N.; Saima, Y.; Patra, A; Maiti, P. K. Synthesis of glycal-based chiral benzimidazoles by VO(acac) 2-CeCl3 combo catalyst and their self-aggregated nanostructured materials. J. Org. Chem., 2009, 74, 8086-8097. Li, Y.; Zhao, N.; Wang, Y.; Wang, J. Y. A new method for synthesis of benzimidazoles using air as a green oxidant. Henan Shifan Daxue Xuebao Ziran Kexueban, 2008, 36, 92-94. Saha, D.; Saha, A.; Ranu, B. C. Remarkable influence of substituent in ionic liquid in control of reaction: Simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-arylbenzimidazoles promoted by ionic liquid, [pmim]BF4. Green Chem., 2009, 11, 733-737. Yamashita, T.; Yamada, S.; Yamazaki, Y.; Tanaka, H. New procedure for the synthesis of 2-alkylbenzimidazoles. Synth. Commun., 2009, 39, 29822988. Jadhav, G. R.; Shaikh, M. U.; Kale, R. P.; Gill, C. H. Ammonium metavanadate, a novel catalyst for synthesis of 2-substituted benzimidazole derivatives. Chin. Chem. Lett., 2009, 20, 292-295. Khan, A. T.; Parvin, T.; Choudhury, L. H. A simple and convenient one-pot synthesis of benzimidazole derivatives using cobalt(II) chloride hexahydrate as catalyst. Synth. Commun., 2009, 39, 2339-2346. Mukhopadhyay, C.; Tapaswi, P. K.; Butcher, R. J. Water-mediated synthesis of 2-substituted benzimidazoles by boric acid and glycerol. Aus. J. Chem., 2009, 62, 140-144. Kawashita, Y.; Yanagi, J.; Fujii, T.; Hayashi, M. Mechanistic study of oxidative aromatization using activated carbon-molecular oxygen system in the synthesis of 2-arylbenzazoles: focus on the role of activated carbon. Bull. Chem. Soc., Japan, 2009, 82, 482-488. Sharghi, H.; Aberi, M.; Doroodmand, M. M. Reusable cobalt(III)-salen complex supported on activated carbon as an efficient heterogeneous catalyst for synthesis of 2-arylbenzimidazole derivatives. Adv. Synth. Catal., 2008, 350, 2380-2390. Thakuria, H.; Das, G. An expeditious one-pot solvent-free synthesis of benzimidazole derivatives. ARKIVOC, 2008, 321-328. Raju, B. C.; Theja, N. D.; Kumar, J. A. Efficient and inexpensive synthesis of benzimidazoles and quinoxalines. Synth. Commun., 2009, 39, 175-188. Kumar, A.; Maurya, R. A.; Ahmad, P. Diversity oriented synthesis of benzimidazole and benzoxa/(thia)zole libraries through polymer-supported hypervalent iodine reagent. J. Comb. Chem., 2009, 11, 198-201. Chen, Y. X.; Qian, L. F.; Zhang, W.; Han, B. Efficient aerobic oxidative synthesis of 2-substituted benzoxazoles, benzothiazoles, and benzimidazoles catalyzed by 4-methoxy-TEMPO. Angew. Chem. Intern. Edi., 2008, 47, 9330-9333. Han, X.; Ma, H.; Wang, Y. Synthesis of 1H-benzimidazole derivatives via microwave-mediated, potassium hydrogen sulfate promoted cyclization of benzenediamine with aldehydes. Henan Shifan Daxue Xuebao, Ziran Kexueban, 2008, 36, 131-132.

1918 [122]

[123] [124]

[125]

[126]

[127]

[128]

[129]

[130]

[131] [132]

[133]

[134]

[135]

[136]

[137]

[138]

[139] [140] [141]

[142] [143] [144]

[145]

[146]

[147] [148] [149] [150]

