arXiv:1404.0469v3 [math.CO] 3 Jan 2018
Tables, bounds and graphics of sizes of complete arcs in the plane PG(2, q) for all q ≤ 321007 and sporadic q in [323761 . . . 430007] obtained by an algorithm with fixed order of points (FOP)∗ Daniele Bartoli Dipartimento di Matematica e Informatica, Universit`a degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy. E-mail:
[email protected]
Alexander A. Davydov Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences Bol’shoi Karetnyi per. 19, Moscow, 127051, Russian Federation. E-mail:
[email protected]
Giorgio Faina Dipartimento di Matematica e Informatica, Universit`a degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy. E-mail:
[email protected]
Alexey A. Kreshchuk Institute for Information Transmission Problems (Kharkevich institute), Russian Academy of Sciences Bol’shoi Karetnyi per. 19, Moscow, 127051, Russian Federation. E-mail:
[email protected]
Stefano Marcugini and Fernanda Pambianco Dipartimento di Matematica e Informatica, Universit`a degli Studi di Perugia, Via Vanvitelli 1, Perugia, 06123, Italy. E-mail: {stefano.marcugini,fernanda.pambianco}@unipg.it
∗
The research of D. Bartoli, G. Faina, S. Marcugini, and F. Pambianco was supported in part by Ministry for Education, University and Research of Italy (MIUR) (Project “Geometrie di Galois e strutture di incidenza”) and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INDAM). The research of A.A. Davydov and A.A. Kreshchuk was carried out at the IITP RAS at the expense of the Russian Foundation for Sciences (project 14-50-00150). This work has been carried out using computing resources of the federal collective usage center Complex for Simulation and Data Processing for Mega-science Facilities at NRC Kurchatov Institute, http://ckp.nrcki.ru/.
1
Abstract. In the previous works of the authors, a step-by-step algorithm FOP which uses any fixed order of points in the projective plane PG(2, q) is proposed to construct small complete arcs. In each step, the algorithm adds to a current arc the first point in the fixed order not lying on the bisecants of the arc. The algorithm is based on the intuitive postulate that PG(2, q) contains a sufficient number of relatively small complete arcs. Also, in the previous papers, it is shown that the type of order on the points of PG(2, q) is not relevant. A complete lexiarc in PG(2, q) is a complete arc obtained by the algorithm FOP using the lexicographical order of points. In this work, we collect and analyze the sizes of complete lexiarcs in the following regions: all q ≤ 321007, q prime power; 15 sporadic q’s in the interval [323761 . . . 430007], see (1.10). In the work [9], the smallest known sizes of complete arcs in PG(2, q) are collected for all q ≤ 160001, q prime power. The sizes of complete arcs, collected in this work and in [9], provide the following upper bounds on the smallest size t2 (2, q) of a complete arc in the projective plane PG(2, q): p p for 7 ≤ q ≤ 160001; t2 (2, q) < 0.998 3q ln q < 1.729 q ln q p p t2 (2, q) < 1.05 3q ln q < 1.819 q ln q for 7 ≤ q ≤ 321007. Our investigations and results √ allow to conjecture that the bound √ t2 (2, q) < 1.05 3q ln q < 1.819 q ln q holds for all q ≥ 7. It is noted that sizes of the random complete arcs and complete lexiarcs behave similarly. This work can be considered as a continuation and development of the paper [11]. Mathematics Subject Classification (2010). 51E21, 51E22, 94B05. Keywords. Projective planes, complete arcs, small complete arcs, upper bounds, algorithm FOP, randomized greedy algorithms
1
Introduction. The main results
Let PG(2, q) be the projective plane over the Galois field Fq of q elements. An n-arc is a set of n points no three of which are collinear. An n-arc is called complete if it is not contained in an (n + 1)-arc of PG(2, q). For an introduction to projective geometries over finite fields see [56, 58, 59, 80]. The relationship among the theory of n-arcs, coding theory, and mathematical statistics is presented in [40, 58, 59, 63, 66, 67]. In particular, a complete arc in the plane PG(2, q), the points of which are treated as 3-dimensional q-ary columns, defines a parity check matrix of a q-ary linear code with codimension 3, Hamming distance 4, and covering radius 2. Arcs can be interpreted as linear maximum distance separable (MDS) codes [85, Sec. 7], [87] and 2
they are related to optimal coverings arrays [54], superregular matrices [61], and quantum codes [26]. A point set S ⊂ PG(2, q) is 1-saturating if any point of PG(2, q) \ S is collinear with two points in S [19–21, 24, 37, 38, 49, 73, 88]. In the literature, 1-saturating sets are also called “saturated sets”, “spanning sets”, and “dense sets”. The points of a 1-saturating set in PG(2, q) form a parity check matrix of a linear covering code with codimension 3, Hamming distance 3 or 4, and covering radius 2. An open problem is to find small 1-saturating sets (respectively, short covering codes). A complete arc in PG(2, q) is, in particular, a 1-saturating set; often the smallest known complete arc is the smallest known 1-saturating set [24,37,38,49,75]. Let `1 (2, q) be the smallest size of a 1-saturating set in PG(2, q). In [21], combining approaches of [73] and [8], the following upper bound is proved for arbitrary q: r p q + 3. (1.1) `1 (2, q) ≤ q(3 ln q + ln ln q) + 3 ln q Let t2 (2, q) be the smallest size of a complete arc in the projective plane PG(2, q). One of the main problems in the study of projective planes, which is also of interest in coding theory, is the determination of the spectrum of possible sizes of complete arcs. In particular, the value of t2 (2, q) is interesting. Finding estimates of the minimum size t2 (2, q) is a hard open problem, see e.g. [60, Sec. 4.10]. This paper is devoted to upper bounds on t2 (2, q). Surveys of results on the sizes of plane complete arcs, methods of their construction, and the comprehension of the relating properties can be found in [5, 6, 8–11, 13, 15, 18, 23, 33, 34, 43, 49, 55, 56, 58–60, 62, 76, 77, 80–82, 84–86]. Problems connected with small complete arcs in PG(2, q) are considered in [1–18, 22, 24, 25, 27, 31–38, 41–53, 55–60, 62, 64, 68–71, 74–77, 79–86, 89–92], see also the references therein. The exact values of t2 (2, q) are known only for q ≤ 32; see [2,24,31,32,42,52,56,57,70,71]. The following lower bounds hold (see [3, 27, 79] and the references therein): √ 2q + 1 for any q, (1.2) t2 (2, q) > √ 3q + 21 for q = ph , p prime, h = 1, 2, 3. Let t(Pq ) be the size of the smallest complete arc in any (not necessarily Desarguesian) projective plane Pq of order q. In [62], for q large enough, the following result is proved by probabilistic methods : √ t(Pq ) ≤ q lnC q, C ≤ 300, (1.3) where C is a constant independent of q (so-called universal or absolute constant). Surveys and results of random constructions for geometrical objects in PG(2, q) can be found in [19–21, 28, 45, 62, 65, 73]. In PG(2, q), complete arcs are obtained by algebraic constructions (see [59, p. 209]) with sizes approximately 13 q [1, 13, 64, 81–83, 92], 41 q [13, 64, 84], 2q 0.9 for q > 710 [81], and 3
2.46q 0.75 ln q for big prime q [53]. It is noted in [45, Sec. 8] that the smallest size of a complete arc in PG(2, q) obtained via algebraic constructions is cq 3/4
(1.4)
where c is a universal constant [84, Sec. 3], [85, Th. 6.8]. There is a substantial gap between the known upper bounds and the lower bounds on t2 (2, q), see (1.2)–(1.4). The gap is reduced if one considers the lower bound (1.2) for complete arcs and the upper bound (1.1) for 1-saturating sets. However, though complete arcs are 1-saturating sets, they represent a narrower class of objects. Therefore, for complete arcs, one may not use the bound (1.1) directly. Nevertheless, the common nature of complete arcs and 1-saturating sets allows to hope for upper bounds on t2 (2, q) similar to (1.1). The hope is supported by numerous experimental data and some probabilistic conjectures, see below. In [62, p. 313], it is noted (with reference to the work [27]) that in a preliminary report of 1989, J.C. Fisher obtained by computer search complete arcs in many planes √ of small orders and conjectured that the average size of a complete arc in PG(2, q) is about 3q log q. In [8], see also [7], an attempt to obtain a theoretical upper bound on t2 (2, q) with √ the main term of the form c q ln q, where c is a small universal constant, is done. The reasonings of [8] are based on the explanation of the working mechanism of a step-by-step greedy algorithm for constructing complete arcs in PG(2, q) and on quantitative estimations of the algorithm. For more than half of the steps of the iterative process, these estimations are proved rigorously. The natural (and well-founded) conjecture that they hold for the rest of steps is done, see [8, Conject. 2]. As a result, in [8], the following conjectural upper bounds are formulated. Conjecture 1.1. [8] Let t2 (2, q) be the smallest size of a complete arc in the projective plane PG(2, q). Under conjecture given in [8, Conject. 2], the following upper bounds hold: r p q t2 (2, q) < q(3 ln q + ln ln q + ln 3) + + 3, (1.5) 3 ln q p p t2 (2, q) < 1.87 q ln q < 1.08 3q ln q. (1.6) Moreover, in [8] it is conjectured that the upper bounds (1.5), (1.6) hold for all q without any extra conditions. Denote by t2 (2, q) the smallest known size of a complete arc in the projective plane PG(2, q). Clearly, t2 (2, q) ≤ t2 (2, q).
For even q = 2h , small complete arcs in planes are a base for inductive infinite families of small complete caps in the projective spaces PG(N, q), see [36]. For h ≤ 17, the smallest known sizes of complete arcs in PG(2, 2h ) are collected in [6, 8], see also [13, 15, 34, 36, 41]. 4
√ Also, (6 q − 6)-arcs in PG(2, 42a+1 ), are constructed in [35]; for a ≤ 4 it is proved that they are complete. This gives a complete 3066-arc in PG(2, 218 ). In particular, it holds that t2 (2, 29 ) = 85, t2 (2, 210 ) = 124, t2 (2, 211 ) = 199, t2 (2, 212 ) = 300, t2 (2, 213 ) = 449, t2 (2, 214 ) = 665, t2 (2, 215 ) = 987, t2 (2, 216 ) = 1453, t2 (2, 217 ) = 2141, t2 (2, 218 ) = 3066. For prime powers q ≤ 13627, the values of t2 (2, q) (up to January 2013) are collected in [13, 15]. For prime powers q ≤ 49727 and prime q ≤ 150001, the values of t2 (2, q) (up to August 2014) are collected in [6]. For q ≤ 151, a number of improvements of t2 (2, q), in comparison with [13, 15], are given in [75] and cited in [6]. From the results of [6, 13, 15], see also [36, 41, 46, 51], it follows that √ t2 (2, q) < 4 q for q ≤ 841, q = 857, 312 , 210 , 372 , 412 , 74 ; √ t2 (2, q) < 4.5 q for q ≤ 2647, q = 2659, 2663, 2683, 2693, 2753, 2801; √ t2 (2, q) < 5 q for q ≤ 9497, q = 9539, 9587, 9613, 9623, 9649, 9689, 9923, 9973; √ t2 (2, q) < 5.5 q for q ≤ 38557, q 6= 36481, 37537, 37963, 38039, 38197. Let Q1 be a set of 34 sporadic q’s in the interval [160801 . . . 430007], see [9, Tab. 3]. Let Q be a set of values of q. We have Q1 = {160801, 161009, 162007, 163003, 164011, 165001, 166013, 167009, 168013, 169003, 170503, 178169, 180001, 185021, 190027, 200003, 210011, 250007, 260003, 262144, 270001, 280001, 290011, 300007, 330017, 350003, 360007, 370003, 380041, 390001, 400009, 410009, 420001, 430007}; Q = {2 ≤ q ≤ 160001, q prime power} ∪ Q1 .
(1.7)
(1.8)
For q ∈ Q, the values of t2 (2, q) are obtained in the works [4–6, 8, 9, 11, 13, 15, 22], see also the references therein. All the values of t2 (2, q) (up to June 2015), q ∈ Q, are collected in the work [9]. Note that, for q ∈ Q, in the works [4–6, 8, 9, 11–13, 15], the most of the values t2 (2, q) have been obtained by computer search using randomized greedy algorithms described in [11,13,15,18,33,34,39]. In each step, a step-by-step greedy algorithm adds to an incomplete current arc a point providing the maximum possible (for the given step) number of new covered points. We denote by tG 2 (2, q) the size of a complete arc in PG(2, q) collected in [9]. An important way to obtain small plane complete arcs is a step-by-step algorithm with fixed order of points (FOP), see [10–12, 16, 18, 22, 25]. The algorithm FOP fixes a particular order on points of PG(2, q). In each step, the algorithm FOP adds to an incomplete current arc the next point in this order not lying on bisecants of this arc. For both prime and non-prime q, a lexicographical order of points can be used, see Section 2. 5
Definition 1.2. We call a lexiarc an arc obtained by the algorithm FOP using the lexicographical order of points. Let tL2 (2, q) be the size of a complete lexiarc in the projective plane PG(2, q). Note that the sizes of complete arcs obtained by the algorithm FOP vary insignificantly with respect to the order of points, see [10, 18, 22, 25]. In particular, for the lexicographical order of points described in Section 2, in the case of prime q, the size tL2 (2, q) of a complete lexiarc and its set of points depend on q only. No other factors affect size and structure of a complete lexiarc. Let L1 , L2 , L3 , and L be the following sets of values of q: L1 = {q ≤ 301813, q prime power}; L2 = {323761, 326041, 330017, 332929, 340007, 344569, 350003, 360007, 370003, 380041, 390001, 400009, 410009, 420001, 430007}; L3 = {301813 < q ≤ 321007, q prime power}; L = L1 ∪ L2 ∪ L3 = {q ≤ 321007, q prime power} ∪ L2 .
(1.9) (1.10) (1.11) (1.12)
For q ∈ L1 ∪ L2 , the values of tL2 (2, q) are obtained in [10–12, 16, 18, 25] and collected in the work [10]. For q ∈ L3 , the values of tL2 (2, q) are obtained in this work. All the values of tL2 (2, q), q ∈ L, are collected in this work. It should be emphasized that in this work, to obtain upper bounds, we use the computer search results for all prime powers q in the regions q ≤ 160001 with greedy algorithms and q ≤ 321007 with the algorithm FOP. In this sense, we say that computer search in the noted regions is complete. Complete arcs obtained by greedy algorithms have smaller sizes than complete lexiarcs, however the greedy algorithms take essentially greater computer time than the algorithm FOP. This is why the complete computer search for all prime powers q with the help of greedy algorithms is done for q ≤ 160001 [9] whereas the complete search by algorithm FOP is executed for q ≤ 321007. So, we have, see Figure 1 in Section 3, G t2 (2, q) if q ∈ Q = {2 ≤ q ≤ 160001} ∪ Q1 t2 (2, q) = . (1.13) tL2 (2, q) if q ∈ L \ Q = ({160001 < q ≤ 321007} ∪ L2 ) \ Q1 In the works of the authors [4, 15, 18, 22, 25], non-standard types of upper bounds on t2 (2, q) are proposed. In particular, in the paper [11], the function h(q) is defined so that p t2 (2, q) = h(q) 3q ln q. (1.14) Using the function h(q) instead of t2 (2, q) allows to do estimates and graphics more expressive, see Figures 1, 6 in Section 3. The following theorem summarizes the main results of this work. The theorem is based on the complete computer search, the results of which are collected in [5, 6, 9–11, 13, 15, 16], (see also the references therein) and in Tables 1 – 6 of this paper. 6
Theorem 1.3. Let t2 (2, q) be the smallest size of a complete arc in the projective plane PG(2, q). Let t2 (2, q) be the smallest known size of a complete arc in PG(2, q). Let L2 be given by (1.10). The following upper bounds hold: p p (1.15) t2 (2, q) < t2 (2, q) < 0.998 3q ln q < 1.729 q ln q for 7 ≤ q ≤ 160001; p p t2 (2, q) < t2 (2, q) < 1.05 3q ln q < 1.819 q ln q for 7 ≤ q ≤ 321007 and q ∈ L2 . (1.16) For q ≤ 160001, complete arcs in PG(2, q) satisfying the upper bounds (1.15) can be constructed with the help of the step-by-step greedy algorithm which adds to an incomplete current arc, in each step, a point providing the maximum possible (for the given step) number of new covered points. For 160001 < q ≤ 321007 and q ∈ L2 , complete arcs in PG(2, q) satisfying the upper bounds (1.16) can be constructed as lexiarcs with the help of the algorithm FOP using the lexicographical order of points. The only exception is q = 178169 for which a complete arc satisfying (1.16) can be obtained by the greedy algorithm. Calculations executed for sporadic q ≤ 430007 (q ∈ L2 of (1.10)) strengthen the confidence for validity of the bounds of Theorem 1.3, see also Figures 1 – 3 in Section 3. Also, it is important that the bounds (1.15), (1.16) are close to the conjectural (but well-founded) bounds of [8], see (1.5), (1.6) in Conjecture 1.1 and Figures 4, 5 in Section 3. On the whole, our investigations and results (again see figures in Section 3) allow to conjecture that the bound (1.16) holds for all q. Conjecture 1.4. Let t2 (2, q) be the smallest size of a complete arc in the projective plane PG(2, q). The following upper bound holds: p p t2 (2, q) < 1.05 3q ln q < 1.819 q ln q for all q ≥ 7. The paper is organized as follows. In Section 2, the algorithm with fixed order of points (FOP) is considered. The lexicographical order of points is described and lexiarcs are defined. In Section 3, upper bounds on t2 (2, q), based on sizes of complete lexiarcs in PG(2, q) and on sizes of complete arcs collected in [9], are proposed. In Section 4, the common nature lexiarcs and random arcs is considered. In Section 5, the list of tables with sizes of complete lexiarcs in the projective plane PG(2, q) is given. In Conclusion the results of this paper are briefly analyzed. In Appendix, tables of sizes of complete lexiarcs in the projective plane PG(2,q), obtained in this paper and in the previous works of the authors, are collected.
2 2.1
Algorithm with fixed order of points (FOP). Lexiarcs Step-by-step algorithm FOP
We use results and approaches of the works [10, 12, 16, 18, 22, 25]. Consider the projective plane PG(2, q) and fix a particular order on its points. The algorithm FOP builds a complete 7
arc iteratively, step-by-step. Let K (j) be the arc obtained on the j-th step. On the next step, the first point in the fixed order not lying on the bisecants of K (j) is added to K (j) . Algorithm FOP. Suppose that the points of PG(2, q) are ordered as A1 , A2 , . . . , Aq2 +q+1 . Consider the empty set as root of the search and let K (j) be the partial solution obtained in the j-th step, as extension of the root. We put K (0) = ∅, K (1) = {A1 }, K (2) = {A1 , A2 }, m(1) = 2,
K
(j+1)
=K
(j)
(2.1)
∪ {Am(j) },
m(j) = min{i ∈ [m(j − 1) + 1, q 2 + q + 1] | @ P, Q ∈ K (j) : Ai , P, Q are collinear}, i.e. m(j) is the minimum subscript i such that the corresponding point Ai is not saturated by K (j) . The process ends when a complete arc is obtained. Remark 2.1. A point of PG(2, q) can be treated as a 3-vector column of a code parity check matrix. Then, formally, the algorithm FOP can be considered as a version of the recursive g-parity check algorithm for greedy codes of codimension r = 3 and minimum distance d = 4, see e.g. [30, p. 25], [72], [78, Section 7]. However, in coding theory, for given r, d, the aim is to get a long code while our goal is to obtain a short complete arc. Moreover, our estimates and computer search show that for r = 3, d = 4, the algorithm FOP gives “bad” codes, essentially shorter than “good” codes corresponding to ovals and hyperovals. Finally, note that we do not use a word “greedy”in the name of the algorithm FOP, as in projective geometry the terms “greedy algorithm” and “randomized greedy algorithm” are traditionally connected with other approaches, see [11, 13, 15, 18, 33, 34, 39].
2.2
Lexicographical order of points
In the beginning, we consider q prime. Let the elements of the field Fq = {0, 1, . . . , q − 1} be treated as integers modulo q. Let the points Ai of PG(2, q) be represented in homogenous coordinates so that (i)
(i)
(i)
(i)
Ai = (x0 , x1 , x2 ), xj ∈ Fq ,
(2.2)
where the leftmost non-zero element is 1. For Ai , we put (i)
(i)
(i)
i = x0 q 2 + x1 q + x2 .
(2.3)
So, the homogenous coordinates of a point Ai are treated as its number i written in the q-ary scale of notation. Recall that the points of PG(2, q) are ordered as A1 , A2 , . . . , Aq2 +q+1 . It is important that for such lexicographical order for prime q, the size tL2 (2, q) of a complete lexiarc and its set of points depend on q only. No other factors affect size and structure of a complete lexiarc. 8
Now let q = pm , p prime, m ≥ 2. Let Fq (x) be a primitive polynomial of Fpm and let α be a root of Fq (x). Elements of Fpm are represented by integers as follows Fpm = Fq = {0, 1 = α0 , 2 = α1 , . . . , q − 1 = αq−2 }. Then we again use (2.2) and (2.3). However for non-prime q the size tL2 (2, q) of a complete lexiarc depends on q and on the form of the polynomial Fq (x). In this work we use primitive polynomials that are created by the program system MAGMA [29] by default, see Table A where polynomials for q < 36000 are given. In any case, the choice of the polynomial changes the size of complete lexiarc inessentially. We have noted in Introduction that, in general, the sizes of complete arcs obtained by the algorithm FOP vary insignificantly with respect to the order of points. In particular, in [18,22,25] the so-called Singer order of points (based on the Singer group of collineations) is considered and it is shown that in the region 5000 < q ≤ 40009, q prime, the difference between the sizes of complete arcs obtained using the lexicographical order and the Singer order is less then 2% and none of the two orders gives the smallest size for all q.
2.3
Starting points of lexiarcs in PG(2, q), q prime
Proposition 2.2. Let q be a prime. Then the j-th point of a lexiarc in PG(2, q) is the same for all q ≥ q0 (j) where q0 (j) is large enough.
Proof. Suppose that, in (2.1), at a certain step j we have K (j) \ K (j−1) = {P }, with P = As . A point Q = Ar 6∈ K (j) will be the next chosen point in the extension process if and only if all the points Ai with i ∈ [s + 1, r − 1] are covered by K (j) . That is, for any i ∈ [s + 1, r − 1] at least one of the determinants of the coordinates of the points P1 , P2 , Ai , with P1 , P2 ∈ K (j) , is equal to zero modulo q. This can happen only for two reasons: 1. det(P1 , P2 , Ai ) = 0: we say that Ai is “absolutely” covered by K (j) ; 2. det(P1 , P2 , Ai ) = m 6= 0, with m ≡ 0 mod q. It is clear that, for q large enough, q does not divide any of the possible m = det(P1 , P2 , Ai ) and then, at least for j “small”, the points covered are just the absolutely covered points. Therefore, when q is large enough the lexiarcs share a certain number of points. The values of q0 (j) can be found with the help of calculations based on the proof of Proposition 2.2. Also, we can directly consider lexiarcs constructed by the algorithm FOP for a convenient region of q. Example 2.3. Values of q0 (j), j ≤ 24, together with the homogenous coordinates (a0 , a1 , a2 ) of the common points, are given in Table B. So, for all prime q ≥ 251 the first 24 points of a lexiarc are as in Table B. Since tL2 (2, 251) = 63 [16], we know 24/63 ≈ 38% of complete lexiarc points for q = 251. For growing q this percentage decreases (relatively slowly). For instance, for q ≈ 270000 it is ≈ 20%. 9
Table A. Primitive polynomials used for lexiarcs in PG(2, q) with non-prime q q = pm 4 = 22 16 = 24 32 = 25 81 = 34 128 = 27 256 = 28 361 = 192 625 = 54 961 = 312 1369 = 372 2048 = 211 2209 = 472 3125 = 55 4096 = 212 5041 = 712 6561 = 38 7921 = 892
primitive polynomial x2 + x + 1 x4 + x3 + 1 x5 + x3 + 1 x4 + x + 2 x7 + x + 1 8 x + x4 + x3 + x2 + 1 2 x +x+2 x4 + x2 + 2x + 2 x2 + 29x + 3 x2 + 33x + 2 x11 + x2 + 1 x2 + x + 13 x5 + 4x + 2 12 x + x8 + x2 + x+1 2 x + 69x + 7 x8 + 2x5 + x4 + 2x2 + 2x + 2 x2 + 82x + 3
q = pm
18769 = 1372
x14 + x7 + x5 + x3 + 1 2 x + 95x + 20
22201 = 1492 x2 + 144x + 34 24649 = 1572 x2 + 153x + 82 28561 = 134 x4 + 3x2 + 12x + 2 32041 = 1792 x2 + 67x + 154
q = pm 9 = 32 27 = 33 64 = 26 125 = 53 243 = 35 343 = 73
primitive polynomial x2 + 2x + 2 x3 + 2x2 + x + 1 x6 + x4 + x3 + 1 x3 + 3x + 2 x5 + 2x + 1 x3 + 3x + 2
529 = 232 841 = 292 1331 = 113
x2 + 2x + 5 x2 + 24x + 2 x3 + 2x + 9
1681 = 412 2187 = 37 2401 = 74 3481 = 592 4489 = 672
x9 + x4 + 1 x6 + x + 2 x10 + x6 + x5 + x3 + x2 + x + 1 x2 + 38x + 6 x7 + x2 + 2x + 1 x4 + 5x2 + 4x + 3 x2 + 58x + 2 x2 + 63x + 2
1849 = 432 2197 = 133 2809 = 532 3721 = 612 4913 = 173
x2 + x + 3 x3 + x2 + 7 x2 + 49x + 2 x2 + 60x + 2 x3 + x + 14
5329 = 732 6859 = 193
x2 + 70x + 5 x3 + 4x + 17
6241 = 792 6889 = 832
x2 + 78x + 3 x2 + 82x + 2
8192 = 213
x13 + x4 + x3 + x+1 2 x + 102x + 5 x3 + 2x + 18 6 x + x4 + 4x3 + x2 + 2 5 x +x+4
9409 = 972
x2 + 96x + 5
11449 = 1072 12769 = 1132 16129 = 1272
x2 + 103x + 2 x2 + 101x + 3 x2 + 126x + 3
8 = 23 25 = 52 49 = 72 121 = 112 169 = 132 289 = 172 512 = 29 729 = 36 1024 = 210
10201 = 1012 x2 + 97x + 2 10609 = 1032 2 2 11881 = 109 x + 108x + 6 12167 = 233 4 4 2 14641 = 11 x + 8x + 10x + 2 15625 = 56 16384 = 214
primitive polynomial x3 + x + 1 x2 + x + 2 x2 + x + 3 x2 + 4x + 2 x2 + x + 2 x2 + x + 3
16807 = 75
19321 = 1392 x2 + 72x + 111 22801 = 1512 x2 + 16x + 51 26569 = 1632 x2 + 153x + 82 29791 = 313 x3 + x + 28 2 32761 = 181 x2 + 11x + 78
10
17161 = 1312 x2 + 83x + 127 19683 = 39 x9 + 2x3 + 2x2 + x+1 3 3 24389 = 29 x + 2x + 27 27889 = 1672 x2 + 156x + 90 29929 = 1732 x2 + 80x + 104 32768 = 215 x15 + x + 1
Table j a0 1 0 4 1 7 1 10 1 13 1 16 1 19 1 22 1
3
B. a1 0 1 4 7 10 13 16 19
The first 24 points of a2 q0 (j) j a0 1 2 2 0 1 2 5 1 5 11 8 1 11 23 11 1 12 37 14 1 16 79 17 1 9 229 20 1 27 239 23 1
complete lexiarcs in PG(2, q), q prime a1 a2 q0 (j) j a0 a1 a2 q0 (j) 1 0 2 3 1 0 0 2 2 3 5 6 1 3 2 7 5 4 11 9 1 6 8 17 8 6 31 12 1 9 13 37 11 7 41 15 1 12 22 137 14 17 101 18 1 15 21 71 17 14 151 21 1 18 10 199 20 18 197 24 1 21 15 251
Upper bounds on t2(2, q), q ∈ L
For bounds, we use data on sizes tL2 (2, q), q ∈ L, of complete lexiarcs in PG(2, q) obtained and collected in [10, 12, 16, 18, 22, 25] and in Tables 1 – 6 of this work, see Appendix. Also, we use data on sizes tG 2 (2, q), q ∈ Q, collected in [9]. Here L and Q are given by (1.12) and (1.8), respectively. In Table 1, for 4 ≤ q ≤ 316969, q non-prime, the sizes tL2 (2, q) (for short tL2 ) of complete lexiarcs in PG(2, q) are collected. In Table 2, for 15 sporadic q’s in the interval [323761 . . . 430007], the sizes tL2 = tL2 (2, q) of complete lexiarcs in PG(2, q) are written. All q ∈ L2 , see (1.10), are included in this table. In Tables 3 – 6, for all prime powers q ≤ 321007 the sizes tL2 = tL2 (2, q) of complete lexiarcs in PG(2, q) are collected. We define the functions hL (q) and hG (q) as follows. p (3.1) tL2 (2, q) = hL (q) 3q ln q; p G tG 3q ln q. 2 (2, q) = h (q) √ Figure 1 shows the following: the conjectural upper bound (1.5) of [8] divided by 3q ln q √ L L (the top dashed red curve); values h (q) = t2 (2, q)/ 3q ln q for complete lexiarcs in PG(2, q), √ q ∈ L of (1.12) (the 2-nd solid black curve); values hG (q) = tG 2 (2, q)/ 3q ln q for complete arcs in PG(2, q) collected in [9], q ∈ Q of (1.8) (the bottom solid blue curve); upper bounds “1.05” and “0.998” (the horizontal dashed red lines). Vertical dashed-dotted magenta lines mark regions q ≤ 160001 and q ≤ 321007 of the complete computer search for all prime powers q. √ Figure 2 shows the upper bound 1.05 3q ln q (the top dashed-dotted red curve), see (1.16), sizes tL2 (2, q) of complete lexiarcs in PG(2, q), q ∈ L of (1.12) (the 2-nd solid black curve), and sizes tG 2 (2, q) for complete arcs collected in [9], q ∈ Q of (1.8) (the bottom solid blue curve). Vertical dashed-dotted magenta lines mark regions q ≤ 160001 and q ≤ 321007. 11
1.12 1.1 1.08 1.06
1.05
1.04 1.02 1
0.998 0.98 0.96 0.94 0.92 0
0.5
1
1.5
2
2.5
3
3.5
4 105
Figure 1: Conjectural upper bound (1.5) of [8] vs sizes tL2 (2, q) of complete lexiarcs and sizes tG 2 (2, q) of complete arcs collected in [9] √ (all values are divided by √ 3q ln q): conjectural upper bound (1.5) of [8] divided by 3q ln q) (top dashed red curve); √ L L values h (q) = t2 (2, q)/ 3q ln q for complete lexiarcs in PG(2, q), q ∈ L (the 2-nd solid black √ curve); values hG (q) = tG 2 (2, q)/ 3q ln q for complete arcs collected in [9], q ∈ Q (bottom solid blue curve); upper bounds “1.05”, “0.998” (horizontal dashed red lines). Vertical dasheddotted magenta lines mark regions q ≤ 160001 and q ≤ 321007 of the complete computer search for all prime powers q
12
√ The curves of 1.05 3q ln q and tL2 (2,√q) almost coalesce with each other in the scale of L Figure 2. It should be noted that √ 1.05 3qGln q > t2 (2, q) if q ≥ 106627 and q 6= 178169. In the other side, we have 1.05 √ 3q ln q > t2 (2, q) for all q ∈ Q, including q = 178169, see (1.7), (1.8). So, in fact, 1.05 3q ln q is the upper bound on t2 (2, q) for all q ∈ L.
4000
size of complete arc
3500 3000 2500 2000 1500 1000 500 0 0
0.5
1
1.5
2
2.5
3
3.5
4
4.5 105
√ Figure 2: Upper bound 1.05 3q ln q vs sizes tL2 (2, q) of complete lexiarcs and sizes √ 3q ln q (top dashed-dotted tG (2, q) of complete arcs collected in [9]: upper bound 1.05 2 L red curve); sizes t2 (2, q) of complete lexiarcs in PG(2, q), q ∈ L (the 2-nd solid black curve); sizes tG 2 (2, q) for complete arcs collected in [9], q ∈ Q (bottom solid blue curve). Vertical dashed-dotted magenta lines mark regions q ≤ 160001 and q ≤ 321007
√ Figure 3 presents the difference 1.05 3q ln q − tG 2 (2, q) between the upper bound √ G 1.05 3q ln q and the sizes t2 (2, q) of complete arcs in PG(2, q) collected in [9], q ∈ Q of (1.8). The vertical dashed-dotted magenta line marks the region q ≤ 160001 of the complete computer search. The “tooth” on the graphics corresponds to t2 (2, 218 ) = 3066 [35]. 13
difference: bound - size of complete arc
200
150
100
50
0 0
0.5
1
1.5
2
2.5
3
3.5
4 105
√ √ Figure 3: Difference 1.05 3q ln q−tG 2 (2, q) between upper bound 1.05 3q ln q and sizes tG 2 (2, q) of complete arcs in PG(2, q), collected in [9], q ∈ Q. Vertical dashed-dotted magenta line marks region q ≤ 160001 of the complete computer search
14
√ Observation 3.1. The difference 1.05 3q ln q − tG 2 (2, q) between the upper bound √ G 1.05 3q ln q and sizes t2 (2, q) of complete arcs in PG(2, q), collected in [9], tends to increase when q grows. q p In Figure 4, the conjectural upper bound from [8] q(3 ln q + ln ln q + ln 3) + 3 lnq q + 3, see (1.5) (the top dashed-dotted red curve) and the sizes tL2 (2, q) of complete lexiarcs in PG(2, q), q ∈ L of (1.12) (the bottom solid black curve) are shown. The vertical dasheddotted magenta line marks region q ≤ 321007. 4500
size of complete lexiarc
4000 3500 3000 2500 2000 1500 1000 500 0 0
0.5
1
1.5
2
2.5
3
3.5
4 105
Figure 4: Conjectural upper bound (1.5) of [8] vs sizes tL2 (2, q) of complete lexiarcs in PG(2, q): conjectural upper bound of [8] (top dashed-dotted red curve); sizes tL2 (2, q) of complete lexiarcs in PG(2, q), q ∈ L (bottom solid black curve). Vertical dashed-dotted magenta line marks region q ≤ 321007 of the complete computer search
15
Figure 5 presents the difference r p q q(3 ln q + ln ln q + ln 3) + + 3 − tL2 (2, q) 3 ln q between the conjectural upper bound (1.5) from [8] and the sizes tL2 (2, q) of complete lexiarcs in PG(2, q).
difference: bound - size of complete lexiarc
140
120
100
80
60
40
20
0 0
0.5
1
1.5
2
2.5
3
3.5
4 105
Figure 5: Difference
p q q(3 ln q + ln 3 ln q + ln 3) + 3 lnq q + 3 − tL2 (2, q) between the
conjectural upper bound (1.5) from [8] and the sizes tL2 (2, q) of complete lexiarcs in PG(2, q), q ∈ L p q q Observation 3.2. The difference q(3 ln q + ln ln q + ln 3) + 3 ln q + 3 − tL2 (2, q) between the conjectural upper bound (1.5) from [8] and the sizes tL2 (2, q) of complete lexiarcs in PG(2, q) tends to increase when q grows. 16
Data for q ∈ L of (1.12), collected in Tables 1 – 6, give rise to Theorems 3.3 and 3.4 on upper and lower bounds on hL (q). Theorem 3.3. Let the functions h(q) and hL (q) be as in (1.14) and (3.1). Let L2 be the set of values of q given by (1.10) and Table 2. In PG(2, q) the following upper bounds are provided by complete lexiarcs: 1.056 for 16 ≤ q ≤ 18443 1.053 for 18443 < q ≤ 80407 1.051 for 80407 < q ≤ 178169 ; h(q) ≤ hL (q) < 1.050 for 178169 < q ≤ 315701 1.048 for 315701 < q ≤ 321007 and q ∈ L2 h(q) ≤ hL (q) < 1.05 for 106627 ≤ q ≤ 321007 and q ∈ L2 , q 6= 178169.
(3.2)
Theorem 3.4. Let the function hL (q) be as in (3.1). Let L2 be the set of values of q given by (1.10) and Table 2. In PG(2, q) the following lower bounds on hL (q) hold. 1.023 for 11971 ≤ q ≤ 34583 1.028 for 34583 < q ≤ 70451 1.032 for 70451 < q ≤ 159349 hL (q) > . 1.033 for 159349 < q ≤ 192133 1.034 for 192133 < q ≤ 297967 1.036 for 297967 < q ≤ 321007 and q ∈ L2
√ Figure 6 illustrates Theorems 3.3, 3.4 and presents the value hL (q) = tL2 (2, q)/ 3q ln q, q ∈ L (the solid black curve), and its upper and lower bounds (the dashed red lines) in more detail than Figure 1. Also, the middle line y = hLmid = 1.042 is shown. The percentage for a bound B is calculated as B − hLmid hL mid
100%,
hLmid = 1.042,
(3.3)
where B ∈ {1.056, 1.053, 1.051, 1.050, 1.048, 1.023, 1.028, 1.032, 1.033, 1.034, 1.036}. By Theorems 3.3, 3.4 and Figure 6, we have the following observation. √ Observation 3.5. For q ∈ L, q ≥ 11971, the values of hL (q) = tL2 (2, q)/ 3q ln q oscillate around the horizontal line y = 1.042 with a small amplitude. For growing q, the oscillation amplitude decreases. Upper bounds on the amplitude decrease from 1.4% to 0.6% while lower bounds change from −1.8% to −0.6%, where the percentage corresponds to (3.3). See also Remark 3.6.
17
1.4%
1.06
1.056 1.1% 1.053
0.9% 1.051
0.8% 1.050
1.05
0.6% 1.048
1.042 1.04
1.032 1.028 -1%
1.03
1.023
1.036 -0.6%
1.034 -0.8%
1.033 -0.9%
-1.4%
-1.8%
1.02
1.01
1 0
0.5
1
1.5
2
2.5
3
3.5
4
4.5 105
√ Figure 6: Values of hL (q) = tL2 (2, q)/ 3q ln q for complete lexiarcs in PG(2, q), q ∈ L (solid black curve) and the corresponding upper and lower bounds (dashed red lines). Magenta line y = 1.042 is a “middle” line for hL (q)
18
Remark 3.6. (i) The oscillation (with decreasing amplitude) of hL (q) around the horizontal line (see Figure 6 and Observation 3.5) is an interesting enigma that should be investigated and explained. (ii) It would be interesting to understand the working mechanism and to do quantitative estimates for the step-by-step algorithm FOP, see (2.1), similarly to the work [8] where the working mechanism of a greedy algorithm is treated. Proposition 3.7. Let t2 (2, q) be the smallest size of a complete arc in the projective plane PG(2, q). The following upper bound holds: p t2 (2, q) < 1.05 3q ln q for 7 ≤ q ≤ 321007, q ∈ L2 . G Proof. By [9, Tab. 3], we have tG 2 (2, 178169) = 2530, whence h(178169) < h (178169) < 0.996. Now the assertion follows from (3.2) and (1.15).
4
On the common nature of lexiarcs and random arcs
In this section we compare complete random arcs in PG(2, q) and complete lexiarcs. The random arcs are constructed iteratively. The next point of an incomplete current arc is taken randomly among points that are not covered by the arc bisecants. Let tR 2 (2, q) be the size R of a complete random arc in PG(2, q). The values of t2 (2, q) for q ≤ 46337, q prime, are collected in the work [17]. We define a function hR (q) by p R tR 2 (2, q) = h (q) 3q ln q. √ Values of hR (q) = tR 2 (2, q)/ 3q ln q (the solid green curve) and upper bound y = 1.054 (the dashed-dotted red line) for q ≤ 46337, q prime, are shown in Figure 7. It is useful to compare sizes of complete lexiarc and complete random arcs. The percentage difference ∆LR (q) between sizes of complete lexiarcs and complete random arcs in PG(2, q) for q ≤ 46337, q prime, is shown in Figure 8 in the form ∆LR (q) =
tL2 (2, q) − tR 2 (2, q) tL2 (2, q)
100%.
One can see that the difference ∆LR (q) is relatively small; it is in the region ≈ ±2%. Moreover, the difference ∆LR (q) oscillates around the horizontal line y = 0. It means that, perhaps, lexiarcs and random arcs have the same nature. This is expected, as the lexicographical order of points is a random order in the geometrical sense.
19
1.06
1.054
1.05 1.04 1.03 1.02
tR 2 (2,q)
R
h (q) = √
1.01
3q ln q
1
Random complete arcs
0.99 0.98 0.97
0
0.5
1
1.5
2
2.5
q
3
3.5
4
4.5 4
x 10
√ Figure 7: Values of hR (q) = tR 2 (2, q)/ 3q ln q for complete random arcs in PG(2, q), q ≤ 46337, q prime (solid green curve) and the upper bound y = 1.054 (dashed-dotted red line)
20
6
4
+2%
%
2
0%
0
−2
−2%
∆
−4
−6
0
0.5
1
LR
1.5
(q) = 2
R tL 2 (2,q)−t2 (2,q)
tL 2 (2,q) 2.5
q
3
3.5
100% 4
4.5
5 4
x 10
Figure 8: Percentage difference ∆LR (q) between sizes tL2 (2, q) of complete lexiarcs and sizes tR 2 (2, q) of complete random arcs in PG(2, q)
21
5
List of tables with sizes of complete lexiarcs in the projective plane PG(2, q)
Table 1. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 4 ≤ q ≤ 316969, q non-prime. p. 30 Table 2. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 323761 ≤ q ≤ 430007, sporadic q. p. 30 Table 3. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 3 ≤ q < 10000, q prime power. pp. 31–34 Table 4. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 10000 < q < 100000, q prime power. pp. 35–56 Table 5. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 100000 < q ≤ 301813, q prime power. pp. 57–106 Table 6. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 301813 < q ≤ 321007, q prime power. pp. 107–111
6
Conclusion
This work contains tables of sizes of small complete arcs in the projective plane PG(2, q) for all q ≤ 321007, q prime power, and 15 sporadic q’s in the interval [323761 . . . 430007]. These arcs are obtained with the help of a step-by-step algorithm with fixed order of points (FOP), see [10–12, 16, 18, 22, 25]. The algorithm FOP fixes a particular order on points of the projective plane PG(2, q). In each step, the algorithm FOP adds to an incomplete current arc the next point in this order not lying on bisecants of this arc. For arcs, sizes of which are collected in this work, a lexicographical order of points in the algorithm FOP was used. Therefore these arcs are called lexiarcs. In this work, upper bounds on the smallest size t2 (2, q) of a complete arc in the projective plane PG(2, q) are considered on the base of the sizes of complete lexiarcs, collected in this work, and of the smallest known (up to June 2015) sizes of complete arcs in PG(2, q) for all q ≤ 160001, q prime power, collected in [9]. For q ≤ 321007, the computer search, the results of which are used in this work, is complete, i.e. it has been performed for all q prime powers. This proves that the described √ upper bound t2 (2, q) < 1.05 3q ln q is valid, at least, in this region, see (1.16) of Theorem 1.3 and Figure 1. Calculations executed for sporadic q ≤ 430007 strengthen the confidence in the validity of these bounds for large values of q, see also Figures 1, 2, 3, 6. Moreover, the bounds of Theorem 1.3 are close to the conjectural bounds of [8] cited in Conjecture √ 1.1, see Figures 4, 5. By all the arguments, we conjecture that the bound t2 (2, q) < 1.05 3q ln q holds for all q, see Conjecture 1.4. The most of the smallest known complete arcs, the sizes of which are collected in [9], are 22
obtained by computer search using randomized greedy algorithms [11, 13, 15, 18, 33, 34, 39]. In each step, a step-by-step greedy algorithm adds to an incomplete current arc a point providing the maximum possible (for the given step) number of new covered points. Complete arcs obtained by greedy algorithms have smaller sizes than complete lexiarcs, however the greedy algorithms take essentially greater computer time than the algorithm FOP. This is why the complete computer search for all prime powers q with the help of greedy algorithms is done for q ≤ 160001 [9] whereas the complete search by algorithm FOP is executed for q ≤ 321007. On the other hand, the difference between sizes of complete lexiarcs and the smallest known sizes of complete arcs in PG(2, q) is relatively small; it is . 6% for q ' 90000, see [10]. Therefore, for the computer search with large q the algorithm FOP using the lexicographical order of the points seems to be better than greedy algorithms. Moreover, investigations of complete lexiarcs for large q could help to understand the enigma connected with oscillation (with decreasing amplitude) of the values hL (q) around a horizontal line (see Figure 6, Observation 3.5, and Remark 3.6). It would be useful also to understand the structure of lexiarcs, in particular, the initial part of a lexiarc that is the same for all lexiarcs with greater q, see Subsection 2.3. Also, it would be interesting to understand the working mechanism and to do quantitative estimates for the step-by-step algorithm FOP, see (2.1), similarly to the work [8] where the working mechanism of a greedy algorithm is treated. Finally, further investigations of random arcs and their “similarity” to lexiarcs, see Figures 7 and 8, would be useful. This work can be considered as a continuation and development of the paper [11].