Current Organic Chemistry, 2012, Vol. 16, No. 16 Sharghi, H.; Hosseini-Sarvari, M.; Moeini, F. Copper-catalyzed one-pot synthesis of benzimidazole derivatives. Canadian J. Chem., 2008, 86, 10441051. Han, X.; Ma, H.; Wang, Y. A simple and efficient synthesis of 2-arylsubstituted benzimidazoles. Russian J. Org. Chem., 2008, 44, 863-865. Kumar, R.; Joshi, Y. C. Mild and efficient one-pot synthesis of imidazoline derivatives and benzimidazole derivatives from aldehydes and diamines. E. J. Chem., 2007, 4, 606-610. Ming-Gui; Cai, C. Ytterbium perfluorooctanesulfonates catalyzed synthesis of benzimidazole derivatives in fluorous solvents. J. Fluorine Chem., 2007, 128, 232-235. Sharghi, H.; Beyzavi, M. H.; Doroodmand, M. M. Reusable porphyrinatoiron(III) complex supported on activated silica as an efficient heterogeneous catalyst for a facile, one-pot, selective synthesis of 2-arylbenzimidazole derivatives in the presence of atmospheric air as a "green" oxidant at ambient temperature. Eur. J. Org. Chem., 2008, 4126-4138. Mukhopadhyay, C.; Tapaswi, P. K. PEG-mediated catalyst-free expeditious synthesis of 2-substituted benzimidazoles and bis-benzimidazoles under solvent-less conditions. Tetrahedron Lett., 2008, 49, 6237-6240. Mobinikhaledi, A.; Forughifar, N.; Zendehdel, M.; Jabbarpour, M. Conversion of aldehydes to benzimidazoles using NaY Zeolite. Synth. React. Inorg., Metal-Org. Nano-Metal Chem., 2008, 38, 390-393. Sharghi, H.; Asemani, O.; Tabaei, S. M. H. Simple and mild procedures for synthesis of benzimidazole derivatives using heterogeneous catalyst systems. J. Heterocycl. Chem., 2008, 45, 1293-1298. Das, B.; Kanth, B. S.; Reddy, K. R.; Kumar, A. S. Sulfonic acid functionalized silica as an efficient heterogeneous recyclable catalyst for one-pot synthesis of 2-substituted benzimidazoles. J. Heterocycl. Chem., 2008, 45, 14991502. Wang, Z.; Mao, Z. Method for preparing benzimidazoles. Faming Zhuanli Shenqing, 2008, CN 101235017 A 20080806. Tagawa, Y.; Yamagata, K.; Sumoto, K. Improved convenient and environmentally benign synthesis of biological active benzimidazoles using activated carbon and molecular oxygen. Heterocycles, 2008, 75, 415-418. Sharghi, H.; Asemani, O.; Khalifeh, R. New one-pot procedure for the synthesis of 2-substituted benzimidazoles. Synth. Commun., 2008, 38, 11281136. Srinivas, U.; Srinivas, Ch.; Narender, P.; Rao, V. Jayathirtha; Palaniappan, S. Polyaniline-sulfate salt as an efficient and reusable catalyst for the synthesis of 1,5-benzodiazepines and 2-phenyl benzimidazoles. Catal. Commun., 2006, 8, 107-110. Navarrete-Vazquez, G.; Moreno-Diaz, H.; Estrada-Soto, S.; Torres-Piedra, M.; Leon-Rivera, I.; Tlahuext, H.; Munoz-Muniz, O.; Torres-Gomez, H. Microwave-assisted one-pot synthesis of 2-(substituted phenyl)-1Hbenzimidazole derivatives. Synth. Commun., 2007, 37, 2815-2825. Ma, H.; Han, X.; Wang, Y.; Wang, J. A simple and efficient method for synthesis of benzimidazoles using FeBr3 or Fe(NO3)3.9H2O as catalyst. Heterocycles, 2007, 71, 1821-1825. Giri, B. Y.; Devi, B. L. A. P.; Gangadhar, K. N.; Lakshmi, K. V.; Prasad, R. B. N.; Lingaiah, N.; Prasad, P. S. S. Simple and efficient method for the synthesis of benzimidazole derivatives using monoammonium salt of 12tungstophosphoric acid. Synth. Commun., 2007, 37, 2331-2336. Hegedus, A.; Hell, Z.; Potor, A. Zeolite-catalyzed environmentally friendly synthesis of benzimidazole derivatives. Synth. Commun., 2006, 36, 36253630. Han, X.; Ma, H.; Wang, Y. p-TsOH catalyzed synthesis of 2-aryl-substituted benzimidazoles. ARKIVOC, 2007, 150-154. Du, L. H.; Wang, Y.G. A rapid and efficient synthesis of benzimidazoles using hypervalent iodine as oxidant. Synthesis, 2007, 675-678. Bahrami, K.; Khodaei, M. M.; Kavianinia, I.. H2O2/HCl as a new and efficient system for synthesis of 2-substituted benzimidazoles. J. Chem. Res., 2006, 783-784. Das, B.; Holla, H.; Srinivas, Y. Efficient (bromodimethyl)sulfonium-bromide mediated synthesis of benzimidazoles. Tetrahedron Lett., 2007, 48, 61-64. Nagawade, R. R.; Shinde, D. B. Zirconyl(IV) chloride-promoted synthesis of benzimidazole derivatives. Russian J. Org. Chem., 2006, 42, 453-454. Ma, H.; Wang, Y.; Wang, J. A simple KHSO4-promoted synthesis of 2-arylsubstituted benzimidazoles by oxidative condensation of aldehydes with ophenylenediamine. Heterocycles, 2006, 68, 1669-1673. Gogoi, P.; Konwar, D. An efficient and one-pot synthesis of imidazolines and benzimidazoles via anaerobic oxidation of carbon-nitrogen bonds in water. Tetrahedron Lett., 2006, 47, 79-82. Sahu, D. P. Iodine-mediated synthesis of 2-arylbenzoxazoles, 2arylbenzimidazoles, and 1,3,5-trisubstituted pyrazoles. Synth. Commun., 2006, 36, 2189-2194. Nagawade, R. R.; Shinde, D. B. BF3.OEt 2 promoted solvent-free synthesis of benzimidazole derivatives. Chin. Chem. Lett., 2006, 17, 453-456. Trivedi, R.; De, S. K.; Gibbs, R. A. A convenient one-pot synthesis of 2substituted benzimidazoles. J. Mol. Catal. A: Chem., 2006, 245, 8-11. Lin, S.; Yang, L. A simple and efficient procedure for the synthesis of benzimidazoles using air as the oxidant. Tetrahedron Lett., 2005, 46, 4315-4319. Itoh, T.; Nagata, K.; Ishikawa, H.; Ohsawa, A. Synthesis of 2arylbenzothiazoles and imidazoles using scandium triflate as a catalyst for both a ring closing and an oxidation steps. Heterocycles, 2004, 63, 27692783.