References [1] V. Abatangelo, A class of complete [(q + 8)/3]-arcs of P G(2, q), with q = 2h and h (≥ 6) even, Ars Combinatoria, 16, 103–111 (1983) [2] A. H. Ali, “Classification of arcs in Galois plane of order thirteen,” Ph.D. Thesis, University of Sussex (1993) [3] S. Ball, On small complete arcs in a finite plane, Discrete Math., 174, 29–34 (1997) [4] D. Bartoli, A. Davydov, G. Faina, A. Kreshchuk, S. Marcugini, and F. Pambianco, Two types of upper bounds on the smallest size of a complete arc in the plane P G(2, q), in “Proc. VII Int. Workshop on Optimal Codes and Related Topics, OC2013,”Albena, Bulgaria, pp. 19–25, http://www.moi.math.bas.bg/oc2013/a4.pdf (2013) [5] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, and F. Pambianco, Tables of sizes of small complete arcs in the plane P G(2, q), q ≤ 360007, arXiv:1312.2155v1 [math.CO], http://arxiv.org/abs/1312.2155v1 (2013)
23
[6] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, and F. Pambianco, Tables of sizes of small complete arcs in the plane P G(2, q), q ≤ 410009, arXiv:1312.2155v2 [math.CO], http://arxiv.org/abs/1312.2155v2 (2014) [7] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, and F. Pambianco, Conjectural upper bounds on the smallest size of a complete arc in P G(2, q) based on an analysis of step-by-step greedy algorithms, in “Proc. XIV Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2014,” Svetlogorsk, Russia, pp. 24–31, http://www.moi.math.bas. bg/acct2014/a4.pdf (2014) [8] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, and F. Pambianco, Upper bounds on the smallest sizes of a complete arc in P G(2, q) under certain probabilistic conjectures, Problems Inform. Transmission 50, 320–339 (2014) [9] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, and F. Pambianco, Tables, bounds and graphics of the smallest known sizes of complete arcs in the plane PG(2, q) for all q ≤ 160001 and sporadic q in the interval [160801 . . . 430007], arXiv:1312.2155v3 [math.CO], http://arxiv.org/abs/1312.2155v3 (2015) [10] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, F. Pambianco, Tables, bounds and graphics of sizes of complete lexiarcs in the plane PG(2, q) for all q ≤ 301813 and sporadic q in the interval [301897 . . . 430007] obtained by an algorithm with fixed order of points (FOP), arXiv:1404.0469v2 [math.CO], http://arxiv.org/abs/1404.0469v2 (2015) [11] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, and F. Pambianco, Upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane based on computer search, J. Geom., 107, 89–117 (2016) [12] D. Bartoli, A. A. Davydov, G. Faina, A. A. Kreshchuk, S. Marcugini, F. Pambianco, and I. A. Tkachenko, Upper bounds on the smallest sizes of a complete arc in P G(2, q) based on computer search, in “Proc. XIV Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2014,” Svetlogorsk, Russia, pp. 32–40, http://www.moi.math.bas.bg/acct2014/a5. pdf (2014) [13] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, On sizes of complete arcs in P G(2, q), Discrete Math., 312, 680–698 (2012) [14] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, New upper bounds on the smallest size of a complete arc in the plane PG(2, q), in “Proc. XIII Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2012,” Pomorie, Bulgaria, pp. 60–66, http: www.moi.math.bas.bg/moiuser/~ACCT2012/b10.pdf (2012) [15] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, New upper bounds on the smallest size of a complete arc in a finite Desarguesian projective plane, J. Geom., 104, 11–43 (2013)
24
[16] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, Tables of sizes of small complete arcs in the plane P G(2, q), q ≤ 190027, obtained by an algorithm with fixed order of points (FOP), arXiv:1404.0469v1 [math.CO], http://arxiv.org/abs/1404.0469v1 (2014) [17] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, Tables of sizes of random complete arcs in the plane P G(2, q), arXiv:1405.5862 [math.CO], (2014) [18] D. Bartoli, A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, New types of estimates for the smallest size of complete arcs in a finite Desarguesian projective plane, J. Geom., 106, 1–17 (2015) [19] D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, On upper bounds on the smallest size of a saturating set in a projective plane, arXiv:1505.01426 [math.CO], http://arxiv.org/abs/1505.01426 (2015) [20] D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, New upper bounds on the smallest size of a saturating set in a projective plane, in “Proc. 2016 XV International Symposium Problems of Redundancy in Information and Control Systems (REDUNDANCY)”, pp. 18–22. IEEE, St. Petersburg (2016) http://ieeexplore.ieee.org/document/7779320 [21] D. Bartoli, A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, New Bounds for ´ I. Barbero, V. Skachek, Ø Ytrehus (eds.) “Proc. of Linear Codes of Covering Radius 2, in A. 5th Int. Castle Meeting, ICMCTA 2017, Coding Theory and Applications”, Vihula, Estonia, August 2017, pp. 1–10, Lecture Notes in Comput. Sci., vol. 10495, Springer, Cham (2017) [22] D. Bartoli, A. A. Davydov, S. Marcugini, and F. Pambianco, New type of estimations for the smallest size of complete arcs in P G(2, q), in “Proc. XIII Int. Workshop on Algebraic and Combin. Coding Theory, ACCT2012,” Pomorie, Bulgaria, pp. 67–72 http://www.moi.math.bas.bg/moiuser/~ACCT2012/b11.pdf (2012) [23] D. Bartoli, A. A. Davydov, S. Marcugini, and F. Pambianco, A 3-cycle construction of complete arcs sharing (q + 3)/2 points with a conic, Advanc. Math. Commun., 7, 319–334 (2013) [24] D. Bartoli, G. Faina, S. Marcugini, and F. Pambianco, On the minimum size of complete arcs and minimal saturating sets in projective planes, J. Geom., 104, 409–419 (2013) [25] D. Bartoli, G. Faina, S. Marcugini, F.Pambianco, and A. A. Davydov, A New algorithm and a new type of estimate for the smallest size of complete arcs in P G(2, q), Electron. Notes Discrete Math., 40, 27–31 (2013) [26] D. Bartoli, S. Marcugini, and F. Pambianco, New quantum caps in PG(4,4), J. Combin. Des., 20, 448–466 (2012) [27] A. Blokhuis, Blocking sets in desarguesian planes, in “Erd˝os is eighty, Bolyai society mathematical studies”, eds D. Mikl´ os, V. T. S´os, T. Sz´onyi, vol. 2, 133–155 (1996)
25
[28] E. Boros, T. Sz˝ onyi, and K. Tichler, On defining sets for projective planes, Discrete Math., 303 (2005), 17-31. [29] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3–4), 235–265 (1997) [30] R. A. Brualdi and V,S. Pless, Greedy codes, J. Combin. Theory, Ser. A 64(1), 10–30 (1998) [31] K. Coolsaet and H. Sticker, A full classification of the complete k-arcs in P G(2, 23) and P G(2, 25), J. Combin. Des., 17, 459–477 (2009) [32] K. Coolsaet and H. Sticker, The complete k-arcs of P G(2, 27) and P G(2, 29), J. Combin. Des., 19, 111–130 (2011) [33] A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, Computer search in projective planes for the sizes of complete arcs, J. Geom., 82, 50–62 (2005) [34] A. A. Davydov, G. Faina, S. Marcugini, and F. Pambianco, On sizes of complete caps in projective spaces P G(n, q) and arcs in planes P G(2, q), J. Geom., 94, 31–58 (2009) [35] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, On sharply transitive sets in P G(2, q), Innov. Incid. Geom., 6-7, 139–151 (2009) [36] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, New inductive constructions of complete caps in P G(N, q), q even, J. Comb. Des., 18, 176–201 (2010) [37] A. A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, Advanc. Math. Commun., 5, 119–147 (2011) [38] A. A. Davydov, S. Marcugini, and F. Pambianco, On saturating sets in projective spaces, J. Combin. Theory, Ser. A, 103, 1–15 (2003) [39] A. A. Davydov, S. Marcugini, and F. Pambianco, Complete caps in projective spaces P G(n, q), J. Geom., 80, 23–30 (2004) [40] T. Etzion and L. Storme, Galois geometries and coding theory, Des. Codes Crypt. 78(1), 311–350 (2016) [41] G. Faina and M. Giulietti, On small dense arcs in Galois planes of square order, Discrete Math., 267, 113–125 (2003) [42] G. Faina, S. Marcugini, A. Milani, and F. Pambianco, The spectrum of the values k for which there exists a complete k -arc in P G(2, q) for q ≤ 23, Ars Combin., 47, 3–11 (1997) [43] G. Faina and F. Pambianco, On the spectrum of the values k for which a complete k-cap in P G(n, q) exists, J. Geom., 62, 84–98 (1998)
26
[44] G. Faina and F. Pambianco, On some 10-arcs for deriving the minimum order for complete arcs in small projective planes, Discrete Math., 208–209, 261–271 (1999) [45] A. G´acs and T. Sz˝ onyi, Random constructions and density results, Des. Codes Cryptogr., 47, 267–287 (2008) [46] M. Giulietti, Small complete caps in P G(2, q) for q an odd square, J. Geom., 69 (2000), 110–116. [47] M. Giulietti, Small complete caps in Galois affine spaces, J. Alg. Combin., 25, 149–168 (2007) [48] M. Giulietti, Small complete caps in P G(N, q), q even, J. Combin. Des., 15, 420–436 (2007) [49] M. Giulietti, The geometry of covering codes: small complete caps and saturating sets in Galois spaces, in “Surveys in Combinatorics 2013,” (eds. S. R. Blackburn, R. Holloway, M. Wildon) London Math. Soc., Lect. Note Series 409, Cambridge Univ. Press, pp. 51–90 (2013) [50] M. Giulietti, G. Korchm´ aros, S. Marcugini, and F.Pambianco, Transitive A6 -invariant k-arcs in P G(2, q), Des. Codes Cryptogr., 68, 73–79 (2013) [51] M. Giulietti and E. Ughi, A small complete arc in P G(2, q), q = p2 , p ≡ 3 (mod 4), Discrete Math., 208–209, 311–318 (1999) [52] C. E. Gordon, Orbits of arcs in P G(N, K) under projectivities, Geom. Dedicata, 42, 187–203 (1992) ´ Hadnagy, Small Complete Arcs in P G(2, p), Finite Fields Their Applic., 5, 1–12 (1999) [53] E. [54] A. Hartman and L. Raskin, Problems and algorithms for covering arrays, Discrete Math., 284, 149–156 (2004) [55] J. W. P. Hirschfeld, Maximum sets in finite projective spaces. In: Lloyd, E. K. (ed.) Surveys in Combinatorics, London Math. Soc. Lecture Note Ser. 82, pp. 55–76. Cambridge University Press, Cambridge (1983) [56] J. W. P. Hirschfeld, ”Projective geometries over finite fields,” 2nd edition, Clarendon Press, Oxford, 1998. [57] J. W. P. Hirschfeld and A. Sadeh, The projective plane over the field of eleven elements, Mitt. Math. Sem. Giessen 164, 245–257 (1984) [58] J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces, J. Statist. Planning Infer., 72, 355–380 (1998) [59] J. W. P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite geometry: update 2001, in ”“Finite Geometries, Proc. of the Fourth Isle of Thorns Conf., Developments of Mathematics, vol. 3” (eds. A. Blokhuis, J. W. P. Hirschfeld, D. Jungnickel and J. A. Thas), Kluwer, 201–246 (2001)
27
[60] J. W. P. Hirschfeld and J. A. Thas, Open problems in finite projective spaces. Finite Fields Their Appl. 32, 44–81 (2015) [61] G. Keri, Types of superregular matrices and the number of n-arcs and complete n-arcs in P G(r, q), J. Comb. Des., 14 (2006), 363–390. [62] J. H. Kim and V. Vu, Small complete arcs in projective planes, Combinatorica, 23, 311–363 (2003) [63] A. Klein and L. Storme, Applications of Finite Geometry in Coding Theory and Cryptography, in (D. Crnkovi´c and V. Tonchev, eds.) NATO Science for Peace and Security, Ser. - D: Information and Communication Security, vol. 29, Information Security, Coding Theory and Related Combinatorics, pp. 38–58 (2011) [64] G. Korchm´ aros, New examples of complete k-arcs in P G(2, q), Europ. J. Combin., 4, 329–334 (1983) [65] S. J. Kov´ acs, Small saturated sets in finite projective planes, Rend. Mat. (Roma), 12, 157–164 (1992) [66] I. N. Landjev, Linear codes over finite fields and finite projective geometries, Discrete Math., 213, 211–244 (2000) [67] I. Landjev and L. Storme, Galois geometries and Coding theory, in “Current research topics in Galois geometry”, (eds.: J. De Beule and L. Storme), Nova Science Publishers, Chapter 8, pp. 187–214 (2012) [68] P. Lison˘ek, “Computer-assisted studies in algebraic combinatorics,” Ph.D. thesis, Research Institute for Symbolic Computation, J. Kepler Univ. Linz, pp. 1–217 (1994) [69] P. Lison˘ek, S. Marcugini, and F. Pambianco, Constructions of small complete arcs with prescribed symmetry, Contribut. Discrete Math., 3, 14–19 (2008) [70] S. Marcugini, A. Milani, and F. Pambianco, Minimal complete arcs in P G(2, q), q ≤ 29, J. Combin. Math. Combin. Comput., 47, 19–29 (2003) [71] S. Marcugini, A. Milani, and F. Pambianco, Complete arcs in P G(2, 25): The spectrum of the sizes and the classification of the smallest complete arcs. Discrete Math., 307, 739–747 (2007) [72] L. Monroe and V. Pless, Greedy generation of non-binary codes. In: Proc. IEEE Int. Symp. Inform. Theory, ISIT 1995. [73] Z. L. Nagy, Saturating sets in projective planes and hypergraph covers, arXiv:1701.01379 [math.CO] (Jan. 2017). Revised version (Nov. 2017) https://www.researchgate.net/ publication/321028030_satu0614revised ¨ [74] P. R. J. Osterg˚ ard, Computer search for small complete caps, J. Geom., 69, 172–179 (2000)
28
[75] N. Pace, On small complete arcs and transitive A5-invariant arcs in the projective plane P G(2, q), J. Combin. Des., 22, 425–434 (2014) [76] G. Pellegrino, Un’osservazione sul problema dei k-archi completi in S2,q , con q ≡ 1 (mod 4), Atti Accad. Naz. Lincei Rend., 63, 33–44 (1977) [77] G. Pellegrino, Archi completi, contenenti (q + 1)/2 punti di una conica, nei piani di Galois di ordine dispari, Rend. Circ. Mat. Palermo (2), 62, 273–308 (1993) [78] V. S. Pless, Coding constructions, in Handbook of Coding Theory (eds. V. S. Pless, W. C. Human, and R. A. Brualdi), Elsevier, Amsterdam, The Netherlands, 141–176. Sect. 7 (1998) [79] O. Polverino, Small minimal blocking sets and complete k-arcs in P G(2, p3 ), Discrete Math., 208–209, 469–476 (1999) [80] B. Segre, Introduction to Galois geometries, Atti Accad. Naz. Lincei Mem., 8, 133–236 (1967) [81] T. Sz˝onyi, Small complete arcs in Galois planes, Geom. Dedicata, 18, 161–172 (1985) [82] T. Sz˝onyi, Note on the order of magnitude of k for complete k-arcs in P G(2, q), Discrete Math., 66, 279–282 (1987) [83] T. Sz˝onyi, Arcs in cubic curves and 3-independent subsets of abelian groups, in “Colloquia Mathematica Societatis Janos Bolyai 52. Combinatorics, Eger” pp. 499–508 (1987) [84] T. Sz˝onyi, Complete arcs in Galois planes: survey, Quaderni del Seminario di Geometrie Combinatorie, Universit` a degli studi di Roma, La Sapienza, 94, (1989) [85] T. Sz˝onyi, Arcs, caps, codes and 3-independent subsets, in “Giornate di Geometrie Combinatorie” (eds. G. Faina, G. Tallini) Universit`a degli studi di Perugia, Perugia, pp. 57–80 (1993) [86] T. Sz˝onyi, Some applications of algebraic curves in finite geometry and combinatorics, in “Surveys in Combinatorics” (ed. R. A. Bailey) Cambridge Univ. Press, Cambridge, 198–236 (1997) [87] J. A. Thas, M.D.S. codes and arcs in projective spaces: a survey, Le Matematiche (Catania), 47, 315–328 (1992) [88] E. Ughi, Saturated configurations of points in projective Galois spaces. Europ. J. Combin. 8, 325–334 (1987) √ [89] E. Ughi, The values 2q and log2 q: their relationship with k-arcs, Ars Combinatoria, 57, 201–207 (2000) [90] E. Ughi, Small almost complete arcs, Discrete Math., 255, 367–379 (2002) [91] J. F. Voloch, On the completeness of certain plane arcs, Europ. J. Combin., 8, 453–456 (1987) [92] J. F. Voloch, On the completeness of certain plane arcs II, Europ. J. Combin., 11, 491–496 (1990)
29
7
Appendix. Tables sizes of complete lexiarcs in the projective plane PG(2, q)
Table 1. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 4 ≤ q ≤ 316969, q non-prime q 4 32 128 361 961 2048 3125 5041 7921 11881 16384 22201 28561 36481 50653 59049 72361 80089 100489 121801 139129 160801 185761 208849 237169 271441 310249
tL 2 6 17 43 80 140 219 283 369 483 600 718 847 975 1114 1333 1448 1627 1720 1947 2149 2327 2504 2713 2891 3097 3328 3570
q 8 49 169 512 1024 2187 3481 5329 8192 12167 16807 22801 29791 37249 51529 63001 73441 83521 103823 124609 143641 161051 187489 212521 241081 273529 316969
tL 2 6 24 49 99 142 227 296 383 491 606 722 859 996 1127 1341 1504 1637 1755 1980 2184 2358 2506 2721 2919 3119 3358 3626
q 9 64 243 529 1331 2197 3721 6241 9409 12769 17161 24389 29929 38809 52441 65536 76729 85849 109561 128881 146689 167281 192721 214369 249001 279841
tL 2 8 26 59 97 173 228 310 416 525 626 733 887 997 1158 1360 1531 1680 1776 2036 2214 2388 2553 2774 2934 3174 3391
q 16 81 256 625 1369 2209 4096 6561 10201 14641 18769 24649 32041 39601 54289 66049 78125 94249 113569 130321 148877 175561 196249 218089 253009 292681
tL 2 12 31 64 108 172 228 328 429 551 680 776 896 1040 1174 1385 1542 1684 1866 2087 2231 2408 2629 2785 2956 3206 3461
q 25 121 289 729 1681 2401 4489 6859 10609 15625 19321 26569 32761 44521 57121 68921 78961 96721 117649 131072 151321 177147 201601 226981 259081 299209
tL 2 14 40 68 120 195 242 344 442 562 691 787 935 1055 1245 1424 1579 1704 1891 2119 2240 2419 2638 2831 3020 3236 3505
q 27 125 343 841 1849 2809 4913 6889 11449 16129 19683 27889 32768 49729 58081 69169 79507 97969 120409 134689 157609 177241 205379 229441 262144 300763
Table 2. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 323761 ≤ q ≤ 430007, sporadic q q 323761 340007 370003 410009
tL 2 3652 3752 3928 4159
q 326041 344569 380041 420001
tL 2 3673 3775 3978 4206
q 330017 350003 390001 430007
30
tL 2 3690 3809 4045 4262
q 332929 360007 400009
tL 2 3710 3883 4089
tL 2 14 40 77 129 207 261 362 445 590 710 795 959 1048 1316 1447 1575 1712 1910 2132 2272 2479 2649 2858 3029 3258 3512
Table 3. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 3 ≤ q < 10000, q prime power q 3 16 32 61 89 125 157 193 239 271 313 359 401 449 499 547 599 641 683 739 797 841 887 953 1009 1049 1097 1163 1223 1283 1321 1399 1451 1493 1559 1609 1667 1723 1787 1861
tL 2 4 12 17 25 32 40 46 54 61 66 71 77 84 89 94 102 109 110 113 121 126 129 133 140 147 151 151 157 163 168 170 178 178 185 187 194 194 200 208 205
q 4 17 37 64 97 127 163 197 241 277 317 361 409 457 503 557 601 643 691 743 809 853 907 961 1013 1051 1103 1171 1229 1289 1327 1409 1453 1499 1567 1613 1669 1733 1789 1867
tL 2 6 11 19 26 35 41 47 52 62 68 71 80 84 90 96 106 109 114 117 121 131 130 138 140 144 147 156 159 162 169 171 177 182 183 188 193 196 200 206 210
q 5 19 41 67 101 128 167 199 243 281 331 367 419 461 509 563 607 647 701 751 811 857 911 967 1019 1061 1109 1181 1231 1291 1331 1423 1459 1511 1571 1619 1681 1741 1801 1871
tL 2 6 12 19 27 35 43 48 55 59 67 76 81 86 96 99 103 105 112 120 121 129 134 139 139 146 150 154 160 163 170 173 178 181 183 189 191 195 200 204 206
q 7 23 43 71 103 131 169 211 251 283 337 373 421 463 512 569 613 653 709 757 821 859 919 971 1021 1063 1117 1187 1237 1297 1361 1427 1471 1523 1579 1621 1693 1747 1811 1873
tL 2 8 14 20 28 37 41 49 58 63 70 76 79 86 91 99 105 111 111 116 122 127 134 138 142 145 148 157 165 164 170 175 180 179 186 188 193 196 200 202 208
q 8 25 47 73 107 137 173 223 256 289 343 379 431 467 521 571 617 659 719 761 823 863 929 977 1024 1069 1123 1193 1249 1301 1367 1429 1481 1531 1583 1627 1697 1753 1823 1877
31
tL 2 6 14 22 27 39 44 50 59 64 68 77 80 86 94 97 106 108 114 116 124 129 135 140 143 142 150 154 158 167 172 176 179 182 189 188 191 198 201 205 206
q 9 27 49 79 109 139 179 227 257 293 347 383 433 479 523 577 619 661 727 769 827 877 937 983 1031 1087 1129 1201 1259 1303 1369 1433 1483 1543 1597 1637 1699 1759 1831 1879
tL 2 8 14 24 30 38 42 53 57 63 69 77 81 88 93 100 103 110 114 120 125 132 138 139 142 149 152 154 162 167 171 172 178 181 186 190 189 197 201 205 209
q 11 29 53 81 113 149 181 229 263 307 349 389 439 487 529 587 625 673 729 773 829 881 941 991 1033 1091 1151 1213 1277 1307 1373 1439 1487 1549 1601 1657 1709 1777 1847 1889
tL 2 8 16 23 31 40 46 51 58 65 70 76 80 88 93 97 107 108 118 120 123 129 134 141 143 147 154 155 161 168 171 173 178 181 184 191 194 199 203 207 209
q 13 31 59 83 121 151 191 233 269 311 353 397 443 491 541 593 631 677 733 787 839 883 947 997 1039 1093 1153 1217 1279 1319 1381 1447 1489 1553 1607 1663 1721 1783 1849 1901
tL 2 12 16 25 32 40 46 52 58 64 72 79 85 88 94 98 108 108 115 121 123 128 133 139 146 148 154 158 164 164 170 175 180 182 190 188 194 201 205 207 212
Table 3. Continue 1 q 1907 1987 2029 2087 2141 2207 2267 2311 2377 2417 2477 2557 2647 2689 2731 2797 2851 2917 2999 3061 3125 3203 3259 3329 3389 3463 3527 3571 3631 3697 3761 3823 3889 3943 4019 4091 4139 4219 4271 4349
tL 2 209 220 217 223 229 230 233 240 242 244 244 251 256 262 263 268 269 271 275 279 283 280 287 292 294 296 300 304 307 305 313 314 316 323 326 329 335 337 337 336
q 1913 1993 2039 2089 2143 2209 2269 2333 2381 2423 2503 2579 2657 2693 2741 2801 2857 2927 3001 3067 3137 3209 3271 3331 3391 3467 3529 3581 3637 3701 3767 3833 3907 3947 4021 4093 4153 4229 4273 4357
tL 2 212 220 219 220 227 228 236 236 239 241 251 247 256 256 261 262 270 271 272 279 283 285 291 295 292 297 297 303 304 306 312 319 315 320 324 326 329 338 334 341
q 1931 1997 2048 2099 2153 2213 2273 2339 2383 2437 2521 2591 2659 2699 2749 2803 2861 2939 3011 3079 3163 3217 3299 3343 3407 3469 3533 3583 3643 3709 3769 3847 3911 3967 4027 4096 4157 4231 4283 4363
tL 2 215 216 219 226 226 231 238 239 241 243 249 253 254 258 261 264 264 270 276 279 280 284 292 287 295 296 301 302 305 310 313 317 323 320 324 328 330 333 333 342
q 1933 1999 2053 2111 2161 2221 2281 2341 2389 2441 2531 2593 2663 2707 2753 2809 2879 2953 3019 3083 3167 3221 3301 3347 3413 3481 3539 3593 3659 3719 3779 3851 3917 3989 4049 4099 4159 4241 4289 4373
tL 2 214 218 216 222 227 233 237 239 240 246 246 253 258 255 263 261 269 274 275 278 287 287 289 291 293 296 302 300 308 308 313 316 321 324 328 327 330 337 335 338
q 1949 2003 2063 2113 2179 2237 2287 2347 2393 2447 2539 2609 2671 2711 2767 2819 2887 2957 3023 3089 3169 3229 3307 3359 3433 3491 3541 3607 3671 3721 3793 3853 3919 4001 4051 4111 4177 4243 4297 4391
32
tL 2 213 218 223 229 226 234 235 237 238 245 246 252 259 259 265 261 272 274 274 280 282 287 292 293 296 299 302 307 308 310 313 314 321 323 324 328 330 331 338 342
q 1951 2011 2069 2129 2187 2239 2293 2351 2399 2459 2543 2617 2677 2713 2777 2833 2897 2963 3037 3109 3181 3251 3313 3361 3449 3499 3547 3613 3673 3727 3797 3863 3923 4003 4057 4127 4201 4253 4327 4397
tL 2 210 215 220 229 227 233 232 236 243 248 251 255 257 258 267 265 270 274 278 277 287 285 290 293 300 300 303 305 307 310 315 316 317 322 328 334 336 333 339 341
q 1973 2017 2081 2131 2197 2243 2297 2357 2401 2467 2549 2621 2683 2719 2789 2837 2903 2969 3041 3119 3187 3253 3319 3371 3457 3511 3557 3617 3677 3733 3803 3877 3929 4007 4073 4129 4211 4259 4337 4409
tL 2 217 224 220 228 228 234 234 237 242 243 251 255 261 256 263 264 269 270 275 277 282 290 289 297 295 305 303 307 309 311 311 320 318 323 324 332 337 335 339 342
q 1979 2027 2083 2137 2203 2251 2309 2371 2411 2473 2551 2633 2687 2729 2791 2843 2909 2971 3049 3121 3191 3257 3323 3373 3461 3517 3559 3623 3691 3739 3821 3881 3931 4013 4079 4133 4217 4261 4339 4421
tL 2 218 219 221 228 233 231 233 239 239 248 249 254 255 262 266 265 270 272 277 279 283 292 289 291 294 301 298 309 314 310 316 321 325 325 327 331 334 336 338 344
Table 3. Continue 2 q 4423 4489 4549 4637 4679 4759 4817 4913 4967 5011 5081 5153 5231 5303 5387 5437 5501 5563 5647 5693 5779 5839 5879 5981 6053 6121 6199 6257 6311 6361 6449 6547 6581 6673 6733 6803 6863 6917 6983 7043
tL 2 339 344 349 352 359 355 357 362 366 366 369 371 380 380 383 385 386 391 390 394 398 399 400 411 414 413 419 419 422 420 422 430 429 433 435 438 438 444 442 449
q 4441 4493 4561 4639 4691 4783 4831 4919 4969 5021 5087 5167 5233 5309 5393 5441 5503 5569 5651 5701 5783 5843 5881 5987 6067 6131 6203 6263 6317 6367 6451 6551 6599 6679 6737 6823 6869 6947 6991 7057
tL 2 342 343 349 351 353 361 362 364 370 373 370 376 379 382 387 383 389 389 397 396 400 399 406 407 413 415 412 424 418 421 422 427 433 428 432 437 435 443 441 444
q 4447 4507 4567 4643 4703 4787 4861 4931 4973 5023 5099 5171 5237 5323 5399 5443 5507 5573 5653 5711 5791 5849 5897 6007 6073 6133 6211 6269 6323 6373 6469 6553 6607 6689 6761 6827 6871 6949 6997 7069
tL 2 344 346 348 349 361 359 363 369 369 364 369 377 378 382 383 388 387 390 393 395 402 401 401 408 410 411 421 414 420 423 425 425 431 432 438 443 439 439 445 448
q 4451 4513 4583 4649 4721 4789 4871 4933 4987 5039 5101 5179 5261 5329 5407 5449 5519 5581 5657 5717 5801 5851 5903 6011 6079 6143 6217 6271 6329 6379 6473 6561 6619 6691 6763 6829 6883 6959 7001 7079
tL 2 342 343 347 353 360 359 362 366 365 369 370 370 374 383 386 383 391 394 396 393 397 404 404 407 407 413 412 413 423 421 427 429 432 431 435 438 439 445 442 456
q 4457 4517 4591 4651 4723 4793 4877 4937 4993 5041 5107 5189 5273 5333 5413 5471 5521 5591 5659 5737 5807 5857 5923 6029 6089 6151 6221 6277 6337 6389 6481 6563 6637 6701 6779 6833 6889 6961 7013 7103
33
tL 2 346 345 349 351 354 360 356 365 360 369 371 377 378 380 382 387 390 394 393 398 397 400 404 412 409 408 417 418 424 423 429 428 432 433 436 444 445 442 443 447
q 4463 4519 4597 4657 4729 4799 4889 4943 4999 5051 5113 5197 5279 5347 5417 5477 5527 5623 5669 5741 5813 5861 5927 6037 6091 6163 6229 6287 6343 6397 6491 6569 6653 6703 6781 6841 6899 6967 7019 7109
tL 2 347 351 350 352 356 361 369 366 372 368 370 378 375 382 387 386 385 392 398 401 398 404 403 408 408 414 412 420 413 422 427 424 429 431 437 435 440 437 443 445
q 4481 4523 4603 4663 4733 4801 4903 4951 5003 5059 5119 5209 5281 5351 5419 5479 5531 5639 5683 5743 5821 5867 5939 6043 6101 6173 6241 6299 6353 6421 6521 6571 6659 6709 6791 6857 6907 6971 7027 7121
tL 2 343 349 352 351 356 362 361 363 369 370 370 374 380 381 387 389 384 395 389 402 400 401 408 413 405 415 416 423 421 426 424 430 433 440 438 437 439 445 449 447
q 4483 4547 4621 4673 4751 4813 4909 4957 5009 5077 5147 5227 5297 5381 5431 5483 5557 5641 5689 5749 5827 5869 5953 6047 6113 6197 6247 6301 6359 6427 6529 6577 6661 6719 6793 6859 6911 6977 7039 7127
tL 2 348 345 350 352 356 361 362 366 371 370 373 381 381 383 392 387 391 390 397 405 396 402 406 411 412 412 420 417 420 425 429 426 433 437 441 442 443 446 443 448
Table 3. Continue 3 q 7129 7213 7297 7369 7477 7529 7577 7643 7703 7789 7873 7927 8011 8089 8167 8231 8291 8369 8443 8537 8609 8677 8731 8803 8861 8941 9011 9091 9161 9227 9311 9377 9431 9479 9551 9643 9721 9787 9851 9923
tL 2 450 452 455 460 458 468 465 465 473 469 472 475 478 482 485 485 487 489 494 497 497 503 504 508 509 511 511 513 516 522 521 524 527 529 530 532 531 540 542 545
q 7151 7219 7307 7393 7481 7537 7583 7649 7717 7793 7877 7933 8017 8093 8171 8233 8293 8377 8447 8539 8623 8681 8737 8807 8863 8951 9013 9103 9173 9239 9319 9391 9433 9491 9587 9649 9733 9791 9857 9929
tL 2 451 452 457 456 464 462 464 470 464 469 475 478 478 484 485 489 488 491 496 494 500 502 506 511 511 508 510 512 518 521 520 523 529 530 531 531 535 540 540 542
q 7159 7229 7309 7411 7487 7541 7589 7669 7723 7817 7879 7937 8039 8101 8179 8237 8297 8387 8461 8543 8627 8689 8741 8819 8867 8963 9029 9109 9181 9241 9323 9397 9437 9497 9601 9661 9739 9803 9859 9931
tL 2 449 457 454 454 461 460 462 471 468 472 477 475 481 486 488 493 488 492 491 494 499 499 505 504 507 509 512 517 525 528 524 522 522 528 534 532 530 540 535 540
q 7177 7237 7321 7417 7489 7547 7591 7673 7727 7823 7883 7949 8053 8111 8191 8243 8311 8389 8467 8563 8629 8693 8747 8821 8887 8969 9041 9127 9187 9257 9337 9403 9439 9511 9613 9677 9743 9811 9871 9941
tL 2 455 455 453 462 464 464 463 467 471 473 476 473 480 483 480 488 494 491 493 500 498 504 502 503 515 507 513 510 519 519 522 520 526 525 532 533 531 533 537 538
q 7187 7243 7331 7433 7499 7549 7603 7681 7741 7829 7901 7951 8059 8117 8192 8263 8317 8419 8501 8573 8641 8699 8753 8831 8893 8971 9043 9133 9199 9277 9341 9409 9461 9521 9619 9679 9749 9817 9883 9949
34
tL 2 450 454 457 465 463 465 464 466 468 476 475 475 483 482 491 488 491 493 492 493 503 499 505 507 511 515 510 518 517 520 522 525 524 525 528 530 540 539 536 541
q 7193 7247 7333 7451 7507 7559 7607 7687 7753 7841 7907 7963 8069 8123 8209 8269 8329 8423 8513 8581 8647 8707 8761 8837 8923 8999 9049 9137 9203 9281 9343 9413 9463 9533 9623 9689 9767 9829 9887 9967
tL 2 450 454 459 458 463 465 467 468 471 479 477 480 484 482 487 482 486 493 497 499 507 506 503 508 514 512 513 521 519 518 522 525 524 534 532 537 536 539 539 541
q 7207 7253 7349 7457 7517 7561 7621 7691 7757 7853 7919 7993 8081 8147 8219 8273 8353 8429 8521 8597 8663 8713 8779 8839 8929 9001 9059 9151 9209 9283 9349 9419 9467 9539 9629 9697 9769 9833 9901 9973
tL 2 450 454 460 462 466 462 465 469 470 469 476 478 478 482 484 493 490 493 497 496 504 499 502 504 510 513 517 511 517 518 519 523 526 533 529 527 538 539 538 538
q 7211 7283 7351 7459 7523 7573 7639 7699 7759 7867 7921 8009 8087 8161 8221 8287 8363 8431 8527 8599 8669 8719 8783 8849 8933 9007 9067 9157 9221 9293 9371 9421 9473 9547 9631 9719 9781 9839 9907
tL 2 452 455 458 457 464 464 470 472 473 475 483 481 485 483 484 495 492 492 505 496 503 502 505 499 509 514 516 518 514 528 523 525 529 533 533 530 536 537 537
Table 4. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 10000 < q < 100000, q prime power q 10007 10091 10151 10211 10273 10337 10433 10501 10601 10657 10729 10831 10889 10973 11059 11119 11197 11279 11353 11443 11497 11593 11689 11779 11831 11903 11959 12041 12109 12167 12253 12329 12409 12479 12539 12601 12659 12743 12821 12907 12967 13033 13109 13177 13259 13337 13421 13499
tL 2 544 544 548 550 553 550 557 556 565 564 567 573 570 575 571 577 577 578 587 592 588 587 593 592 597 605 601 602 604 606 607 613 616 619 620 618 619 623 626 630 627 626 634 632 632 638 644 645
q 10009 10093 10159 10223 10289 10343 10453 10513 10607 10663 10733 10837 10891 10979 11069 11131 11213 11287 11369 11447 11503 11597 11699 11783 11833 11909 11969 12043 12113 12197 12263 12343 12413 12487 12541 12611 12671 12757 12823 12911 12973 13037 13121 13183 13267 13339 13441 13513
tL 2 543 545 551 551 559 553 561 558 560 563 563 566 573 572 574 573 576 588 581 583 592 590 589 599 597 599 593 606 602 606 616 611 618 614 620 619 616 619 623 626 630 634 629 635 630 642 635 644
q 10037 10099 10163 10243 10301 10357 10457 10529 10609 10667 10739 10847 10903 10987 11071 11149 11239 11299 11383 11449 11519 11617 11701 11789 11839 11923 11971 12049 12119 12203 12269 12347 12421 12491 12547 12613 12689 12763 12829 12917 12979 13043 13127 13187 13291 13367 13451 13523
tL 2 542 547 546 546 552 558 560 564 562 564 567 571 569 573 578 582 579 582 585 590 586 589 597 594 595 597 602 599 600 606 607 611 614 614 612 620 621 630 629 634 625 634 636 635 644 637 644 643
q 10039 10103 10169 10247 10303 10369 10459 10531 10613 10687 10753 10853 10909 10993 11083 11159 11243 11311 11393 11467 11527 11621 11717 11801 11863 11927 11981 12071 12143 12211 12277 12373 12433 12497 12553 12619 12697 12769 12841 12919 12983 13049 13147 13217 13297 13381 13457 13537
tL 2 541 546 544 552 552 559 556 560 560 568 563 571 568 578 579 571 577 579 583 588 587 588 595 592 599 601 596 609 607 609 606 608 616 609 615 615 624 626 624 627 626 637 631 633 637 649 641 650
q 10061 10111 10177 10253 10313 10391 10463 10559 10627 10691 10771 10859 10937 11003 11087 11161 11251 11317 11399 11471 11549 11633 11719 11807 11867 11933 11987 12073 12149 12227 12281 12377 12437 12503 12569 12637 12703 12781 12853 12923 13001 13063 13151 13219 13309 13397 13463 13553
35
tL 2 543 549 553 545 551 556 561 565 560 562 568 573 568 574 573 573 577 577 590 585 592 593 594 595 599 596 603 609 605 612 611 616 618 614 615 621 621 621 625 633 632 628 637 636 637 635 638 647
q 10067 10133 10181 10259 10321 10399 10477 10567 10631 10709 10781 10861 10939 11027 11093 11171 11257 11321 11411 11483 11551 11657 11731 11813 11881 11939 12007 12097 12157 12239 12289 12379 12451 12511 12577 12641 12713 12791 12889 12941 13003 13093 13159 13229 13313 13399 13469 13567
tL 2 544 551 546 551 553 559 557 556 563 566 570 565 570 571 573 576 578 584 591 585 596 599 591 595 600 601 602 603 602 613 609 608 611 613 619 617 616 622 624 631 629 628 634 639 631 640 642 639
q 10069 10139 10193 10267 10331 10427 10487 10589 10639 10711 10789 10867 10949 11047 11113 11173 11261 11329 11423 11489 11579 11677 11743 11821 11887 11941 12011 12101 12161 12241 12301 12391 12457 12517 12583 12647 12721 12799 12893 12953 13007 13099 13163 13241 13327 13411 13477 13577
tL 2 544 550 550 559 552 560 563 560 557 564 565 568 571 581 574 575 585 583 584 586 588 594 595 595 595 596 603 606 604 610 609 611 612 614 620 623 621 629 620 626 629 634 631 636 636 645 645 642
q 10079 10141 10201 10271 10333 10429 10499 10597 10651 10723 10799 10883 10957 11057 11117 11177 11273 11351 11437 11491 11587 11681 11777 11827 11897 11953 12037 12107 12163 12251 12323 12401 12473 12527 12589 12653 12739 12809 12899 12959 13009 13103 13171 13249 13331 13417 13487 13591
tL 2 546 549 551 547 552 561 560 557 557 564 562 571 574 581 577 581 583 581 589 582 585 588 594 596 600 597 600 605 605 603 609 613 617 615 621 623 618 626 630 630 633 628 637 633 634 641 641 643
Table 4. Continue 1 q 13597 13681 13723 13799 13879 13933 14033 14143 14221 14323 14407 14461 14549 14627 14683 14747 14813 14879 14951 15061 15131 15199 15271 15329 15391 15467 15559 15629 15679 15761 15817 15907 15991 16069 16129 16223 16319 16384 16453 16553 16633 16699 16807 16883 16943 17027 17099 17183
tL 2 648 653 648 645 648 652 650 660 661 666 669 669 669 673 676 679 684 676 679 682 679 683 687 692 693 690 696 699 698 703 697 709 707 707 710 717 715 718 716 719 719 720 722 723 729 730 732 740
q 13613 13687 13729 13807 13883 13963 14051 14149 14243 14327 14411 14479 14551 14629 14699 14753 14821 14887 14957 15073 15137 15217 15277 15331 15401 15473 15569 15641 15683 15767 15823 15913 16001 16073 16139 16229 16333 16411 16477 16561 16649 16703 16811 16889 16963 17029 17107 17189
tL 2 648 646 650 650 655 651 657 658 658 670 661 670 676 675 676 681 684 676 676 681 682 691 688 688 689 692 693 691 699 698 702 706 708 710 715 710 715 718 715 718 720 729 728 722 732 735 734 735
q 13619 13691 13751 13829 13901 13967 14057 14153 14249 14341 14419 14489 14557 14633 14713 14759 14827 14891 14969 15077 15139 15227 15287 15349 15413 15493 15581 15643 15727 15773 15859 15919 16007 16087 16141 16231 16339 16417 16481 16567 16651 16729 16823 16901 16979 17033 17117 17191
tL 2 644 643 649 652 650 651 659 664 661 667 664 668 669 670 671 676 676 680 685 680 692 687 685 683 696 698 694 695 702 698 709 706 711 710 715 709 719 709 714 717 719 730 726 735 726 732 741 735
q 13627 13693 13757 13831 13903 13997 14071 14159 14251 14347 14423 14503 14561 14639 14717 14767 14831 14897 14983 15083 15149 15233 15289 15359 15427 15497 15583 15647 15731 15787 15877 15923 16033 16091 16183 16249 16349 16421 16487 16573 16657 16741 16829 16903 16981 17041 17123 17203
tL 2 640 645 651 655 653 656 656 660 665 664 671 666 669 676 675 670 677 680 684 679 687 683 684 688 699 696 702 702 697 695 699 703 712 706 710 715 711 718 726 727 725 723 731 729 730 737 732 733
q 13633 13697 13759 13841 13907 13999 14081 14173 14281 14369 14431 14519 14563 14641 14723 14771 14843 14923 15013 15091 15161 15241 15299 15361 15439 15511 15601 15649 15733 15791 15881 15937 16057 16097 16187 16253 16361 16427 16493 16603 16661 16747 16831 16921 16987 17047 17137 17207
36
tL 2 651 645 656 651 654 657 661 660 665 672 667 671 670 680 673 671 671 681 680 686 688 687 691 685 691 686 698 698 697 703 700 704 706 706 712 710 712 715 719 717 725 725 726 728 729 733 730 734
q 13649 13709 13763 13859 13913 14009 14083 14177 14293 14387 14437 14533 14591 14653 14731 14779 14851 14929 15017 15101 15173 15259 15307 15373 15443 15527 15607 15661 15737 15797 15887 15959 16061 16103 16189 16267 16363 16433 16519 16607 16673 16759 16843 16927 16993 17053 17159 17209
tL 2 647 650 647 646 654 657 652 664 663 672 666 674 670 668 671 675 676 681 680 679 689 689 689 688 691 692 698 698 698 701 707 706 702 709 711 716 715 712 724 717 725 723 726 732 728 729 738 733
q 13669 13711 13781 13873 13921 14011 14087 14197 14303 14389 14447 14537 14593 14657 14737 14783 14867 14939 15031 15107 15187 15263 15313 15377 15451 15541 15619 15667 15739 15803 15889 15971 16063 16111 16193 16273 16369 16447 16529 16619 16691 16763 16871 16931 17011 17077 17161 17231
tL 2 647 650 647 646 652 655 656 660 662 663 672 670 669 671 681 677 679 683 683 685 680 691 693 687 701 691 694 703 705 703 702 706 709 707 716 713 714 715 726 722 727 735 726 727 732 731 733 737
q 13679 13721 13789 13877 13931 14029 14107 14207 14321 14401 14449 14543 14621 14669 14741 14797 14869 14947 15053 15121 15193 15269 15319 15383 15461 15551 15625 15671 15749 15809 15901 15973 16067 16127 16217 16301 16381 16451 16547 16631 16693 16787 16879 16937 17021 17093 17167 17239
tL 2 654 651 653 652 652 657 662 654 660 665 670 668 675 674 672 676 680 680 682 682 680 690 691 690 691 692 691 701 700 700 704 705 707 714 711 706 715 716 723 726 720 731 725 731 734 730 738 742
Table 4. Continue 2 q 17257 17341 17401 17477 17551 17623 17713 17791 17891 17957 18041 18097 18169 18233 18307 18379 18451 18523 18637 18731 18797 18917 19013 19087 19207 19267 19373 19423 19469 19541 19603 19709 19777 19861 19949 20011 20089 20147 20231 20327 20389 20477 20549 20641 20743 20807 20899 20981
tL 2 740 735 739 740 742 747 744 754 754 756 757 755 757 760 761 762 761 768 768 773 774 775 776 778 777 785 788 787 792 788 790 791 791 798 799 805 793 805 803 810 809 811 806 821 817 817 824 819
q 17291 17351 17417 17483 17569 17627 17729 17807 17903 17959 18043 18119 18181 18251 18311 18397 18457 18539 18661 18743 18803 18919 19031 19121 19211 19273 19379 19427 19471 19543 19609 19717 19793 19867 19961 20021 20101 20149 20233 20333 20393 20479 20551 20663 20747 20809 20903 20983
tL 2 736 739 737 738 739 744 755 752 754 748 751 754 758 761 764 768 764 769 767 774 768 774 779 783 780 785 781 786 785 800 793 794 792 808 800 796 804 800 803 808 804 814 816 812 813 814 820 828
q 17293 17359 17419 17489 17573 17657 17737 17827 17909 17971 18047 18121 18191 18253 18313 18401 18461 18541 18671 18749 18839 18947 19037 19139 19213 19289 19381 19429 19477 19553 19661 19727 19801 19889 19963 20023 20107 20161 20249 20341 20399 20483 20563 20681 20749 20849 20921 21001
tL 2 733 742 750 742 740 748 750 751 749 753 755 756 757 762 758 765 765 766 766 772 774 774 773 782 776 783 782 784 792 787 792 794 797 793 800 798 799 804 806 813 806 814 813 817 814 816 825 820
q 17299 17377 17431 17491 17579 17659 17747 17837 17911 17977 18049 18127 18199 18257 18329 18413 18481 18553 18679 18757 18859 18959 19051 19141 19219 19301 19387 19433 19483 19559 19681 19739 19813 19891 19973 20029 20113 20173 20261 20347 20407 20507 20593 20693 20753 20857 20929 21011
tL 2 739 738 742 748 744 751 749 752 753 754 759 758 763 764 760 768 770 771 768 776 769 775 779 779 783 789 786 782 783 794 784 793 800 793 801 799 805 806 802 807 809 810 809 818 811 818 825 818
q 17317 17383 17443 17497 17581 17669 17749 17839 17921 17981 18059 18131 18211 18269 18341 18427 18493 18583 18691 18769 18869 18973 19069 19157 19231 19309 19391 19441 19489 19571 19683 19751 19819 19913 19979 20047 20117 20177 20269 20353 20411 20509 20599 20707 20759 20873 20939 21013
37
tL 2 740 736 740 742 736 750 753 754 753 759 759 756 758 764 760 767 765 769 760 776 774 776 781 777 784 782 787 785 789 784 795 791 794 799 800 799 805 800 806 805 808 809 816 819 816 821 824 818
q 17321 17387 17449 17509 17597 17681 17761 17851 17923 17987 18061 18133 18217 18287 18353 18433 18503 18587 18701 18773 18899 18979 19073 19163 19237 19319 19403 19447 19501 19577 19687 19753 19841 19919 19991 20051 20123 20183 20287 20357 20431 20521 20611 20717 20771 20879 20947 21017
tL 2 740 741 735 739 742 745 745 755 751 755 758 754 763 764 761 760 766 762 769 778 775 778 781 782 783 785 790 787 788 794 790 794 791 798 805 802 800 801 807 810 815 813 814 811 814 815 822 819
q 17327 17389 17467 17519 17599 17683 17783 17863 17929 17989 18077 18143 18223 18289 18367 18439 18517 18593 18713 18787 18911 19001 19079 19181 19249 19321 19417 19457 19507 19583 19697 19759 19843 19927 19993 20063 20129 20201 20297 20359 20441 20533 20627 20719 20773 20887 20959 21019
tL 2 741 739 739 745 739 749 749 755 746 761 752 763 759 766 762 770 766 770 776 778 778 775 779 783 782 787 790 790 784 790 796 794 797 801 796 793 807 805 805 803 809 815 812 812 815 823 818 827
q 17333 17393 17471 17539 17609 17707 17789 17881 17939 18013 18089 18149 18229 18301 18371 18443 18521 18617 18719 18793 18913 19009 19081 19183 19259 19333 19421 19463 19531 19597 19699 19763 19853 19937 19997 20071 20143 20219 20323 20369 20443 20543 20639 20731 20789 20897 20963 21023
tL 2 737 743 743 735 746 749 746 753 754 752 755 752 756 758 761 778 763 766 769 769 774 771 781 781 783 785 787 788 788 791 794 790 801 806 801 807 809 805 801 805 804 816 812 820 813 810 817 819
Table 4. Continue 3 q 21031 21139 21191 21283 21379 21467 21521 21587 21649 21739 21817 21881 21991 22051 22111 22171 22273 22349 22441 22531 22619 22691 22741 22811 22907 23003 23053 23117 23201 23293 23369 23497 23563 23627 23689 23773 23857 23911 24001 24071 24113 24197 24317 24391 24473 24551 24671 24763
tL 2 817 819 826 830 825 840 833 835 833 830 843 835 847 845 845 848 847 851 854 850 853 859 860 860 861 867 868 870 876 867 863 871 879 875 880 878 882 879 887 891 885 891 895 896 886 893 902 898
q 21059 21143 21193 21313 21383 21481 21523 21589 21661 21751 21821 21893 21997 22063 22123 22189 22277 22367 22447 22541 22621 22697 22751 22817 22921 23011 23057 23131 23203 23297 23371 23509 23567 23629 23719 23789 23869 23917 24007 24077 24121 24203 24329 24407 24481 24571 24677 24767
tL 2 825 825 829 826 830 833 836 834 843 836 833 838 842 849 839 850 843 854 855 852 857 863 860 859 864 863 870 866 863 867 876 876 881 873 882 879 879 886 885 885 883 888 888 896 898 891 897 898
q 21061 21149 21211 21317 21391 21487 21529 21599 21673 21757 21839 21911 22003 22067 22129 22193 22279 22369 22453 22543 22637 22699 22769 22853 22937 23017 23059 23143 23209 23311 23399 23531 23581 23633 23741 23801 23873 23929 24019 24083 24133 24223 24337 24413 24499 24593 24683 24781
tL 2 820 825 831 832 829 834 831 833 830 839 839 840 841 849 845 847 854 850 854 861 852 851 854 856 860 871 866 868 866 867 870 875 874 884 876 885 880 888 889 893 886 894 888 901 892 894 896 905
q 21067 21157 21221 21319 21397 21491 21557 21601 21683 21767 21841 21929 22013 22073 22133 22201 22283 22381 22469 22549 22639 22709 22777 22859 22943 23021 23063 23159 23227 23321 23417 23537 23593 23663 23743 23813 23879 23957 24023 24091 24137 24229 24359 24419 24509 24611 24691 24793
tL 2 826 828 830 829 825 830 844 839 835 839 834 837 839 845 848 847 851 855 856 853 862 863 855 858 865 864 866 866 868 879 871 871 874 872 875 875 875 882 885 892 885 884 892 901 895 895 900 900
q 21089 21163 21227 21323 21401 21493 21559 21611 21701 21773 21851 21937 22027 22079 22147 22229 22291 22391 22481 22567 22643 22717 22783 22861 22961 23027 23071 23167 23251 23327 23431 23539 23599 23669 23747 23819 23887 23971 24029 24097 24151 24239 24371 24421 24517 24623 24697 24799
38
tL 2 825 825 824 828 831 837 833 835 833 841 847 843 839 849 845 846 855 852 852 856 857 862 859 867 862 866 867 868 870 869 869 871 869 885 872 875 882 879 881 888 887 898 896 891 889 897 901 900
q 21101 21169 21247 21341 21407 21499 21563 21613 21713 21787 21859 21943 22031 22091 22153 22247 22303 22397 22483 22571 22651 22721 22787 22871 22963 23029 23081 23173 23269 23333 23447 23549 23603 23671 23753 23827 23893 23977 24043 24103 24169 24247 24373 24439 24527 24631 24709 24809
tL 2 823 827 828 829 839 835 831 833 838 840 844 842 840 842 843 852 849 854 851 859 863 860 857 861 860 860 865 870 873 872 867 873 873 880 883 884 881 874 884 884 889 888 892 889 893 900 896 896
q 21107 21179 21269 21347 21419 21503 21569 21617 21727 21799 21863 21961 22037 22093 22157 22259 22307 22409 22501 22573 22669 22727 22801 22877 22973 23039 23087 23189 23279 23339 23459 23557 23609 23677 23761 23831 23899 23981 24049 24107 24179 24251 24379 24443 24533 24649 24733 24821
tL 2 828 831 826 830 828 835 828 830 833 843 843 843 849 843 845 850 854 852 853 855 850 857 859 864 867 866 864 875 870 873 881 876 878 878 880 885 881 890 891 887 890 889 893 898 896 896 897 903
q 21121 21187 21277 21377 21433 21517 21577 21647 21737 21803 21871 21977 22039 22109 22159 22271 22343 22433 22511 22613 22679 22739 22807 22901 22993 23041 23099 23197 23291 23357 23473 23561 23623 23687 23767 23833 23909 23993 24061 24109 24181 24281 24389 24469 24547 24659 24749 24841
tL 2 824 826 834 827 836 827 834 838 838 842 847 842 849 851 848 850 851 851 857 855 862 862 859 865 865 865 871 871 875 868 872 881 877 874 878 883 881 886 885 887 892 896 887 893 895 900 902 898
Table 4. Continue 4 q 24847 24923 25013 25111 25171 25253 25343 25423 25523 25601 25667 25747 25841 25919 25997 26083 26161 26237 26309 26393 26459 26561 26647 26711 26777 26861 26927 27011 27077 27191 27277 27397 27479 27551 27673 27743 27793 27851 27943 28019 28097 28183 28289 28393 28463 28547 28597 28649
tL 2 899 904 905 904 904 911 908 910 909 915 914 918 921 928 921 930 930 929 934 930 937 935 938 946 940 940 944 945 947 947 956 951 957 964 952 953 958 961 967 961 958 962 967 972 972 975 970 972
q 24851 24943 25031 25117 25183 25261 25349 25439 25537 25603 25673 25759 25847 25931 25999 26099 26171 26249 26317 26399 26479 26569 26669 26713 26783 26863 26947 27017 27091 27197 27281 27407 27481 27581 27689 27749 27799 27883 27947 28027 28099 28201 28297 28403 28477 28549 28603 28657
tL 2 899 901 906 907 908 906 910 916 920 919 923 918 921 925 924 927 933 930 930 929 933 935 937 936 942 942 934 940 946 950 952 949 956 951 964 957 958 962 956 963 963 971 964 967 968 977 973 977
q 24859 24953 25033 25121 25189 25301 25357 25447 25541 25609 25679 25763 25849 25933 26003 26107 26177 26251 26321 26407 26489 26573 26681 26717 26801 26879 26951 27031 27103 27211 27283 27409 27487 27583 27691 27751 27803 27889 27953 28031 28109 28211 28307 28409 28493 28559 28607 28661
tL 2 901 902 904 904 907 905 913 906 916 919 918 920 925 921 922 931 922 932 935 931 938 931 938 935 942 945 938 943 947 954 948 949 953 957 960 962 959 959 961 963 962 970 969 973 976 972 975 974
q 24877 24967 25037 25127 25219 25303 25367 25453 25561 25621 25693 25771 25867 25939 26017 26111 26183 26261 26339 26417 26497 26591 26683 26723 26813 26881 26953 27043 27107 27239 27299 27427 27509 27611 27697 27763 27809 27893 27961 28051 28111 28219 28309 28411 28499 28561 28619 28663
tL 2 901 905 912 906 910 912 909 918 919 913 921 922 923 918 927 925 925 930 931 931 932 934 937 945 937 938 944 945 950 953 949 956 955 954 960 959 965 961 960 962 966 964 969 968 968 975 974 986
q 24889 24971 25057 25147 25229 25307 25373 25457 25577 25633 25703 25793 25873 25943 26021 26113 26189 26263 26347 26423 26501 26597 26687 26729 26821 26891 26959 27059 27109 27241 27329 27431 27527 27617 27701 27767 27817 27901 27967 28057 28123 28229 28319 28429 28513 28571 28621 28669
39
tL 2 907 900 902 909 911 908 914 911 917 920 917 918 921 929 925 927 929 929 931 933 930 938 935 938 938 942 944 945 950 951 954 951 952 958 963 962 965 964 959 964 966 967 969 969 972 978 974 981
q 24907 24977 25073 25153 25237 25309 25391 25463 25579 25639 25717 25799 25889 25951 26029 26119 26203 26267 26357 26431 26513 26627 26693 26731 26833 26893 26981 27061 27127 27253 27337 27437 27529 27631 27733 27773 27823 27917 27983 28069 28151 28277 28349 28433 28517 28573 28627 28687
tL 2 901 908 903 911 911 909 909 911 912 916 915 909 918 927 932 927 928 929 931 929 933 938 945 939 937 947 943 942 946 952 956 950 958 954 960 957 964 953 967 973 968 968 964 970 972 974 979 972
q 24917 24979 25087 25163 25243 25321 25409 25469 25583 25643 25733 25801 25903 25969 26041 26141 26209 26293 26371 26437 26539 26633 26699 26737 26839 26903 26987 27067 27143 27259 27361 27449 27539 27647 27737 27779 27827 27919 27997 28081 28163 28279 28351 28439 28537 28579 28631 28697
tL 2 905 904 906 909 910 906 912 923 913 913 919 922 931 923 924 924 928 925 930 928 931 947 942 946 941 945 943 943 947 950 955 945 958 953 956 967 961 963 965 961 961 965 972 970 975 971 972 975
q 24919 24989 25097 25169 25247 25339 25411 25471 25589 25657 25741 25819 25913 25981 26053 26153 26227 26297 26387 26449 26557 26641 26701 26759 26849 26921 26993 27073 27179 27271 27367 27457 27541 27653 27739 27791 27847 27941 28001 28087 28181 28283 28387 28447 28541 28591 28643 28703
tL 2 896 901 916 913 907 907 907 916 920 914 920 923 921 926 930 921 928 932 931 934 942 942 940 932 941 944 943 945 948 949 958 958 956 951 959 959 955 957 956 966 969 963 972 978 980 977 977 983
Table 4. Continue 5 q 28711 28793 28871 28961 29059 29147 29209 29303 29387 29443 29567 29633 29741 29833 29917 30011 30097 30161 30241 30319 30427 30509 30593 30689 30773 30851 30931 31019 31091 31177 31237 31307 31387 31511 31573 31663 31741 31849 31973 32051 32099 32189 32261 32341 32401 32479 32561 32611
tL 2 974 986 976 986 984 985 987 992 989 987 990 993 997 999 1001 1002 1003 1011 995 1004 1005 1011 1013 1004 1015 1018 1012 1014 1021 1025 1023 1025 1028 1029 1034 1037 1030 1038 1035 1033 1044 1041 1039 1037 1044 1047 1056 1049
q 28723 28807 28879 28979 29063 29153 29221 29311 29389 29453 29569 29641 29753 29837 29921 30013 30103 30169 30253 30323 30431 30517 30631 30697 30781 30853 30937 31033 31121 31181 31247 31319 31391 31513 31583 31667 31751 31859 31981 32057 32117 32191 32297 32353 32411 32491 32563 32621
tL 2 972 976 982 979 979 986 986 989 986 993 998 990 993 1000 997 1000 1000 996 1007 1005 1015 1011 1017 1015 1006 1018 1018 1026 1022 1018 1021 1021 1023 1030 1030 1032 1030 1038 1032 1040 1042 1044 1040 1041 1050 1042 1051 1046
q 28729 28813 28901 29009 29077 29167 29231 29327 29399 29473 29573 29663 29759 29851 29927 30029 30109 30181 30259 30341 30449 30529 30637 30703 30803 30859 30941 31039 31123 31183 31249 31321 31393 31517 31601 31687 31769 31873 31991 32059 32119 32203 32299 32359 32413 32497 32569 32633
tL 2 973 982 980 981 983 980 987 987 990 985 992 990 994 993 1009 1006 1010 1005 1006 1009 1004 1014 1009 1010 1018 1009 1015 1023 1014 1019 1019 1021 1030 1025 1028 1033 1033 1033 1039 1045 1043 1038 1040 1052 1048 1049 1050 1046
q 28751 28817 28909 29017 29101 29173 29243 29333 29401 29483 29581 29669 29761 29863 29929 30047 30113 30187 30269 30347 30467 30539 30643 30707 30809 30869 30949 31051 31139 31189 31253 31327 31397 31531 31607 31699 31771 31883 32003 32063 32141 32213 32303 32363 32423 32503 32573 32647
tL 2 981 982 983 982 984 987 980 986 993 992 992 994 993 1005 997 1004 1006 1003 1004 1012 1004 1008 1010 1014 1018 1015 1016 1021 1033 1023 1022 1025 1028 1031 1035 1033 1034 1039 1037 1036 1038 1033 1035 1044 1048 1044 1046 1050
q 28753 28837 28921 29021 29123 29179 29251 29339 29411 29501 29587 29671 29789 29867 29947 30059 30119 30197 30271 30367 30469 30553 30649 30713 30817 30871 30971 31063 31147 31193 31259 31333 31469 31541 31627 31721 31793 31891 32009 32069 32143 32233 32309 32369 32429 32507 32579 32653
40
tL 2 981 973 980 988 987 981 990 989 990 986 989 994 1001 997 995 1000 1001 998 1003 1006 1013 1012 1003 1015 1021 1012 1020 1020 1023 1023 1017 1030 1034 1033 1024 1036 1035 1038 1033 1042 1039 1034 1043 1044 1042 1045 1046 1055
q 28759 28843 28927 29023 29129 29191 29269 29347 29423 29527 29599 29683 29791 29873 29959 30071 30133 30203 30293 30389 30491 30557 30661 30727 30829 30881 30977 31069 31151 31219 31267 31337 31477 31543 31643 31723 31799 31907 32027 32077 32159 32237 32321 32371 32441 32531 32587 32687
tL 2 980 977 982 979 985 987 987 988 996 992 996 1002 996 998 997 1002 1004 1002 1007 1006 1013 1016 1016 1015 1013 1017 1016 1021 1024 1024 1026 1026 1028 1031 1025 1028 1038 1042 1036 1041 1038 1034 1041 1042 1051 1050 1042 1046
q 28771 28859 28933 29027 29131 29201 29287 29363 29429 29531 29611 29717 29803 29879 29983 30089 30137 30211 30307 30391 30493 30559 30671 30757 30839 30893 30983 31079 31153 31223 31271 31357 31481 31547 31649 31727 31817 31957 32029 32083 32173 32251 32323 32377 32443 32533 32603 32693
tL 2 976 985 981 975 978 991 994 986 993 998 993 990 998 1001 1006 1002 1006 998 1009 1009 1011 1015 1013 1017 1014 1014 1018 1021 1015 1028 1018 1027 1028 1033 1030 1033 1037 1034 1036 1042 1044 1038 1040 1048 1052 1047 1038 1052
q 28789 28867 28949 29033 29137 29207 29297 29383 29437 29537 29629 29723 29819 29881 29989 30091 30139 30223 30313 30403 30497 30577 30677 30763 30841 30911 31013 31081 31159 31231 31277 31379 31489 31567 31657 31729 31847 31963 32041 32089 32183 32257 32327 32381 32467 32537 32609 32707
tL 2 984 976 979 982 989 984 991 989 990 991 996 992 1003 996 1000 996 1002 1003 1002 1007 1009 1011 1015 1013 1018 1020 1016 1024 1022 1025 1020 1029 1027 1032 1030 1034 1036 1040 1040 1037 1040 1040 1039 1051 1045 1049 1052 1053
Table 4. Continue 6 q 32713 32783 32843 32941 33013 33083 33179 33287 33347 33413 33503 33581 33623 33721 33791 33863 33941 34057 34159 34259 34313 34381 34483 34543 34631 34703 34781 34877 34963 35081 35141 35251 35323 35407 35507 35569 35677 35801 35869 35963 36013 36107 36209 36293 36373 36473 36541 36607
tL 2 1055 1046 1054 1059 1061 1056 1063 1062 1063 1055 1069 1068 1070 1068 1069 1064 1068 1076 1081 1077 1078 1072 1081 1083 1079 1087 1085 1088 1089 1089 1082 1093 1101 1106 1101 1095 1100 1101 1097 1108 1101 1110 1114 1109 1115 1116 1114 1111
q 32717 32789 32869 32957 33023 33091 33181 33289 33349 33427 33521 33587 33629 33739 33797 33871 33961 34061 34171 34261 34319 34403 34487 34549 34649 34721 34807 34883 34981 35083 35149 35257 35327 35419 35509 35573 35729 35803 35879 35969 36017 36109 36217 36299 36383 36479 36551 36629
tL 2 1049 1053 1054 1052 1058 1056 1054 1062 1061 1064 1066 1058 1067 1069 1068 1075 1073 1074 1082 1077 1080 1083 1083 1073 1087 1084 1088 1082 1083 1089 1093 1099 1098 1098 1094 1105 1106 1103 1103 1106 1108 1103 1107 1108 1120 1116 1114 1113
q 32719 32797 32887 32969 33029 33107 33191 33301 33353 33457 33529 33589 33637 33749 33809 33889 33967 34123 34183 34267 34327 34421 34499 34583 34651 34729 34819 34897 35023 35089 35153 35267 35339 35423 35521 35591 35731 35809 35897 35977 36037 36131 36229 36307 36389 36481 36559 36637
tL 2 1048 1050 1051 1059 1053 1060 1059 1062 1063 1068 1060 1066 1058 1069 1069 1070 1071 1066 1073 1073 1075 1075 1075 1070 1085 1087 1081 1086 1094 1087 1088 1095 1100 1092 1094 1105 1106 1106 1104 1100 1099 1114 1111 1115 1108 1114 1110 1118
q 32749 32801 32909 32971 33037 33113 33199 33311 33359 33461 33533 33599 33641 33751 33811 33893 33997 34127 34211 34273 34337 34429 34501 34589 34667 34739 34841 34913 35027 35099 35159 35279 35353 35437 35527 35593 35747 35831 35899 35983 36061 36137 36241 36313 36433 36493 36563 36643
tL 2 1046 1050 1052 1055 1056 1051 1054 1058 1061 1059 1057 1064 1071 1065 1072 1062 1071 1082 1078 1073 1082 1081 1083 1083 1087 1090 1090 1082 1099 1096 1097 1092 1092 1094 1103 1097 1098 1101 1108 1103 1108 1108 1110 1104 1110 1120 1114 1120
41
q 32761 32803 32911 32983 33049 33119 33203 33317 33377 33469 33547 33601 33647 33757 33827 33911 34019 34129 34213 34283 34351 34439 34511 34591 34673 34747 34843 34919 35051 35107 35171 35281 35363 35447 35531 35597 35753 35837 35911 35993 36067 36151 36251 36319 36451 36497 36571 36653
tL 2 1055 1055 1056 1061 1056 1063 1059 1061 1059 1057 1064 1059 1069 1070 1066 1065 1070 1080 1076 1082 1075 1079 1076 1086 1085 1086 1088 1083 1093 1086 1087 1097 1102 1092 1104 1106 1105 1107 1109 1108 1106 1108 1111 1107 1120 1115 1114 1119
q 32768 32831 32917 32987 33053 33149 33211 33329 33391 33479 33563 33613 33679 33767 33829 33923 34031 34141 34217 34297 34361 34457 34513 34603 34679 34757 34847 34939 35053 35111 35201 35291 35381 35449 35533 35603 35759 35839 35923 35999 36073 36161 36263 36341 36457 36523 36583 36671
tL 2 1048 1053 1052 1050 1058 1060 1059 1057 1062 1061 1060 1068 1066 1062 1065 1073 1079 1076 1078 1080 1081 1067 1080 1086 1084 1078 1093 1091 1088 1095 1092 1104 1093 1094 1099 1098 1098 1103 1110 1106 1111 1104 1110 1114 1119 1112 1114 1122
q 32771 32833 32933 32993 33071 33151 33223 33331 33403 33487 33569 33617 33703 33769 33851 33931 34033 34147 34231 34301 34367 34469 34519 34607 34687 34759 34849 34949 35059 35117 35221 35311 35393 35461 35537 35617 35771 35851 35933 36007 36083 36187 36269 36343 36467 36527 36587 36677
tL 2 1045 1048 1056 1054 1059 1060 1055 1061 1061 1070 1064 1060 1074 1067 1075 1072 1076 1073 1082 1073 1085 1078 1080 1086 1082 1086 1088 1088 1090 1097 1092 1096 1094 1101 1099 1102 1101 1093 1105 1103 1110 1116 1110 1107 1115 1112 1124 1123
q 32779 32839 32939 32999 33073 33161 33247 33343 33409 33493 33577 33619 33713 33773 33857 33937 34039 34157 34253 34303 34369 34471 34537 34613 34693 34763 34871 34961 35069 35129 35227 35317 35401 35491 35543 35671 35797 35863 35951 36011 36097 36191 36277 36353 36469 36529 36599 36683
tL 2 1035 1056 1055 1052 1054 1066 1054 1060 1071 1060 1064 1063 1065 1071 1067 1072 1069 1069 1079 1071 1084 1080 1079 1086 1090 1090 1084 1085 1090 1090 1092 1094 1090 1094 1098 1102 1102 1102 1108 1101 1117 1101 1111 1117 1116 1118 1115 1116
Table 4. Continue 7 q 36691 36767 36833 36913 36979 37057 37171 37249 37337 37409 37501 37561 37619 37699 37831 37907 37997 38119 38201 38287 38351 38459 38593 38669 38723 38803 38873 38959 39047 39133 39209 39293 39367 39443 39541 39623 39719 39799 39863 39953 40037 40127 40193 40289 40429 40507 40591 40699
tL 2 1118 1116 1122 1122 1121 1125 1127 1127 1130 1124 1137 1135 1127 1130 1140 1143 1142 1138 1142 1146 1148 1150 1158 1139 1150 1154 1155 1155 1153 1157 1156 1162 1160 1163 1164 1171 1166 1175 1165 1173 1177 1171 1176 1181 1179 1181 1187 1181
q 36697 36779 36847 36919 36997 37061 37181 37253 37339 37423 37507 37567 37633 37717 37847 37951 38011 38149 38219 38299 38371 38461 38603 38671 38729 38809 38891 38971 39079 39139 39217 39301 39371 39451 39551 39631 39727 39821 39869 39971 40039 40129 40213 40343 40433 40519 40597 40709
tL 2 1120 1126 1125 1123 1128 1138 1128 1127 1128 1128 1137 1125 1127 1134 1144 1141 1139 1143 1156 1137 1148 1144 1157 1149 1152 1158 1159 1157 1164 1157 1154 1159 1159 1162 1159 1171 1172 1170 1168 1171 1178 1172 1172 1179 1182 1184 1184 1188
q 36709 36781 36857 36923 37003 37087 37189 37273 37357 37441 37511 37571 37643 37747 37853 37957 38039 38153 38231 38303 38377 38501 38609 38677 38737 38821 38903 38977 39089 39157 39227 39313 39373 39461 39563 39659 39733 39827 39877 39979 40063 40151 40231 40351 40459 40529 40609 40739
tL 2 1116 1118 1122 1117 1121 1125 1121 1131 1128 1134 1135 1137 1133 1136 1143 1137 1149 1141 1134 1145 1143 1141 1152 1151 1149 1154 1151 1159 1159 1160 1160 1165 1163 1163 1171 1171 1166 1167 1173 1173 1175 1174 1169 1176 1179 1173 1185 1180
q 36713 36787 36871 36929 37013 37097 37199 37277 37361 37447 37517 37573 37649 37781 37861 37963 38047 38167 38237 38317 38393 38543 38611 38693 38747 38833 38917 38993 39097 39161 39229 39317 39383 39499 39569 39667 39749 39829 39883 39983 40087 40153 40237 40357 40471 40531 40627 40751
tL 2 1118 1122 1111 1125 1123 1124 1132 1128 1132 1123 1135 1135 1128 1142 1131 1139 1141 1137 1143 1141 1137 1153 1148 1147 1154 1156 1151 1152 1159 1151 1161 1163 1160 1160 1171 1170 1169 1167 1172 1169 1177 1174 1175 1178 1176 1183 1180 1192
42
q 36721 36791 36877 36931 37019 37117 37201 37307 37363 37463 37529 37579 37657 37783 37871 37967 38053 38177 38239 38321 38431 38557 38629 38699 38749 38839 38921 39019 39103 39163 39233 39323 39397 39503 39581 39671 39761 39839 39887 39989 40093 40163 40241 40361 40483 40543 40637 40759
tL 2 1128 1126 1123 1127 1127 1121 1127 1125 1131 1136 1129 1130 1142 1135 1142 1139 1138 1148 1143 1143 1148 1152 1141 1156 1153 1150 1159 1162 1155 1158 1156 1160 1163 1171 1169 1163 1169 1168 1171 1173 1174 1179 1179 1172 1173 1179 1186 1186
q 36739 36793 36887 36943 37021 37123 37217 37309 37369 37483 37537 37589 37663 37799 37879 37987 38069 38183 38261 38327 38447 38561 38639 38707 38767 38851 38923 39023 39107 39181 39239 39341 39409 39509 39601 39679 39769 39841 39901 40009 40099 40169 40253 40387 40487 40559 40639 40763
tL 2 1121 1121 1127 1127 1125 1127 1127 1132 1124 1127 1128 1132 1135 1137 1134 1140 1136 1144 1145 1150 1144 1153 1141 1154 1151 1154 1158 1155 1163 1158 1162 1156 1156 1163 1174 1163 1164 1165 1175 1168 1174 1178 1174 1178 1174 1181 1174 1183
q 36749 36809 36899 36947 37039 37139 37223 37313 37379 37489 37547 37591 37691 37811 37889 37991 38083 38189 38273 38329 38449 38567 38651 38711 38783 38861 38933 39041 39113 39191 39241 39343 39419 39511 39607 39703 39779 39847 39929 40013 40111 40177 40277 40423 40493 40577 40693 40771
tL 2 1115 1131 1123 1114 1121 1123 1127 1125 1129 1132 1126 1138 1136 1140 1132 1133 1148 1149 1152 1142 1145 1145 1151 1156 1156 1154 1154 1160 1157 1162 1162 1162 1169 1160 1172 1169 1168 1182 1172 1171 1167 1179 1174 1181 1181 1181 1182 1176
q 36761 36821 36901 36973 37049 37159 37243 37321 37397 37493 37549 37607 37693 37813 37897 37993 38113 38197 38281 38333 38453 38569 38653 38713 38791 38867 38953 39043 39119 39199 39251 39359 39439 39521 39619 39709 39791 39857 39937 40031 40123 40189 40283 40427 40499 40583 40697 40787
tL 2 1120 1127 1120 1122 1117 1126 1136 1130 1135 1131 1133 1134 1129 1137 1137 1144 1141 1144 1151 1141 1147 1159 1148 1154 1144 1152 1158 1160 1156 1162 1161 1160 1157 1161 1163 1171 1168 1165 1176 1167 1172 1171 1181 1179 1184 1181 1181 1184
Table 4. Continue 8 q 40801 40853 40939 41039 41131 41189 41243 41351 41443 41521 41609 41659 41761 41851 41927 41983 42071 42169 42223 42307 42391 42451 42499 42611 42697 42751 42839 42929 43003 43093 43201 43313 43411 43517 43607 43669 43781 43889 43969 44029 44111 44189 44267 44371 44491 44537 44623 44699
tL 2 1187 1184 1185 1187 1190 1185 1193 1199 1188 1195 1198 1208 1203 1201 1206 1206 1205 1209 1207 1212 1212 1211 1216 1213 1208 1220 1218 1214 1218 1216 1224 1218 1231 1225 1222 1236 1224 1233 1230 1238 1242 1242 1241 1245 1247 1239 1242 1244
q 40813 40867 40949 41047 41141 41201 41257 41357 41453 41539 41611 41669 41771 41863 41941 41999 42073 42179 42227 42323 42397 42457 42509 42641 42701 42767 42841 42937 43013 43103 43207 43319 43427 43541 43609 43691 43783 43891 43973 44041 44119 44201 44269 44381 44497 44543 44633 44701
tL 2 1183 1187 1191 1192 1190 1193 1199 1190 1187 1196 1206 1200 1200 1205 1201 1201 1212 1198 1201 1204 1213 1209 1212 1214 1223 1212 1220 1217 1215 1217 1218 1224 1223 1227 1232 1232 1235 1234 1231 1240 1234 1234 1243 1249 1244 1252 1243 1249
q 40819 40879 40961 41051 41143 41203 41263 41381 41467 41543 41617 41681 41777 41879 41947 42013 42083 42181 42239 42331 42403 42461 42533 42643 42703 42773 42853 42943 43019 43117 43223 43321 43441 43543 43613 43711 43787 43913 43987 44053 44123 44203 44273 44383 44501 44549 44641 44711
tL 2 1184 1186 1183 1186 1199 1195 1195 1197 1196 1198 1198 1203 1201 1208 1203 1207 1202 1204 1208 1213 1212 1205 1214 1215 1210 1219 1219 1216 1218 1213 1220 1229 1227 1230 1242 1236 1236 1236 1235 1238 1242 1234 1242 1241 1244 1245 1245 1250
q 40823 40883 40973 41057 41149 41213 41269 41387 41479 41549 41621 41687 41801 41887 41953 42017 42089 42187 42257 42337 42407 42463 42557 42649 42709 42787 42859 42953 43037 43133 43237 43331 43451 43573 43627 43717 43789 43933 43991 44059 44129 44207 44279 44389 44507 44563 44647 44729
tL 2 1186 1187 1183 1189 1193 1183 1192 1198 1191 1190 1198 1197 1200 1197 1203 1197 1211 1203 1211 1207 1205 1208 1211 1213 1213 1220 1217 1223 1214 1233 1219 1226 1226 1226 1229 1223 1236 1235 1236 1239 1235 1236 1238 1244 1251 1246 1240 1243
43
q 40829 40897 40993 41077 41161 41221 41281 41389 41491 41579 41627 41719 41809 41893 41957 42019 42101 42193 42281 42349 42409 42467 42569 42667 42719 42793 42863 42961 43049 43151 43261 43391 43457 43577 43633 43721 43793 43943 43997 44071 44131 44221 44281 44417 44519 44579 44651 44741
tL 2 1192 1187 1188 1190 1190 1196 1191 1196 1196 1197 1199 1198 1191 1206 1204 1202 1206 1208 1206 1210 1201 1209 1220 1214 1222 1212 1222 1225 1223 1220 1222 1220 1226 1227 1233 1230 1229 1228 1241 1242 1235 1239 1241 1238 1237 1248 1246 1248
q 40841 40903 41011 41081 41177 41227 41299 41399 41507 41593 41641 41729 41813 41897 41959 42023 42131 42197 42283 42359 42433 42473 42571 42677 42727 42797 42899 42967 43051 43159 43271 43397 43481 43579 43649 43753 43801 43951 44017 44087 44159 44249 44293 44449 44521 44587 44657 44753
tL 2 1188 1191 1190 1199 1191 1197 1195 1195 1197 1196 1199 1203 1198 1205 1209 1199 1208 1204 1211 1209 1205 1210 1207 1215 1209 1217 1223 1219 1216 1223 1225 1223 1223 1235 1225 1233 1226 1231 1238 1236 1238 1243 1239 1237 1245 1246 1245 1254
q 40847 40927 41017 41113 41179 41231 41333 41411 41513 41597 41647 41737 41843 41903 41969 42043 42139 42209 42293 42373 42437 42487 42577 42683 42737 42821 42901 42979 43063 43177 43283 43399 43487 43591 43651 43759 43853 43961 44021 44089 44171 44257 44351 44453 44531 44617 44683 44771
tL 2 1194 1188 1184 1195 1188 1189 1193 1204 1194 1202 1204 1199 1205 1198 1199 1207 1213 1208 1208 1214 1211 1212 1210 1214 1215 1221 1217 1228 1228 1224 1222 1222 1223 1234 1226 1226 1234 1232 1241 1235 1235 1245 1247 1243 1238 1248 1241 1246
q 40849 40933 41023 41117 41183 41233 41341 41413 41519 41603 41651 41759 41849 41911 41981 42061 42157 42221 42299 42379 42443 42491 42589 42689 42743 42829 42923 42989 43067 43189 43291 43403 43499 43597 43661 43777 43867 43963 44027 44101 44179 44263 44357 44483 44533 44621 44687 44773
tL 2 1187 1193 1192 1190 1186 1188 1194 1193 1191 1195 1203 1200 1198 1196 1205 1204 1199 1209 1214 1208 1213 1213 1213 1213 1216 1214 1215 1220 1227 1219 1225 1224 1227 1224 1233 1231 1235 1234 1233 1237 1237 1240 1237 1243 1243 1244 1246 1238
Table 4. Continue 9 q 44777 44867 44953 45053 45137 45247 45319 45403 45503 45589 45677 45767 45853 45959 46061 46147 46229 46309 46439 46499 46589 46663 46747 46819 46901 47051 47129 47221 47303 47387 47491 47543 47629 47711 47791 47869 47951 48049 48157 48247 48341 48437 48497 48589 48673 48767 48823 48907
tL 2 1253 1249 1251 1251 1251 1252 1254 1256 1257 1258 1261 1262 1264 1272 1264 1271 1267 1269 1265 1275 1276 1284 1282 1276 1274 1284 1278 1294 1283 1292 1290 1293 1283 1290 1289 1293 1297 1296 1296 1298 1308 1306 1300 1306 1303 1301 1308 1308
q 44789 44879 44959 45061 45139 45259 45329 45413 45523 45599 45691 45779 45863 45971 46073 46153 46237 46327 46441 46507 46591 46679 46751 46829 46919 47057 47137 47237 47309 47389 47497 47563 47639 47713 47797 47881 47963 48073 48163 48259 48353 48449 48523 48593 48677 48779 48847 48947
tL 2 1243 1255 1246 1247 1250 1267 1255 1251 1249 1261 1251 1257 1266 1262 1267 1264 1272 1268 1273 1271 1266 1275 1284 1280 1284 1276 1281 1280 1295 1287 1293 1282 1294 1292 1292 1296 1292 1302 1305 1301 1308 1305 1308 1304 1304 1301 1309 1304
q 44797 44887 44963 45077 45161 45263 45337 45427 45533 45613 45697 45817 45869 45979 46091 46171 46261 46337 46447 46511 46601 46681 46757 46831 46933 47059 47143 47251 47317 47407 47501 47569 47653 47717 47807 47903 47969 48079 48179 48271 48371 48463 48527 48611 48679 48781 48857 48953
tL 2 1250 1253 1255 1251 1264 1256 1254 1256 1265 1261 1269 1258 1262 1260 1263 1272 1264 1271 1267 1273 1272 1278 1281 1274 1275 1280 1287 1285 1280 1282 1290 1293 1293 1289 1295 1293 1296 1295 1294 1304 1311 1303 1304 1308 1308 1307 1304 1310
q 44809 44893 44971 45083 45179 45281 45341 45433 45541 45631 45707 45821 45887 45989 46093 46181 46271 46349 46451 46523 46619 46687 46769 46853 46957 47087 47147 47269 47339 47417 47507 47581 47657 47737 47809 47911 47977 48091 48187 48281 48383 48473 48533 48619 48731 48787 48859 48973
tL 2 1245 1255 1242 1259 1254 1262 1254 1249 1252 1271 1265 1265 1269 1272 1265 1267 1264 1267 1267 1274 1281 1269 1282 1281 1286 1280 1287 1283 1283 1287 1288 1290 1288 1299 1293 1303 1293 1301 1295 1299 1305 1301 1293 1302 1306 1308 1308 1306
44
q 44819 44909 44983 45119 45181 45289 45343 45439 45553 45641 45737 45823 45893 46021 46099 46183 46273 46351 46457 46549 46633 46691 46771 46861 46993 47093 47149 47279 47351 47419 47513 47591 47659 47741 47819 47917 47981 48109 48193 48299 48397 48479 48539 48623 48733 48799 48869 48989
tL 2 1256 1245 1248 1254 1256 1259 1254 1256 1259 1266 1260 1267 1265 1265 1269 1270 1273 1271 1279 1269 1273 1273 1278 1287 1277 1277 1282 1284 1288 1280 1287 1293 1288 1296 1288 1292 1297 1303 1297 1303 1304 1298 1306 1309 1306 1305 1308 1312
q 44839 44917 44987 45121 45191 45293 45361 45481 45557 45659 45751 45827 45943 46027 46103 46187 46279 46381 46471 46559 46639 46703 46807 46867 46997 47111 47161 47287 47353 47431 47521 47599 47681 47743 47837 47933 48017 48119 48197 48311 48407 48481 48541 48647 48751 48809 48871 48991
tL 2 1247 1250 1251 1254 1258 1263 1252 1262 1258 1255 1260 1264 1267 1264 1270 1272 1271 1274 1267 1274 1270 1274 1282 1275 1285 1284 1281 1288 1287 1285 1284 1289 1286 1288 1289 1290 1296 1293 1309 1300 1309 1298 1305 1309 1309 1310 1309 1306
q 44843 44927 45007 45127 45197 45307 45377 45491 45569 45667 45757 45833 45949 46049 46133 46199 46301 46399 46477 46567 46643 46723 46811 46877 47017 47119 47189 47293 47363 47441 47527 47609 47699 47777 47843 47939 48023 48121 48221 48313 48409 48487 48563 48649 48757 48817 48883 49003
tL 2 1237 1249 1250 1245 1258 1255 1254 1255 1252 1261 1263 1264 1274 1267 1275 1272 1273 1271 1277 1272 1280 1279 1282 1273 1291 1283 1285 1283 1281 1283 1288 1287 1291 1298 1294 1293 1290 1298 1300 1291 1301 1302 1303 1306 1312 1309 1309 1308
q 44851 44939 45013 45131 45233 45317 45389 45497 45587 45673 45763 45841 45953 46051 46141 46219 46307 46411 46489 46573 46649 46727 46817 46889 47041 47123 47207 47297 47381 47459 47533 47623 47701 47779 47857 47947 48029 48131 48239 48337 48413 48491 48571 48661 48761 48821 48889 49009