Panda et al. [151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

Curini, M.; Epifano, F.; Montanari, F.; Rosati, O.; Taccone, S. Ytterbium triflate-promoted synthesis of benzimidazole derivatives. Synlett, 2004, 1832-1834. Ben Alloum, A.; Bougrin, K.; Soufiaoui, M. Chemoselective synthesis of benzimidazoles on thionyl chloride-treated silica. Tetrahedron Lett., 2003, 44, 5935-5937. Coppola, G. M. N-Hydroxyphthalimide/cobalt acetate, a new catalytic oxidative system for the synthesis of benzimidazoles. Synth. Commun., 2008, 38, 3500-3507. Bigdeli, M. A.; Dostmohammadi, H.; Mahdavinia, G. H.; Nemati, F. A simple and efficient procedure for the synthesis of benzimidazoles using trichloroisocyanuric acid (TCCA) as the oxidant. J. Heterocycl. Chem., 2008, 45, 1203-1205. Chen, H.; Huang, S.; Fu, S.; Ou, C.; Xie, J.; Liu, D. Synthesis and antiviral activity of fluorine contained nitrobenzoimidazole derivatives. Nongyao, 2004, 43, 549-551. Hu, L.; Kully, M. L.; Boykin, D. W.; Abood, N. Synthesis and in vitro activity of dicationic bis-benzimidazoles as a new class of anti-MRSA and antiVRE agents. Bioorg. Med. Chem. Lett., 2009, 19(5), 1292-1295. Dai, W; Wang, W. X.; Zhao, Y. Y.; Zhao, H. 4-(1H-Benzimidazol-2yl)benzonitrile. Acta Crystallographica, Section E: Structure Reports Online, 2008, E64, o1017/1-o1017/6. Xavier, T. S.; Rashid, N.; Joe, I. H. Vibrational spectra and DFT study of anticancer active molecule 2-(4-bromophenyl)-1H-benzimidazole by normal coordinate analysis. Spectrochimica Acta, Part A: Mol. Biomol. Spectroscopy, 2011, 78A, 319-326. Duan, M. Y.; Li, J.; Xi, Y.; Lu, X. F.; Liu, J. Z.; Mele, G.; Zhang, F. X. Synthesis and characterization of binuclear manganese(IV,IV) and mononuclear cobalt(II) complexes based on 2-(2-hydroxyphenyl)-1H-benzimidazole. J. Coordination Chem., 2010, 63, 90-98. Mortensen, D. S.; Mederos, M. M. D.; Sapienza, J. J.; Albers, R. J.; Lee, B. G.; Harris, R. L.; Shevlin, G. I.; Huang, D.; Schwarz, K. L.; Packard, G. K. Heteroaryl compounds, compositions thereof, preparation and methods of treatment therewith. PCT Int. Appl., 2008, WO 2008051493 A2 20080502. Ouyang, J.; Ouyang, C.; Fujii, Y.; Nakano, Y.; Shoda, T.; Nagano, T. Synthesis and fluorescent properties of 2-(1H-benzimidazol-2-yl)-phenol derivatives. J. Heterocycl. Chem., 2004, 41, 359-365. Thomas, R. J.; Pericot Mohr, G.; Caramelli, C.; Minetto, G.; Bellini, M. Benzimidazole and imidazopyridine derivatives as hedgehog pathway antagonists and their preparation and use in the treatment of osteoporosis and cancer. PCT Int. Appl., 2010, WO 2010142426 A1 20101216. Nandi, S.; Samanta, S.; Jana, S.; Ray, J. K. Synthesis of substituted benzimidazo[2,1-a] isoquinolines and its condensed analogues using Pd(0)catalyzed cyclization/C-H activation. Tetrahedron Lett., 2010, 51, 52945297. Gill, C.; Jadhav, G.; Shaikh, M.; Kale, R.; Ghawalkar, A.; Nagargoje, D.; Shiradkar, M. Clubbed [1,2,3] triazoles by fluorine benzimidazole: A novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett., 2008, 18, 6244-6247. Sheppard, G.; Wang, G.; Palazzo, F.; Bell, R.; Mantei, R.; Wang, J.; Hubbard, R.; Kawai, M.; Erickson, S.; Bamaung, N. Preparation of pyrazolo[3,4d]pyrimidine derivatives as protein kinase inhibitors. PCT Int. Appl., 2007, WO 2007079164 A2 20070712. Bavetsias, V.; Sun, C.; Bouloc, N.; Reynisson, J.; Workman, P.; Linardopoulos, S.; McDonald, E. Hit generation and exploration: Imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases. Bioorg. Med. Chem. Lett., 2007, 17, 6567-6571. Chakrabarty, M.; Karmakar, S.; Mukherji, A.; Arima, S.; Harigaya, Y. Application of sulfamic acid as an eco-friendly catalyst in an expedient synthesis of benzimidazoles. Heterocycles, 2006, 68, 967-974. Das, S. S.; Konwar, D. Practical, ecofriendly, and chemoselective method for the synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles using amberlite IR-120 as a reusable heterogeneous catalyst in aqueous media. Synth. Commun., 2009, 39, 980-991. Kumar, J. A.; Tiwari, A. K.; Ali, A. Z.; Madhusudhana, K.; Reddy, B. S.; Ramakrishna, S.; China Raju, B. New antihyperglycemic, -glucosidase inhibitory, and cytotoxic derivatives of benzimidazoles. J. Enzyme Inhib. Med. Chem., 2010, 25, 80-86. Meng, C. Q.; Ni, L.; Worsencroft, K. J.; Ye, Z.; Weingarten, M. D.; Simpson, J. E.; Skudlarek, J. W.; Marino, E. M.; Suen, K. L.; Kunsch, C. Carboxylated, heteroaryl-substituted chalcones as inhibitors of vascular cell adhesion molecule-1 expression for use in chronic inflammatory diseases. J. Med. Chem., 2007, 50, 1304-1315. Austen, S. C.; Kane, J. M. A short synthesis of the PARP inhibitor 2-[4(trifluoromethyl)phenyl]benzimidazole-4-carboxamide (NU1077). J. Heterocycl. Chem., 2001, 38, 979-980. Cheng, J.; Xiu, N.; Li, X.; Luo, X. Convenient method for the preparation of 2-aryl-1H-benzimidazole-4-carboxylic acids. Synth. Commun., 2005, 35, 2395-2399. Jain, P.; Sharma, P. K.; Rajak, H.; Pawar, R. S.; Patil, U. K.; Singour, P. K. Design, synthesis and biological evaluation of some novel benzimidazole derivatives for their potential anticonvulsant activity. Archives of Pharmacal Res., 2010, 33, 971-980. Tong, Y.; Bouska, J. J.; Ellis, P. A.; Johnson, E. F.; Leverson, J.; Liu, X.; Marcotte, P. A.; Olson, A. M.; Osterling, D. J.; Przytulinska, M. Synthesis