tL 2 1245 1256 1253 1256 1258 1264 1250 1258 1267 1261 1259 1265 1263 1268 1271 1268 1267 1272 1276 1279 1274 1280 1276 1282 1283 1280 1284 1287 1286 1286 1286 1295 1293 1290 1291 1293 1296 1305 1299 1300 1302 1313 1301 1304 1307 1306 1309 1316
Table 4. Continue 10 q 49019 49103 49171 49253 49339 49417 49499 49597 49669 49747 49823 49921 49999 50077 50131 50231 50329 50411 50513 50591 50683 50789 50891 50971 51061 51169 51241 51343 51421 51479 51539 51613 51691 51797 51869 51949 52051 52147 52223 52301 52391 52517 52579 52691 52757 52861 52951 53017
tL 2 1313 1308 1314 1317 1315 1314 1314 1323 1328 1317 1323 1317 1332 1330 1328 1330 1327 1327 1329 1330 1337 1335 1339 1336 1346 1338 1334 1341 1350 1347 1348 1347 1351 1352 1359 1354 1356 1354 1352 1352 1359 1361 1366 1358 1358 1365 1365 1377
q 49031 49109 49177 49261 49363 49429 49523 49603 49681 49757 49831 49927 50021 50087 50147 50261 50333 50417 50527 50593 50707 50821 50893 50989 51071 51193 51257 51347 51427 51481 51551 51631 51713 51803 51871 51971 52057 52153 52237 52313 52433 52529 52583 52697 52769 52879 52957 53047
tL 2 1314 1308 1309 1310 1318 1311 1313 1315 1322 1318 1321 1324 1328 1326 1330 1330 1333 1322 1326 1329 1336 1339 1334 1337 1339 1347 1343 1341 1341 1339 1347 1349 1357 1347 1350 1349 1354 1359 1361 1363 1357 1364 1365 1361 1357 1369 1371 1370
q 49033 49117 49193 49277 49367 49433 49529 49613 49697 49783 49843 49937 50023 50093 50153 50263 50341 50423 50539 50599 50723 50833 50909 50993 51109 51197 51263 51349 51431 51487 51563 51637 51719 51817 51893 51973 52067 52163 52249 52321 52441 52541 52609 52709 52783 52883 52963 53051
tL 2 1316 1311 1318 1313 1315 1323 1315 1317 1321 1325 1315 1320 1324 1328 1327 1331 1333 1336 1330 1341 1335 1342 1343 1341 1342 1339 1343 1344 1347 1346 1347 1351 1357 1357 1357 1363 1355 1347 1357 1366 1360 1366 1362 1364 1366 1377 1367 1372
q 49037 49121 49199 49279 49369 49451 49531 49627 49711 49787 49853 49939 50033 50101 50159 50273 50359 50441 50543 50627 50741 50839 50923 51001 51131 51199 51283 51361 51437 51503 51577 51647 51721 51827 51899 51977 52069 52177 52253 52361 52453 52543 52627 52711 52807 52889 52967 53069
tL 2 1314 1308 1317 1310 1322 1315 1322 1323 1330 1327 1322 1318 1332 1321 1325 1325 1328 1332 1325 1331 1336 1340 1343 1339 1335 1345 1343 1346 1346 1352 1345 1348 1349 1348 1362 1354 1363 1360 1360 1357 1370 1364 1359 1357 1365 1371 1363 1365
45
q 49043 49123 49201 49297 49391 49459 49537 49633 49727 49789 49871 49943 50047 50111 50177 50287 50363 50459 50549 50647 50753 50849 50929 51031 51133 51203 51287 51383 51439 51511 51581 51659 51749 51829 51907 51991 52081 52181 52259 52363 52457 52553 52631 52721 52813 52901 52973 53077
tL 2 1314 1310 1317 1312 1322 1323 1313 1313 1320 1323 1321 1331 1327 1327 1325 1334 1335 1327 1337 1339 1342 1345 1338 1340 1342 1345 1342 1352 1348 1339 1345 1351 1353 1352 1364 1357 1356 1361 1352 1364 1358 1357 1360 1364 1370 1369 1362 1366
q 49057 49139 49207 49307 49393 49463 49547 49639 49729 49801 49877 49957 50051 50119 50207 50291 50377 50461 50551 50651 50767 50857 50951 51043 51137 51217 51307 51407 51449 51517 51593 51673 51767 51839 51913 52009 52103 52183 52267 52369 52489 52561 52639 52727 52817 52903 52981 53087
tL 2 1312 1310 1309 1314 1330 1312 1319 1326 1316 1331 1325 1320 1320 1325 1337 1336 1330 1335 1336 1338 1329 1345 1343 1331 1343 1338 1343 1347 1344 1351 1344 1346 1348 1353 1361 1357 1358 1350 1359 1361 1361 1362 1366 1361 1371 1368 1373 1372
q 49069 49157 49211 49331 49409 49477 49549 49663 49739 49807 49891 49991 50053 50123 50221 50311 50383 50497 50581 50653 50773 50867 50957 51047 51151 51229 51329 51413 51461 51521 51599 51679 51769 51853 51929 52021 52121 52189 52289 52379 52501 52567 52667 52733 52837 52919 52999 53089
tL 2 1313 1322 1311 1316 1320 1320 1310 1320 1319 1327 1316 1326 1325 1327 1325 1336 1331 1333 1332 1333 1338 1336 1345 1345 1346 1343 1344 1342 1345 1349 1345 1344 1355 1355 1357 1361 1351 1357 1361 1360 1359 1354 1358 1370 1374 1374 1370 1371
q 49081 49169 49223 49333 49411 49481 49559 49667 49741 49811 49919 49993 50069 50129 50227 50321 50387 50503 50587 50671 50777 50873 50969 51059 51157 51239 51341 51419 51473 51529 51607 51683 51787 51859 51941 52027 52127 52201 52291 52387 52511 52571 52673 52747 52859 52937 53003 53093
tL 2 1310 1310 1311 1317 1316 1325 1320 1323 1322 1326 1322 1325 1327 1332 1326 1335 1332 1329 1328 1327 1333 1342 1341 1348 1337 1342 1344 1343 1353 1341 1353 1347 1346 1354 1355 1345 1354 1354 1360 1357 1364 1371 1375 1372 1365 1366 1364 1369
Table 4. Continue 11 q 53101 53173 53269 53359 53441 53569 53629 53717 53813 53891 53959 54059 54163 54287 54361 54419 54499 54563 54631 54727 54833 54941 55021 55109 55213 55313 55381 55501 55609 55667 55733 55819 55897 55967 56081 56149 56239 56359 56437 56501 56569 56663 56737 56813 56897 56957 57047 57121
tL 2 1370 1368 1368 1378 1376 1375 1378 1379 1378 1380 1378 1386 1388 1380 1386 1387 1394 1394 1390 1391 1400 1398 1391 1399 1395 1399 1401 1407 1409 1403 1407 1410 1414 1408 1414 1414 1413 1411 1417 1422 1418 1426 1418 1420 1426 1415 1424 1424
q 53113 53189 53279 53377 53453 53591 53633 53719 53819 53897 53987 54083 54167 54289 54367 54421 54503 54577 54647 54751 54851 54949 55049 55117 55217 55331 55399 55511 55619 55673 55763 55823 55901 55987 56087 56167 56249 56369 56443 56503 56591 56671 56747 56821 56909 56963 57059 57131
tL 2 1368 1373 1377 1375 1379 1375 1388 1387 1379 1375 1381 1378 1378 1385 1386 1389 1385 1390 1387 1395 1391 1399 1394 1401 1396 1406 1403 1402 1414 1417 1407 1404 1410 1409 1412 1409 1415 1417 1420 1418 1414 1417 1423 1422 1421 1432 1420 1424
q 53117 53197 53281 53381 53479 53593 53639 53731 53831 53899 53993 54091 54181 54293 54371 54437 54517 54581 54667 54767 54869 54959 55051 55127 55219 55333 55411 55529 55621 55681 55787 55829 55903 55997 56093 56171 56263 56377 56453 56509 56597 56681 56767 56827 56911 56983 57073 57139
tL 2 1376 1369 1377 1377 1380 1380 1372 1385 1377 1386 1380 1379 1385 1386 1382 1384 1390 1392 1393 1389 1399 1389 1393 1396 1399 1399 1399 1408 1402 1408 1410 1409 1411 1405 1416 1409 1413 1417 1414 1406 1417 1421 1422 1428 1425 1425 1429 1430
q 53129 53201 53299 53401 53503 53597 53653 53759 53849 53917 54001 54101 54193 54311 54377 54443 54521 54583 54673 54773 54877 54973 55057 55147 55229 55337 55439 55541 55631 55691 55793 55837 55921 56003 56099 56179 56267 56383 56467 56519 56599 56687 56773 56843 56921 56989 57077 57143
tL 2 1378 1367 1368 1371 1371 1376 1376 1377 1382 1377 1381 1382 1377 1389 1392 1390 1399 1385 1391 1395 1393 1390 1404 1407 1401 1394 1410 1399 1412 1410 1406 1415 1407 1412 1405 1419 1418 1421 1411 1413 1420 1422 1415 1421 1417 1419 1420 1430
46
q 53147 53231 53309 53407 53507 53609 53657 53773 53857 53923 54011 54121 54217 54319 54401 54449 54539 54601 54679 54779 54881 54979 55061 55163 55243 55339 55441 55547 55633 55697 55799 55843 55927 56009 56101 56197 56269 56393 56473 56527 56611 56701 56779 56857 56923 56993 57089 57149
tL 2 1367 1375 1366 1371 1369 1365 1375 1376 1382 1383 1385 1390 1388 1388 1380 1392 1386 1397 1396 1404 1394 1399 1395 1388 1406 1396 1402 1395 1412 1404 1411 1412 1409 1409 1413 1415 1407 1411 1421 1416 1425 1417 1416 1425 1417 1430 1424 1425
q 53149 53233 53323 53411 53527 53611 53681 53777 53861 53927 54013 54133 54251 54323 54403 54469 54541 54617 54709 54787 54907 54983 55073 55171 55249 55343 55457 55579 55639 55711 55807 55849 55931 56039 56113 56207 56299 56401 56477 56531 56629 56711 56783 56873 56929 56999 57097 57163
tL 2 1373 1377 1373 1379 1377 1368 1377 1378 1379 1373 1382 1381 1381 1388 1391 1391 1389 1389 1396 1394 1394 1390 1402 1389 1406 1395 1404 1405 1404 1408 1409 1407 1406 1411 1416 1418 1414 1415 1418 1415 1417 1416 1423 1426 1426 1424 1422 1429
q 53161 53239 53327 53419 53549 53617 53693 53783 53881 53939 54037 54139 54269 54331 54409 54493 54547 54623 54713 54799 54917 55001 55079 55201 55259 55351 55469 55589 55661 55717 55813 55871 55933 56041 56123 56209 56311 56417 56479 56533 56633 56713 56807 56891 56941 57037 57107 57173
tL 2 1370 1364 1377 1376 1382 1382 1379 1380 1383 1381 1384 1380 1387 1389 1387 1396 1389 1390 1393 1393 1394 1403 1394 1408 1399 1390 1404 1405 1416 1407 1407 1407 1406 1412 1412 1406 1412 1415 1417 1414 1414 1414 1425 1421 1421 1430 1428 1425
q 53171 53267 53353 53437 53551 53623 53699 53791 53887 53951 54049 54151 54277 54347 54413 54497 54559 54629 54721 54829 54919 55009 55103 55207 55291 55373 55487 55603 55663 55721 55817 55889 55949 56053 56131 56237 56333 56431 56489 56543 56659 56731 56809 56893 56951 57041 57119 57179
tL 2 1368 1369 1377 1367 1376 1372 1387 1383 1376 1384 1383 1387 1383 1377 1392 1390 1387 1397 1387 1384 1391 1398 1391 1399 1402 1397 1397 1406 1405 1406 1407 1409 1407 1403 1409 1410 1414 1417 1419 1417 1427 1422 1423 1419 1422 1419 1426 1424
Table 4. Continue 12 q 57191 57269 57349 57457 57559 57653 57727 57793 57881 57977 58061 58147 58207 58309 58391 58451 58567 58661 58741 58897 58963 59023 59083 59159 59233 59351 59407 59471 59567 59659 59729 59809 59957 60041 60127 60217 60317 60413 60521 60623 60689 60763 60887 60937 61043 61151 61283 61363
tL 2 1435 1428 1430 1431 1428 1434 1434 1428 1441 1441 1430 1443 1446 1445 1444 1442 1445 1444 1441 1451 1450 1452 1460 1456 1461 1464 1455 1462 1455 1453 1469 1468 1465 1466 1464 1463 1471 1468 1471 1485 1474 1477 1475 1476 1479 1478 1479 1476
q 57193 57271 57367 57467 57571 57667 57731 57803 57899 57991 58067 58151 58211 58313 58393 58453 58573 58679 58757 58901 58967 59029 59093 59167 59239 59357 59417 59473 59581 59663 59743 59833 59971 60077 60133 60223 60331 60427 60527 60631 60703 60773 60889 60943 61051 61153 61291 61379
tL 2 1426 1424 1426 1426 1438 1435 1434 1442 1440 1437 1447 1437 1442 1438 1447 1435 1438 1448 1450 1445 1455 1448 1457 1449 1457 1460 1457 1465 1453 1465 1454 1465 1466 1463 1471 1477 1473 1467 1467 1468 1473 1470 1476 1472 1480 1481 1491 1484
q 57203 57283 57373 57487 57587 57679 57737 57809 57901 58013 58073 58153 58217 58321 58403 58477 58579 58687 58763 58907 58979 59049 59107 59183 59243 59359 59419 59497 59611 59669 59747 59863 59981 60083 60139 60251 60337 60443 60539 60637 60719 60779 60899 60953 61057 61169 61297 61381
tL 2 1438 1426 1420 1429 1430 1430 1437 1437 1447 1433 1438 1434 1451 1445 1441 1443 1446 1440 1449 1445 1456 1448 1454 1447 1463 1453 1463 1448 1464 1460 1470 1466 1462 1469 1464 1467 1469 1466 1470 1468 1476 1471 1468 1485 1473 1483 1473 1484
q 57221 57287 57383 57493 57593 57689 57751 57829 57917 58027 58081 58169 58229 58337 58411 58481 58601 58693 58771 58909 58991 59051 59113 59197 59263 59369 59441 59509 59617 59671 59753 59879 59999 60089 60149 60257 60343 60449 60589 60647 60727 60793 60901 60961 61091 61211 61331 61403
tL 2 1420 1425 1426 1434 1435 1427 1430 1434 1432 1438 1447 1440 1440 1437 1442 1441 1439 1441 1452 1450 1452 1454 1457 1459 1454 1464 1459 1464 1461 1461 1465 1462 1463 1468 1463 1464 1463 1480 1467 1476 1474 1473 1479 1483 1469 1488 1481 1486
q 57223 57301 57389 57503 57601 57697 57773 57839 57923 58031 58099 58171 58231 58363 58417 58511 58603 58699 58787 58913 58997 59053 59119 59207 59273 59377 59443 59513 59621 59693 59771 59887 60013 60091 60161 60259 60353 60457 60601 60649 60733 60811 60913 61001 61099 61223 61333 61409
47
tL 2 1440 1418 1432 1427 1432 1429 1438 1430 1441 1438 1438 1441 1443 1436 1443 1445 1446 1441 1453 1445 1460 1445 1452 1447 1455 1450 1455 1464 1463 1458 1473 1468 1470 1462 1465 1458 1471 1472 1477 1474 1475 1470 1478 1475 1480 1477 1479 1484
q 57241 57329 57397 57527 57637 57709 57781 57847 57943 58043 58109 58189 58237 58367 58427 58537 58613 58711 58789 58921 59009 59063 59123 59209 59281 59387 59447 59539 59627 59699 59779 59921 60017 60101 60167 60271 60373 60493 60607 60659 60737 60821 60917 61007 61121 61231 61339 61417
tL 2 1422 1432 1426 1428 1433 1430 1436 1434 1439 1434 1442 1439 1439 1442 1440 1443 1441 1449 1448 1454 1448 1453 1454 1452 1457 1454 1448 1461 1461 1463 1458 1468 1468 1466 1462 1466 1465 1466 1474 1470 1472 1476 1482 1472 1479 1482 1483 1476
q 57251 57331 57413 57529 57641 57713 57787 57853 57947 58049 58111 58193 58243 58369 58439 58543 58631 58727 58831 58937 59011 59069 59141 59219 59333 59393 59453 59557 59629 59707 59791 59929 60029 60103 60169 60289 60383 60497 60611 60661 60757 60859 60919 61027 61129 61253 61343 61441
tL 2 1420 1431 1432 1427 1433 1430 1431 1428 1443 1443 1449 1443 1444 1437 1442 1448 1442 1444 1446 1455 1456 1448 1446 1459 1453 1456 1454 1459 1468 1459 1458 1465 1457 1473 1463 1466 1466 1479 1479 1470 1482 1483 1486 1475 1483 1482 1481 1481
q 57259 57347 57427 57557 57649 57719 57791 57859 57973 58057 58129 58199 58271 58379 58441 58549 58657 58733 58889 58943 59021 59077 59149 59221 59341 59399 59467 59561 59651 59723 59797 59951 60037 60107 60209 60293 60397 60509 60617 60679 60761 60869 60923 61031 61141 61261 61357 61463
tL 2 1427 1429 1426 1434 1433 1439 1428 1433 1437 1435 1434 1443 1445 1445 1443 1445 1446 1442 1461 1452 1454 1456 1448 1457 1460 1451 1463 1468 1466 1466 1460 1470 1463 1468 1466 1471 1472 1471 1472 1472 1473 1475 1471 1478 1479 1483 1488 1488
Table 4. Continue 13 q 61469 61543 61613 61673 61757 61879 61981 62053 62137 62213 62323 62459 62533 62617 62701 62801 62903 62983 63073 63179 63299 63361 63421 63499 63589 63649 63709 63793 63857 63997 64081 64187 64283 64399 64499 64609 64679 64793 64891 64997 65071 65141 65213 65323 65413 65519 65563 65633
tL 2 1487 1481 1489 1483 1493 1485 1491 1491 1487 1485 1491 1495 1499 1496 1502 1505 1510 1507 1501 1510 1505 1516 1512 1504 1506 1515 1506 1514 1512 1516 1509 1526 1521 1517 1518 1529 1527 1524 1529 1534 1526 1542 1531 1530 1534 1530 1545 1550
q 61471 61547 61627 61681 61781 61909 61987 62057 62141 62219 62327 62467 62539 62627 62723 62819 62921 62987 63079 63197 63311 63367 63439 63521 63599 63659 63719 63799 63863 64007 64091 64189 64301 64403 64513 64613 64693 64811 64901 65003 65089 65147 65239 65327 65419 65521 65579 65647
tL 2 1482 1490 1487 1490 1487 1497 1489 1490 1496 1496 1490 1490 1496 1498 1505 1503 1505 1505 1505 1513 1512 1509 1515 1508 1516 1517 1515 1508 1521 1512 1517 1522 1527 1521 1520 1521 1519 1525 1529 1531 1528 1533 1529 1529 1539 1532 1541 1541
q 61483 61553 61631 61687 61813 61927 61991 62071 62143 62233 62347 62473 62549 62633 62731 62827 62927 62989 63097 63199 63313 63377 63443 63527 63601 63667 63727 63803 63901 64013 64109 64217 64303 64433 64553 64621 64709 64817 64919 65011 65099 65167 65257 65353 65423 65536 65581 65651
tL 2 1489 1481 1490 1487 1486 1495 1484 1489 1491 1497 1497 1498 1492 1507 1494 1503 1507 1496 1501 1502 1504 1505 1509 1514 1508 1514 1515 1513 1518 1510 1516 1518 1525 1524 1528 1526 1525 1536 1533 1529 1534 1529 1529 1535 1533 1531 1531 1554
q 61487 61559 61637 61703 61819 61933 62003 62081 62171 62273 62351 62477 62563 62639 62743 62851 62929 63001 63103 63211 63317 63389 63463 63533 63607 63671 63737 63809 63907 64019 64123 64223 64319 64439 64567 64627 64717 64849 64921 65027 65101 65171 65267 65357 65437 65537 65587 65657
tL 2 1488 1478 1485 1491 1491 1488 1490 1489 1485 1491 1495 1491 1491 1495 1502 1505 1504 1504 1512 1508 1506 1508 1512 1509 1517 1512 1518 1510 1522 1510 1521 1516 1517 1518 1519 1522 1525 1526 1529 1531 1531 1530 1531 1530 1536 1533 1543 1530
q 61493 61561 61643 61717 61837 61949 62011 62099 62189 62297 62383 62483 62581 62653 62753 62861 62939 63029 63113 63241 63331 63391 63467 63541 63611 63689 63743 63823 63913 64033 64151 64231 64327 64451 64577 64633 64747 64853 64927 65029 65111 65173 65269 65371 65447 65539 65599 65677
48
tL 2 1484 1484 1488 1479 1489 1484 1491 1492 1500 1494 1499 1493 1496 1498 1496 1504 1495 1502 1502 1515 1515 1513 1514 1507 1518 1511 1512 1516 1520 1514 1513 1523 1526 1527 1532 1531 1518 1523 1537 1539 1532 1534 1525 1532 1538 1538 1545 1538
q 61507 61583 61651 61723 61843 61961 62017 62119 62191 62299 62401 62497 62591 62659 62761 62869 62969 63031 63127 63247 63337 63397 63473 63559 63617 63691 63761 63839 63929 64037 64153 64237 64333 64453 64579 64661 64763 64871 64937 65033 65119 65179 65287 65381 65449 65543 65609 65687
tL 2 1481 1484 1483 1486 1492 1487 1500 1490 1498 1495 1501 1499 1496 1499 1498 1503 1511 1510 1505 1498 1510 1500 1512 1515 1521 1509 1521 1511 1512 1520 1517 1523 1529 1512 1528 1521 1528 1531 1525 1527 1525 1531 1542 1526 1538 1534 1547 1535
q 61511 61603 61657 61729 61861 61967 62039 62129 62201 62303 62417 62501 62597 62683 62773 62873 62971 63059 63131 63277 63347 63409 63487 63577 63629 63697 63773 63841 63949 64063 64157 64271 64373 64483 64591 64663 64781 64877 64951 65053 65123 65183 65293 65393 65479 65551 65617 65699
tL 2 1485 1483 1482 1488 1487 1485 1494 1491 1496 1494 1498 1497 1495 1498 1503 1506 1506 1511 1499 1508 1508 1510 1508 1511 1513 1516 1519 1517 1517 1512 1522 1517 1519 1526 1541 1532 1525 1536 1531 1523 1527 1535 1534 1538 1533 1537 1536 1539
q 61519 61609 61667 61751 61871 61979 62047 62131 62207 62311 62423 62507 62603 62687 62791 62897 62981 63067 63149 63281 63353 63419 63493 63587 63647 63703 63781 63853 63977 64067 64171 64279 64381 64489 64601 64667 64783 64879 64969 65063 65129 65203 65309 65407 65497 65557 65629 65701
tL 2 1483 1488 1489 1496 1486 1500 1489 1486 1489 1500 1493 1499 1493 1506 1503 1503 1507 1502 1507 1498 1519 1512 1506 1509 1507 1514 1522 1517 1519 1519 1518 1518 1522 1527 1531 1526 1522 1528 1526 1532 1539 1541 1539 1534 1537 1538 1541 1539
Table 4. Continue 14 q 65707 65789 65867 65963 66049 66137 66271 66373 66463 66541 66629 66733 66821 66919 66977 67073 67157 67219 67339 67421 67489 67559 67631 67751 67807 67901 67967 68071 68171 68279 68437 68491 68581 68687 68767 68879 68921 69029 69143 69203 69313 69401 69473 69593 69737 69827 69911 70003
tL 2 1535 1541 1540 1542 1542 1549 1540 1542 1547 1550 1552 1552 1557 1543 1563 1555 1554 1566 1558 1566 1568 1572 1559 1565 1566 1566 1568 1567 1577 1572 1574 1578 1577 1578 1579 1580 1579 1587 1581 1582 1589 1594 1594 1586 1590 1596 1589 1592
q 65713 65809 65881 65981 66067 66161 66293 66377 66467 66553 66643 66739 66841 66923 67003 67079 67169 67231 67343 67427 67493 67567 67651 67757 67819 67927 67979 68087 68207 68281 68443 68501 68597 68699 68771 68881 68927 69031 69149 69221 69317 69403 69481 69623 69739 69829 69929 70009
tL 2 1538 1536 1543 1546 1552 1538 1558 1542 1544 1554 1552 1556 1553 1563 1548 1563 1557 1564 1570 1560 1559 1558 1560 1561 1564 1566 1563 1577 1566 1571 1575 1573 1575 1575 1577 1576 1585 1585 1580 1580 1581 1589 1594 1591 1587 1586 1590 1590
q 65717 65827 65899 65983 66071 66169 66301 66383 66491 66569 66653 66749 66851 66931 67021 67103 67181 67247 67349 67429 67499 67577 67679 67759 67829 67931 67987 68099 68209 68311 68447 68507 68611 68711 68777 68891 68947 69061 69151 69233 69337 69427 69491 69653 69761 69833 69931 70019
tL 2 1545 1531 1547 1544 1545 1542 1548 1545 1542 1550 1549 1549 1542 1557 1559 1555 1557 1556 1562 1568 1563 1574 1564 1558 1563 1562 1575 1567 1568 1564 1578 1574 1578 1574 1573 1583 1583 1580 1583 1583 1583 1588 1584 1586 1592 1588 1590 1591
q 65719 65831 65921 65993 66083 66173 66337 66403 66499 66571 66683 66751 66853 66943 67033 67121 67187 67261 67369 67433 67511 67579 67699 67763 67843 67933 67993 68111 68213 68329 68449 68521 68633 68713 68791 68897 68963 69067 69163 69239 69341 69431 69493 69661 69763 69847 69941 70039
tL 2 1541 1544 1541 1542 1545 1549 1540 1551 1544 1555 1552 1546 1551 1555 1552 1554 1556 1557 1562 1564 1560 1562 1566 1561 1568 1563 1571 1564 1570 1570 1567 1579 1581 1581 1575 1581 1583 1585 1584 1592 1588 1595 1585 1591 1592 1592 1589 1603
49
q 65729 65837 65927 66029 66089 66179 66343 66413 66509 66587 66697 66763 66863 66947 67043 67129 67189 67271 67391 67447 67523 67589 67709 67777 67853 67939 68023 68113 68219 68351 68473 68531 68639 68729 68813 68899 68993 69073 69169 69247 69371 69439 69497 69677 69767 69857 69959 70051
tL 2 1536 1537 1537 1543 1535 1543 1544 1555 1548 1545 1555 1562 1560 1561 1559 1557 1559 1557 1565 1561 1570 1569 1564 1568 1570 1567 1565 1564 1566 1572 1569 1577 1583 1580 1580 1573 1577 1581 1575 1589 1584 1582 1590 1580 1594 1587 1583 1596
q 65731 65839 65929 66037 66103 66191 66347 66431 66523 66593 66701 66791 66877 66949 67049 67139 67211 67273 67399 67453 67531 67601 67723 67783 67867 67943 68041 68141 68227 68371 68477 68539 68659 68737 68819 68903 69001 69109 69191 69257 69379 69457 69499 69691 69779 69859 69991 70061
tL 2 1538 1544 1536 1542 1536 1548 1546 1539 1550 1543 1545 1555 1564 1549 1559 1554 1554 1557 1566 1563 1566 1568 1564 1573 1569 1571 1570 1573 1572 1577 1572 1574 1574 1571 1578 1577 1586 1581 1587 1585 1582 1580 1587 1591 1589 1593 1598 1594
q 65761 65843 65951 66041 66107 66221 66359 66449 66529 66601 66713 66797 66883 66959 67057 67141 67213 67289 67409 67477 67537 67607 67733 67789 67883 67957 68053 68147 68239 68389 68483 68543 68669 68743 68821 68909 69011 69119 69193 69259 69383 69463 69539 69697 69809 69877 69997 70067
tL 2 1552 1550 1538 1537 1544 1551 1549 1547 1553 1552 1550 1551 1559 1557 1559 1559 1554 1560 1567 1557 1561 1565 1567 1560 1565 1568 1571 1571 1574 1575 1580 1575 1574 1574 1576 1581 1581 1577 1583 1578 1580 1583 1589 1596 1588 1595 1595 1590
q 65777 65851 65957 66047 66109 66239 66361 66457 66533 66617 66721 66809 66889 66973 67061 67153 67217 67307 67411 67481 67547 67619 67741 67801 67891 67961 68059 68161 68261 68399 68489 68567 68683 68749 68863 68917 69019 69127 69197 69263 69389 69467 69557 69709 69821 69899 70001 70079
tL 2 1534 1538 1540 1539 1551 1542 1548 1543 1555 1548 1547 1559 1551 1552 1552 1554 1552 1564 1559 1568 1563 1559 1561 1569 1572 1567 1571 1578 1566 1573 1575 1574 1576 1578 1574 1581 1584 1581 1578 1590 1593 1590 1592 1586 1586 1591 1599 1594
Table 4. Continue 15 q 70099 70163 70229 70313 70423 70489 70583 70663 70783 70877 70949 70999 71119 71191 71287 71347 71413 71479 71569 71699 71789 71867 71941 72019 72091 72173 72269 72353 72467 72551 72649 72719 72823 72907 72973 73043 73141 73303 73379 73471 73561 73637 73709 73823 73907 74021 74101 74189
tL 2 1595 1597 1588 1595 1605 1598 1601 1596 1606 1607 1598 1607 1608 1605 1611 1608 1608 1615 1612 1617 1615 1619 1617 1624 1623 1615 1632 1624 1625 1624 1623 1622 1621 1625 1637 1635 1634 1630 1634 1640 1634 1639 1632 1636 1636 1639 1647 1649
q 70111 70177 70237 70321 70429 70501 70589 70667 70793 70879 70951 71011 71129 71209 71293 71353 71419 71483 71593 71707 71807 71879 71947 72031 72101 72211 72271 72361 72469 72559 72661 72727 72859 72911 72977 73061 73181 73309 73387 73477 73571 73643 73721 73847 73939 74027 74131 74197
tL 2 1586 1586 1601 1599 1600 1598 1591 1599 1601 1599 1606 1604 1606 1607 1605 1603 1612 1608 1613 1609 1621 1616 1618 1613 1629 1625 1617 1627 1623 1628 1622 1614 1635 1632 1638 1629 1635 1629 1633 1639 1637 1636 1634 1639 1637 1638 1645 1650
q 70117 70181 70241 70327 70439 70507 70607 70687 70823 70891 70957 71023 71143 71233 71317 71359 71429 71503 71597 71711 71809 71881 71963 72043 72103 72221 72277 72367 72481 72577 72671 72733 72869 72923 72997 73063 73189 73327 73417 73483 73583 73651 73727 73849 73943 74047 74143 74201
tL 2 1596 1591 1596 1593 1599 1604 1599 1599 1596 1609 1610 1603 1604 1611 1609 1603 1614 1611 1611 1619 1626 1619 1619 1614 1622 1622 1622 1627 1622 1625 1627 1622 1640 1634 1631 1636 1638 1647 1636 1642 1635 1635 1643 1647 1647 1635 1646 1647
q 70121 70183 70249 70351 70451 70529 70619 70709 70841 70901 70969 71039 71147 71237 71327 71363 71437 71527 71633 71713 71821 71887 71971 72047 72109 72223 72287 72379 72493 72613 72673 72739 72871 72931 73009 73079 73237 73331 73421 73517 73589 73673 73751 73859 73951 74051 74149 74203
tL 2 1595 1607 1597 1607 1582 1600 1601 1594 1603 1606 1596 1603 1608 1613 1610 1611 1619 1610 1615 1615 1619 1622 1623 1620 1608 1620 1619 1625 1624 1627 1630 1629 1625 1639 1624 1631 1628 1625 1645 1637 1634 1635 1638 1635 1650 1643 1636 1645
50
q 70123 70199 70271 70373 70457 70537 70621 70717 70843 70913 70979 71059 71153 71249 71329 71387 71443 71537 71647 71719 71837 71899 71983 72053 72139 72227 72307 72383 72497 72617 72679 72763 72883 72937 73013 73091 73243 73351 73433 73523 73597 73679 73757 73867 73961 74071 74159 74209
tL 2 1599 1595 1601 1593 1601 1595 1593 1613 1602 1608 1607 1602 1601 1607 1607 1607 1625 1616 1615 1622 1622 1617 1619 1624 1619 1616 1617 1621 1628 1629 1625 1632 1633 1626 1631 1621 1631 1634 1627 1646 1639 1639 1636 1646 1638 1649 1644 1643
q 70139 70201 70289 70379 70459 70549 70627 70729 70849 70919 70981 71069 71161 71257 71333 71389 71453 71549 71663 71741 71843 71909 71987 72073 72161 72229 72313 72421 72503 72623 72689 72767 72889 72949 73019 73121 73259 73361 73441 73529 73607 73681 73771 73877 73973 74077 74161 74219
tL 2 1591 1589 1596 1601 1598 1604 1597 1594 1605 1603 1599 1607 1607 1608 1611 1613 1608 1608 1615 1607 1608 1617 1621 1620 1613 1622 1612 1615 1620 1622 1625 1625 1633 1624 1636 1632 1626 1634 1637 1636 1640 1649 1642 1641 1636 1639 1640 1647
q 70141 70207 70297 70381 70481 70571 70639 70753 70853 70921 70991 71081 71167 71261 71339 71399 71471 71551 71671 71761 71849 71917 71993 72077 72167 72251 72337 72431 72533 72643 72701 72797 72893 72953 73037 73127 73277 73363 73453 73547 73609 73693 73783 73883 73999 74093 74167 74231
tL 2 1598 1589 1595 1601 1602 1596 1598 1594 1607 1608 1603 1614 1615 1607 1616 1604 1600 1623 1617 1607 1616 1614 1619 1610 1618 1623 1629 1624 1620 1631 1633 1626 1627 1630 1626 1628 1639 1639 1634 1634 1629 1643 1637 1642 1647 1643 1644 1643
q 70157 70223 70309 70393 70487 70573 70657 70769 70867 70937 70997 71089 71171 71263 71341 71411 71473 71563 71693 71777 71861 71933 71999 72089 72169 72253 72341 72461 72547 72647 72707 72817 72901 72959 73039 73133 73291 73369 73459 73553 73613 73699 73819 73897 74017 74099 74177 74257
tL 2 1588 1596 1597 1599 1599 1602 1603 1607 1604 1603 1607 1608 1611 1610 1610 1606 1614 1612 1616 1612 1614 1617 1623 1618 1620 1617 1622 1625 1618 1629 1628 1627 1638 1630 1625 1631 1636 1637 1638 1631 1637 1643 1637 1640 1649 1645 1646 1640
Table 4. Continue 16 q 74279 74357 74441 74527 74609 74717 74779 74869 74933 75041 75169 75239 75337 75403 75527 75583 75679 75743 75833 75967 76031 76129 76243 76333 76423 76511 76603 76697 76781 76873 76963 77069 77171 77261 77339 77419 77509 77563 77641 77713 77783 77893 77999 78101 78173 78259 78347 78487
tL 2 1648 1645 1656 1642 1645 1650 1654 1655 1659 1655 1653 1661 1653 1659 1651 1663 1665 1660 1667 1668 1661 1672 1671 1676 1671 1667 1675 1681 1681 1672 1680 1687 1673 1690 1681 1682 1687 1679 1689 1677 1684 1692 1692 1687 1692 1698 1688 1695
q 74287 74363 74449 74531 74611 74719 74797 74873 74941 75079 75181 75253 75347 75407 75533 75611 75683 75767 75853 75979 76039 76147 76249 76343 76441 76519 76607 76717 76801 76883 76991 77081 77191 77263 77347 77431 77513 77569 77647 77719 77797 77899 78007 78121 78179 78277 78367 78497
tL 2 1652 1648 1643 1649 1652 1646 1645 1654 1646 1654 1652 1654 1658 1666 1659 1657 1668 1662 1663 1662 1670 1674 1678 1665 1669 1674 1662 1668 1679 1673 1668 1685 1672 1686 1681 1678 1682 1688 1688 1683 1684 1682 1691 1690 1694 1698 1695 1695
q 74293 74377 74453 74551 74623 74729 74821 74887 74959 75083 75193 75269 75353 75431 75539 75617 75689 75773 75869 75983 76079 76157 76253 76367 76463 76537 76631 76729 76819 76907 77003 77093 77201 77267 77351 77447 77521 77573 77659 77723 77801 77929 78017 78125 78191 78283 78401 78509
tL 2 1648 1648 1648 1642 1652 1646 1649 1655 1658 1654 1654 1659 1658 1662 1664 1659 1659 1668 1663 1667 1669 1669 1665 1662 1682 1680 1679 1680 1672 1678 1676 1678 1677 1679 1681 1686 1684 1682 1683 1683 1686 1689 1690 1684 1697 1692 1700 1699
q 74297 74381 74471 74561 74653 74731 74827 74891 75011 75109 75209 75277 75367 75437 75541 75619 75703 75781 75883 75989 76081 76159 76259 76369 76471 76541 76649 76733 76829 76913 77017 77101 77213 77269 77359 77471 77527 77587 77681 77731 77813 77933 78031 78137 78193 78301 78427 78511
tL 2 1639 1650 1648 1653 1654 1657 1658 1646 1649 1657 1655 1663 1657 1657 1662 1662 1674 1664 1678 1673 1668 1665 1672 1677 1670 1673 1685 1675 1678 1687 1684 1679 1680 1673 1687 1684 1685 1685 1694 1683 1689 1686 1689 1689 1687 1702 1697 1699
51
q 74311 74383 74489 74567 74687 74747 74831 74897 75013 75133 75211 75289 75377 75479 75553 75629 75707 75787 75913 75991 76091 76163 76261 76379 76481 76543 76651 76753 76831 76919 77023 77137 77237 77279 77369 77477 77543 77591 77687 77743 77839 77951 78041 78139 78203 78307 78437 78517
tL 2 1646 1648 1653 1651 1650 1648 1659 1657 1655 1656 1662 1657 1662 1658 1649 1655 1670 1667 1664 1674 1663 1670 1666 1676 1669 1668 1671 1675 1684 1674 1677 1677 1679 1682 1686 1689 1692 1685 1692 1688 1679 1682 1693 1694 1691 1697 1693 1690
q 74317 74411 74507 74573 74699 74759 74843 74903 75017 75149 75217 75307 75389 75503 75557 75641 75709 75793 75931 75997 76099 76207 76283 76387 76487 76561 76667 76757 76837 76943 77029 77141 77239 77291 77377 77479 77549 77611 77689 77747 77849 77969 78049 78157 78229 78311 78439 78539
tL 2 1648 1648 1646 1644 1647 1651 1648 1650 1654 1648 1662 1663 1653 1656 1660 1659 1662 1654 1665 1668 1666 1668 1667 1673 1679 1670 1673 1669 1683 1677 1681 1683 1681 1691 1687 1681 1686 1681 1677 1689 1685 1691 1685 1698 1693 1693 1702 1691
q 74323 74413 74509 74587 74707 74761 74857 74923 75029 75161 75223 75323 75391 75511 75571 75653 75721 75797 75937 76001 76103 76213 76289 76403 76493 76579 76673 76771 76847 76949 77041 77153 77243 77317 77383 77489 77551 77617 77699 77761 77863 77977 78059 78163 78233 78317 78467 78541
tL 2 1648 1644 1641 1652 1656 1654 1656 1649 1651 1655 1656 1660 1657 1665 1662 1663 1660 1663 1660 1671 1670 1668 1664 1675 1674 1675 1668 1675 1675 1675 1684 1682 1678 1674 1686 1684 1687 1687 1685 1690 1698 1688 1694 1690 1691 1696 1696 1697
q 74353 74419 74521 74597 74713 74771 74861 74929 75037 75167 75227 75329 75401 75521 75577 75659 75731 75821 75941 76003 76123 76231 76303 76421 76507 76597 76679 76777 76871 76961 77047 77167 77249 77323 77417 77491 77557 77621 77711 77773 77867 77983 78079 78167 78241 78341 78479 78553
tL 2 1642 1646 1639 1652 1646 1647 1657 1652 1655 1655 1664 1659 1653 1657 1671 1660 1669 1659 1666 1663 1669 1665 1667 1674 1665 1666 1677 1674 1690 1680 1673 1680 1677 1687 1685 1687 1688 1683 1689 1684 1686 1680 1698 1696 1700 1686 1690 1696
Table 4. Continue 17 q 78569 78649 78779 78839 78919 79039 79147 79229 79309 79393 79481 79579 79633 79757 79829 79901 79987 80089 80173 80239 80329 80447 80537 80629 80687 80779 80849 80933 81023 81083 81181 81283 81359 81463 81559 81649 81727 81839 81929 82003 82051 82171 82231 82339 82457 82507 82591 82699
tL 2 1697 1696 1699 1702 1700 1710 1705 1706 1711 1708 1707 1710 1710 1712 1715 1709 1710 1720 1714 1712 1718 1719 1722 1727 1717 1719 1721 1725 1725 1725 1725 1727 1721 1729 1735 1731 1729 1732 1743 1750 1736 1735 1736 1743 1752 1747 1739 1748
q 78571 78653 78781 78853 78929 79043 79151 79231 79319 79397 79493 79589 79657 79769 79841 79903 79997 80107 80177 80251 80341 80449 80557 80651 80701 80783 80863 80953 81031 81097 81197 81293 81371 81509 81563 81667 81737 81847 81931 82007 82067 82183 82237 82349 82463 82529 82601 82721
tL 2 1688 1701 1701 1697 1700 1703 1701 1701 1711 1712 1712 1705 1713 1716 1711 1707 1711 1720 1718 1717 1713 1718 1715 1720 1719 1721 1723 1721 1729 1728 1727 1736 1729 1730 1734 1729 1727 1733 1738 1733 1742 1739 1733 1740 1744 1745 1743 1749
q 78577 78691 78787 78857 78941 79063 79153 79241 79333 79399 79507 79601 79669 79777 79843 79907 79999 80111 80191 80263 80347 80471 80567 80657 80713 80789 80897 80963 81041 81101 81199 81299 81373 81517 81569 81671 81749 81853 81937 82009 82073 82189 82241 82351 82469 82531 82609 82723
tL 2 1697 1699 1704 1703 1699 1704 1702 1705 1708 1706 1712 1714 1711 1706 1716 1705 1707 1718 1718 1717 1716 1715 1718 1714 1722 1729 1728 1724 1727 1727 1724 1729 1725 1735 1729 1737 1724 1731 1736 1733 1740 1748 1746 1741 1745 1742 1747 1744
q 78583 78697 78791 78877 78961 79087 79159 79259 79337 79411 79531 79609 79687 79801 79847 79939 80021 80141 80207 80273 80363 80473 80599 80669 80737 80803 80909 80989 81043 81119 81203 81307 81401 81527 81611 81677 81761 81869 81943 82013 82129 82193 82261 82361 82471 82549 82613 82727
tL 2 1707 1706 1697 1704 1704 1699 1702 1704 1707 1699 1701 1704 1715 1723 1705 1715 1715 1716 1704 1713 1716 1716 1720 1714 1720 1722 1728 1735 1732 1725 1729 1733 1734 1720 1731 1739 1739 1735 1746 1742 1739 1741 1746 1741 1742 1741 1746 1738
52
q 78593 78707 78797 78887 78977 79103 79181 79273 79349 79423 79537 79613 79691 79811 79861 79943 80039 80147 80209 80279 80369 80489 80603 80671 80747 80809 80911 81001 81047 81131 81223 81331 81409 81533 81619 81689 81769 81883 81953 82021 82139 82207 82267 82373 82483 82559 82619 82729
tL 2 1697 1697 1712 1714 1696 1701 1710 1702 1704 1707 1707 1711 1716 1707 1720 1720 1718 1719 1715 1716 1725 1719 1726 1720 1733 1729 1727 1715 1723 1727 1732 1739 1738 1741 1732 1728 1740 1735 1741 1732 1736 1736 1737 1752 1744 1740 1739 1749
q 78607 78713 78803 78889 78979 79111 79187 79279 79357 79427 79549 79621 79693 79813 79867 79967 80051 80149 80221 80287 80387 80491 80611 80677 80749 80819 80917 81013 81049 81157 81233 81343 81421 81547 81629 81701 81773 81899 81967 82031 82141 82217 82279 82387 82487 82561 82633 82757
tL 2 1689 1704 1701 1699 1697 1702 1700 1706 1711 1704 1704 1713 1713 1697 1705 1717 1717 1725 1718 1725 1716 1716 1724 1720 1717 1728 1722 1725 1727 1723 1726 1730 1728 1732 1729 1729 1736 1741 1741 1736 1732 1746 1729 1728 1753 1742 1743 1743
q 78623 78721 78809 78893 78989 79133 79193 79283 79367 79433 79559 79627 79697 79817 79873 79973 80071 80153 80231 80309 80407 80513 80621 80681 80761 80831 80923 81017 81071 81163 81239 81349 81439 81551 81637 81703 81799 81901 81971 82037 82153 82219 82301 82393 82493 82567 82651 82759
tL 2 1693 1700 1713 1703 1702 1698 1701 1711 1713 1710 1700 1716 1713 1711 1715 1719 1713 1708 1718 1717 1735 1719 1719 1718 1732 1717 1726 1733 1728 1733 1721 1726 1733 1738 1726 1730 1737 1740 1734 1736 1739 1739 1746 1736 1746 1739 1747 1747
q 78643 78737 78823 78901 79031 79139 79201 79301 79379 79451 79561 79631 79699 79823 79889 79979 80077 80167 80233 80317 80429 80527 80627 80683 80777 80833 80929 81019 81077 81173 81281 81353 81457 81553 81647 81707 81817 81919 81973 82039 82163 82223 82307 82421 82499 82571 82657 82763
tL 2 1694 1701 1696 1707 1696 1695 1700 1696 1710 1708 1714 1713 1707 1705 1701 1702 1724 1714 1716 1715 1719 1723 1716 1728 1724 1728 1732 1732 1721 1722 1728 1733 1739 1738 1740 1734 1734 1737 1737 1734 1738 1744 1734 1732 1748 1740 1749 1748
Table 4. Continue 18 q 82781 82883 82997 83077 83207 83267 83383 83437 83537 83617 83717 83833 83921 84047 84131 84211 84307 84391 84457 84523 84653 84731 84827 84961 85037 85109 85213 85303 85411 85487 85597 85661 85751 85843 85933 86077 86161 86243 86297 86371 86461 86539 86677 86767 86861 86969 87071 87151