Synthetic Approaches to 2-Arylbenzimidazoles

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185] [186]

[187]

[188]

Current Organic Chemistry, 2012, Vol. 16, No. 16

and evaluation of a new generation of orally efficacious benzimidazole-based poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors as anticancer agents. J. Med. Chem., 2009, 52, 6803-6813. Reddy, G. V.; Rama Rao, V. V. V. N. S.; Narsaiah, B.; Rao, P. S. A simple and efficient method for the synthesis of novel trifluoromethyl benzimidazoles under microwave irradiation conditions. Synth. Commun., 2002, 32, 2467-2476. Khosravi, K.; Kazemi, S. Synthesis of 2-arylbenzimidazoles and 2arylbenzothiazoles in both room temperature and microwave condition catalyzed by hexamethylenetetramine-bromine complex. Chin. Chem. Lett. 2012, 23, 61-64. Yuan, Y. Q.; Guo, S. R. TMSCl/Fe(NO3)3-catalyzed synthesis of 2arylbenzothiazoles and 2-arylbenzimidazoles under ultrasonic irradiation. Synth. Commun. 2011, 41, 2169-2177. Sharghi, H.; Khalifeh, R.; Mansouri, S. G.; Aberi, M.; Eskandari, M. M. Simple, efficient, and applicable route for synthesis of 2-aryl(heteroaryl)benzimidazoles at room temperature using copper nanoparticles on activated carbon as a reusable heterogeneous catalyst. Catal. Lett. 2011, 141, 18451850. Maras, N.; Kocevar, M. Boric acid-catalyzed direct condensation of carboxylic acids with benzene-1,2-diamine into benzimidazoles. Helv. Chim. Acta 2011, 94, 1860-1874. Chen, G. F.; Dong, X. Y.; Meng, F. Z.; Chen, B. H.; Li, J. T.; Wang, S. X.; Bai, G. Y. Synthesis of 2-substituted benzimidazoles catalyzed by FeCl3/Al 2O3 under ultrasonic irradiation. Lett. Org. Chem. 2011, 8, 464-469. Behbahani, F. K.; Ziaei, P.; Fakhroueian, Z.; Doragi, N. An efficient synthesis of 2-arylbenzimidazoles from o-phenylenediamines and arylaldehydes catalyzed by Fe/CeO2-ZrO2 nano fine particles. Monatsh. Chem. 2011, 142, 901-906. Richards, M. L.; Lio, S. C.; Sinha, A.; Banie, H.; Thomas, R. J.; Major, M.; Tanji, M.; Sircar, J. C., Substituted 2-phenyl-benzimidazole derivatives: novel compounds that suppress key markers of allergy. Eur. J. Med. Chem. 2006, 41, 950-969. Zhang, L. J.; Xia, J.; Zhou, Y. Q.; Wang, H.; Wang, S. W. Rare-earth metal chlorides as efficient catalysts for the simple and green synthesis of 1,2disubstituted benzimidazoles and 2-substituted benzothiazoles under ultrasound irradiation. Synth. Commun. 2012, 42, 328-336. Kim, Y.; Kumar, M. R.; Park, N.; Heo, Y.; Lee, S. Copper-catalyzed, onepot, three-component synthesis of benzimidazoles by condensation and C-N bond formation. J. Org. Chem. 2011, 76, 9577-9583. Xu, Z. W.; Tang, J.; Tian, H. A highly sensitive colorimetric and ratiometric sensor for fluoride ion. Chin. Chem. Lett., 2008, 19, 1353-1357. Huang, H. S.; Chen, T. C.; Chen, R. H.; Huang, K. F.; Huang, F. C.; Jhan, J. R.; Chen, C. L.; Lee, C. C.; Lo, Y.; Lin, J. J. Synthesis, cytotoxicity and human telomerase inhibition activities of a series of 1,2-heteroannelated anthraquinones and anthra[1,2-d]imidazole-6,11-dione homologues. Bioorg. Med. Chem., 2009, 17, 7418-7428. Saha, S.; Ghosh, A.; Mahato, P.; Mishra, S.; Mishra, S. K.; Suresh, E.; Das, S.; Das, A.. Specific recognition and sensing of CN in sodium cyanide solution. Org. let., 2010, 12, 3406-3409. da Silva, E. N. J.; Cavalcanti, B. C.; Guimaraes, T. T.; Pinto, M. C. F. R.; Cabral, I. O.; Pessoa, C.; Costa-Lotufo, L. V.; de Moraes, M. O.; de Andra-