tL 2 1753 1738 1749 1751 1748 1755 1765 1749 1755 1751 1756 1753 1768 1755 1763 1758 1768 1764 1777 1766 1781 1770 1777 1777 1764 1767 1772 1772 1783 1778 1777 1778 1780 1787 1781 1789 1784 1780 1787 1786 1779 1785 1790 1792 1784 1809 1797 1798
q 82787 82889 83003 83089 83219 83269 83389 83443 83557 83621 83719 83843 83933 84053 84137 84221 84313 84401 84463 84533 84659 84737 84857 84967 85049 85121 85223 85313 85427 85513 85601 85667 85781 85847 85991 86083 86171 86249 86311 86381 86467 86561 86689 86771 86869 86981 87083 87179
tL 2 1750 1745 1740 1751 1754 1746 1757 1755 1753 1753 1756 1764 1750 1761 1764 1771 1770 1754 1773 1771 1772 1773 1770 1768 1777 1769 1771 1777 1778 1782 1781 1778 1776 1778 1770 1785 1781 1789 1788 1784 1787 1789 1793 1791 1791 1795 1798 1798
q 82793 82891 83009 83093 83221 83273 83399 83449 83561 83639 83737 83857 83939 84059 84143 84223 84317 84407 84467 84551 84673 84751 84859 84977 85061 85133 85229 85331 85429 85517 85607 85669 85793 85849 85999 86111 86179 86257 86323 86389 86477 86573 86693 86783 86923 86993 87103 87181
tL 2 1750 1751 1746 1754 1752 1751 1755 1754 1758 1758 1758 1763 1752 1759 1764 1766 1770 1768 1754 1766 1765 1767 1767 1774 1777 1775 1771 1775 1776 1773 1771 1780 1776 1776 1784 1788 1779 1784 1793 1787 1790 1784 1789 1784 1792 1795 1797 1793
q 82799 82903 83023 83101 83227 83299 83401 83459 83563 83641 83761 83869 83969 84061 84163 84229 84319 84421 84481 84559 84691 84761 84869 84979 85081 85147 85237 85333 85439 85523 85619 85691 85817 85853 86011 86113 86183 86263 86341 86399 86491 86579 86711 86813 86927 87011 87107 87187
tL 2 1740 1744 1749 1747 1755 1758 1747 1761 1760 1765 1762 1759 1757 1763 1760 1757 1766 1763 1755 1771 1769 1774 1767 1776 1773 1766 1768 1775 1774 1775 1777 1772 1778 1776 1779 1785 1773 1795 1790 1787 1792 1791 1787 1798 1793 1793 1792 1797
53
q 82811 82913 83047 83117 83231 83311 83407 83471 83579 83653 83773 83873 83983 84067 84179 84239 84347 84431 84499 84589 84697 84787 84871 84991 85087 85159 85243 85361 85447 85531 85621 85703 85819 85889 86017 86117 86197 86269 86351 86413 86501 86587 86719 86837 86929 87013 87119 87211
tL 2 1745 1744 1748 1752 1755 1751 1745 1748 1753 1754 1756 1760 1760 1757 1756 1767 1768 1762 1769 1765 1772 1776 1770 1774 1775 1774 1777 1778 1774 1772 1785 1779 1783 1783 1784 1790 1784 1786 1782 1787 1786 1781 1794 1787 1788 1790 1800 1784
q 82813 82939 83059 83137 83233 83339 83417 83477 83591 83663 83777 83891 83987 84089 84181 84247 84349 84437 84503 84629 84701 84793 84913 85009 85091 85193 85247 85363 85451 85549 85627 85711 85829 85903 86027 86131 86201 86287 86353 86423 86509 86599 86729 86843 86939 87037 87121 87221
tL 2 1734 1751 1748 1749 1754 1757 1758 1760 1758 1749 1762 1749 1756 1769 1769 1756 1763 1762 1761 1773 1767 1768 1771 1771 1774 1772 1777 1773 1778 1776 1786 1785 1782 1769 1778 1784 1781 1784 1784 1791 1787 1797 1794 1789 1797 1790 1803 1804
q 82837 82963 83063 83177 83243 83341 83423 83497 83597 83689 83791 83903 84011 84121 84191 84263 84377 84443 84509 84631 84713 84809 84919 85021 85093 85199 85259 85369 85453 85571 85639 85717 85831 85909 86029 86137 86209 86291 86357 86441 86531 86627 86743 86851 86951 87041 87133 87223
tL 2 1744 1746 1752 1747 1746 1748 1746 1748 1756 1752 1750 1756 1756 1763 1757 1760 1765 1762 1758 1767 1761 1765 1769 1775 1765 1780 1774 1771 1770 1779 1780 1779 1784 1777 1773 1792 1776 1790 1786 1787 1792 1788 1796 1801 1783 1790 1792 1792
q 82847 82981 83071 83203 83257 83357 83431 83521 83609 83701 83813 83911 84017 84127 84199 84299 84389 84449 84521 84649 84719 84811 84947 85027 85103 85201 85297 85381 85469 85577 85643 85733 85837 85931 86069 86143 86239 86293 86369 86453 86533 86629 86753 86857 86959 87049 87149 87251
tL 2 1751 1758 1755 1750 1756 1742 1758 1755 1750 1752 1757 1759 1765 1761 1765 1766 1762 1767 1766 1767 1763 1769 1777 1777 1766 1776 1772 1771 1778 1790 1779 1772 1778 1772 1782 1778 1790 1785 1786 1791 1799 1793 1793 1792 1789 1790 1795 1798
Table 4. Continue 19 q 87253 87323 87433 87523 87587 87649 87721 87811 87917 88001 88117 88259 88379 88493 88609 88721 88801 88861 88951 89041 89107 89209 89293 89393 89477 89561 89627 89689 89819 89899 89983 90031 90121 90199 90281 90397 90481 90583 90677 90793 90887 90977 91097 91153 91243 91331 91411 91499
tL 2 1809 1802 1805 1798 1798 1793 1807 1806 1803 1805 1811 1810 1808 1806 1815 1813 1811 1809 1819 1823 1817 1817 1819 1820 1817 1824 1818 1819 1823 1825 1831 1827 1832 1825 1821 1834 1840 1824 1829 1832 1837 1838 1836 1839 1838 1841 1845 1839
q 87257 87337 87443 87539 87589 87671 87739 87833 87931 88003 88129 88261 88397 88499 88643 88729 88807 88867 88969 89051 89113 89213 89303 89399 89491 89563 89633 89753 89821 89909 89989 90053 90127 90203 90289 90401 90499 90599 90679 90803 90901 90989 91099 91159 91249 91367 91423 91513
tL 2 1799 1801 1793 1797 1797 1802 1801 1798 1810 1805 1811 1803 1810 1816 1813 1818 1815 1808 1822 1814 1829 1824 1821 1811 1820 1821 1821 1820 1824 1838 1832 1831 1832 1824 1832 1831 1833 1826 1840 1843 1840 1833 1835 1838 1838 1841 1847 1842
q 87277 87359 87473 87541 87613 87679 87743 87853 87943 88007 88169 88289 88411 88513 88651 88741 88811 88873 88993 89057 89119 89227 89317 89413 89501 89567 89653 89759 89833 89917 90001 90059 90149 90217 90313 90403 90511 90617 90697 90821 90907 90997 91121 91163 91253 91369 91433 91529
tL 2 1793 1792 1798 1793 1797 1802 1811 1809 1802 1803 1805 1810 1811 1810 1813 1810 1817 1806 1814 1812 1819 1821 1823 1822 1823 1824 1821 1824 1825 1830 1839 1829 1829 1824 1837 1839 1827 1840 1838 1831 1837 1842 1847 1840 1835 1840 1844 1845
q 87281 87383 87481 87547 87623 87683 87751 87869 87959 88019 88177 88301 88423 88523 88657 88747 88813 88883 88997 89069 89123 89231 89329 89417 89513 89591 89657 89767 89839 89923 90007 90067 90163 90227 90353 90407 90523 90619 90703 90823 90911 91009 91127 91183 91283 91373 91453 91541
tL 2 1803 1792 1805 1800 1805 1807 1799 1800 1804 1806 1805 1806 1813 1816 1807 1815 1820 1818 1812 1811 1812 1824 1820 1827 1818 1823 1830 1837 1831 1832 1818 1837 1824 1825 1840 1834 1838 1838 1843 1831 1832 1840 1844 1834 1840 1846 1835 1838
54
q 87293 87403 87491 87553 87629 87691 87767 87877 87961 88037 88211 88321 88427 88547 88661 88771 88817 88897 89003 89071 89137 89237 89363 89431 89519 89597 89659 89779 89849 89939 90011 90071 90173 90239 90359 90437 90527 90631 90709 90833 90917 91019 91129 91193 91291 91381 91457 91571
tL 2 1798 1808 1804 1801 1798 1802 1803 1808 1803 1803 1801 1802 1811 1809 1809 1814 1818 1820 1817 1816 1824 1821 1825 1822 1826 1822 1838 1829 1826 1829 1826 1835 1837 1835 1827 1821 1824 1829 1837 1834 1832 1832 1840 1849 1845 1836 1841 1844
q 87299 87407 87509 87557 87631 87697 87793 87881 87973 88069 88223 88327 88463 88589 88663 88789 88819 88903 89009 89083 89153 89261 89371 89443 89521 89599 89669 89783 89867 89959 90017 90073 90187 90247 90371 90439 90529 90641 90731 90841 90931 91033 91139 91199 91297 91387 91459 91573
tL 2 1795 1800 1797 1804 1797 1794 1805 1804 1802 1806 1798 1799 1811 1803 1811 1822 1822 1814 1827 1815 1818 1815 1815 1809 1813 1829 1822 1823 1820 1829 1836 1828 1837 1835 1828 1831 1830 1838 1834 1839 1839 1841 1843 1844 1852 1841 1845 1841
q 87313 87421 87511 87559 87641 87701 87797 87887 87977 88079 88237 88337 88469 88591 88667 88793 88843 88919 89017 89087 89189 89269 89381 89449 89527 89603 89671 89797 89891 89963 90019 90089 90191 90263 90373 90469 90533 90647 90749 90847 90947 91079 91141 91229 91303 91393 91463 91577
tL 2 1795 1797 1794 1802 1809 1802 1806 1809 1798 1807 1807 1809 1807 1813 1806 1818 1810 1807 1812 1818 1818 1818 1810 1811 1825 1812 1822 1831 1823 1829 1831 1834 1831 1829 1827 1834 1837 1830 1835 1837 1832 1839 1833 1835 1835 1839 1844 1849
q 87317 87427 87517 87583 87643 87719 87803 87911 87991 88093 88241 88339 88471 88607 88681 88799 88853 88937 89021 89101 89203 89273 89387 89459 89533 89611 89681 89809 89897 89977 90023 90107 90197 90271 90379 90473 90547 90659 90787 90863 90971 91081 91151 91237 91309 91397 91493 91583
tL 2 1807 1795 1800 1802 1796 1813 1804 1808 1810 1808 1806 1813 1810 1816 1809 1821 1810 1822 1818 1811 1816 1819 1821 1832 1829 1821 1822 1825 1823 1834 1833 1841 1823 1828 1831 1836 1840 1831 1828 1846 1829 1836 1844 1831 1841 1842 1846 1844
Table 4. Continue 20 q 91591 91733 91813 91939 92003 92111 92203 92269 92363 92413 92503 92623 92681 92753 92821 92899 92993 93097 93179 93257 93329 93463 93523 93607 93761 93887 93941 94009 94111 94219 94309 94397 94463 94547 94621 94747 94823 94907 95009 95093 95189 95257 95327 95429 95507 95597 95707 95783
tL 2 1847 1849 1852 1842 1842 1841 1856 1851 1853 1851 1858 1859 1858 1856 1861 1858 1863 1859 1864 1864 1872 1874 1865 1873 1855 1873 1868 1867 1875 1875 1879 1877 1873 1874 1880 1879 1882 1877 1879 1876 1895 1882 1881 1881 1902 1890 1880 1889
q 91621 91753 91823 91943 92009 92119 92219 92297 92369 92419 92507 92627 92683 92761 92831 92921 93001 93103 93187 93263 93337 93479 93529 93629 93763 93889 93949 94033 94117 94229 94321 94399 94477 94559 94649 94771 94837 94933 95021 95101 95191 95261 95339 95441 95527 95603 95713 95789
tL 2 1845 1849 1855 1849 1854 1850 1847 1846 1851 1848 1858 1855 1867 1859 1862 1860 1867 1863 1865 1869 1870 1868 1863 1862 1866 1870 1865 1860 1864 1872 1884 1883 1888 1879 1877 1884 1887 1871 1877 1881 1890 1882 1893 1891 1890 1891 1884 1898
q 91631 91757 91837 91951 92033 92143 92221 92311 92377 92431 92551 92639 92693 92767 92849 92927 93047 93113 93199 93281 93371 93481 93553 93637 93787 93893 93967 94049 94121 94249 94327 94421 94483 94561 94651 94777 94841 94949 95027 95107 95203 95267 95369 95443 95531 95617 95717 95791
tL 2 1845 1836 1850 1848 1844 1860 1854 1847 1860 1852 1847 1861 1865 1856 1855 1862 1854 1863 1853 1863 1866 1859 1870 1866 1872 1873 1874 1864 1877 1866 1878 1876 1876 1891 1884 1882 1881 1878 1878 1887 1879 1877 1892 1896 1884 1896 1891 1894
q 91639 91771 91841 91957 92041 92153 92227 92317 92381 92459 92557 92641 92699 92779 92857 92941 93053 93131 93229 93283 93377 93487 93557 93683 93809 93901 93971 94057 94151 94253 94331 94427 94513 94573 94687 94781 94847 94951 95063 95111 95213 95273 95383 95461 95539 95621 95723 95801
tL 2 1840 1856 1845 1854 1844 1841 1845 1844 1851 1861 1855 1857 1864 1851 1864 1866 1858 1855 1865 1871 1861 1863 1863 1876 1873 1874 1870 1871 1868 1877 1874 1882 1875 1877 1881 1876 1885 1878 1886 1886 1880 1882 1892 1888 1887 1883 1882 1905
55
q 91673 91781 91867 91961 92051 92173 92233 92333 92383 92461 92567 92647 92707 92789 92861 92951 93059 93133 93239 93287 93383 93491 93559 93701 93811 93911 93979 94063 94153 94261 94343 94433 94529 94583 94693 94789 94849 94961 95071 95131 95219 95279 95393 95467 95549 95629 95731 95803
tL 2 1843 1845 1841 1851 1845 1850 1856 1852 1845 1854 1840 1856 1848 1863 1858 1863 1854 1858 1860 1856 1864 1859 1873 1866 1867 1872 1868 1872 1868 1875 1879 1874 1878 1876 1875 1869 1875 1877 1879 1890 1887 1888 1887 1882 1889 1893 1885 1893
q 91691 91801 91873 91967 92077 92177 92237 92347 92387 92467 92569 92657 92717 92791 92863 92957 93077 93139 93241 93307 93407 93493 93563 93703 93827 93913 93983 94079 94169 94273 94349 94439 94531 94597 94709 94793 94873 94993 95083 95143 95231 95287 95401 95471 95561 95633 95737 95813
tL 2 1850 1852 1847 1850 1854 1853 1852 1859 1857 1851 1865 1863 1854 1851 1866 1869 1869 1867 1867 1859 1850 1871 1861 1873 1867 1864 1871 1874 1875 1882 1874 1878 1870 1872 1868 1892 1874 1890 1882 1888 1889 1882 1889 1885 1897 1879 1895 1895
q 91703 91807 91909 91969 92083 92179 92243 92353 92399 92479 92581 92669 92723 92801 92867 92959 93083 93151 93251 93319 93419 93497 93581 93719 93851 93923 93997 94099 94201 94291 94351 94441 94541 94603 94723 94811 94889 94999 95087 95153 95233 95311 95413 95479 95569 95651 95747 95819
tL 2 1847 1852 1841 1852 1853 1849 1856 1861 1854 1856 1854 1848 1859 1854 1859 1856 1858 1861 1863 1872 1868 1862 1868 1872 1867 1873 1865 1881 1870 1867 1871 1875 1872 1876 1882 1885 1889 1881 1890 1883 1882 1885 1879 1886 1891 1886 1885 1891
q 91711 91811 91921 91997 92107 92189 92251 92357 92401 92489 92593 92671 92737 92809 92893 92987 93089 93169 93253 93323 93427 93503 93601 93739 93871 93937 94007 94109 94207 94307 94379 94447 94543 94613 94727 94819 94903 95003 95089 95177 95239 95317 95419 95483 95581 95701 95773 95857
tL 2 1843 1856 1844 1857 1852 1846 1849 1860 1864 1864 1854 1856 1863 1864 1858 1868 1867 1861 1859 1865 1871 1867 1864 1866 1869 1871 1875 1877 1875 1873 1872 1871 1873 1877 1879 1882 1890 1883 1900 1884 1885 1893 1888 1888 1883 1897 1887 1893
Table 4. Continue 21 q 95869 95947 96017 96157 96233 96329 96443 96497 96601 96731 96787 96857 96979 97073 97169 97283 97381 97463 97561 97649 97787 97859 97943 98017 98143 98269 98369 98443 98519 98627 98717 98809 98897 98953 99041 99131 99223 99317 99401 99527 99607 99707 99787 99859 99961
tL 2 1888 1887 1889 1882 1896 1894 1897 1892 1902 1898 1904 1911 1898 1908 1903 1906 1909 1908 1911 1908 1911 1914 1917 1914 1912 1914 1921 1926 1915 1921 1930 1928 1926 1919 1925 1922 1924 1929 1926 1936 1932 1934 1926 1935 1936
q 95873 95957 96043 96167 96259 96331 96451 96517 96643 96737 96797 96893 96989 97081 97171 97301 97387 97499 97571 97651 97789 97861 97961 98041 98179 98297 98377 98453 98533 98639 98729 98837 98899 98963 99053 99133 99233 99347 99409 99529 99611 99709 99793 99871 99971
tL 2 1894 1895 1889 1900 1903 1895 1898 1899 1899 1901 1903 1908 1905 1912 1909 1907 1899 1918 1911 1913 1913 1910 1916 1913 1927 1918 1911 1916 1921 1922 1927 1921 1920 1927 1930 1931 1925 1927 1917 1930 1928 1924 1939 1928 1934
q 95881 95959 96053 96179 96263 96337 96457 96527 96661 96739 96799 96907 96997 97103 97177 97303 97397 97501 97577 97673 97813 97871 97967 98047 98207 98299 98387 98459 98543 98641 98731 98849 98909 98981 99079 99137 99241 99349 99431 99551 99623 99713 99809 99877 99989
tL 2 1890 1896 1893 1897 1892 1891 1905 1889 1899 1907 1899 1893 1904 1903 1892 1903 1908 1908 1908 1910 1924 1914 1919 1911 1921 1927 1920 1923 1928 1918 1922 1925 1923 1928 1922 1930 1931 1923 1926 1932 1928 1938 1929 1941 1934
q 95891 95971 96059 96181 96269 96353 96461 96553 96667 96749 96821 96911 97001 97117 97187 97327 97423 97511 97579 97687 97829 97879 97969 98057 98213 98317 98389 98467 98561 98663 98737 98867 98911 98993 99083 99139 99251 99367 99439 99559 99643 99719 99817 99881 99991
tL 2 1891 1889 1880 1896 1904 1903 1909 1894 1899 1893 1902 1907 1909 1903 1896 1918 1910 1909 1907 1912 1922 1917 1910 1916 1920 1917 1911 1917 1915 1917 1923 1925 1930 1921 1920 1935 1923 1934 1924 1931 1931 1924 1931 1935 1932
q 95911 95987 96079 96199 96281 96377 96469 96557 96671 96757 96823 96931 97003 97127 97213 97367 97429 97523 97583 97711 97841 97883 97973 98081 98221 98321 98407 98473 98563 98669 98773 98869 98927 98999 99089 99149 99257 99371 99469 99563 99661 99721 99823 99901
56
tL 2 1884 1897 1886 1892 1885 1894 1901 1900 1896 1907 1897 1908 1898 1893 1919 1905 1904 1907 1914 1909 1910 1915 1918 1908 1920 1915 1919 1915 1923 1913 1922 1929 1928 1927 1929 1930 1915 1933 1927 1930 1936 1932 1931 1939
q 95917 95989 96097 96211 96289 96401 96479 96581 96697 96763 96827 96953 97007 97151 97231 97369 97441 97547 97607 97729 97843 97919 97987 98101 98227 98323 98411 98479 98573 98689 98779 98873 98929 99013 99103 99173 99259 99377 99487 99571 99667 99733 99829 99907
tL 2 1886 1905 1890 1896 1894 1896 1904 1898 1905 1904 1909 1904 1902 1905 1899 1907 1904 1901 1911 1903 1907 1910 1912 1916 1918 1910 1910 1919 1912 1917 1922 1923 1924 1922 1927 1932 1935 1933 1936 1939 1933 1930 1932 1934
q 95923 96001 96137 96221 96293 96419 96487 96587 96703 96769 96847 96959 97021 97157 97241 97373 97453 97549 97609 97771 97847 97927 98009 98123 98251 98327 98419 98491 98597 98711 98801 98887 98939 99017 99109 99181 99277 99391 99497 99577 99679 99761 99833 99923
tL 2 1891 1891 1901 1899 1886 1900 1902 1899 1906 1902 1897 1905 1908 1903 1903 1907 1909 1903 1910 1906 1917 1915 1911 1918 1907 1917 1921 1916 1921 1928 1919 1929 1927 1923 1925 1926 1930 1932 1927 1931 1926 1936 1928 1933
q 95929 96013 96149 96223 96323 96431 96493 96589 96721 96779 96851 96973 97039 97159 97259 97379 97459 97553 97613 97777 97849 97931 98011 98129 98257 98347 98429 98507 98621 98713 98807 98893 98947 99023 99119 99191 99289 99397 99523 99581 99689 99767 99839 99929
tL 2 1890 1900 1894 1886 1899 1895 1896 1898 1891 1898 1906 1896 1900 1900 1910 1916 1912 1907 1913 1913 1913 1906 1918 1920 1913 1915 1923 1924 1927 1923 1930 1914 1922 1929 1930 1921 1926 1929 1924 1928 1942 1935 1941 1939
Table 5. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 100000 < q ≤ 301813, q prime power q 100003 100109 100193 100291 100363 100447 100511 100559 100673 100769 100847 100943 101027 101113 101173 101267 101333 101399 101483 101533 101611 101701 101771 101863 101929 102001 102061 102121 102199 102253 102337 102437 102523 102587 102667 102769 102871 102953 103067 103123 103237 103357 103423 103549 103591 103681 103801 103867
tL 2 1940 1941 1934 1933 1944 1944 1939 1942 1942 1934 1946 1943 1946 1955 1944 1945 1956 1946 1949 1951 1959 1945 1945 1955 1947 1959 1955 1949 1953 1960 1962 1962 1968 1960 1962 1961 1966 1963 1977 1968 1971 1969 1975 1977 1966 1974 1968 1977
q 100019 100129 100207 100297 100379 100459 100517 100591 100693 100787 100853 100957 101051 101117 101183 101273 101341 101411 101489 101537 101627 101719 101789 101869 101939 102013 102071 102139 102203 102259 102359 102451 102533 102593 102673 102793 102877 102967 103069 103141 103289 103387 103451 103553 103613 103687 103811 103889
tL 2 1934 1940 1939 1951 1941 1935 1934 1943 1939 1935 1941 1948 1943 1951 1938 1954 1936 1949 1955 1951 1947 1957 1957 1949 1955 1951 1958 1947 1959 1956 1951 1959 1958 1969 1968 1970 1968 1965 1973 1967 1969 1973 1966 1966 1971 1975 1972 1975
q 100043 100151 100213 100313 100391 100469 100519 100609 100699 100799 100907 100981 101063 101119 101197 101279 101347 101419 101501 101561 101641 101723 101797 101873 101957 102019 102077 102149 102217 102293 102367 102461 102539 102607 102677 102797 102881 102983 103079 103171 103291 103391 103457 103561 103619 103699 103813 103903
tL 2 1936 1945 1944 1940 1943 1942 1939 1947 1941 1947 1942 1954 1947 1956 1956 1947 1950 1951 1951 1950 1945 1958 1959 1952 1964 1965 1959 1953 1956 1959 1964 1957 1970 1963 1966 1965 1964 1966 1970 1966 1968 1968 1980 1970 1989 1974 1970 1971
q 100049 100153 100237 100333 100393 100483 100523 100613 100703 100801 100913 100987 101081 101141 101203 101281 101359 101429 101503 101573 101653 101737 101807 101879 101963 102023 102079 102161 102229 102299 102397 102481 102547 102611 102679 102811 102911 103001 103087 103177 103307 103393 103471 103567 103643 103703 103823 103913
tL 2 1938 1937 1938 1935 1943 1946 1944 1949 1941 1949 1946 1942 1945 1945 1942 1956 1947 1950 1954 1952 1950 1961 1956 1958 1953 1952 1959 1956 1957 1954 1964 1965 1966 1962 1962 1969 1966 1963 1974 1964 1962 1976 1966 1975 1977 1965 1980 1972
57
q 100057 100169 100267 100343 100403 100489 100537 100621 100733 100811 100927 100999 101089 101149 101207 101287 101363 101449 101513 101581 101663 101741 101833 101891 101977 102031 102101 102181 102233 102301 102407 102497 102551 102643 102701 102829 102913 103007 103091 103183 103319 103399 103483 103573 103651 103723 103837 103919
tL 2 1931 1935 1937 1934 1928 1947 1943 1943 1942 1947 1938 1939 1944 1948 1953 1950 1952 1948 1952 1954 1947 1954 1949 1949 1955 1947 1962 1960 1959 1969 1970 1959 1968 1961 1962 1969 1976 1963 1964 1970 1971 1969 1969 1982 1974 1964 1973 1962
q 100069 100183 100271 100357 100411 100493 100547 100649 100741 100823 100931 101009 101107 101159 101209 101293 101377 101467 101527 101599 101681 101747 101837 101917 101987 102043 102103 102191 102241 102317 102409 102499 102559 102647 102761 102841 102929 103043 103093 103217 103333 103409 103511 103577 103657 103769 103841 103951
tL 2 1941 1933 1940 1932 1942 1940 1942 1944 1942 1945 1951 1949 1951 1951 1949 1948 1953 1943 1957 1950 1953 1949 1961 1958 1957 1958 1950 1962 1954 1950 1963 1956 1963 1962 1966 1956 1963 1966 1979 1974 1973 1977 1967 1967 1963 1974 1975 1977
q 100103 100189 100279 100361 100417 100501 100549 100669 100747 100829 100937 101021 101111 101161 101221 101323 101383 101477 101531 101603 101693 101749 101839 101921 101999 102059 102107 102197 102251 102329 102433 102503 102563 102653 102763 102859 102931 103049 103099 103231 103349 103421 103529 103583 103669 103787 103843 103963
tL 2 1939 1937 1941 1940 1932 1946 1950 1939 1936 1943 1953 1947 1949 1947 1952 1955 1954 1955 1962 1955 1943 1949 1940 1942 1967 1957 1959 1965 1960 1958 1952 1967 1969 1962 1962 1963 1965 1956 1966 1973 1973 1967 1968 1963 1969 1968 1967 1968
Table 5. Continue 1 q 103967 104003 104087 104149 104233 104311 104393 104491 104561 104659 104711 104773 104849 104933 105019 105137 105229 105319 105367 105437 105517 105601 105673 105761 105883 105967 106031 106129 106217 106291 106349 106411 106487 106619 106663 106727 106783 106867 106949 107033 107099 107197 107273 107357 107507 107621 107713 107777
tL 2 1976 1969 1980 1988 1981 1974 1979 1985 1990 1980 1979 1991 1990 1992 1991 1987 1994 1993 1990 1999 1993 1998 2004 1991 2005 2003 2004 1998 2002 1992 1994 2009 2008 2007 2008 1997 2010 2007 2009 2004 2017 2013 2010 2004 2015 2019 2011 2020
q 103969 104009 104089 104161 104239 104323 104399 104513 104579 104677 104717 104779 104851 104947 105023 105143 105239 105323 105373 105449 105527 105607 105683 105767 105899 105971 106033 106163 106219 106297 106357 106417 106501 106621 106669 106739 106787 106871 106957 107053 107101 107201 107279 107377 107509 107641 107717 107791
tL 2 1978 1975 1980 1981 1991 1990 1983 1981 1980 1988 1987 1991 1995 1988 1997 1998 1987 1993 1988 1987 1999 1992 1995 1989 1996 1989 1997 1999 1992 2005 1986 2006 2012 2021 2011 2003 2004 2003 2013 2019 2011 2006 2007 2010 2004 2016 2010 2017
q 103979 104021 104107 104173 104243 104327 104417 104527 104593 104681 104723 104789 104869 104953 105031 105167 105251 105331 105379 105467 105529 105613 105691 105769 105907 105977 106087 106181 106243 106303 106363 106427 106531 106627 106681 106747 106801 106877 106961 107057 107119 107209 107309 107441 107563 107647 107719 107827
tL 2 1971 1984 1975 1984 1985 1985 1988 1973 1973 1988 1990 1987 1982 1985 1989 1998 1998 1984 1994 1996 1989 1991 1999 1986 1987 1993 2003 2002 2018 1999 2000 2005 1993 2002 2003 2008 2004 2018 2003 2022 2012 2010 2015 2010 2014 2007 2006 2020
q 103981 104033 104113 104179 104281 104347 104459 104537 104597 104683 104729 104801 104879 104959 105037 105173 105253 105337 105389 105491 105533 105619 105701 105817 105913 105983 106103 106187 106261 106307 106367 106433 106537 106637 106693 106751 106823 106903 106963 107069 107123 107227 107323 107449 107581 107671 107741 107837
tL 2 1982 1990 1976 1987 1982 1981 1979 1993 1988 1981 1983 1983 1993 1977 1989 1993 1990 1988 1991 1987 1987 2000 1989 1987 1999 2004 2001 2004 2005 1993 2000 2008 2009 2000 2009 2001 2011 2001 2003 2007 2007 2002 2016 2010 2019 2015 2019 2021
58
q 103991 104047 104119 104183 104287 104369 104471 104543 104623 104693 104743 104803 104891 104971 105071 105199 105263 105341 105397 105499 105541 105649 105727 105829 105929 105997 106109 106189 106273 106319 106373 106441 106541 106649 106699 106753 106853 106907 106979 107071 107137 107243 107339 107453 107599 107687 107747 107839
tL 2 1975 1983 1977 1978 1983 1977 1979 1983 1990 1980 1980 1981 1987 1988 1985 1991 1982 1991 1997 1992 1987 2000 1990 1987 2004 1992 1995 1997 2001 1999 2001 2004 2006 2011 2006 2010 2011 2005 2001 1999 2005 2006 2015 2011 2018 2004 2003 2013
q 103993 104053 104123 104207 104297 104381 104473 104549 104639 104701 104759 104827 104911 104987 105097 105211 105269 105359 105401 105503 105557 105653 105733 105863 105943 106013 106121 106207 106277 106321 106391 106451 106543 106657 106703 106759 106859 106921 106993 107077 107171 107251 107347 107467 107603 107693 107761 107843
tL 2 1989 1970 1985 1987 1986 1983 1984 1988 1990 1984 1975 1991 1987 1982 1989 1987 1998 1998 1997 1998 1999 1987 1989 1998 2001 2005 1999 2003 2003 1994 2004 2005 1999 2005 2003 2006 2002 2006 2014 2007 2009 2009 2009 2012 2013 2017 2008 2019
q 103997 104059 104147 104231 104309 104383 104479 104551 104651 104707 104761 104831 104917 104999 105107 105227 105277 105361 105407 105509 105563 105667 105751 105871 105953 106019 106123 106213 106279 106331 106397 106453 106591 106661 106721 106781 106861 106937 107021 107089 107183 107269 107351 107473 107609 107699 107773 107857
tL 2 1973 1973 1982 1978 1983 1984 1984 1978 1986 1984 1989 1991 1983 1978 1990 1988 1984 1989 1992 1993 2002 1998 1996 1988 1996 2003 2004 2002 1999 1996 2001 1997 2009 2012 2003 2006 2016 2003 2013 2009 2012 2010 2022 2015 2015 2019 2015 2022
Table 5. Continue 2 q 107867 107941 108013 108107 108187 108233 108301 108413 108499 108557 108677 108769 108863 108907 108959 109037 109121 109171 109279 109363 109433 109507 109567 109621 109741 109831 109883 109943 110059 110183 110273 110359 110479 110557 110597 110651 110771 110863 110923 110977 111091 111149 111253 111337 111439 111509 111599 111667
tL 2 2017 2018 2020 2020 2014 2027 2015 2019 2028 2025 2024 2031 2027 2017 2028 2028 2029 2040 2025 2038 2038 2037 2037 2027 2036 2032 2037 2025 2041 2033 2043 2044 2043 2043 2047 2044 2048 2041 2040 2046 2056 2044 2055 2052 2052 2045 2057 2052
q 107873 107951 108023 108109 108191 108247 108343 108421 108503 108571 108707 108791 108869 108917 108961 109049 109133 109199 109297 109367 109441 109517 109579 109639 109751 109841 109891 109961 110063 110221 110281 110419 110491 110563 110603 110681 110777 110879 110927 110989 111103 111187 111263 111341 111443 111521 111611 111697
tL 2 2023 2011 2019 2018 2014 2021 2032 2019 2020 2033 2017 2028 2022 2028 2028 2028 2036 2027 2034 2021 2038 2031 2031 2022 2029 2041 2038 2041 2041 2042 2039 2040 2045 2041 2057 2037 2046 2049 2046 2038 2058 2041 2052 2052 2039 2043 2050 2053
q 107881 107971 108037 108127 108193 108263 108347 108439 108517 108587 108709 108793 108877 108923 108967 109063 109139 109201 109303 109379 109451 109519 109583 109661 109789 109843 109897 109987 110069 110233 110291 110431 110501 110567 110609 110711 110807 110881 110933 111029 111109 111191 111269 111347 111467 111533 111623 111721
tL 2 2022 2010 2026 2025 2030 2022 2022 2022 2029 2031 2024 2028 2024 2031 2036 2027 2029 2025 2032 2034 2033 2028 2034 2038 2036 2032 2043 2046 2042 2026 2049 2037 2038 2050 2036 2040 2038 2051 2042 2044 2048 2043 2053 2053 2050 2058 2058 2064
q 107897 107981 108041 108131 108203 108271 108359 108457 108529 108631 108727 108799 108881 108929 108971 109073 109141 109211 109313 109387 109453 109537 109589 109663 109793 109847 109903 110017 110083 110237 110311 110437 110503 110569 110623 110729 110813 110899 110939 111031 111119 111211 111271 111373 111487 111539 111637 111731
tL 2 2017 2025 2018 2020 2023 2024 2023 2023 2032 2024 2032 2027 2032 2028 2029 2033 2019 2025 2032 2043 2029 2041 2042 2039 2038 2048 2036 2048 2038 2045 2032 2044 2048 2042 2046 2049 2043 2042 2048 2054 2046 2046 2050 2051 2051 2055 2055 2049
59
q 107903 107999 108061 108139 108211 108287 108377 108461 108533 108637 108739 108803 108883 108943 108991 109097 109147 109229 109321 109391 109469 109541 109597 109673 109807 109849 109913 110023 110119 110251 110321 110441 110527 110573 110629 110731 110819 110909 110947 111043 111121 111217 111301 111409 111491 111577 111641 111733
tL 2 2017 2015 2024 2018 2016 2021 2008 2019 2030 2026 2032 2028 2037 2020 2033 2021 2035 2032 2030 2031 2026 2028 2025 2032 2028 2031 2034 2031 2043 2052 2054 2046 2049 2043 2049 2054 2052 2043 2042 2054 2050 2048 2053 2051 2052 2050 2061 2048
q 107923 108007 108079 108161 108217 108289 108379 108463 108541 108643 108751 108821 108887 108947 109001 109103 109159 109253 109331 109397 109471 109547 109609 109717 109819 109859 109919 110039 110129 110261 110323 110459 110533 110581 110641 110749 110821 110917 110951 111049 111127 111227 111317 111427 111493 111581 111653 111751
tL 2 2015 2011 2013 2021 2020 2023 2017 2023 2022 2033 2033 2025 2021 2033 2024 2019 2026 2040 2031 2023 2027 2032 2025 2028 2035 2040 2042 2048 2043 2041 2042 2044 2040 2054 2042 2040 2050 2052 2048 2046 2050 2057 2049 2054 2053 2058 2065 2058
q 107927 108011 108089 108179 108223 108293 108401 108497 108553 108649 108761 108827 108893 108949 109013 109111 109169 109267 109357 109423 109481 109561 109619 109721 109829 109873 109937 110051 110161 110269 110339 110477 110543 110587 110647 110753 110849 110921 110969 111053 111143 111229 111323 111431 111497 111593 111659 111767
tL 2 2013 2015 2017 2021 2016 2018 2027 2027 2028 2031 2037 2028 2024 2018 2025 2030 2025 2029 2034 2030 2036 2036 2024 2048 2043 2031 2048 2041 2042 2035 2036 2045 2054 2046 2032 2037 2048 2049 2054 2050 2046 2054 2050 2058 2053 2061 2047 2052
Table 5. Continue 3 q 111773 111829 111893 111977 112087 112153 112237 112289 112339 112459 112573 112643 112759 112859 112927 113017 113063 113123 113161 113213 113341 113417 113513 113621 113723 113783 113899 113963 114041 114113 114199 114277 114371 114479 114593 114649 114713 114781 114859 114973 115061 115133 115223 115309 115361 115471 115571 115637
tL 2 2058 2057 2054 2058 2058 2054 2060 2066 2058 2061 2056 2060 2072 2072 2065 2065 2064 2066 2069 2067 2074 2069 2074 2070 2073 2077 2087 2081 2089 2073 2086 2090 2072 2085 2081 2086 2083 2093 2093 2087 2092 2096 2083 2086 2089 2092 2092 2096
q 111779 111833 111913 111997 112097 112163 112241 112291 112349 112481 112577 112657 112771 112877 112939 113021 113081 113131 113167 113227 113357 113437 113537 113623 113731 113797 113903 113969 114043 114143 114203 114281 114377 114487 114599 114659 114743 114797 114883 114997 115067 115151 115237 115319 115363 115499 115589 115657
tL 2 2054 2058 2065 2061 2060 2056 2063 2052 2067 2060 2058 2072 2077 2062 2068 2077 2070 2068 2073 2068 2075 2075 2075 2072 2079 2073 2082 2075 2077 2079 2072 2079 2081 2082 2076 2072 2088 2080 2092 2090 2089 2101 2101 2098 2086 2094 2096 2096
q 111781 111847 111919 112019 112103 112181 112247 112297 112361 112501 112583 112663 112787 112901 112951 113023 113083 113143 113171 113233 113359 113453 113539 113647 113749 113809 113909 113983 114067 114157 114217 114299 114407 114493 114601 114661 114749 114799 114889 115001 115079 115153 115249 115321 115399 115513 115597 115663
tL 2 2060 2055 2058 2052 2053 2062 2056 2055 2065 2058 2060 2063 2072 2069 2065 2071 2071 2065 2079 2077 2072 2068 2086 2063 2068 2076 2078 2072 2079 2079 2077 2083 2079 2088 2080 2081 2092 2078 2083 2081 2078 2095 2092 2096 2084 2097 2098 2100
q 111791 111857 111949 112031 112111 112199 112249 112303 112363 112507 112589 112687 112799 112909 112967 113027 113089 113147 113173 113279 113363 113467 113557 113657 113759 113819 113921 113989 114073 114161 114221 114311 114419 114547 114613 114671 114757 114809 114901 115013 115099 115163 115259 115327 115421 115523 115601 115679
tL 2 2057 2055 2059 2056 2047 2060 2069 2065 2056 2063 2068 2050 2065 2075 2056 2074 2063 2065 2074 2065 2078 2068 2075 2080 2069 2067 2082 2076 2082 2079 2085 2072 2084 2084 2087 2090 2093 2091 2093 2082 2087 2094 2089 2092 2090 2085 2085 2094
60
q 111799 111863 111953 112061 112121 112207 112253 112327 112397 112543 112601 112691 112807 112913 112979 113039 113093 113149 113177 113287 113371 113489 113567 113683 113761 113837 113933 114001 114077 114167 114229 114319 114451 114553 114617 114679 114761 114827 114913 115019 115117 115183 115279 115331 115429 115547 115603 115693
tL 2 2066 2057 2051 2065 2055 2054 2061 2065 2061 2062 2060 2077 2062 2064 2069 2073 2064 2063 2068 2068 2074 2067 2074 2078 2070 2077 2080 2078 2077 2080 2074 2082 2082 2089 2083 2085 2072 2078 2093 2081 2093 2090 2102 2090 2099 2097 2092 2093
q 111821 111869 111959 112067 112129 112213 112261 112331 112403 112559 112603 112741 112831 112919 112997 113041 113111 113153 113189 113327 113381 113497 113569 113717 113777 113843 113947 114013 114083 114193 114259 114329 114467 114571 114641 114689 114769 114833 114941 115021 115123 115201 115301 115337 115459 115553 115613 115727
tL 2 2050 2057 2067 2069 2049 2065 2049 2061 2069 2064 2066 2072 2072 2066 2068 2064 2071 2075 2073 2072 2067 2073 2087 2061 2075 2083 2067 2074 2070 2091 2079 2086 2088 2088 2090 2077 2094 2083 2094 2094 2082 2098 2094 2090 2094 2095 2097 2098
q 111827 111871 111973 112069 112139 112223 112279 112337 112429 112571 112621 112757 112843 112921 113011 113051 113117 113159 113209 113329 113383 113501 113591 113719 113779 113891 113957 114031 114089 114197 114269 114343 114473 114577 114643 114691 114773 114847 114967 115057 115127 115211 115303 115343 115469 115561 115631 115733
tL 2 2053 2068 2048 2062 2056 2058 2069 2065 2066 2059 2061 2077 2067 2077 2072 2079 2075 2065 2080 2070 2069 2075 2076 2074 2078 2080 2084 2081 2077 2088 2085 2080 2087 2086 2078 2085 2085 2090 2093 2094 2098 2090 2093 2089 2093 2088 2090 2095
Table 5. Continue 4 q 115741 115781 115837 115879 115963 116047 116141 116239 116329 116411 116483 116549 116687 116789 116849 116929 116993 117071 117167 117241 117329 117413 117503 117571 117671 117727 117787 117851 117917 117991 118081 118189 118259 118373 118453 118549 118633 118709 118799 118891 118931 119057 119107 119191 119293 119389 119513 119591
tL 2 2086 2100 2091 2095 2102 2097 2096 2108 2099 2104 2101 2106 2109 2101 2108 2111 2107 2114 2106 2109 2110 2109 2111 2120 2117 2113 2122 2106 2115 2117 2119 2124 2133 2124 2113 2116 2122 2122 2128 2134 2140 2117 2132 2130 2128 2136 2140 2132
q 115751 115783 115849 115883 115979 116089 116159 116243 116341 116423 116491 116579 116689 116791 116867 116933 117017 117101 117191 117251 117331 117427 117511 117577 117673 117731 117797 117877 117937 118033 118093 118211 118273 118387 118457 118571 118661 118717 118801 118897 118967 119069 119129 119227 119297 119417 119533 119611
tL 2 2099 2099 2089 2098 2094 2103 2105 2110 2108 2093 2102 2107 2100 2101 2106 2102 2108 2106 2112 2103 2114 2099 2116 2119 2117 2123 2113 2111 2117 2115 2119 2122 2110 2111 2114 2119 2134 2125 2127 2125 2125 2138 2130 2125 2125 2129 2131 2132
q 115757 115793 115853 115891 115981 116099 116167 116257 116351 116437 116507 116593 116707 116797 116881 116953 117023 117109 117193 117259 117353 117431 117517 117617 117679 117751 117809 117881 117959 118037 118127 118213 118277 118399 118463 118583 118669 118739 118819 118901 118973 119083 119131 119233 119299 119419 119549 119617
tL 2 2090 2093 2096 2101 2104 2094 2101 2102 2098 2105 2105 2108 2114 2100 2108 2111 2108 2109 2109 2122 2106 2101 2113 2123 2105 2111 2109 2099 2120 2126 2128 2126 2116 2115 2120 2118 2128 2123 2122 2125 2135 2129 2120 2130 2118 2127 2137 2126