Received: October 15, 2011

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Revised: May 23, 2012

1919

de, C. K. Z.; dos Santos, M. R. Synthesis and evaluation of quinonoid compounds against tumor cell lines. Eur. J. Med. Chem., 2010, 46, 399-410. Ooyama, Y.; Nakamura, T.; Yoshida, K. Heterocyclic quinol-type fluorophores. Synthesis of novel imidazoanthraquinol derivatives and their photophysical properties in benzene and in the crystalline state. New J. Chem., 2005, 29, 447-456. Foster, C. E.; Bradbury, R. Arylazo, hydroxy and sulfo substituted 2-arylnaphtho[1,2-d]imidazoles for use as dyes in ink jet printing. Brit. UK Pat. Appl., 2008, GB 2440422 A 20080130. Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. Microwave-assisted Cadogan reaction for the synthesis of 2aryl-2H-indazoles, 2-aryl-1H-benzimidazoles, 2-carbonylindoles, carbazole, and phenazine. J. Heterocycl. Chem., 2009, 46, 1309-1317. Surpur, M. P.; Singh, P. R.; Patil, S. B.; Samant, S. D. One-pot synthesis of benzimidazoles from o-nitroanilines under microwaves via a reductive cyclization. Synth. Commun., 2007, 37, 1375-1379. Yang, D.; Fokas, D.; Li, J.; Yu, L.; Baldino, C. M. A versatile method for the synthesis of benzimidazoles from o-nitroanilines and aldehydes in one step via a reductive cyclization. Synthesis, 2005, 47-56. Nishioka, H.; Ohmori, Y.; Iba, Y.; Tsuda, E.; Harayama, T. Novel synthesis of benzoxazoles from o-nitrophenols and amines. Heterocycles, 2004, 64, 193-198. Kim, J.; Lee, H.; Lee, B. M.; Kim, B. H. Indium-mediated one-pot benzimidazole synthesis from 2-nitroanilines or 1,2-dinitroarenes with orthoesters. Tetrahedron 2011, 67, 8027-8033. Oda, S.; Shimizu, H.; Aoyama, Y.; Ueki, T.; Shimizu, S.; Osato, H.; Takeuchi, Y. Development of safe one-pot synthesis of N-1-and C-2-substituted benzimidazole via reductive cyclization of o-nitroarylamine using Na 2S2O4. Org. Process Res. Dev. 2012, 16, 96-101. Pan, W.; Miao, H. Q.; Xu, Y. J.; Navarro, E. C.; Tonra, J. R; Corcoran, E.; Lahiji, A.; Kussie, P.; Kiselyov, A. S.; Wong, W. 1-[4-(1H-Benzimidazol-2yl)-phenyl]-3-[4-(1H-benzimidazol-2-yl)-phenyl]-urea derivatives as small molecule heparanase inhibitors. Bioorg. Med. Chem. Lett., 2006, 16, 409412. Singh, M. P.; Sasmal, S.; Lu, W.; Chatterjee, M. N. Synthetic utility of catalytic Fe(III)/Fe(II) redox cycling towards fused heterocycles: a facile access to substituted benzimidazole, bis-benzimidazole and imidazopyridine derivatives. Synthesis, 2000, 10, 1380-1390. Khaksar, S.; Heydari, A.; Tajbakhsh, M.; Vandat, S. M. Lewis acid catalyst free synthesis of benzimidazoles and formamidines in 1,1,1,3,3,3-hexafluoro2-propanol. J. Fluorine Chem. 2010, 131, 1377-1381. Zhang, Z. H.; Yin, L.; Wang, Y. M. An expeditious synthesis of benzimidazole derivatives catalyzed by Lewis acids. Catal. Commun. 2007, 8, 11261131. Zhang, Z. H.; Li, T. S.; Li, J. J. A highly effective sulfamic acid/methanol catalytic system for the synthesis of benzimidazole derivatives at room temperature. Monatsh. Chem. 2007, 138, 89-94. Zhang, Z. H.; Li, J. J.; Gao, Y. Z.; Liu, Y. H. Synthesis of 2-substituted benzimidazoles by iodine-mediated condensation of orthoesters with 1,2phenylenediamines. J. Heterocycl. Chem. 2007, 44, 1509-1512.

Accepted: May 23, 2012

Suggest Documents