q 115763 115807 115859 115901 115987 116101 116177 116269 116359 116443 116531 116639 116719 116803 116903 116959 117037 117119 117203 117269 117361 117437 117529 117619 117701 117757 117811 117883 117973 118043 118147 118219 118297 118409 118471 118589 118673 118747 118831 118903 119027 119087 119159 119237 119311 119429 119551 119627
tL 2 2097 2090 2100 2092 2108 2097 2103 2098 2092 2109 2099 2106 2113 2095 2104 2116 2098 2108 2100 2107 2116 2112 2108 2112 2114 2105 2116 2115 2121 2114 2120 2120 2109 2125 2126 2121 2120 2123 2133 2122 2127 2127 2130 2140 2134 2139 2130 2139
61
q 115769 115811 115861 115903 116009 116107 116189 116273 116371 116447 116533 116657 116731 116819 116911 116969 117041 117127 117209 117281 117371 117443 117539 117643 117703 117763 117833 117889 117977 118051 118163 118247 118343 118411 118493 118603 118681 118751 118843 118907 119033 119089 119173 119243 119321 119447 119557 119633
tL 2 2093 2096 2103 2093 2102 2092 2099 2100 2102 2101 2094 2106 2106 2118 2104 2106 2115 2115 2118 2107 2112 2114 2120 2114 2119 2105 2110 2117 2115 2121 2126 2120 2130 2121 2134 2118 2120 2127 2113 2130 2136 2129 2122 2130 2128 2133 2129 2133
q 115771 115823 115873 115931 116027 116113 116191 116279 116381 116461 116537 116663 116741 116827 116923 116981 117043 117133 117223 117307 117373 117497 117541 117649 117709 117773 117839 117899 117979 118057 118169 118249 118361 118423 118529 118619 118687 118757 118861 118913 119039 119099 119179 119267 119359 119489 119563 119653
tL 2 2108 2092 2097 2100 2092 2089 2100 2113 2105 2102 2098 2104 2114 2106 2103 2108 2113 2104 2109 2119 2109 2104 2110 2119 2116 2118 2111 2112 2124 2127 2107 2113 2114 2121 2114 2120 2123 2133 2117 2129 2120 2116 2125 2142 2135 2131 2138 2125
q 115777 115831 115877 115933 116041 116131 116201 116293 116387 116471 116539 116681 116747 116833 116927 116989 117053 117163 117239 117319 117389 117499 117563 117659 117721 117779 117841 117911 117989 118061 118171 118253 118369 118429 118543 118621 118691 118787 118873 118927 119047 119101 119183 119291 119363 119503 119569 119657
tL 2 2103 2098 2100 2103 2105 2094 2107 2100 2097 2111 2113 2104 2104 2096 2111 2108 2109 2114 2114 2111 2110 2114 2108 2111 2121 2118 2101 2121 2122 2125 2119 2122 2113 2128 2126 2115 2123 2125 2129 2128 2136 2125 2127 2124 2122 2127 2128 2138
Table 5. Continue 5 q 119659 119723 119797 119851 119953 120017 120091 120181 120277 120371 120427 120557 120623 120691 120763 120833 120899 120943 121019 121123 121189 121309 121351 121439 121501 121571 121631 121721 121853 121937 122011 122051 122147 122209 122279 122387 122453 122509 122599 122701 122789 122867 122953 123031 123121 123217 123311 123401
tL 2 2135 2127 2142 2133 2124 2135 2139 2140 2140 2143 2148 2146 2150 2147 2155 2140 2154 2136 2145 2150 2145 2157 2156 2148 2150 2146 2162 2150 2150 2158 2155 2160 2154 2164 2153 2154 2165 2151 2166 2157 2155 2166 2158 2161 2163 2174 2168 2174
q 119671 119737 119809 119869 119963 120041 120097 120193 120283 120383 120431 120563 120641 120709 120767 120847 120907 120947 121021 121139 121229 121313 121357 121441 121507 121577 121633 121727 121867 121949 122021 122053 122149 122219 122299 122389 122471 122527 122609 122719 122819 122869 122957 123049 123127 123229 123323 123407
tL 2 2133 2134 2125 2133 2138 2143 2132 2140 2144 2148 2142 2150 2150 2142 2143 2138 2135 2145 2157 2143 2151 2145 2153 2148 2157 2149 2156 2161 2158 2155 2163 2163 2154 2155 2170 2162 2162 2165 2161 2162 2159 2159 2160 2165 2166 2168 2165 2164
q 119677 119747 119813 119881 119971 120047 120103 120199 120293 120391 120473 120569 120647 120713 120779 120851 120917 120977 121039 121151 121259 121321 121367 121447 121523 121579 121637 121763 121883 121951 122027 122069 122167 122231 122321 122393 122477 122533 122611 122741 122827 122887 122963 123059 123143 123239 123341 123419
tL 2 2135 2126 2138 2136 2137 2134 2139 2141 2151 2136 2142 2145 2133 2147 2143 2136 2147 2146 2152 2147 2149 2152 2144 2154 2163 2154 2153 2148 2168 2160 2154 2154 2156 2166 2160 2160 2156 2161 2152 2165 2175 2162 2164 2169 2164 2169 2167 2172
q 119687 119759 119827 119891 119981 120049 120121 120209 120299 120397 120503 120577 120661 120721 120811 120863 120919 120997 121061 121157 121267 121327 121369 121453 121531 121591 121661 121787 121889 121963 122029 122081 122173 122251 122323 122399 122489 122557 122651 122743 122833 122891 122971 123077 123169 123259 123373 123427
tL 2 2137 2127 2138 2139 2147 2139 2139 2145 2145 2133 2138 2150 2148 2150 2147 2146 2143 2141 2155 2142 2146 2148 2140 2151 2150 2150 2148 2160 2155 2155 2155 2157 2159 2156 2170 2148 2157 2168 2165 2164 2164 2168 2174 2164 2169 2154 2163 2175
62
q 119689 119771 119831 119921 119983 120067 120157 120223 120319 120401 120511 120587 120671 120737 120817 120871 120929 121001 121063 121169 121271 121333 121379 121469 121547 121607 121687 121789 121909 121967 122033 122099 122201 122263 122327 122401 122497 122561 122653 122753 122839 122921 123001 123083 123191 123269 123377 123433
tL 2 2134 2137 2131 2131 2138 2140 2139 2145 2141 2141 2142 2152 2137 2149 2140 2150 2154 2151 2153 2155 2160 2143 2141 2152 2154 2151 2146 2157 2151 2161 2162 2151 2160 2159 2159 2160 2170 2160 2162 2169 2161 2157 2167 2171 2164 2170 2165 2171
q 119699 119773 119839 119923 119993 120077 120163 120233 120331 120409 120539 120607 120677 120739 120823 120877 120937 121007 121067 121171 121283 121343 121403 121487 121553 121609 121697 121801 121921 121993 122039 122117 122203 122267 122347 122443 122501 122579 122663 122761 122849 122929 123007 123091 123203 123289 123379 123439
tL 2 2128 2146 2134 2141 2140 2140 2144 2139 2137 2132 2147 2155 2140 2140 2146 2138 2149 2149 2146 2146 2155 2146 2155 2160 2159 2152 2159 2149 2157 2156 2162 2155 2154 2165 2166 2163 2164 2157 2162 2164 2171 2168 2164 2173 2165 2163 2171 2174
q 119701 119783 119849 119929 120011 120079 120167 120247 120349 120413 120551 120619 120689 120749 120829 120889 120941 121013 121081 121181 121291 121349 121421 121493 121559 121621 121711 121843 121931 121997 122041 122131 122207 122273 122363 122449 122503 122597 122693 122777 122861 122939 123017 123113 123209 123307 123397 123449
tL 2 2132 2142 2136 2140 2144 2129 2133 2144 2152 2134 2143 2144 2144 2146 2149 2154 2145 2152 2138 2146 2141 2144 2159 2149 2159 2152 2155 2155 2153 2159 2150 2156 2165 2157 2160 2166 2159 2158 2164 2165 2166 2161 2168 2172 2167 2183 2162 2172
Table 5. Continue 6 q 123457 123527 123601 123677 123737 123829 123931 123997 124123 124183 124277 124339 124429 124493 124577 124679 124753 124793 124907 124991 125101 125149 125231 125311 125399 125497 125597 125659 125717 125791 125899 125963 126037 126127 126223 126307 126359 126473 126541 126631 126719 126781 126913 127031 127123 127217 127277 127343
tL 2 2164 2172 2177 2185 2171 2174 2174 2174 2182 2174 2184 2175 2185 2183 2175 2180 2190 2188 2184 2187 2184 2191 2185 2192 2179 2190 2185 2191 2183 2195 2195 2193 2208 2201 2202 2203 2206 2196 2200 2193 2202 2211 2202 2203 2201 2205 2200 2210
q 123479 123547 123619 123701 123757 123833 123941 124001 124133 124193 124291 124343 124433 124513 124601 124693 124759 124799 124909 125003 125107 125183 125243 125329 125407 125507 125617 125669 125731 125803 125921 126001 126041 126131 126227 126311 126397 126481 126547 126641 126733 126823 126923 127033 127133 127219 127289 127363
tL 2 2178 2166 2170 2168 2186 2182 2168 2168 2175 2183 2178 2175 2174 2177 2183 2172 2174 2192 2189 2184 2188 2192 2183 2190 2189 2194 2189 2194 2198 2193 2202 2193 2195 2197 2207 2199 2195 2196 2197 2198 2206 2205 2205 2206 2201 2200 2206 2210
q 123491 123551 123631 123707 123787 123853 123953 124021 124139 124199 124297 124349 124447 124529 124609 124699 124769 124819 124919 125017 125113 125197 125261 125339 125423 125509 125621 125683 125737 125813 125927 126011 126047 126143 126229 126317 126421 126487 126551 126653 126739 126827 126943 127037 127139 127241 127291 127373
tL 2 2171 2171 2175 2167 2182 2170 2179 2176 2170 2167 2176 2179 2176 2179 2184 2175 2183 2184 2181 2186 2179 2191 2189 2192 2185 2193 2190 2192 2190 2199 2189 2187 2197 2201 2200 2203 2203 2196 2197 2202 2207 2209 2201 2201 2212 2213 2206 2205
q 123493 123553 123637 123719 123791 123863 123973 124067 124147 124213 124301 124351 124459 124541 124633 124703 124771 124823 124951 125029 125117 125201 125269 125353 125429 125527 125627 125687 125743 125821 125929 126013 126067 126151 126233 126323 126433 126491 126583 126683 126743 126839 126949 127051 127157 127247 127297 127399
tL 2 2173 2168 2163 2179 2179 2178 2179 2180 2183 2174 2178 2179 2179 2177 2185 2183 2178 2190 2179 2192 2180 2189 2186 2184 2186 2184 2200 2192 2200 2177 2194 2196 2195 2205 2180 2190 2198 2207 2196 2206 2200 2202 2198 2202 2200 2205 2211 2206
63
q 123499 123581 123653 123727 123803 123887 123979 124087 124153 124231 124303 124363 124471 124543 124643 124717 124777 124847 124979 125053 125119 125207 125287 125371 125441 125539 125639 125693 125753 125863 125933 126019 126079 126173 126241 126337 126443 126493 126601 126691 126751 126851 126961 127079 127163 127249 127301 127403
tL 2 2166 2180 2166 2172 2180 2169 2176 2188 2171 2173 2173 2181 2182 2178 2186 2186 2177 2184 2185 2186 2181 2198 2192 2193 2190 2189 2193 2194 2183 2190 2199 2193 2200 2195 2199 2199 2202 2212 2201 2199 2198 2199 2213 2203 2200 2208 2206 2208
q 123503 123583 123661 123731 123817 123911 123983 124097 124171 124247 124309 124367 124477 124561 124669 124721 124781 124853 124981 125063 125131 125219 125299 125383 125453 125551 125641 125707 125777 125887 125941 126023 126097 126199 126257 126341 126457 126499 126611 126703 126757 126857 126967 127081 127189 127261 127321 127423
tL 2 2173 2161 2182 2169 2174 2170 2173 2180 2175 2182 2180 2179 2180 2179 2184 2190 2190 2181 2179 2182 2191 2195 2180 2190 2197 2190 2198 2195 2201 2194 2193 2198 2194 2197 2195 2192 2193 2191 2199 2199 2201 2207 2205 2209 2201 2209 2202 2210
q 123517 123593 123667 123733 123821 123923 123989 124121 124181 124249 124337 124427 124489 124567 124673 124739 124783 124897 124987 125093 125141 125221 125303 125387 125471 125591 125651 125711 125789 125897 125959 126031 126107 126211 126271 126349 126461 126517 126613 126713 126761 126859 126989 127103 127207 127271 127331 127447
tL 2 2177 2176 2169 2177 2179 2162 2171 2173 2180 2170 2179 2171 2182 2182 2175 2179 2179 2183 2181 2185 2194 2176 2186 2190 2187 2187 2193 2179 2185 2195 2197 2200 2181 2196 2202 2203 2194 2199 2195 2198 2204 2188 2205 2204 2202 2211 2207 2209
Table 5. Continue 7 q 127453 127549 127609 127679 127727 127817 127873 127979 128111 128189 128257 128339 128399 128467 128521 128621 128683 128813 128873 128951 128993 129083 129169 129229 129313 129419 129491 129533 129607 129719 129793 129917 130003 130073 130171 130253 130321 130379 130457 130523 130621 130657 130783 130843 130981 131063 131143 131249
tL 2 2212 2218 2214 2211 2212 2212 2214 2223 2213 2223 2213 2213 2217 2216 2224 2212 2230 2218 2224 2220 2221 2229 2231 2224 2228 2240 2221 2232 2238 2232 2229 2236 2231 2238 2238 2230 2231 2234 2226 2229 2239 2237 2230 2254 2243 2242 2244 2245
q 127481 127579 127637 127681 127733 127819 127877 127997 128113 128201 128273 128341 128411 128473 128549 128629 128693 128819 128879 128959 129001 129089 129187 129263 129341 129439 129497 129539 129629 129733 129803 129919 130021 130079 130183 130259 130337 130399 130469 130531 130631 130681 130787 130859 130987 131071 131149 131251
tL 2 2212 2212 2216 2209 2207 2220 2214 2216 2221 2216 2210 2217 2214 2221 2231 2225 2223 2227 2223 2211 2224 2225 2227 2218 2223 2228 2227 2234 2228 2228 2240 2227 2226 2239 2235 2238 2234 2237 2229 2237 2238 2233 2247 2234 2239 2242 2247 2232
q 127487 127583 127643 127691 127739 127837 127913 128021 128119 128203 128287 128347 128413 128477 128551 128657 128717 128831 128881 128969 129011 129097 129193 129277 129347 129443 129499 129553 129631 129737 129841 129937 130027 130087 130199 130261 130343 130409 130477 130547 130633 130687 130807 130873 131009 131072 131171 131267
tL 2 2210 2208 2208 2219 2208 2219 2215 2208 2216 2224 2215 2215 2225 2222 2217 2220 2214 2214 2214 2221 2215 2228 2232 2220 2230 2223 2228 2224 2222 2238 2229 2237 2226 2241 2235 2234 2235 2240 2235 2247 2239 2235 2235 2234 2244 2240 2249 2237
q 127493 127591 127649 127703 127747 127843 127921 128033 128147 128213 128291 128351 128431 128483 128563 128659 128747 128833 128903 128971 129023 129113 129197 129281 129361 129449 129509 129581 129641 129749 129853 129953 130043 130099 130201 130267 130349 130411 130483 130553 130639 130693 130811 130927 131011 131101 131203 131293
tL 2 2209 2208 2211 2203 2213 2201 2202 2215 2216 2216 2229 2215 2208 2216 2218 2220 2220 2222 2226 2219 2230 2220 2222 2229 2224 2227 2223 2232 2224 2221 2225 2232 2240 2237 2233 2244 2234 2238 2231 2229 2230 2236 2240 2240 2234 2244 2240 2236
64
q 127507 127597 127657 127709 127763 127849 127931 128047 128153 128221 128311 128377 128437 128489 128591 128663 128749 128837 128923 128981 129037 129119 129209 129287 129379 129457 129517 129587 129643 129757 129887 129959 130051 130121 130211 130279 130363 130423 130489 130579 130643 130699 130817 130957 131023 131111 131213 131297
tL 2 2217 2216 2209 2211 2203 2210 2211 2206 2220 2221 2222 2215 2234 2207 2220 2226 2228 2220 2220 2230 2232 2227 2217 2222 2232 2213 2223 2234 2230 2232 2222 2229 2232 2240 2231 2229 2234 2244 2236 2238 2228 2246 2248 2229 2244 2239 2249 2238
q 127529 127601 127663 127711 127781 127859 127951 128053 128159 128237 128321 128389 128449 128509 128599 128669 128761 128857 128939 128983 129049 129121 129221 129289 129401 129461 129527 129589 129671 129763 129893 129967 130057 130127 130223 130303 130367 130439 130513 130589 130649 130729 130829 130969 131041 131113 131221 131303
tL 2 2208 2208 2213 2213 2211 2218 2213 2218 2218 2208 2216 2229 2215 2223 2219 2220 2232 2228 2219 2215 2217 2221 2224 2218 2236 2228 2228 2228 2233 2232 2227 2219 2229 2233 2233 2237 2236 2238 2235 2253 2231 2227 2240 2238 2243 2242 2243 2244
q 127541 127607 127669 127717 127807 127867 127973 128099 128173 128239 128327 128393 128461 128519 128603 128677 128767 128861 128941 128987 129061 129127 129223 129293 129403 129469 129529 129593 129707 129769 129901 129971 130069 130147 130241 130307 130369 130447 130517 130619 130651 130769 130841 130973 131059 131129 131231 131311
tL 2 2205 2219 2216 2221 2209 2208 2220 2211 2219 2206 2216 2221 2221 2225 2211 2235 2222 2226 2231 2221 2220 2226 2222 2224 2223 2233 2231 2232 2230 2234 2231 2241 2238 2237 2234 2228 2231 2229 2230 2233 2236 2237 2246 2252 2243 2237 2239 2253
Table 5. Continue 8 q 131317 131431 131489 131581 131671 131743 131797 131899 131959 132071 132169 132257 132331 132409 132511 132589 132647 132707 132761 132863 132953 133039 133109 133187 133277 133337 133417 133519 133631 133697 133781 133873 133981 134059 134153 134219 134291 134359 134437 134581 134669 134731 134839 134917 135007 135077 135181 135257
tL 2 2244 2250 2247 2252 2241 2242 2247 2247 2255 2253 2244 2254 2256 2254 2257 2258 2260 2255 2260 2249 2263 2261 2261 2266 2259 2261 2256 2276 2266 2271 2257 2269 2267 2276 2277 2275 2277 2269 2274 2282 2280 2274 2280 2274 2273 2278 2279 2291
q 131321 131437 131497 131591 131687 131749 131837 131909 131969 132103 132173 132263 132347 132421 132523 132607 132661 132709 132763 132887 132961 133051 133117 133201 133279 133349 133439 133541 133633 133709 133801 133877 133993 134077 134161 134227 134293 134363 134443 134587 134677 134741 134851 134921 135017 135089 135193 135271
tL 2 2238 2251 2239 2252 2244 2250 2243 2244 2255 2250 2246 2254 2257 2247 2254 2258 2257 2266 2262 2254 2260 2267 2268 2257 2262 2267 2269 2268 2267 2276 2267 2268 2265 2276 2272 2266 2269 2277 2265 2274 2262 2274 2280 2279 2276 2277 2282 2274
q 131357 131441 131501 131611 131701 131759 131839 131927 132001 132109 132199 132283 132361 132437 132527 132611 132667 132721 132817 132893 132967 133069 133121 133213 133283 133351 133447 133543 133649 133711 133811 133919 133999 134081 134171 134243 134327 134369 134471 134591 134681 134753 134857 134923 135019 135101 135197 135277
tL 2 2252 2247 2249 2249 2245 2252 2246 2251 2262 2247 2255 2256 2257 2254 2260 2253 2251 2248 2253 2261 2250 2256 2251 2265 2258 2272 2257 2268 2265 2263 2272 2259 2274 2277 2273 2274 2274 2283 2274 2280 2274 2282 2270 2285 2279 2285 2289 2274
q 131363 131447 131507 131617 131707 131771 131849 131933 132019 132113 132229 132287 132367 132439 132529 132619 132679 132739 132833 132911 132971 133073 133153 133241 133303 133379 133451 133559 133657 133717 133813 133949 134033 134087 134177 134257 134333 134371 134489 134593 134683 134777 134867 134947 135029 135119 135209 135281
tL 2 2240 2242 2244 2235 2240 2235 2249 2248 2258 2249 2248 2249 2264 2245 2257 2250 2256 2256 2259 2258 2249 2261 2264 2248 2275 2256 2254 2254 2264 2269 2278 2271 2258 2268 2263 2279 2271 2268 2277 2277 2269 2273 2281 2285 2276 2284 2275 2273
65
q 131371 131449 131519 131627 131711 131777 131861 131939 132047 132137 132233 132299 132371 132469 132533 132623 132689 132749 132851 132929 132989 133087 133157 133253 133319 133387 133481 133571 133669 133723 133831 133963 134039 134089 134191 134263 134339 134399 134503 134597 134689 134789 134873 134951 135043 135131 135211 135283
tL 2 2246 2250 2236 2243 2252 2243 2254 2249 2254 2246 2253 2263 2256 2248 2248 2255 2258 2251 2256 2261 2251 2258 2262 2271 2262 2256 2268 2263 2263 2259 2274 2271 2268 2274 2266 2273 2271 2282 2277 2279 2272 2274 2284 2273 2278 2276 2278 2297
q 131381 131477 131543 131639 131713 131779 131891 131941 132049 132151 132241 132313 132383 132491 132541 132631 132697 132751 132857 132947 133013 133097 133169 133261 133321 133391 133493 133583 133673 133733 133843 133967 134047 134093 134207 134269 134341 134401 134507 134609 134699 134807 134887 134989 135049 135151 135221 135301
tL 2 2239 2258 2249 2251 2248 2250 2252 2246 2254 2260 2253 2249 2259 2257 2251 2263 2259 2266 2264 2257 2259 2261 2262 2267 2259 2262 2253 2274 2275 2270 2272 2271 2273 2277 2277 2268 2260 2279 2268 2274 2270 2274 2275 2273 2275 2273 2289 2281
q 131413 131479 131561 131641 131731 131783 131893 131947 132059 132157 132247 132329 132403 132499 132547 132637 132701 132757 132859 132949 133033 133103 133183 133271 133327 133403 133499 133597 133691 133769 133853 133979 134053 134129 134213 134287 134353 134417 134513 134639 134707 134837 134909 134999 135059 135173 135241 135319
tL 2 2258 2245 2249 2244 2248 2247 2241 2250 2254 2247 2249 2261 2260 2266 2250 2272 2245 2258 2257 2265 2265 2270 2265 2248 2262 2260 2268 2261 2264 2257 2270 2268 2278 2272 2271 2272 2272 2270 2275 2271 2262 2280 2274 2272 2280 2263 2281 2276
Table 5. Continue 9 q 135329 135403 135463 135559 135607 135661 135731 135841 135913 136033 136111 136207 136277 136343 136399 136463 136523 136601 136691 136751 136849 136943 136991 137117 137183 137251 137353 137399 137483 137587 137659 137771 137867 137941 138041 138107 138181 138251 138349 138427 138497 138571 138637 138731 138829 138899 139021 139123
tL 2 2273 2292 2280 2275 2288 2289 2279 2283 2285 2294 2296 2283 2295 2291 2291 2289 2296 2299 2291 2296 2287 2304 2304 2300 2308 2294 2302 2296 2309 2299 2307 2307 2305 2306 2301 2301 2309 2303 2301 2312 2302 2315 2307 2306 2314 2312 2326 2316
q 135347 135409 135467 135571 135613 135671 135743 135851 135929 136043 136133 136217 136303 136351 136403 136471 136531 136603 136693 136753 136859 136949 136993 137119 137191 137273 137359 137413 137491 137593 137699 137777 137869 137947 138053 138113 138191 138283 138371 138433 138511 138577 138641 138739 138841 138917 139033 139129
tL 2 2286 2271 2288 2285 2282 2291 2285 2279 2290 2292 2290 2290 2282 2292 2293 2291 2292 2292 2299 2297 2298 2293 2293 2297 2313 2301 2289 2309 2304 2295 2303 2306 2306 2310 2300 2314 2319 2310 2306 2311 2320 2312 2305 2307 2315 2319 2310 2327
q 135349 135427 135469 135581 135617 135697 135757 135859 135937 136057 136139 136223 136309 136361 136417 136481 136537 136607 136709 136769 136861 136951 136999 137131 137197 137279 137363 137437 137507 137597 137707 137791 137873 137957 138059 138139 138197 138289 138373 138449 138517 138581 138647 138763 138863 138923 139067 139133
tL 2 2278 2285 2284 2279 2279 2278 2282 2287 2295 2292 2286 2288 2297 2293 2291 2292 2292 2291 2291 2292 2295 2288 2285 2289 2296 2304 2299 2298 2311 2304 2299 2319 2307 2308 2312 2308 2304 2312 2308 2315 2301 2304 2312 2308 2311 2313 2307 2314
q 135353 135431 135479 135589 135623 135701 135781 135887 135977 136067 136163 136237 136319 136373 136421 136483 136541 136621 136711 136777 136879 136963 137029 137143 137201 137303 137369 137443 137519 137623 137713 137803 137909 137983 138071 138143 138209 138311 138389 138451 138547 138587 138661 138793 138869 138937 139079 139169
tL 2 2277 2285 2280 2280 2284 2278 2286 2290 2287 2295 2280 2293 2294 2292 2296 2293 2283 2289 2311 2292 2298 2300 2289 2293 2292 2303 2304 2299 2300 2304 2296 2286 2308 2309 2308 2306 2320 2316 2302 2314 2318 2308 2311 2309 2311 2314 2316 2319
66
q 135367 135433 135497 135593 135637 135719 135787 135893 135979 136069 136177 136247 136327 136379 136429 136501 136547 136649 136727 136811 136883 136973 137077 137147 137209 137321 137383 137447 137537 137633 137723 137827 137911 137993 138077 138157 138239 138319 138401 138461 138559 138599 138679 138797 138883 138959 139091 139177
tL 2 2285 2271 2277 2278 2282 2285 2279 2288 2289 2291 2299 2287 2283 2283 2284 2283 2300 2294 2292 2286 2283 2300 2289 2294 2310 2306 2299 2295 2303 2309 2305 2305 2309 2312 2312 2305 2311 2306 2315 2313 2309 2318 2307 2313 2312 2321 2321 2319
q 135389 135449 135511 135599 135647 135721 135799 135899 136013 136093 136189 136261 136333 136393 136447 136511 136559 136651 136733 136813 136889 136979 137087 137153 137219 137339 137387 137453 137567 137639 137737 137831 137927 137999 138079 138163 138241 138323 138403 138469 138563 138617 138683 138799 138889 138967 139109 139187
tL 2 2287 2290 2285 2285 2282 2285 2283 2285 2285 2278 2283 2285 2284 2283 2290 2294 2291 2294 2288 2285 2300 2296 2293 2290 2296 2297 2298 2298 2299 2301 2297 2302 2308 2305 2308 2314 2300 2308 2297 2318 2306 2300 2309 2319 2316 2318 2312 2320
q 135391 135461 135533 135601 135649 135727 135829 135911 136027 136099 136193 136273 136337 136397 136453 136519 136573 136657 136739 136841 136897 136987 137089 137177 137239 137341 137393 137477 137573 137653 137743 137849 137933 138007 138101 138179 138247 138337 138407 138493 138569 138629 138727 138821 138893 138977 139121 139199
tL 2 2280 2282 2281 2278 2277 2287 2282 2290 2282 2299 2282 2282 2284 2291 2282 2294 2281 2296 2297 2298 2290 2299 2296 2296 2310 2299 2313 2308 2306 2304 2305 2297 2308 2313 2308 2313 2305 2312 2312 2313 2310 2310 2318 2312 2310 2315 2326 2323
Table 5. Continue 10 q 139201 139303 139367 139429 139501 139597 139697 139753 139861 139939 139999 140123 140197 140269 140351 140419 140521 140593 140659 140729 140797 140867 140939 141067 141157 141223 141283 141371 141481 141551 141637 141689 141767 141833 141931 142007 142067 142159 142223 142357 142433 142547 142601 142699 142789 142873 142969 143093
tL 2 2311 2320 2329 2314 2319 2330 2333 2323 2326 2329 2318 2319 2329 2325 2328 2333 2331 2330 2336 2337 2328 2331 2334 2332 2329 2344 2336 2334 2340 2329 2335 2339 2344 2345 2351 2342 2336 2354 2345 2345 2341 2343 2348 2347 2358 2347 2348 2359
q 139241 139309 139369 139439 139511 139609 139703 139759 139871 139943 140009 140143 140207 140281 140363 140423 140527 140603 140663 140731 140813 140869 140977 141073 141161 141233 141301 141397 141497 141587 141649 141697 141769 141851 141937 142019 142097 142169 142231 142369 142453 142553 142607 142711 142799 142897 142973 143107
tL 2 2320 2310 2320 2322 2304 2327 2325 2327 2326 2318 2317 2321 2330 2319 2319 2327 2344 2329 2329 2324 2326 2328 2332 2337 2345 2334 2335 2334 2336 2331 2334 2344 2334 2356 2338 2332 2352 2355 2338 2350 2348 2347 2343 2346 2348 2350 2354 2353
q 139267 139313 139387 139457 139537 139619 139709 139787 139883 139967 140053 140159 140221 140297 140381 140443 140533 140611 140677 140741 140827 140891 140983 141079 141179 141241 141307 141403 141499 141601 141653 141707 141773 141853 141941 142031 142099 142183 142237 142381 142469 142559 142609 142733 142811 142903 142979 143111
tL 2 2316 2320 2318 2318 2323 2324 2309 2330 2325 2329 2330 2328 2330 2332 2332 2323 2335 2322 2323 2323 2330 2328 2330 2330 2331 2333 2341 2336 2335 2346 2336 2335 2328 2341 2337 2340 2339 2337 2339 2353 2351 2358 2351 2351 2352 2345 2357 2356
q 139273 139333 139393 139459 139547 139627 139721 139801 139891 139969 140057 140167 140227 140317 140401 140449 140549 140617 140681 140759 140831 140893 140989 141101 141181 141257 141311 141413 141509 141613 141667 141709 141793 141863 141959 142039 142111 142189 142271 142391 142501 142567 142619 142757 142837 142907 142981 143113
tL 2 2319 2327 2319 2308 2308 2333 2324 2319 2329 2324 2312 2322 2325 2324 2336 2322 2332 2328 2337 2328 2331 2333 2344 2327 2332 2338 2330 2340 2341 2332 2338 2339 2339 2346 2350 2345 2338 2345 2345 2346 2342 2341 2350 2352 2348 2347 2354 2353
67
q 139291 139339 139397 139483 139571 139661 139729 139813 139901 139981 140069 140171 140237 140321 140407 140453 140551 140627 140683 140761 140837 140897 141023 141107 141199 141263 141319 141439 141511 141619 141671 141719 141803 141871 141961 142049 142123 142193 142297 142403 142529 142573 142657 142759 142841 142939 142993 143137
tL 2 2313 2323 2320 2320 2324 2320 2322 2318 2322 2317 2328 2324 2326 2318 2328 2327 2329 2322 2343 2336 2326 2333 2337 2336 2345 2333 2333 2330 2343 2345 2343 2339 2339 2346 2330 2349 2333 2346 2348 2338 2345 2358 2351 2352 2351 2348 2351 2350
q 139297 139343 139409 139487 139589 139663 139739 139831 139907 139987 140071 140177 140249 140333 140411 140473 140557 140629 140689 140773 140839 140909 141041 141121 141209 141269 141353 141443 141529 141623 141677 141731 141811 141907 141971 142057 142151 142211 142319 142421 142537 142589 142673 142771 142867 142949 143053 143141
tL 2 2308 2320 2316 2320 2333 2320 2322 2319 2322 2318 2330 2325 2327 2313 2332 2330 2330 2328 2328 2326 2326 2335 2336 2330 2338 2346 2353 2331 2336 2335 2335 2337 2339 2344 2345 2347 2342 2353 2345 2355 2351 2352 2348 2362 2355 2352 2351 2352
q 139301 139361 139423 139493 139591 139681 139747 139837 139921 139991 140111 140191 140263 140339 140417 140477 140587 140639 140717 140779 140863 140929 141061 141131 141221 141277 141359 141461 141539 141629 141679 141761 141829 141917 141991 142061 142157 142217 142327 142427 142543 142591 142697 142787 142871 142963 143063 143159
tL 2 2311 2310 2317 2322 2311 2319 2318 2324 2322 2319 2327 2326 2332 2326 2325 2332 2339 2331 2341 2330 2341 2330 2338 2340 2339 2342 2328 2338 2331 2345 2338 2332 2339 2341 2352 2342 2340 2349 2344 2358 2334 2337 2341 2349 2353 2355 2354 2351
Table 5. Continue 11 q 143177 143263 143387 143477 143519 143593 143669 143743 143827 143947 144031 144161 144241 144307 144407 144479 144569 144659 144737 144817 144899 144983 145063 145177 145267 145381 145451 145511 145577 145661 145723 145807 145903 145987 146051 146117 146213 146299 146381 146449 146543 146647 146719 146819 146893 146983 147073 147151
tL 2 2353 2349 2357 2358 2368 2356 2359 2365 2359 2359 2370 2355 2360 2354 2355 2361 2367 2363 2366 2374 2372 2362 2370 2365 2364 2376 2370 2375 2371 2371 2383 2384 2381 2374 2377 2375 2384 2380 2374 2382 2378 2386 2375 2383 2383 2378 2388 2380
q 143197 143281 143401 143483 143527 143609 143677 143779 143831 143953 144037 144163 144247 144311 144409 144481 144577 144667 144751 144829 144917 145007 145069 145193 145283 145391 145459 145513 145589 145679 145753 145819 145931 145991 146057 146141 146221 146309 146383 146477 146563 146669 146743 146833 146917 146987 147083 147163
tL 2 2358 2344 2360 2350 2356 2355 2354 2357 2361 2356 2355 2360 2366 2360 2359 2360 2367 2380 2372 2362 2374 2372 2369 2370 2366 2368 2369 2369 2379 2367 2381 2376 2372 2381 2378 2373 2384 2384 2377 2375 2381 2381 2390 2388 2379 2387 2388 2391
q 143239 143287 143413 143489 143537 143617 143687 143791 143833 143971 144061 144167 144253 144323 144413 144497 144583 144671 144757 144839 144931 145009 145091 145207 145289 145399 145463 145517 145601 145681 145757 145823 145933 146009 146059 146161 146239 146317 146389 146513 146581 146677 146749 146837 146921 146989 147089 147179
tL 2 2349 2351 2350 2367 2355 2356 2356 2359 2348 2349 2356 2370 2357 2360 2363 2360 2359 2368 2362 2367 2365 2372 2372 2378 2368 2378 2375 2372 2371 2385 2373 2383 2381 2379 2383 2388 2386 2372 2377 2372 2380 2377 2385 2388 2391 2381 2387 2392
q 143243 143291 143419 143501 143551 143629 143699 143797 143873 143977 144071 144169 144259 144341 144427 144511 144589 144701 144763 144847 144941 145021 145109 145213 145303 145417 145471 145531 145603 145687 145759 145829 145949 146011 146063 146173 146249 146323 146407 146519 146603 146681 146767 146843 146933 147011 147097 147197
tL 2 2355 2358 2356 2358 2356 2369 2364 2344 2352 2377 2354 2357 2361 2367 2361 2375 2371 2371 2364 2378 2365 2362 2374 2388 2367 2376 2373 2379 2369 2370 2387 2378 2381 2379 2374 2376 2380 2382 2382 2385 2381 2380 2394 2385 2395 2388 2382 2384
68
q 143249 143329 143443 143503 143567 143641 143711 143807 143879 143981 144073 144173 144271 144349 144439 144539 144593 144709 144773 144883 144961 145031 145121 145219 145307 145423 145477 145543 145633 145703 145771 145861 145963 146021 146077 146191 146273 146347 146417 146521 146609 146683 146777 146849 146941 147029 147107 147209
tL 2 2346 2365 2352 2351 2370 2358 2352 2360 2360 2357 2370 2367 2352 2366 2365 2362 2372 2362 2358 2360 2362 2366 2364 2361 2365 2377 2364 2375 2369 2371 2378 2388 2380 2373 2367 2385 2376 2384 2370 2376 2385 2378 2386 2379 2390 2382 2388 2377
q 143257 143333 143461 143509 143569 143651 143719 143813 143881 143999 144103 144203 144289 144379 144451 144541 144611 144719 144779 144887 144967 145037 145133 145253 145349 145433 145487 145547 145637 145709 145777 145879 145967 146023 146093 146197 146291 146359 146423 146527 146617 146689 146801 146857 146953 147031 147137 147211
tL 2 2350 2349 2354 2360 2363 2355 2356 2355 2357 2362 2363 2366 2361 2361 2359 2366 2370 2372 2369 2375 2362 2373 2380 2362 2369 2378 2376 2376 2372 2370 2381 2375 2381 2369 2382 2385 2383 2384 2376 2384 2374 2388 2395 2381 2378 2394 2382 2395
q 143261 143357 143467 143513 143573 143653 143729 143821 143909 144013 144139 144223 144299 144383 144461 144563 144629 144731 144791 144889 144973 145043 145139 145259 145361 145441 145501 145549 145643 145721 145799 145897 145969 146033 146099 146203 146297 146369 146437 146539 146639 146701 146807 146891 146977 147047 147139 147221
tL 2 2351 2354 2349 2352 2343 2350 2360 2358 2362 2353 2359 2363 2368 2358 2361 2370 2368 2371 2379 2365 2363 2372 2368 2379 2376 2378 2365 2366 2365 2380 2371 2382 2376 2375 2371 2384 2375 2385 2373 2380 2391 2385 2381 2373 2379 2392 2391 2384
Table 5. Continue 12 q 147227 147299 147377 147451 147547 147617 147703 147773 147853 147977 148079 148157 148243 148361 148429 148513 148609 148691 148763 148859 148921 148991 149057 149111 149173 149257 149341 149411 149491 149543 149627 149731 149827 149899 149971 150067 150131 150211 150299 150379 150439 150551 150611 150743 150833 150901 150979 151049
tL 2 2386 2394 2381 2393 2393 2397 2387 2393 2391 2397 2388 2396 2391 2398 2401 2395 2388 2401 2400 2411 2408 2395 2396 2405 2413 2396 2404 2408 2401 2405 2408 2414 2410 2407 2407 2417 2425 2419 2412 2414 2427 2402 2415 2420 2418 2425 2419 2424
q 147229 147311 147391 147457 147551 147629 147709 147779 147859 147997 148091 148171 148249 148367 148439 148517 148627 148693 148781 148861 148927 148997 149059 149113 149183 149269 149351 149417 149497 149551 149629 149749 149837 149909 149993 150077 150151 150217 150301 150383 150473 150559 150617 150767 150847 150907 150989 151051
tL 2 2385 2391 2390 2389 2394 2390 2407 2388 2393 2397 2393 2402 2397 2396 2400 2407 2397 2408 2407 2394 2403 2402 2407 2404 2399 2401 2405 2409 2405 2411 2408 2412 2410 2399 2409 2410 2419 2417 2416 2416 2415 2423 2410 2420 2416 2423 2422 2433
q 147253 147319 147397 147481 147557 147647 147727 147787 147863 148013 148123 148193 148279 148381 148457 148531 148633 148711 148783 148867 148931 149011 149069 149119 149197 149287 149371 149419 149503 149561 149689 149759 149839 149911 150001 150083 150169 150221 150323 150401 150497 150571 150649 150769 150869 150919 150991 151057
tL 2 2396 2389 2393 2392 2392 2399 2390 2396 2394 2394 2400 2386 2391 2402 2400 2392 2399 2404 2406 2404 2405 2411 2403 2399 2398 2411 2400 2412 2410 2415 2412 2403 2419 2410 2406 2408 2410 2413 2416 2408 2407 2417 2411 2421 2431 2416 2415 2429
q 147263 147331 147401 147487 147571 147661 147739 147793 147881 148021 148139 148199 148301 148387 148469 148537 148639 148721 148793 148873 148933 149021 149077 149143 149213 149297 149377 149423 149519 149563 149711 149767 149861 149921 150011 150089 150193 150223 150329 150407 150503 150583 150659 150779 150881 150929 151007 151091
tL 2 2392 2396 2394 2395 2390 2384 2386 2400 2390 2388 2405 2402 2404 2384 2379 2399 2396 2397 2396 2409 2403 2409 2401 2411 2407 2395 2408 2412 2400 2408 2416 2408 2407 2404 2406 2407 2404 2413 2409 2417 2420 2417 2411 2421 2411 2415 2425 2424
69
q 147283 147341 147409 147503 147583 147671 147743 147799 147919 148061 148147 148201 148303 148399 148471 148549 148663 148723 148817 148877 148949 149027 149087 149153 149239 149309 149381 149441 149521 149579 149713 149771 149867 149939 150041 150091 150197 150239 150343 150413 150517 150587 150697 150791 150883 150959 151009 151121
tL 2 2396 2385 2400 2389 2392 2388 2393 2401 2402 2397 2402 2393 2397 2397 2409 2412 2393 2406 2401 2408 2408 2410 2401 2398 2420 2402 2421 2411 2408 2404 2402 2411 2402 2419 2410 2412 2414 2427 2411 2426 2410 2423 2418 2428 2425 2420 2415 2419
q 147289 147347 147419 147517 147607 147673 147761 147811 147937 148063 148151 148207 148331 148403 148483 148573 148667 148727 148829 148891 148957 149033 149099 149159 149249 149323 149393 149459 149531 149603 149717 149791 149873 149953 150053 150097 150203 150247 150373 150427 150523 150589 150707 150797 150889 150961 151013 151141
tL 2 2383 2393 2387 2389 2386 2395 2391 2403 2391 2403 2394 2397 2399 2397 2397 2392 2404 2400 2407 2414 2397 2405 2396 2407 2404 2403 2413 2408 2403 2403 2404 2420 2410 2422 2419 2418 2424 2404 2423 2417 2415 2422 2416 2420 2429 2418 2415 2425
q 147293 147353 147449 147541 147613 147689 147769 147827 147949 148073 148153 148229 148339 148411 148501 148579 148669 148747 148853 148913 148961 149053 149101 149161 149251 149333 149399 149489 149533 149623 149729 149803 149893 149969 150061 150107 150209 150287 150377 150431 150533 150607 150721 150827 150893 150967 151027 151153
tL 2 2392 2378 2385 2387 2386 2384 2388 2388 2386 2398 2389 2384 2401 2395 2406 2399 2391 2396 2406 2404 2409 2396 2407 2409 2411 2412 2410 2422 2404 2412 2410 2415 2410 2415 2416 2411 2396 2417 2420 2417 2418 2420 2418 2419 2420 2419 2416 2425
Table 5. Continue 13 q 151157 151237 151289 151379 151451 151523 151579 151643 151703 151787 151871 151939 152039 152111 152213 152293 152393 152443 152539 152629 152723 152809 152851 152941 153001 153107 153259 153319 153407 153457 153523 153611 153733 153841 153929 154001 154079 154157 154243 154313 154387 154493 154589 154669 154747 154823 154897 155003
tL 2 2422 2418 2428 2427 2419 2435 2419 2427 2427 2425 2435 2418 2415 2434 2433 2433 2431 2423 2436 2447 2443 2440 2436 2433 2431 2443 2436 2436 2435 2449 2438 2443 2445 2451 2442 2448 2440 2442 2455 2440 2455 2452 2450 2442 2453 2449 2453 2452
q 151163 151241 151303 151381 151471 151531 151597 151651 151717 151799 151883 151967 152041 152123 152219 152297 152407 152459 152563 152639 152729 152819 152857 152947 153059 153113 153269 153337 153409 153469 153529 153623 153739 153871 153941 154027 154081 154159 154247 154321 154409 154501 154591 154681 154753 154841 154927 155009
tL 2 2423 2427 2414 2423 2420 2429 2425 2419 2430 2419 2437 2420 2430 2432 2434 2426 2443 2443 2434 2441 2436 2442 2425 2432 2434 2447 2446 2447 2442 2442 2452 2453 2453 2445 2451 2443 2452 2454 2448 2453 2445 2452 2446 2452 2455 2453 2454 2454
q 151169 151243 151321 151391 151477 151537 151603 151667 151729 151813 151897 151969 152063 152147 152231 152311 152417 152461 152567 152641 152753 152821 152879 152953 153067 153133 153271 153343 153421 153487 153533 153641 153743 153877 153947 154043 154087 154181 154267 154333 154417 154523 154613 154691 154769 154849 154933 155017
tL 2 2420 2426 2419 2430 2424 2422 2434 2438 2446 2428 2428 2420 2430 2438 2431 2434 2436 2414 2434 2432 2435 2436 2439 2439 2432 2445 2440 2447 2446 2446 2442 2437 2440 2443 2441 2447 2452 2457 2451 2444 2451 2459 2458 2452 2453 2456 2448 2461
q 151171 151247 151337 151397 151483 151549 151607 151673 151733 151817 151901 152003 152077 152183 152239 152363 152419 152501 152597 152657 152767 152833 152897 152959 153071 153137 153277 153353 153427 153499 153557 153649 153749 153887 153949 154057 154097 154183 154277 154339 154423 154543 154619 154699 154787 154871 154937 155027
tL 2 2425 2421 2426 2418 2422 2429 2436 2427 2425 2437 2433 2435 2432 2432 2429 2432 2433 2428 2436 2443 2438 2436 2447 2437 2437 2447 2430 2447 2441 2447 2444 2440 2439 2438 2448 2452 2453 2446 2449 2441 2456 2446 2455 2455 2465 2454 2458 2467
70
q 151189 151253 151339 151423 151499 151553 151609 151681 151769 151841 151903 152017 152081 152189 152249 152377 152423 152519 152599 152671 152777 152837 152899 152981 153073 153151 153281 153359 153437 153509 153563 153689 153757 153889 153953 154061 154111 154211 154279 154351 154439 154571 154621 154723 154789 154873 154943 155047
tL 2 2413 2429 2429 2428 2430 2427 2430 2430 2421 2425 2426 2431 2433 2434 2437 2431 2444 2437 2441 2430 2441 2440 2429 2449 2436 2449 2451 2441 2455 2436 2440 2443 2443 2448 2453 2437 2443 2456 2455 2451 2451 2451 2465 2453 2451 2458 2462 2464
q 151201 151273 151343 151429 151507 151561 151631 151687 151771 151847 151909 152027 152083 152197 152267 152381 152429 152531 152617 152681 152783 152839 152909 152989 153077 153191 153287 153371 153443 153511 153589 153701 153763 153911 153991 154067 154127 154213 154291 154369 154459 154573 154643 154727 154799 154877 154981 155069
tL 2 2427 2424 2421 2416 2433 2436 2428 2433 2425 2425 2438 2428 2428 2431 2437 2440 2434 2423 2429 2434 2434 2445 2435 2442 2436 2438 2445 2445 2451 2432 2452 2439 2442 2440 2435 2447 2451 2455 2448 2454 2455 2454 2448 2449 2457 2450 2456 2459
q 151213 151279 151357 151433 151517 151573 151637 151693 151783 151849 151937 152029 152093 152203 152287 152389 152441 152533 152623 152717 152791 152843 152939 152993 153089 153247 153313 153379 153449 153521 153607 153719 153817 153913 153997 154073 154153 154229 154303 154373 154487 154579 154667 154733 154807 154883 154991 155081
tL 2 2419 2430 2432 2421 2430 2427 2422 2420 2436 2422 2438 2426 2434 2436 2440 2436 2432 2425 2435 2431 2431 2433 2441 2433 2433 2449 2440 2451 2444 2443 2438 2443 2450 2438 2451 2444 2457 2456 2447 2452 2448 2454 2448 2449 2445 2451 2459 2453
Table 5. Continue 14 q 155083 155171 155251 155333 155413 155509 155581 155657 155717 155777 155849 155921 156071 156151 156257 156353 156487 156589 156659 156707 156799 156901 157007 157061 157163 157219 157271 157321 157427 157513 157579 157669 157771 157841 157931 158017 158141 158231 158329 158393 158507 158573 158633 158749 158843 158927 159023 159157
tL 2 2447 2453 2458 2461 2457 2468 2457 2474 2469 2464 2459 2471 2470 2462 2468 2460 2464 2469 2466 2480 2475 2470 2469 2465 2473 2456 2468 2474 2470 2485 2476 2483 2477 2478 2482 2484 2484 2477 2492 2479 2485 2491 2484 2485 2489 2491 2487 2488
q 155087 155191 155269 155371 155423 155521 155593 155663 155719 155783 155851 156007 156089 156157 156259 156361 156491 156593 156671 156719 156817 156913 157013 157081 157177 157229 157273 157327 157429 157519 157609 157679 157793 157867 157933 158029 158143 158233 158341 158407 158519 158581 158647 158759 158849 158941 159059 159161
tL 2 2457 2456 2457 2465 2460 2462 2458 2462 2457 2464 2458 2472 2453 2461 2457 2467 2466 2479 2472 2467 2474 2471 2470 2478 2472 2468 2480 2473 2476 2484 2479 2486 2475 2487 2480 2480 2491 2478 2494 2478 2486 2482 2484 2485 2476 2485 2483 2482
q 155119 155201 155291 155377 155443 155537 155599 155671 155723 155797 155861 156011 156109 156217 156269 156371 156493 156601 156677 156727 156823 156941 157019 157103 157181 157231 157277 157349 157433 157523 157627 157721 157799 157877 157951 158047 158161 158243 158351 158419 158527 158591 158657 158761 158863 158959 159073 159167
tL 2 2452 2454 2455 2460 2468 2462 2463 2466 2466 2469 2472 2463 2469 2462 2480 2459 2469 2478 2469 2482 2476 2476 2462 2480 2473 2467 2465 2477 2483 2469 2475 2472 2484 2480 2477 2480 2487 2487 2478 2487 2487 2492 2481 2488 2489 2493 2490 2486
q 155137 155203 155299 155381 155453 155539 155609 155689 155731 155801 155863 156019 156119 156227 156307 156419 156511 156619 156679 156733 156833 156943 157037 157109 157189 157243 157279 157351 157457 157543 157637 157733 157813 157889 157991 158071 158189 158261 158357 158429 158537 158597 158663 158771 158867 158981 159079 159169
tL 2 2449 2459 2456 2451 2461 2462 2463 2463 2452 2470 2459 2471 2466 2463 2465 2465 2470 2465 2470 2475 2480 2472 2468 2474 2473 2476 2469 2484 2478 2481 2470 2483 2476 2473 2478 2477 2485 2486 2485 2490 2487 2474 2477 2485 2473 2495 2488 2488
71
q 155153 155209 155303 155383 155461 155557 155621 155693 155741 155809 155887 156041 156127 156229 156319 156421 156521 156623 156683 156749 156841 156967 157049 157127 157207 157247 157291 157363 157477 157559 157639 157739 157823 157897 157999 158077 158201 158269 158359 158443 158551 158611 158699 158777 158881 158993 159097 159179
tL 2 2450 2455 2454 2458 2465 2464 2455 2465 2468 2470 2467 2463 2465 2471 2466 2478 2468 2461 2469 2467 2477 2465 2472 2479 2477 2476 2479 2467 2472 2469 2480 2490 2486 2478 2483 2486 2481 2485 2491 2488 2479 2480 2484 2481 2485 2494 2489 2480
q 155161 155219 155317 155387 155473 155569 155627 155699 155747 155821 155891 156059 156131 156241 156329 156437 156539 156631 156691 156781 156887 156971 157051 157133 157211 157253 157303 157393 157483 157561 157649 157747 157831 157901 158003 158113 158209 158293 158363 158449 158563 158617 158731 158791 158909 159013 159113 159191
tL 2 2467 2459 2447 2460 2456 2454 2467 2464 2455 2458 2469 2467 2460 2471 2475 2479 2473 2469 2479 2473 2469 2477 2472 2470 2484 2465 2479 2475 2484 2474 2473 2478 2481 2481 2480 2483 2472 2484 2481 2483 2489 2489 2491 2497 2483 2488 2497 2485
q 155167 155231 155327 155399 155501 155579 155653 155707 155773 155833 155893 156061 156139 156253 156347 156467 156577 156641 156703 156797 156899 156979 157057 157141 157217 157259 157307 157411 157489 157571 157667 157769 157837 157907 158009 158129 158227 158303 158371 158489 158567 158621 158747 158803 158923 159017 159119 159193
tL 2 2448 2463 2456 2463 2460 2464 2459 2469 2467 2456 2461 2476 2460 2470 2463 2462 2475 2474 2475 2476 2464 2482 2467 2463 2478 2469 2466 2471 2468 2477 2475 2487 2483 2466 2480 2479 2493 2484 2484 2490 2479 2480 2498 2487 2488 2493 2490 2490
Table 5. Continue 15 q 159199 159311 159403 159469 159541 159623 159697 159769 159811 159899 160009 160081 160163 160243 160367 160441 160553 160627 160681 160751 160813 160883 160997 161053 161141 161237 161333 161411 161521 161573 161659 161753 161831 161921 161983 162079 162229 162289 162419 162517 162577 162649 162713 162787 162853 162937 163019 163127
tL 2 2487 2491 2497 2493 2496 2492 2488 2504 2505 2502 2496 2499 2497 2508 2500 2506 2509 2500 2505 2499 2497 2513 2511 2504 2501 2504 2511 2507 2515 2516 2514 2508 2507 2520 2519 2516 2516 2527 2513 2520 2517 2520 2528 2527 2521 2527 2523 2524
q 159209 159319 159407 159473 159553 159629 159701 159773 159833 159911 160019 160087 160169 160253 160373 160453 160579 160637 160687 160753 160817 160903 161009 161059 161149 161263 161339 161453 161527 161591 161683 161761 161839 161923 161999 162091 162251 162293 162439 162523 162593 162671 162727 162791 162859 162947 163021 163129
tL 2 2497 2493 2496 2500 2495 2490 2494 2492 2495 2498 2495 2492 2502 2508 2499 2504 2493 2504 2498 2501 2509 2500 2503 2499 2514 2505 2516 2501 2517 2510 2505 2512 2511 2507 2516 2522 2521 2509 2516 2519 2522 2533 2528 2527 2533 2524 2518 2529
q 159223 159337 159421 159491 159563 159631 159707 159779 159839 159931 160031 160091 160183 160309 160387 160481 160583 160639 160697 160757 160829 160907 161017 161071 161159 161267 161341 161459 161531 161599 161717 161771 161869 161947 162007 162109 162257 162343 162451 162527 162601 162677 162731 162821 162881 162971 163027 163147
tL 2 2491 2501 2486 2498 2495 2498 2500 2495 2492 2498 2502 2497 2499 2499 2490 2502 2495 2512 2508 2507 2506 2495 2504 2511 2506 2514 2501 2516 2511 2516 2513 2518 2519 2519 2521 2524 2515 2519 2517 2517 2522 2520 2523 2525 2529 2531 2522 2525
q 159227 159347 159431 159499 159569 159667 159721 159787 159853 159937 160033 160093 160201 160313 160397 160483 160591 160649 160709 160781 160841 160933 161033 161087 161167 161281 161363 161461 161543 161611 161729 161773 161873 161957 162011 162119 162263 162359 162457 162529 162611 162683 162739 162823 162889 162973 163061 163151
tL 2 2484 2491 2486 2497 2494 2498 2506 2490 2508 2500 2499 2495 2493 2503 2506 2502 2495 2498 2510 2507 2509 2506 2516 2503 2500 2508 2515 2516 2523 2500 2515 2516 2503 2510 2520 2507 2523 2515 2523 2515 2522 2521 2526 2522 2518 2520 2518 2521
72
q 159233 159349 159437 159503 159571 159671 159737 159791 159857 159977 160049 160117 160207 160319 160403 160499 160603 160651 160711 160789 160861 160967 161039 161093 161201 161303 161377 161471 161561 161627 161731 161779 161879 161969 162017 162143 162269 162389 162473 162553 162623 162691 162749 162829 162901 162989 163063 163169
tL 2 2497 2470 2492 2495 2501 2496 2497 2500 2490 2502 2499 2506 2499 2518 2508 2499 2507 2510 2509 2492 2508 2508 2514 2509 2499 2507 2513 2519 2499 2507 2517 2512 2518 2519 2509 2526 2509 2513 2510 2512 2509 2516 2515 2524 2523 2525 2510 2514
q 159287 159361 159457 159521 159589 159673 159739 159793 159869 159979 160073 160141 160217 160343 160409 160507 160619 160663 160723 160801 160877 160969 161047 161123 161221 161309 161387 161503 161563 161639 161741 161783 161881 161971 162053 162209 162277 162391 162493 162557 162629 162703 162751 162839 162907 162997 163109 163171
tL 2 2489 2487 2496 2491 2505 2499 2499 2486 2494 2497 2497 2508 2507 2496 2498 2496 2494 2508 2508 2504 2509 2512 2512 2498 2520 2514 2520 2503 2514 2517 2495 2516 2520 2506 2520 2509 2509 2513 2528 2518 2522 2517 2509 2520 2528 2526 2533 2537
q 159293 159389 159463 159539 159617 159683 159763 159799 159871 160001 160079 160159 160231 160357 160423 160541 160621 160669 160739 160807 160879 160981 161051 161137 161233 161323 161407 161507 161569 161641 161743 161807 161911 161977 162059 162221 162287 162413 162499 162563 162641 162709 162779 162847 162917 163003 163117 163181
tL 2 2494 2493 2489 2497 2495 2501 2498 2495 2494 2497 2497 2501 2490 2508 2505 2501 2498 2499 2500 2508 2506 2518 2506 2506 2509 2508 2506 2518 2510 2512 2505 2522 2524 2514 2519 2513 2513 2515 2508 2521 2525 2530 2521 2525 2517 2525 2531 2530
Table 5. Continue 16 q 163193 163307 163367 163469 163561 163633 163729 163811 163871 163981 164039 164117 164209 164279 164363 164431 164513 164621 164701 164809 164911 165041 165103 165229 165317 165391 165469 165551 165611 165707 165799 165883 165983 166081 166189 166289 166357 166429 166571 166627 166693 166799 166853 166949 167021 167077 167119 167213
tL 2 2530 2516 2525 2529 2529 2524 2538 2530 2529 2516 2522 2542 2533 2536 2542 2531 2531 2543 2537 2545 2536 2539 2543 2540 2540 2547 2553 2540 2546 2533 2548 2554 2543 2552 2544 2554 2550 2547 2547 2555 2553 2556 2549 2565 2560 2552 2560 2557
q 163199 163309 163393 163477 163567 163637 163733 163819 163883 163987 164051 164147 164231 164291 164371 164443 164531 164623 164707 164821 164953 165047 165133 165233 165331 165397 165479 165553 165617 165709 165811 165887 166013 166099 166207 166297 166363 166457 166597 166631 166703 166807 166861 166967 167023 167081 167149 167221
tL 2 2526 2528 2538 2525 2515 2516 2540 2522 2526 2530 2531 2537 2539 2531 2537 2537 2548 2533 2541 2537 2529 2536 2538 2537 2541 2548 2550 2548 2549 2541 2542 2538 2547 2561 2554 2557 2562 2553 2562 2547 2561 2549 2559 2549 2557 2566 2559 2554
q 163211 163321 163403 163481 163573 163643 163741 163841 163901 163991 164057 164149 164233 164299 164377 164447 164569 164627 164729 164831 164963 165049 165161 165247 165343 165437 165511 165559 165653 165713 165817 165901 166021 166147 166219 166301 166393 166471 166601 166643 166723 166823 166867 166973 167033 167087 167159 167249
tL 2 2529 2524 2526 2523 2530 2533 2524 2542 2540 2535 2545 2527 2541 2535 2532 2531 2527 2531 2532 2534 2539 2548 2541 2533 2543 2535 2541 2536 2538 2544 2541 2554 2550 2550 2540 2550 2565 2555 2543 2542 2558 2547 2550 2555 2548 2571 2562 2563
q 163223 163327 163409 163483 163601 163661 163753 163847 163909 163993 164071 164173 164239 164309 164387 164449 164581 164653 164743 164837 164987 165059 165173 165287 165349 165443 165523 165569 165667 165719 165829 165931 166027 166151 166237 166303 166399 166487 166603 166657 166739 166841 166871 166979 167039 167099 167173 167261
tL 2 2523 2519 2526 2523 2516 2522 2534 2529 2529 2525 2527 2537 2524 2538 2537 2529 2540 2541 2538 2543 2535 2545 2544 2543 2544 2538 2541 2541 2557 2544 2536 2556 2554 2537 2541 2556 2549 2557 2556 2552 2552 2555 2560 2557 2559 2560 2563 2564
73
q 163243 163337 163411 163487 163613 163673 163771 163853 163927 163997 164089 164183 164249 164321 164413 164471 164587 164663 164767 164839 164999 165079 165181 165293 165367 165449 165527 165587 165673 165721 165833 165941 166031 166157 166247 166319 166403 166541 166609 166667 166741 166843 166909 166987 167047 167107 167177 167267
tL 2 2528 2528 2536 2529 2529 2520 2533 2530 2520 2520 2530 2535 2525 2527 2534 2541 2541 2527 2546 2538 2543 2546 2540 2545 2538 2545 2548 2531 2538 2546 2542 2549 2560 2541 2551 2551 2559 2550 2554 2562 2549 2555 2551 2556 2561 2551 2564 2558
q 163249 163351 163417 163517 163621 163679 163781 163859 163973 164011 164093 164191 164251 164341 164419 164477 164599 164677 164771 164881 165001 165083 165203 165311 165379 165457 165533 165589 165701 165749 165857 165947 166043 166169 166259 166349 166409 166561 166613 166669 166781 166847 166919 167009 167051 167113 167191 167269
tL 2 2523 2518 2526 2525 2533 2542 2518 2527 2537 2538 2530 2527 2546 2539 2539 2532 2534 2533 2537 2536 2542 2544 2546 2546 2535 2544 2550 2558 2554 2548 2551 2557 2537 2559 2556 2552 2560 2556 2556 2557 2547 2553 2555 2552 2559 2558 2555 2557
q 163259 163363 163433 163543 163627 163697 163789 163861 163979 164023 164113 164201 164267 164357 164429 164503 164617 164683 164789 164893 165037 165089 165211 165313 165383 165463 165541 165601 165703 165779 165877 165961 166063 166183 166273 166351 166417 166567 166619 166679 166783 166849 166931 167017 167071 167117 167197 167281
tL 2 2532 2534 2538 2525 2526 2536 2538 2534 2542 2523 2538 2531 2537 2532 2543 2540 2541 2540 2531 2545 2544 2532 2545 2540 2534 2542 2544 2536 2548 2553 2540 2547 2551 2545 2547 2564 2547 2552 2559 2557 2564 2552 2548 2560 2545 2549 2557 2553
Table 5. Continue 17 q 167309 167393 167443 167543 167633 167747 167861 167911 168029 168109 168227 168293 168433 168499 168601 168697 168769 168893 168991 169067 169151 169241 169319 169373 169489 169583 169657 169733 169817 169891 169951 170047 170123 170213 170267 170351 170393 170503 170603 170689 170761 170827 170887 171007 171077 171167 171263 171383
tL 2 2559 2557 2564 2560 2565 2562 2574 2565 2568 2560 2568 2570 2568 2556 2571 2568 2573 2567 2569 2568 2570 2571 2578 2576 2572 2581 2574 2580 2583 2584 2578 2591 2577 2586 2580 2583 2581 2587 2587 2587 2580 2590 2595 2588 2597 2593 2590 2597
q 167311 167407 167449 167593 167641 167759 167863 167917 168037 168127 168247 168323 168449 168523 168617 168713 168781 168899 169003 169069 169159 169243 169321 169399 169493 169591 169661 169751 169823 169909 169957 170057 170141 170227 170279 170353 170413 170509 170609 170701 170767 170837 170899 171023 171079 171169 171271 171401
tL 2 2559 2568 2555 2563 2553 2570 2564 2559 2562 2568 2563 2573 2572 2560 2574 2567 2568 2568 2575 2580 2581 2581 2583 2587 2577 2574 2582 2579 2579 2582 2588 2588 2576 2584 2589 2593 2585 2588 2595 2588 2590 2590 2590 2597 2592 2594 2608 2593
q 167317 167413 167471 167597 167663 167771 167873 167953 168043 168143 168253 168331 168451 168527 168629 168719 168803 168901 169007 169079 169177 169249 169327 169409 169501 169607 169667 169753 169831 169913 169987 170063 170167 170231 170293 170363 170441 170537 170627 170707 170773 170843 170921 171029 171091 171179 171293 171403
tL 2 2562 2555 2561 2555 2565 2564 2562 2562 2571 2556 2574 2565 2561 2562 2575 2558 2575 2567 2566 2565 2578 2582 2583 2563 2579 2589 2585 2572 2572 2583 2570 2588 2580 2582 2579 2582 2590 2584 2572 2580 2597 2584 2590 2585 2593 2586 2592 2596
q 167329 167423 167483 167611 167677 167777 167879 167971 168067 168151 168263 168347 168457 168533 168631 168731 168851 168913 169009 169093 169181 169259 169339 169427 169523 169627 169681 169769 169837 169919 169991 170081 170179 170239 170299 170369 170447 170539 170633 170711 170777 170851 170927 171043 171103 171203 171299 171427
tL 2 2566 2562 2560 2564 2556 2565 2569 2565 2560 2567 2570 2569 2564 2573 2575 2573 2571 2572 2589 2583 2585 2573 2579 2569 2578 2569 2574 2585 2582 2578 2582 2583 2573 2584 2593 2580 2595 2583 2605 2589 2590 2590 2589 2593 2586 2584 2587 2598
74
q 167339 167429 167491 167621 167683 167779 167887 167987 168071 168193 168269 168353 168463 168541 168643 168737 168863 168937 169019 169097 169199 169283 169343 169457 169531 169633 169691 169777 169843 169933 170003 170099 170189 170243 170327 170371 170473 170551 170641 170741 170801 170857 170953 171047 171131 171233 171317 171439
tL 2 2564 2560 2554 2571 2564 2558 2568 2564 2564 2569 2573 2578 2567 2574 2569 2572 2562 2575 2573 2580 2566 2576 2571 2580 2571 2573 2574 2579 2580 2590 2579 2587 2589 2593 2582 2581 2584 2575 2601 2578 2588 2597 2592 2591 2585 2595 2593 2586
q 167341 167437 167521 167623 167711 167801 167891 168013 168083 168197 168277 168391 168481 168559 168673 168743 168869 168943 169049 169111 169217 169307 169361 169471 169553 169639 169693 169783 169859 169937 170021 170101 170197 170249 170341 170383 170483 170557 170647 170749 170809 170873 170957 171049 171161 171251 171329 171449
tL 2 2555 2559 2563 2569 2572 2562 2562 2575 2554 2573 2571 2556 2574 2560 2574 2565 2573 2584 2576 2573 2571 2576 2576 2574 2566 2582 2578 2573 2580 2581 2585 2586 2579 2581 2594 2582 2573 2579 2590 2592 2576 2586 2589 2590 2587 2599 2595 2603
q 167381 167441 167537 167627 167729 167809 167899 168023 168089 168211 168281 168409 168491 168599 168677 168761 168887 168977 169063 169129 169219 169313 169369 169483 169567 169649 169709 169789 169889 169943 170029 170111 170207 170263 170347 170389 170497 170579 170669 170759 170813 170881 170971 171053 171163 171253 171341 171467
tL 2 2556 2562 2572 2554 2561 2572 2569 2560 2563 2563 2575 2571 2562 2574 2572 2575 2575 2580 2583 2576 2583 2580 2556 2580 2584 2574 2581 2580 2582 2579 2575 2581 2578 2584 2574 2580 2592 2593 2579 2587 2582 2585 2588 2597 2591 2586 2593 2606
Table 5. Continue 18 q 171469 171541 171637 171697 171763 171851 171923 172027 172127 172199 172279 172343 172423 172517 172589 172649 172717 172807 172877 172993 173081 173183 173263 173347 173491 173561 173659 173713 173783 173867 173969 174047 174091 174169 174281 174347 174457 174533 174631 174703 174773 174893 174959 175067 175211 175309 175403 175493
tL 2 2593 2589 2606 2594 2596 2597 2609 2596 2599 2593 2601 2599 2601 2609 2603 2605 2610 2600 2606 2600 2600 2616 2607 2617 2604 2612 2616 2617 2616 2610 2610 2612 2613 2617 2630 2623 2616 2623 2613 2628 2631 2623 2621 2625 2625 2627 2626 2629
q 171473 171553 171641 171707 171793 171863 171929 172031 172147 172213 172283 172351 172427 172519 172597 172657 172721 172829 172883 172999 173087 173189 173267 173357 173497 173573 173669 173729 173807 173891 173977 174049 174101 174197 174289 174367 174467 174569 174637 174721 174799 174901 174989 175069 175229 175327 175411 175499
tL 2 2595 2594 2584 2593 2597 2592 2596 2606 2591 2612 2602 2601 2605 2593 2605 2603 2608 2611 2600 2600 2612 2607 2614 2611 2612 2609 2611 2612 2606 2618 2614 2623 2614 2611 2616 2614 2617 2624 2616 2624 2617 2639 2622 2627 2627 2632 2624 2632
q 171481 171559 171653 171713 171799 171869 171937 172049 172153 172217 172297 172357 172433 172541 172603 172663 172741 172849 172933 173021 173099 173191 173273 173359 173501 173599 173671 173741 173819 173897 173981 174061 174121 174221 174299 174389 174469 174571 174649 174737 174821 174907 174991 175079 175261 175333 175433 175519
tL 2 2590 2602 2593 2595 2608 2598 2596 2602 2598 2597 2612 2597 2606 2601 2601 2602 2604 2606 2605 2609 2606 2607 2609 2603 2607 2623 2614 2615 2599 2612 2613 2623 2611 2603 2610 2628 2615 2624 2608 2626 2621 2617 2615 2634 2633 2632 2634 2625
q 171491 171571 171659 171719 171803 171877 171947 172069 172157 172219 172307 172373 172439 172553 172607 172673 172751 172853 172969 173023 173137 173207 173291 173429 173531 173617 173683 173743 173827 173909 173993 174067 174137 174241 174311 174407 174481 174583 174653 174749 174829 174917 175003 175081 175267 175349 175447 175523
tL 2 2583 2594 2594 2591 2588 2599 2609 2597 2600 2593 2600 2598 2612 2595 2602 2616 2597 2607 2616 2606 2615 2599 2608 2617 2602 2615 2612 2613 2616 2611 2617 2624 2611 2613 2614 2615 2617 2623 2617 2622 2637 2617 2625 2617 2628 2634 2620 2630
75
q 171517 171583 171671 171733 171811 171881 172001 172079 172169 172223 172313 172399 172441 172561 172619 172681 172759 172859 172973 173039 173141 173209 173293 173431 173539 173629 173687 173773 173839 173917 174007 174071 174143 174257 174329 174413 174487 174599 174659 174761 174851 174929 175013 175103 175277 175361 175453 175543
tL 2 2591 2599 2594 2597 2602 2598 2607 2598 2595 2608 2599 2610 2610 2598 2606 2602 2598 2612 2610 2609 2606 2613 2612 2616 2607 2616 2608 2612 2613 2616 2615 2614 2616 2618 2616 2619 2617 2623 2617 2628 2624 2626 2620 2626 2626 2623 2623 2631
q 171529 171617 171673 171757 171823 171889 172009 172093 172171 172243 172321 172411 172489 172573 172633 172687 172787 172867 172981 173053 173149 173219 173297 173473 173543 173647 173699 173777 173851 173923 174017 174077 174149 174259 174331 174431 174491 174613 174673 174763 174859 174931 175039 175129 175291 175391 175463 175561
tL 2 2595 2590 2599 2585 2597 2603 2600 2594 2596 2617 2609 2602 2605 2606 2605 2597 2605 2602 2601 2601 2602 2608 2614 2612 2612 2602 2610 2607 2602 2618 2613 2614 2615 2614 2630 2611 2618 2620 2625 2628 2625 2614 2627 2625 2633 2633 2629 2629
q 171539 171629 171679 171761 171827 171917 172021 172097 172181 172259 172331 172421 172507 172583 172643 172709 172801 172871 172987 173059 173177 173249 173309 173483 173549 173651 173707 173779 173861 173933 174019 174079 174157 174263 174337 174443 174527 174617 174679 174767 174877 174943 175061 175141 175303 175393 175481 175573
tL 2 2595 2593 2603 2599 2591 2598 2596 2602 2601 2597 2584 2590 2608 2608 2604 2610 2601 2599 2600 2607 2612 2602 2613 2608 2613 2604 2617 2623 2614 2615 2620 2605 2621 2630 2621 2605 2618 2616 2621 2620 2619 2630 2624 2622 2618 2620 2623 2626
Table 5. Continue 19 q 175601 175687 175757 175843 175919 175991 176051 176129 176207 176299 176347 176413 176489 176537 176599 176699 176779 176849 176927 177011 177113 177211 177283 177383 177473 177553 177691 177797 177889 177949 178039 178127 178223 178301 178393 178469 178537 178603 178681 178793 178853 178907 178973 179057 179143 179233 179321 179393
tL 2 2620 2627 2626 2638 2629 2630 2641 2629 2630 2634 2627 2635 2629 2634 2636 2644 2641 2638 2639 2642 2647 2639 2635 2639 2644 2659 2641 2640 2642 2639 2651 2651 2655 2656 2652 2653 2664 2656 2653 2662 2664 2647 2664 2659 2661 2657 2664 2658
q 175621 175691 175759 175853 175937 175993 176053 176153 176213 176303 176353 176417 176497 176549 176609 176711 176789 176857 176933 177013 177127 177217 177301 177409 177481 177589 177739 177811 177893 177953 178067 178141 178231 178307 178397 178481 178559 178609 178691 178799 178859 178909 178987 179083 179161 179243 179327 179407
tL 2 2622 2624 2633 2620 2628 2625 2634 2635 2628 2627 2632 2634 2635 2629 2627 2638 2642 2638 2646 2631 2644 2641 2638 2642 2636 2639 2646 2637 2647 2645 2642 2648 2655 2646 2649 2642 2644 2658 2644 2660 2646 2657 2650 2651 2662 2663 2666 2658
q 175631 175699 175781 175859 175939 176017 176063 176159 176221 176317 176357 176419 176503 176551 176611 176713 176791 176887 176951 177019 177131 177223 177319 177421 177487 177601 177743 177823 177907 177967 178069 178151 178247 178327 178403 178487 178561 178613 178693 178807 178873 178921 179021 179089 179167 179261 179351 179411
tL 2 2633 2626 2625 2635 2631 2627 2623 2620 2629 2638 2638 2632 2626 2636 2636 2636 2630 2627 2641 2630 2630 2645 2651 2663 2639 2647 2644 2655 2651 2637 2640 2655 2647 2635 2654 2651 2652 2649 2654 2648 2640 2654 2657 2662 2651 2666 2661 2665
q 175633 175709 175783 175873 175949 176021 176081 176161 176227 176321 176369 176431 176507 176557 176629 176741 176797 176899 176977 177043 177147 177239 177323 177427 177493 177623 177761 177839 177913 177979 178091 178169 178249 178333 178417 178489 178567 178621 178697 178813 178877 178931 179029 179099 179173 179269 179357 179429
tL 2 2622 2624 2621 2621 2631 2625 2635 2624 2637 2639 2635 2632 2639 2630 2640 2637 2640 2642 2631 2641 2638 2637 2636 2644 2653 2647 2646 2647 2644 2651 2653 2671 2645 2643 2659 2647 2654 2645 2643 2664 2654 2653 2658 2665 2659 2645 2657 2655
76
q 175649 175723 175811 175891 175961 176023 176087 176179 176237 176327 176383 176459 176509 176573 176641 176747 176807 176903 176983 177091 177167 177241 177337 177431 177511 177647 177763 177841 177917 178001 178093 178183 178259 178349 178439 178501 178571 178627 178753 178817 178889 178933 179033 179107 179203 179281 179369 179437
tL 2 2624 2632 2628 2627 2629 2641 2638 2630 2632 2648 2641 2629 2633 2631 2630 2638 2635 2647 2646 2643 2645 2649 2643 2635 2646 2647 2647 2640 2646 2645 2651 2653 2650 2642 2658 2642 2639 2650 2648 2660 2644 2647 2652 2660 2659 2658 2652 2648
q 175663 175727 175829 175897 175963 176041 176089 176191 176243 176329 176389 176461 176521 176591 176651 176753 176809 176921 176989 177101 177173 177257 177347 177433 177533 177677 177787 177883 177929 178021 178103 178187 178261 178351 178441 178513 178597 178639 178757 178819 178897 178939 179041 179111 179209 179287 179381 179441
tL 2 2630 2628 2619 2633 2637 2623 2630 2641 2637 2636 2634 2640 2628 2642 2631 2640 2635 2636 2640 2639 2648 2651 2640 2641 2632 2644 2648 2652 2645 2644 2649 2649 2653 2658 2662 2655 2656 2653 2652 2655 2644 2654 2655 2656 2650 2658 2658 2664
q 175673 175753 175837 175909 175979 176047 176123 176201 176261 176333 176401 176467 176531 176597 176677 176777 176819 176923 177007 177109 177209 177269 177379 177467 177539 177679 177791 177887 177943 178037 178117 178207 178289 178361 178447 178531 178601 178643 178781 178831 178903 178951 179051 179119 179213 179317 179383 179453
tL 2 2624 2628 2630 2635 2629 2628 2640 2633 2632 2630 2635 2628 2639 2636 2634 2630 2634 2641 2633 2629 2633 2639 2641 2638 2644 2648 2646 2648 2646 2652 2634 2646 2649 2639 2655 2657 2657 2657 2647 2649 2658 2646 2654 2654 2652 2649 2644 2655
Table 5. Continue 20 q 179461 179533 179593 179671 179743 179821 179909 179957 180023 180137 180239 180289 180361 180463 180539 180629 180751 180847 181003 181087 181201 181277 181397 181499 181603 181693 181757 181837 181919 181997 182057 182123 182179 182279 182387 182467 182537 182603 182659 182773 182851 182927 182999 183089 183247 183307 183373 183451
tL 2 2665 2660 2653 2661 2657 2655 2665 2654 2661 2668 2671 2663 2674 2669 2657 2663 2671 2668 2668 2675 2670 2674 2690 2677 2673 2675 2677 2681 2679 2682 2681 2676 2664 2682 2686 2691 2685 2692 2680 2684 2687 2670 2676 2695 2684 2683 2689 2695
q 179471 179549 179603 179687 179749 179827 179917 179969 180043 180161 180241 180307 180371 180473 180541 180647 180773 180871 181019 181123 181211 181283 181399 181501 181607 181711 181759 181871 181927 182009 182059 182129 182201 182297 182389 182471 182549 182617 182681 182779 182857 182929 183023 183091 183259 183317 183377 183461
tL 2 2668 2654 2662 2658 2660 2664 2667 2677 2668 2669 2665 2673 2670 2662 2679 2664 2675 2683 2683 2666 2672 2674 2668 2666 2669 2686 2676 2687 2671 2692 2676 2679 2681 2680 2678 2678 2685 2677 2684 2683 2684 2691 2684 2689 2693 2688 2688 2694
q 179479 179563 179623 179689 179779 179833 179923 179981 180053 180179 180247 180311 180379 180491 180547 180667 180779 180883 181031 181141 181213 181297 181409 181513 181609 181717 181763 181873 181931 182011 182089 182131 182209 182309 182417 182473 182561 182627 182687 182789 182867 182933 183037 183119 183263 183319 183383 183473
tL 2 2655 2645 2660 2655 2669 2658 2657 2657 2658 2669 2654 2682 2667 2666 2676 2671 2668 2675 2672 2675 2667 2673 2679 2672 2679 2679 2669 2677 2673 2678 2683 2674 2680 2672 2685 2678 2679 2684 2694 2688 2681 2691 2682 2689 2685 2694 2686 2690
q 179483 179573 179633 179693 179801 179849 179939 179989 180071 180181 180259 180317 180391 180497 180563 180679 180793 180907 181039 181157 181219 181301 181421 181523 181619 181721 181777 181889 181943 182027 182099 182141 182233 182333 182423 182489 182579 182639 182701 182803 182887 182953 183041 183151 183283 183329 183389 183479
tL 2 2661 2659 2660 2664 2670 2662 2670 2670 2659 2673 2668 2668 2661 2661 2671 2672 2669 2677 2672 2668 2670 2664 2674 2680 2680 2681 2678 2687 2683 2667 2676 2683 2669 2674 2687 2684 2682 2677 2687 2681 2689 2683 2686 2695 2693 2685 2697 2690
77
q 179497 179579 179651 179717 179807 179897 179947 179999 180073 180211 180263 180331 180413 180503 180569 180701 180797 180949 181061 181183 181243 181303 181439 181537 181639 181729 181787 181891 181957 182029 182101 182159 182239 182339 182431 182503 182587 182641 182711 182813 182893 182957 183047 183167 183289 183343 183397 183487
tL 2 2662 2657 2652 2661 2665 2661 2657 2665 2653 2668 2654 2664 2667 2670 2661 2667 2664 2671 2675 2670 2669 2673 2664 2675 2672 2675 2677 2686 2685 2682 2665 2677 2678 2677 2685 2683 2689 2692 2685 2681 2680 2702 2688 2695 2693 2694 2688 2691
q 179519 179581 179657 179719 179813 179899 179951 180001 180077 180221 180281 180337 180419 180511 180617 180731 180799 180959 181063 181193 181253 181361 181457 181549 181667 181739 181789 181903 181967 182041 182107 182167 182243 182341 182443 182509 182593 182653 182713 182821 182899 182969 183059 183191 183299 183349 183437 183497
tL 2 2663 2648 2660 2662 2671 2660 2662 2661 2677 2663 2662 2647 2668 2667 2665 2672 2669 2657 2671 2663 2673 2667 2674 2670 2673 2673 2680 2679 2677 2679 2684 2679 2679 2682 2681 2674 2680 2684 2685 2687 2678 2687 2675 2689 2693 2693 2688 2685
q 179527 179591 179659 179737 179819 179903 179953 180007 180097 180233 180287 180347 180437 180533 180623 180749 180811 181001 181081 181199 181273 181387 181459 181553 181669 181751 181813 181913 181981 182047 182111 182177 182261 182353 182453 182519 182599 182657 182747 182839 182921 182981 183067 183203 183301 183361 183439 183499
tL 2 2658 2667 2655 2672 2662 2664 2659 2648 2662 2667 2669 2671 2662 2671 2667 2675 2662 2656 2668 2671 2683 2670 2677 2674 2681 2675 2678 2676 2677 2680 2684 2681 2687 2679 2686 2679 2677 2691 2675 2685 2697 2681 2685 2687 2684 2677 2699 2684
Table 5. Continue 21 q 183503 183577 183683 183763 183881 183971 184039 184117 184199 184279 184369 184487 184567 184633 184711 184829 184903 184997 185069 185137 185189 185303 185371 185491 185551 185641 185707 185761 185831 185903 185971 186037 186113 186191 186259 186343 186451 186583 186653 186727 186793 186883 187027 187091 187141 187211 187303 187379
tL 2 2698 2700 2686 2695 2688 2701 2700 2694 2700 2699 2691 2696 2699 2704 2698 2705 2698 2701 2708 2704 2696 2696 2710 2712 2691 2708 2702 2713 2710 2702 2710 2706 2715 2718 2715 2709 2720 2722 2721 2718 2714 2728 2720 2719 2716 2716 2714 2713
q 183509 183581 183691 183797 183907 183973 184043 184133 184211 184291 184409 184489 184571 184649 184721 184831 184913 184999 185071 185149 185221 185309 185401 185519 185557 185651 185711 185767 185833 185917 185987 186041 186119 186211 186271 186377 186469 186587 186671 186733 186799 186889 187043 187111 187163 187217 187337 187387
tL 2 2693 2685 2695 2697 2689 2688 2693 2703 2700 2696 2706 2707 2709 2703 2696 2699 2703 2709 2698 2709 2699 2712 2708 2705 2715 2715 2709 2707 2719 2709 2713 2714 2725 2710 2713 2712 2714 2708 2725 2709 2719 2720 2717 2721 2716 2712 2725 2720
q 183511 183587 183697 183809 183917 183979 184057 184153 184231 184309 184417 184511 184577 184651 184727 184837 184949 185021 185077 185153 185233 185323 185429 185527 185567 185677 185723 185789 185849 185923 185993 186049 186149 186227 186283 186379 186479 186601 186679 186743 186841 186917 187049 187123 187171 187219 187339 187393
tL 2 2697 2701 2697 2692 2690 2694 2699 2705 2698 2703 2696 2698 2705 2693 2689 2709 2703 2701 2698 2701 2709 2698 2705 2712 2711 2707 2698 2707 2707 2717 2707 2715 2702 2700 2705 2721 2708 2719 2723 2709 2725 2706 2723 2726 2716 2720 2718 2713
q 183523 183593 183707 183823 183919 184003 184073 184157 184241 184321 184441 184517 184607 184669 184733 184843 184957 185027 185089 185161 185243 185327 185441 185531 185569 185681 185737 185797 185869 185947 186007 186071 186157 186229 186299 186391 186481 186619 186689 186757 186859 186947 187067 187127 187177 187223 187349 187409
tL 2 2685 2697 2681 2686 2691 2696 2684 2695 2704 2697 2707 2698 2718 2706 2707 2708 2708 2709 2700 2718 2697 2716 2698 2693 2715 2715 2703 2708 2716 2711 2712 2713 2712 2703 2709 2705 2713 2714 2719 2721 2723 2722 2720 2722 2716 2711 2722 2715
78
q 183527 183611 183709 183829 183943 184007 184081 184181 184259 184333 184447 184523 184609 184687 184753 184859 184967 185051 185099 185167 185267 185359 185467 185533 185593 185683 185747 185813 185873 185951 186013 186097 186161 186239 186301 186397 186551 186629 186701 186761 186869 186959 187069 187129 187181 187237 187361 187417
tL 2 2690 2691 2687 2684 2695 2687 2703 2694 2707 2698 2701 2695 2700 2703 2706 2699 2707 2715 2706 2712 2711 2707 2705 2705 2710 2706 2703 2710 2719 2707 2717 2713 2708 2713 2713 2719 2710 2724 2722 2712 2711 2723 2720 2718 2725 2712 2720 2718
q 183569 183637 183713 183871 183949 184013 184087 184187 184271 184337 184463 184553 184627 184693 184777 184879 184969 185057 185123 185177 185291 185363 185477 185539 185599 185693 185749 185819 185893 185957 186019 186103 186163 186247 186311 186419 186569 186647 186707 186763 186871 187003 187073 187133 187189 187273 187367 187423
tL 2 2700 2696 2694 2703 2703 2702 2693 2699 2697 2688 2709 2694 2707 2707 2699 2710 2710 2701 2703 2697 2697 2710 2708 2705 2696 2703 2701 2701 2699 2712 2712 2714 2717 2715 2711 2719 2716 2723 2722 2719 2725 2715 2718 2720 2723 2720 2719 2733
q 183571 183661 183761 183877 183959 184031 184111 184189 184273 184351 184477 184559 184631 184703 184823 184901 184993 185063 185131 185183 185299 185369 185483 185543 185621 185699 185753 185821 185897 185959 186023 186107 186187 186253 186317 186437 186581 186649 186709 186773 186877 187009 187081 187139 187193 187277 187373 187433
tL 2 2692 2693 2694 2693 2690 2705 2701 2697 2700 2699 2709 2703 2693 2699 2701 2702 2701 2699 2706 2701 2709 2709 2704 2706 2702 2710 2704 2701 2720 2709 2706 2712 2708 2712 2711 2713 2728 2715 2714 2711 2725 2715 2718 2716 2723 2730 2727 2724
Table 5. Continue 22 q 187441 187513 187633 187699 187823 187907 187973 188137 188197 188303 188369 188443 188533 188653 188711 188801 188863 188941 189019 189149 189239 189337 189391 189463 189517 189599 189671 189757 189853 189929 189989 190097 190243 190313 190387 190529 190591 190667 190759 190811 190891 191021 191089 191161 191251 191413 191467 191531
tL 2 2728 2724 2720 2721 2729 2722 2730 2730 2721 2736 2736 2724 2729 2732 2731 2746 2735 2735 2727 2727 2736 2737 2737 2736 2732 2727 2747 2739 2752 2748 2739 2750 2746 2754 2751 2751 2749 2742 2753 2745 2758 2758 2738 2761 2748 2744 2749 2747
q 187463 187531 187637 187711 187843 187909 187987 188143 188249 188311 188389 188459 188563 188677 188719 188827 188869 188953 189041 189151 189251 189347 189401 189467 189523 189613 189691 189767 189859 189947 189997 190121 190249 190321 190391 190537 190607 190669 190763 190823 190901 191027 191099 191173 191281 191441 191473 191533
tL 2 2726 2724 2726 2724 2719 2726 2718 2727 2722 2730 2723 2721 2735 2725 2728 2735 2734 2740 2751 2729 2742 2725 2740 2743 2735 2730 2737 2741 2736 2748 2739 2753 2741 2740 2746 2745 2745 2751 2751 2751 2746 2746 2742 2754 2754 2761 2755 2752
q 187469 187547 187639 187721 187861 187921 188011 188147 188261 188317 188401 188473 188579 188681 188729 188831 188891 188957 189043 189169 189253 189349 189407 189473 189529 189617 189697 189797 189877 189949 190027 190129 190261 190331 190403 190543 190613 190699 190769 190829 190909 191033 191119 191189 191297 191447 191491 191537
tL 2 2725 2727 2730 2737 2730 2733 2723 2739 2725 2731 2733 2734 2728 2722 2743 2731 2735 2724 2739 2733 2728 2742 2745 2742 2738 2731 2744 2744 2745 2734 2745 2749 2743 2750 2755 2755 2748 2755 2748 2742 2753 2749 2754 2765 2736 2741 2748 2751
q 187471 187559 187651 187751 187871 187927 188017 188159 188273 188323 188407 188483 188603 188687 188753 188833 188911 188983 189061 189187 189257 189353 189421 189479 189547 189619 189701 189799 189881 189961 190031 190147 190271 190339 190409 190573 190633 190709 190783 190837 190913 191039 191123 191227 191299 191449 191497 191551
tL 2 2723 2716 2723 2720 2717 2722 2720 2725 2736 2720 2732 2745 2721 2737 2725 2727 2748 2730 2726 2741 2741 2738 2736 2731 2736 2737 2748 2743 2747 2743 2750 2745 2744 2747 2750 2726 2738 2757 2747 2749 2750 2750 2750 2753 2754 2744 2758 2764
79
q 187477 187573 187661 187763 187877 187931 188021 188171 188281 188333 188417 188491 188609 188693 188767 188843 188927 188999 189067 189199 189271 189361 189433 189491 189559 189643 189713 189817 189887 189967 190051 190159 190283 190357 190471 190577 190639 190711 190787 190843 190921 191047 191137 191231 191339 191453 191507 191561
tL 2 2724 2725 2725 2730 2731 2726 2726 2725 2734 2727 2728 2730 2751 2742 2735 2735 2727 2733 2727 2733 2740 2747 2748 2738 2735 2742 2741 2751 2740 2747 2744 2741 2732 2756 2757 2743 2758 2745 2764 2743 2747 2755 2749 2756 2751 2749 2752 2749
q 187489 187597 187669 187787 187883 187951 188029 188179 188291 188351 188431 188519 188621 188701 188779 188857 188933 189011 189127 189223 189307 189377 189437 189493 189583 189653 189733 189823 189901 189977 190063 190181 190297 190367 190507 190579 190649 190717 190793 190871 190979 191057 191141 191237 191341 191459 191509 191563
tL 2 2721 2716 2728 2720 2728 2729 2724 2736 2728 2736 2722 2729 2737 2732 2733 2730 2729 2743 2748 2741 2731 2733 2744 2731 2739 2736 2730 2743 2748 2748 2736 2738 2746 2737 2755 2735 2755 2741 2745 2755 2753 2753 2747 2750 2740 2745 2754 2757
q 187507 187631 187687 187793 187897 187963 188107 188189 188299 188359 188437 188527 188633 188707 188791 188861 188939 189017 189139 189229 189311 189389 189439 189509 189593 189661 189743 189851 189913 189983 190093 190207 190301 190369 190523 190583 190657 190753 190807 190889 190997 191071 191143 191249 191353 191461 191519 191579
tL 2 2721 2714 2724 2729 2732 2735 2720 2739 2738 2733 2734 2728 2730 2725 2725 2729 2731 2734 2743 2731 2725 2741 2752 2739 2737 2737 2733 2735 2737 2738 2739 2744 2746 2753 2749 2742 2745 2743 2739 2746 2756 2745 2755 2751 2750 2741 2748 2749
Table 5. Continue 23 q 191599 191689 191773 191833 191953 192037 192113 192191 192263 192343 192431 192547 192601 192667 192757 192833 192889 192977 193043 193147 193243 193357 193423 193493 193577 193663 193757 193813 193877 193957 194069 194119 194239 194371 194483 194591 194683 194749 194839 194911 195023 195077 195157 195241 195319 195401 195479 195581
tL 2 2746 2754 2756 2758 2751 2750 2766 2765 2752 2757 2748 2768 2765 2761 2775 2777 2763 2771 2753 2771 2771 2772 2769 2767 2764 2765 2772 2780 2772 2775 2779 2765 2781 2785 2774 2774 2768 2789 2775 2783 2781 2786 2790 2774 2794 2770 2793 2781
q 191621 191693 191783 191837 191969 192043 192121 192193 192271 192347 192461 192553 192611 192677 192767 192847 192917 192979 193051 193153 193247 193367 193433 193507 193597 193679 193763 193841 193883 193979 194071 194141 194263 194377 194507 194609 194687 194767 194861 194917 195029 195089 195161 195253 195329 195407 195493 195593
tL 2 2760 2752 2759 2752 2770 2763 2765 2755 2767 2767 2759 2768 2764 2764 2754 2770 2760 2776 2770 2761 2772 2769 2763 2765 2765 2773 2775 2766 2759 2763 2771 2769 2778 2786 2775 2781 2775 2783 2780 2779 2781 2785 2782 2790 2780 2775 2786 2792
q 191627 191699 191791 191861 191977 192047 192133 192229 192307 192373 192463 192557 192613 192697 192781 192853 192923 192991 193057 193163 193261 193373 193441 193513 193601 193703 193771 193847 193891 193993 194083 194149 194267 194413 194521 194647 194707 194771 194863 194933 195043 195103 195163 195259 195341 195413 195497 195599
tL 2 2751 2757 2757 2757 2759 2759 2737 2746 2765 2750 2764 2762 2763 2763 2760 2768 2761 2765 2759 2766 2760 2774 2765 2762 2772 2766 2768 2777 2770 2770 2766 2777 2772 2772 2766 2783 2787 2773 2783 2775 2784 2785 2798 2790 2784 2785 2781 2781
q 191657 191707 191801 191899 191999 192053 192149 192233 192317 192377 192497 192571 192617 192721 192791 192859 192931 193003 193073 193181 193283 193379 193447 193541 193603 193723 193789 193859 193937 194003 194087 194167 194269 194431 194527 194653 194713 194809 194867 194963 195047 195121 195193 195271 195343 195427 195511 195659
tL 2 2754 2754 2755 2757 2754 2753 2756 2757 2755 2761 2773 2760 2762 2774 2768 2762 2767 2761 2774 2783 2759 2762 2778 2761 2765 2774 2771 2783 2767 2783 2769 2773 2777 2777 2779 2776 2782 2778 2779 2784 2780 2779 2783 2779 2779 2791 2776 2785
80
q 191669 191717 191803 191903 192007 192091 192161 192239 192319 192383 192499 192581 192629 192737 192799 192877 192949 193009 193093 193183 193301 193381 193451 193549 193607 193727 193793 193861 193939 194017 194093 194179 194309 194443 194543 194659 194717 194813 194869 194977 195049 195127 195197 195277 195353 195443 195527 195677
tL 2 2747 2761 2768 2761 2754 2766 2761 2753 2766 2768 2763 2764 2757 2765 2765 2772 2764 2756 2758 2769 2756 2769 2759 2768 2770 2778 2772 2757 2782 2772 2783 2776 2772 2782 2783 2785 2783 2790 2775 2777 2792 2783 2771 2777 2783 2782 2781 2784
q 191671 191747 191827 191911 192013 192097 192173 192251 192323 192391 192529 192583 192631 192743 192811 192883 192961 193013 193133 193189 193327 193387 193463 193559 193619 193741 193799 193871 193943 194027 194101 194197 194323 194471 194569 194671 194723 194819 194891 194981 195053 195131 195203 195281 195359 195457 195539 195691
tL 2 2747 2749 2754 2757 2753 2760 2760 2767 2763 2766 2753 2766 2769 2759 2759 2769 2765 2769 2768 2765 2773 2766 2766 2772 2781 2776 2776 2766 2777 2769 2778 2771 2774 2774 2770 2783 2773 2780 2787 2784 2786 2783 2783 2781 2774 2778 2787 2793
q 191677 191749 191831 191929 192029 192103 192187 192259 192341 192407 192539 192587 192637 192749 192817 192887 192971 193031 193139 193201 193337 193393 193469 193573 193649 193751 193811 193873 193951 194057 194113 194203 194353 194479 194581 194681 194729 194827 194899 194989 195071 195137 195229 195311 195389 195469 195541 195697
tL 2 2768 2754 2755 2768 2752 2763 2759 2759 2759 2765 2763 2761 2752 2758 2756 2771 2764 2776 2766 2787 2767 2770 2769 2767 2774 2779 2770 2774 2768 2779 2772 2784 2767 2780 2778 2778 2789 2776 2772 2790 2785 2788 2795 2782 2782 2784 2791 2777
Table 5. Continue 24 q 195709 195761 195869 195929 195997 196081 196171 196249 196331 196459 196543 196643 196709 196799 196879 196993 197077 197147 197243 197297 197369 197441 197567 197641 197711 197779 197893 197959 198043 198127 198223 198301 198391 198461 198533 198623 198701 198823 198859 198953 199033 199151 199261 199357 199429 199499 199603 199687
tL 2 2795 2783 2783 2792 2781 2788 2790 2785 2797 2793 2788 2793 2795 2797 2793 2804 2803 2802 2801 2796 2802 2802 2807 2806 2801 2801 2799 2804 2807 2807 2810 2814 2803 2805 2809 2817 2804 2808 2821 2809 2805 2809 2819 2821 2820 2819 2823 2823
q 195731 195781 195883 195931 196003 196087 196177 196271 196337 196477 196549 196657 196717 196817 196901 197003 197083 197159 197257 197299 197371 197453 197569 197647 197713 197803 197909 197963 198047 198139 198241 198313 198397 198463 198553 198637 198719 198827 198899 198959 199037 199153 199267 199373 199447 199501 199621 199697
tL 2 2782 2791 2793 2790 2782 2793 2790 2794 2794 2789 2793 2794 2785 2804 2798 2805 2796 2791 2806 2792 2801 2795 2794 2794 2805 2818 2804 2794 2791 2807 2808 2804 2810 2805 2813 2800 2808 2800 2823 2816 2816 2807 2817 2819 2807 2818 2810 2819
q 195733 195787 195887 195967 196033 196111 196181 196277 196379 196499 196561 196661 196727 196831 196907 197009 197089 197161 197261 197311 197381 197479 197573 197651 197741 197807 197921 197969 198073 198173 198251 198323 198409 198469 198571 198641 198733 198829 198901 198967 199039 199181 199289 199379 199453 199523 199637 199721
tL 2 2774 2786 2788 2784 2789 2795 2786 2793 2792 2802 2792 2803 2800 2788 2795 2798 2796 2804 2803 2796 2795 2814 2803 2800 2813 2799 2807 2804 2808 2805 2814 2807 2811 2818 2802 2810 2814 2815 2805 2817 2816 2818 2820 2813 2804 2813 2813 2815
q 195737 195791 195893 195971 196039 196117 196187 196279 196387 196501 196579 196663 196739 196837 196919 197023 197101 197203 197269 197339 197383 197507 197597 197677 197753 197831 197927 197971 198083 198179 198257 198337 198413 198479 198589 198647 198761 198833 198929 198971 199049 199193 199313 199399 199457 199559 199657 199729
tL 2 2795 2793 2790 2785 2788 2787 2797 2784 2803 2788 2796 2796 2793 2787 2783 2799 2795 2810 2809 2806 2801 2800 2796 2794 2798 2803 2805 2806 2802 2808 2809 2809 2803 2811 2808 2812 2819 2811 2810 2812 2812 2817 2819 2812 2824 2816 2820 2833
81
q 195739 195809 195907 195973 196043 196139 196193 196291 196429 196519 196583 196681 196751 196853 196927 197033 197117 197207 197273 197341 197389 197521 197599 197683 197759 197837 197933 198013 198091 198193 198259 198347 198427 198491 198593 198659 198769 198839 198937 198977 199081 199207 199321 199403 199483 199567 199669 199739
tL 2 2793 2791 2768 2787 2791 2793 2801 2787 2792 2787 2805 2789 2799 2802 2802 2802 2794 2795 2798 2804 2804 2808 2803 2803 2811 2802 2801 2803 2811 2803 2800 2808 2808 2805 2806 2819 2793 2812 2812 2812 2815 2824 2806 2826 2813 2818 2805 2822
q 195743 195817 195913 195977 196051 196159 196201 196303 196439 196523 196597 196687 196769 196871 196961 197059 197123 197221 197279 197347 197419 197539 197609 197689 197767 197887 197947 198017 198097 198197 198277 198349 198437 198503 198599 198673 198811 198841 198941 198997 199103 199211 199337 199411 199487 199583 199673 199741
tL 2 2797 2779 2790 2782 2786 2789 2786 2786 2796 2785 2801 2785 2789 2794 2784 2798 2792 2803 2803 2795 2796 2806 2803 2806 2798 2793 2807 2803 2797 2799 2805 2802 2805 2812 2814 2813 2803 2815 2803 2806 2809 2807 2813 2819 2805 2812 2824 2813
q 195751 195863 195919 195991 196073 196169 196247 196307 196453 196541 196613 196699 196771 196873 196991 197063 197137 197233 197293 197359 197423 197551 197621 197699 197773 197891 197957 198031 198109 198221 198281 198377 198439 198529 198613 198689 198817 198851 198943 199021 199109 199247 199343 199417 199489 199601 199679 199751
tL 2 2776 2793 2788 2783 2795 2791 2789 2788 2797 2787 2800 2785 2790 2793 2795 2800 2792 2804 2807 2794 2793 2792 2798 2800 2809 2791 2799 2812 2812 2807 2805 2798 2808 2818 2806 2806 2815 2809 2807 2806 2821 2808 2812 2804 2821 2816 2810 2815
Table 5. Continue 25 q 199753 199819 199921 200009 200087 200183 200273 200357 200437 200573 200657 200771 200867 200927 201011 201119 201203 201287 201403 201493 201577 201629 201709 201787 201829 201911 201973 202061 202127 202243 202343 202409 202549 202637 202729 202799 202889 202973 203039 203207 203279 203339 203387 203459 203591 203663 203789 203873
tL 2 2821 2811 2819 2822 2820 2824 2802 2818 2822 2813 2827 2832 2827 2827 2826 2828 2828 2815 2835 2833 2827 2828 2843 2835 2827 2844 2830 2836 2833 2842 2835 2844 2839 2843 2843 2845 2841 2846 2847 2847 2838 2838 2843 2853 2849 2858 2844 2846
q 199777 199831 199931 200017 200117 200191 200293 200363 200443 200579 200671 200779 200869 200929 201031 201121 201209 201307 201413 201497 201581 201653 201731 201791 201833 201919 201979 202063 202129 202277 202357 202441 202567 202639 202733 202817 202907 202981 203051 203209 203293 203341 203393 203461 203617 203669 203807 203897
tL 2 2811 2810 2826 2823 2826 2827 2824 2810 2823 2819 2831 2829 2826 2832 2839 2823 2835 2828 2821 2836 2827 2827 2839 2825 2834 2837 2837 2834 2842 2848 2837 2838 2850 2855 2830 2841 2840 2835 2845 2851 2847 2846 2839 2832 2848 2851 2841 2849
q 199783 199853 199933 200023 200131 200201 200297 200371 200461 200587 200689 200789 200881 200971 201037 201139 201211 201329 201437 201499 201589 201661 201743 201797 201847 201923 201997 202067 202183 202289 202361 202471 202577 202661 202747 202823 202921 202987 203057 203213 203309 203351 203417 203531 203627 203713 203809 203909
tL 2 2809 2821 2818 2824 2825 2811 2827 2819 2829 2831 2809 2835 2818 2830 2820 2834 2828 2827 2832 2833 2829 2844 2831 2829 2842 2829 2830 2828 2842 2838 2839 2840 2845 2830 2841 2844 2842 2849 2855 2834 2836 2848 2842 2846 2845 2854 2848 2856
q 199799 199873 199961 200029 200153 200227 200323 200381 200467 200591 200699 200797 200891 200983 201049 201151 201233 201337 201449 201511 201599 201667 201757 201809 201881 201937 202001 202087 202187 202291 202381 202481 202591 202667 202751 202841 202931 202999 203117 203221 203311 203353 203419 203549 203641 203761 203821 203911
tL 2 2819 2819 2825 2813 2821 2836 2827 2830 2832 2832 2818 2818 2818 2828 2826 2825 2826 2827 2821 2833 2832 2834 2831 2829 2832 2850 2830 2835 2835 2836 2833 2853 2841 2839 2835 2844 2838 2835 2839 2837 2834 2848 2842 2853 2841 2848 2854 2847
82
q 199807 199877 199967 200033 200159 200231 200329 200383 200483 200597 200713 200807 200899 200987 201073 201163 201247 201359 201451 201517 201601 201673 201767 201821 201889 201947 202021 202099 202201 202309 202387 202493 202613 202679 202753 202859 202933 203011 203141 203227 203317 203363 203429 203563 203653 203767 203843 203921
tL 2 2831 2822 2822 2815 2827 2817 2827 2819 2810 2834 2829 2834 2834 2834 2830 2841 2825 2828 2820 2827 2831 2827 2837 2827 2829 2832 2835 2835 2835 2838 2841 2843 2842 2836 2848 2839 2842 2839 2838 2837 2848 2839 2834 2846 2839 2838 2846 2861
q 199811 199889 199999 200041 200171 200237 200341 200401 200513 200609 200723 200843 200903 200989 201101 201167 201251 201389 201473 201547 201611 201683 201769 201823 201893 201953 202031 202109 202219 202327 202393 202519 202621 202693 202757 202877 202949 203017 203173 203233 203321 203381 203431 203569 203657 203771 203857 203947
tL 2 2821 2816 2828 2822 2819 2813 2830 2819 2815 2820 2822 2824 2818 2838 2820 2826 2832 2817 2831 2838 2828 2842 2839 2827 2826 2830 2830 2839 2836 2830 2837 2831 2836 2836 2833 2829 2834 2848 2849 2846 2849 2845 2845 2854 2850 2851 2845 2853
q 199813 199909 200003 200063 200177 200257 200351 200407 200569 200639 200731 200861 200909 201007 201107 201193 201281 201401 201491 201557 201623 201701 201781 201827 201907 201961 202049 202121 202231 202339 202403 202529 202627 202717 202777 202879 202967 203023 203183 203249 203323 203383 203449 203579 203659 203773 203869 203953
tL 2 2827 2834 2822 2818 2823 2818 2822 2822 2824 2826 2823 2822 2823 2827 2832 2825 2832 2837 2835 2824 2831 2834 2845 2830 2841 2834 2834 2837 2836 2841 2835 2830 2828 2849 2841 2836 2849 2848 2839 2843 2851 2850 2843 2845 2845 2837 2849 2848
Table 5. Continue 26 q 203969 204019 204133 204233 204331 204397 204481 204563 204641 204751 204857 204931 205033 205111 205187 205267 205379 205427 205487 205553 205633 205759 205879 205963 206027 206081 206191 206249 206299 206399 206467 206543 206639 206803 206887 206939 207037 207127 207227 207301 207371 207463 207511 207563 207653 207721 207821 207941
tL 2 2851 2855 2844 2853 2852 2851 2855 2861 2859 2860 2865 2848 2855 2850 2858 2850 2858 2853 2864 2855 2862 2868 2871 2864 2862 2865 2859 2868 2856 2867 2870 2869 2868 2869 2871 2865 2869 2877 2875 2877 2873 2881 2869 2864 2877 2884 2866 2875
q 203971 204023 204137 204251 204353 204427 204487 204583 204667 204781 204859 204947 205043 205129 205201 205297 205391 205433 205493 205559 205651 205763 205883 205967 206033 206083 206197 206251 206303 206407 206477 206551 206641 206807 206897 206951 207041 207139 207239 207307 207377 207469 207517 207569 207661 207743 207833 207947
tL 2 2857 2848 2847 2853 2857 2851 2855 2864 2853 2849 2851 2861 2858 2860 2860 2864 2859 2861 2867 2861 2873 2859 2848 2861 2851 2870 2878 2855 2875 2873 2861 2863 2870 2875 2869 2865 2863 2873 2867 2878 2884 2881 2881 2878 2864 2881 2874 2873
q 203977 204047 204143 204299 204359 204431 204509 204587 204679 204791 204871 204973 205063 205133 205211 205307 205397 205441 205507 205589 205657 205783 205913 205981 206039 206123 206203 206263 206341 206411 206483 206593 206651 206813 206909 206953 207061 207169 207241 207329 207401 207479 207521 207589 207671 207763 207847 207953
tL 2 2858 2864 2858 2860 2858 2850 2851 2855 2850 2849 2853 2875 2863 2858 2847 2858 2859 2870 2863 2861 2873 2866 2860 2863 2864 2855 2873 2863 2876 2867 2856 2874 2875 2877 2865 2870 2876 2866 2878 2871 2873 2861 2874 2875 2872 2875 2887 2887
q 203989 204059 204151 204301 204361 204437 204511 204599 204707 204793 204887 204979 205069 205141 205213 205319 205399 205453 205519 205603 205661 205817 205937 205991 206047 206153 206209 206273 206347 206413 206489 206597 206699 206819 206911 206993 207073 207187 207257 207331 207409 207481 207523 207593 207673 207769 207869 207967
tL 2 2850 2846 2859 2846 2853 2846 2840 2854 2858 2855 2859 2865 2843 2854 2853 2867 2866 2860 2863 2865 2860 2869 2866 2864 2870 2865 2873 2860 2880 2873 2867 2855 2874 2874 2871 2875 2870 2875 2870 2870 2882 2876 2873 2874 2867 2870 2890 2876
83
q 203999 204067 204161 204311 204367 204439 204517 204601 204719 204797 204913 204983 205081 205151 205223 205327 205417 205463 205529 205607 205663 205823 205949 205993 206051 206177 206221 206279 206351 206419 206501 206603 206749 206821 206917 207013 207079 207191 207269 207341 207433 207491 207541 207619 207679 207797 207877 207971
tL 2 2849 2858 2845 2843 2836 2859 2851 2843 2854 2862 2858 2854 2852 2864 2860 2852 2866 2874 2856 2868 2860 2862 2851 2872 2873 2870 2868 2871 2863 2867 2874 2862 2873 2865 2878 2867 2865 2870 2879 2875 2878 2871 2870 2879 2868 2875 2881 2870
q 204007 204101 204163 204319 204371 204443 204521 204613 204733 204803 204917 205019 205097 205157 205237 205339 205421 205477 205537 205619 205703 205837 205951 206009 206069 206179 206233 206281 206369 206447 206519 206623 206779 206827 206923 207017 207113 207197 207287 207343 207443 207497 207547 207629 207709 207799 207923 207973
tL 2 2853 2854 2854 2852 2855 2849 2858 2859 2852 2846 2847 2864 2864 2865 2872 2851 2857 2858 2852 2857 2863 2857 2860 2867 2864 2856 2861 2872 2873 2870 2864 2872 2866 2875 2865 2865 2880 2878 2873 2876 2876 2876 2877 2879 2873 2878 2885 2884
q 204013 204107 204173 204329 204377 204461 204557 204623 204749 204821 204923 205031 205103 205171 205253 205357 205423 205483 205549 205627 205721 205847 205957 206021 206077 206183 206237 206291 206383 206461 206527 206627 206783 206879 206933 207029 207121 207199 207293 207367 207457 207509 207551 207643 207719 207811 207931 207997
tL 2 2849 2857 2850 2851 2845 2860 2853 2852 2854 2856 2855 2859 2860 2861 2867 2862 2872 2858 2858 2851 2871 2864 2869 2869 2861 2873 2867 2869 2873 2866 2858 2868 2860 2869 2876 2873 2870 2877 2867 2876 2870 2874 2871 2894 2890 2883 2885 2887
Table 5. Continue 27 q 208001 208073 208147 208253 208319 208393 208469 208519 208627 208699 208807 208907 208993 209089 209201 209257 209327 209381 209471 209563 209623 209707 209801 209857 209953 210019 210109 210169 210233 210299 210391 210467 210533 210659 210761 210839 210913 211039 211093 211193 211241 211319 211427 211501 211597 211681 211747 211859
tL 2 2882 2887 2874 2883 2883 2884 2892 2881 2884 2886 2901 2888 2895 2884 2892 2895 2893 2896 2886 2896 2895 2888 2902 2893 2891 2898 2902 2899 2893 2904 2898 2894 2911 2894 2905 2901 2894 2905 2906 2897 2902 2906 2906 2902 2909 2912 2916 2898
q 208003 208099 208189 208261 208333 208409 208489 208529 208631 208721 208837 208927 208997 209123 209203 209263 209333 209393 209477 209567 209639 209717 209809 209861 209959 210031 210113 210173 210241 210317 210401 210481 210557 210671 210773 210853 210923 211049 211097 211199 211247 211333 211433 211507 211619 211691 211777 211867
tL 2 2886 2873 2880 2889 2885 2880 2881 2875 2880 2883 2887 2887 2890 2890 2888 2887 2896 2881 2889 2886 2886 2884 2890 2895 2888 2883 2880 2903 2902 2900 2899 2902 2907 2907 2899 2901 2897 2908 2898 2905 2919 2906 2908 2909 2888 2918 2902 2909
q 208009 208111 208207 208277 208337 208433 208493 208553 208657 208729 208843 208931 209021 209147 209213 209267 209347 209401 209497 209569 209647 209719 209813 209887 209971 210037 210127 210187 210247 210319 210403 210487 210599 210709 210803 210857 210929 211051 211129 211213 211271 211339 211441 211543 211639 211693 211781 211873
tL 2 2881 2888 2888 2882 2866 2880 2891 2881 2886 2886 2873 2881 2889 2886 2881 2883 2890 2887 2889 2894 2890 2893 2899 2891 2894 2898 2895 2895 2892 2899 2897 2891 2901 2903 2905 2893 2909 2897 2905 2907 2907 2900 2904 2900 2903 2910 2907 2902
q 208037 208121 208213 208279 208367 208441 208499 208577 208667 208739 208849 208933 209029 209159 209221 209269 209353 209431 209519 209579 209659 209743 209819 209917 209977 210053 210131 210191 210257 210323 210407 210491 210601 210713 210809 210869 210943 211061 211151 211217 211283 211349 211457 211559 211643 211711 211789 211877
tL 2 2871 2883 2879 2883 2885 2885 2872 2892 2883 2883 2891 2878 2886 2876 2879 2894 2886 2888 2897 2886 2893 2893 2885 2906 2904 2900 2899 2897 2894 2902 2908 2901 2901 2897 2895 2904 2900 2898 2904 2915 2903 2901 2923 2904 2909 2916 2904 2909
84
q 208049 208129 208217 208283 208379 208457 208501 208589 208673 208759 208877 208961 209039 209173 209227 209299 209357 209441 209533 209581 209669 209767 209821 209927 209983 210071 210139 210193 210263 210347 210421 210499 210619 210719 210811 210901 210961 211063 211153 211219 211291 211369 211469 211571 211657 211723 211801 211879
tL 2 2878 2886 2889 2887 2897 2882 2886 2884 2889 2889 2890 2887 2892 2889 2900 2889 2895 2895 2898 2898 2888 2885 2896 2901 2896 2894 2892 2892 2894 2894 2894 2895 2903 2899 2904 2898 2906 2901 2908 2900 2895 2907 2900 2907 2897 2912 2910 2911
q 208057 208139 208223 208291 208387 208459 208511 208591 208687 208787 208889 208963 209063 209179 209233 209311 209359 209449 209543 209597 209687 209771 209837 209929 209987 210097 210143 210209 210277 210359 210437 210523 210631 210731 210823 210907 210967 211067 211177 211229 211297 211373 211493 211573 211661 211727 211811 211889
tL 2 2880 2876 2883 2883 2882 2887 2886 2885 2874 2885 2883 2882 2889 2895 2894 2896 2891 2884 2890 2904 2891 2887 2884 2890 2892 2895 2898 2900 2900 2900 2901 2897 2902 2891 2893 2897 2908 2906 2897 2916 2911 2898 2899 2908 2907 2902 2917 2905
q 208067 208141 208231 208309 208391 208463 208513 208609 208697 208799 208891 208991 209071 209189 209249 209317 209371 209459 209549 209621 209701 209789 209851 209939 210011 210101 210157 210229 210283 210361 210461 210527 210643 210739 210827 210911 211007 211073 211187 211231 211313 211403 211499 211583 211663 211741 211817 211891
tL 2 2876 2870 2884 2884 2882 2884 2891 2891 2884 2892 2894 2888 2882 2884 2885 2893 2883 2895 2871 2887 2886 2878 2892 2891 2886 2898 2891 2901 2897 2884 2896 2903 2897 2888 2907 2906 2904 2893 2897 2895 2904 2894 2908 2910 2900 2907 2908 2904
Table 5. Continue 28 q 211927 211997 212123 212207 212297 212437 212507 212593 212683 212843 212903 212999 213091 213173 213229 213307 213383 213481 213589 213649 213791 213881 213949 214009 214069 214163 214243 214369 214451 214507 214589 214663 214741 214807 214883 214993 215143 215239 215317 215393 215471 215563 215687 215771 215857 215939 216061 216127
tL 2 2905 2915 2900 2910 2915 2920 2918 2910 2902 2910 2916 2919 2917 2921 2909 2911 2927 2921 2922 2929 2930 2923 2923 2938 2937 2919 2915 2934 2932 2923 2919 2930 2924 2938 2945 2938 2934 2933 2926 2947 2935 2930 2935 2926 2939 2921 2943 2936
q 211931 212029 212131 212209 212353 212447 212521 212627 212701 212851 212909 213019 213097 213181 213247 213319 213391 213491 213599 213659 213799 213887 213953 214021 214087 214177 214259 214373 214457 214517 214603 214667 214759 214811 214891 215051 215153 215249 215329 215399 215483 215573 215689 215797 215863 215953 216071 216133
tL 2 2923 2905 2912 2924 2913 2904 2919 2906 2922 2920 2919 2925 2915 2925 2924 2929 2918 2928 2924 2922 2924 2923 2913 2924 2940 2927 2928 2932 2922 2926 2922 2939 2921 2923 2931 2938 2935 2929 2931 2935 2930 2942 2935 2940 2957 2935 2943 2941
q 211933 212039 212141 212227 212369 212453 212557 212633 212777 212867 212917 213023 213119 213193 213253 213329 213397 213523 213611 213713 213821 213901 213973 214031 214091 214189 214283 214381 214463 214519 214607 214673 214763 214817 214913 215063 215161 215261 215351 215417 215497 215587 215693 215801 215893 215959 216091 216149
tL 2 2902 2907 2914 2909 2907 2915 2914 2914 2914 2912 2904 2905 2923 2912 2908 2917 2917 2932 2930 2926 2930 2924 2928 2923 2920 2925 2931 2937 2926 2932 2931 2921 2921 2927 2931 2933 2938 2917 2933 2930 2935 2944 2941 2944 2928 2950 2931 2944
q 211943 212057 212161 212239 212383 212461 212561 212651 212791 212869 212923 213029 213131 213203 213263 213337 213407 213533 213613 213721 213827 213919 213977 214033 214129 214211 214297 214391 214469 214531 214631 214691 214771 214831 214939 215077 215179 215273 215353 215443 215503 215617 215723 215827 215899 215981 216103 216157
tL 2 2914 2912 2913 2911 2913 2920 2909 2911 2920 2914 2917 2912 2919 2920 2916 2921 2916 2917 2921 2927 2926 2915 2931 2928 2936 2928 2929 2927 2927 2932 2930 2931 2922 2933 2937 2937 2921 2937 2942 2928 2931 2940 2938 2935 2939 2940 2936 2939
85
q 211949 212081 212167 212243 212411 212467 212573 212669 212801 212873 212969 213043 213133 213209 213281 213349 213449 213539 213623 213727 213833 213929 213989 214043 214133 214213 214309 214399 214481 214541 214639 214723 214783 214849 214943 215087 215183 215279 215359 215447 215507 215653 215737 215833 215909 215983 216107 216173
tL 2 2917 2919 2915 2913 2917 2908 2913 2917 2920 2912 2930 2913 2910 2918 2915 2919 2915 2937 2923 2932 2928 2932 2916 2922 2922 2928 2926 2927 2923 2933 2934 2936 2925 2934 2927 2935 2927 2929 2930 2931 2925 2935 2933 2939 2931 2929 2950 2937
q 211969 212099 212183 212281 212419 212479 212579 212671 212827 212881 212981 213067 213139 213217 213287 213359 213461 213553 213637 213737 213847 213943 214003 214051 214141 214219 214351 214433 214483 214559 214651 214729 214787 214853 214967 215123 215191 215297 215381 215459 215521 215659 215753 215843 215921 216023 216113 216179
tL 2 2907 2919 2910 2901 2903 2912 2913 2921 2917 2918 2924 2922 2928 2914 2918 2915 2924 2928 2919 2933 2915 2918 2924 2924 2923 2927 2929 2928 2933 2921 2922 2922 2937 2918 2928 2937 2938 2933 2927 2938 2930 2937 2920 2923 2939 2937 2937 2945
q 211979 212117 212203 212293 212423 212501 212587 212677 212837 212897 212987 213079 213149 213223 213289 213361 213467 213557 213641 213751 213859 213947 214007 214063 214147 214237 214363 214439 214499 214561 214657 214733 214789 214867 214987 215141 215197 215309 215389 215461 215531 215681 215767 215851 215927 216037 216119 216211
tL 2 2901 2917 2923 2920 2916 2916 2908 2914 2920 2918 2910 2920 2912 2920 2926 2927 2919 2920 2921 2930 2926 2918 2929 2931 2928 2928 2927 2926 2926 2925 2926 2923 2922 2933 2934 2936 2943 2927 2938 2937 2939 2951 2942 2943 2927 2937 2939 2943
Table 5. Continue 29 q 216217 216329 216421 216551 216641 216719 216781 216859 216947 217033 217157 217223 217313 217363 217421 217517 217619 217697 217781 217907 218003 218087 218143 218249 218389 218453 218527 218611 218677 218749 218839 218941 218993 219059 219133 219277 219361 219437 219523 219607 219679 219749 219799 219871 219941 219983 220123 220189
tL 2 2948 2943 2935 2945 2932 2946 2953 2943 2948 2946 2945 2950 2949 2946 2942 2965 2948 2950 2951 2953 2960 2953 2969 2957 2952 2950 2955 2959 2960 2961 2972 2954 2959 2954 2968 2977 2975 2964 2958 2955 2965 2963 2975 2961 2970 2965 2979 2971
q 216233 216347 216431 216553 216647 216731 216787 216877 216967 217057 217163 217229 217319 217367 217429 217519 217643 217717 217793 217909 218021 218089 218149 218279 218401 218459 218531 218623 218681 218761 218843 218947 219001 219071 219143 219281 219371 219451 219529 219613 219683 219757 219809 219881 219943 220009 220141 220217
tL 2 2938 2938 2942 2945 2942 2952 2953 2949 2939 2950 2950 2947 2949 2958 2952 2953 2951 2950 2955 2960 2966 2956 2964 2957 2949 2960 2958 2950 2960 2967 2960 2970 2968 2960 2964 2964 2961 2963 2965 2964 2965 2952 2966 2974 2969 2958 2967 2970
q 216259 216371 216451 216569 216649 216743 216791 216899 216973 217069 217169 217241 217333 217369 217439 217559 217661 217727 217823 217933 218047 218107 218171 218287 218417 218461 218549 218627 218711 218783 218849 218963 219017 219083 219169 219293 219377 219463 219533 219619 219689 219761 219823 219889 219953 220013 220147 220243
tL 2 2936 2941 2944 2943 2940 2943 2938 2943 2938 2947 2956 2947 2951 2953 2948 2942 2946 2959 2945 2940 2946 2944 2950 2954 2945 2955 2962 2963 2950 2967 2955 2958 2969 2955 2961 2969 2964 2964 2971 2965 2965 2965 2973 2971 2963 2974 2973 2973
q 216263 216373 216481 216571 216653 216751 216803 216901 216991 217081 217199 217253 217337 217387 217457 217561 217667 217733 217829 217937 218069 218111 218191 218357 218419 218479 218551 218629 218717 218797 218857 218969 219019 219091 219187 219301 219389 219467 219547 219629 219707 219763 219829 219911 219959 220019 220151 220279
tL 2 2937 2939 2950 2955 2940 2947 2950 2945 2949 2948 2947 2940 2958 2952 2950 2968 2958 2949 2959 2957 2958 2955 2959 2961 2951 2955 2959 2973 2971 2948 2969 2969 2956 2954 2972 2957 2960 2964 2963 2964 2960 2965 2975 2971 2968 2961 2965 2971
86
q 216289 216379 216493 216577 216661 216757 216829 216911 217001 217111 217201 217271 217339 217397 217463 217573 217681 217739 217849 217969 218077 218117 218213 218363 218423 218509 218579 218641 218719 218809 218873 218971 219031 219097 219217 219311 219407 219491 219577 219647 219721 219767 219839 219917 219971 220021 220163 220291
tL 2 2939 2944 2947 2939 2936 2947 2948 2959 2955 2948 2947 2941 2943 2961 2947 2946 2956 2955 2948 2945 2958 2962 2956 2941 2953 2960 2948 2959 2961 2957 2966 2957 2961 2955 2956 2968 2972 2962 2968 2964 2963 2963 2962 2963 2970 2963 2974 2958
q 216317 216397 216509 216607 216679 216761 216841 216917 217003 217117 217207 217307 217351 217409 217489 217577 217687 217747 217859 217979 218081 218131 218227 218371 218437 218513 218591 218651 218723 218819 218887 218987 219041 219103 219223 219313 219409 219503 219587 219649 219727 219787 219847 219931 219977 220057 220169 220301
tL 2 2944 2932 2950 2939 2952 2939 2942 2945 2943 2942 2941 2956 2942 2949 2951 2952 2951 2943 2945 2956 2958 2966 2958 2953 2956 2960 2956 2960 2960 2972 2955 2966 2956 2974 2966 2967 2959 2964 2964 2967 2967 2968 2973 2961 2975 2970 2963 2973
q 216319 216401 216523 216617 216703 216779 216851 216919 217027 217121 217219 217309 217361 217411 217499 217579 217691 217771 217901 217981 218083 218137 218233 218381 218447 218521 218599 218657 218737 218833 218923 218989 219053 219119 219251 219353 219433 219517 219599 219677 219731 219797 219851 219937 219979 220063 220177 220307
tL 2 2946 2937 2946 2941 2948 2942 2947 2945 2941 2944 2945 2947 2943 2944 2953 2953 2954 2960 2950 2953 2957 2958 2960 2959 2955 2951 2954 2956 2956 2960 2960 2958 2960 2959 2953 2966 2963 2965 2963 2968 2964 2969 2964 2964 2967 2973 2967 2970
Table 5. Continue 30 q 220327 220391 220471 220559 220673 220757 220841 220897 220939 221077 221173 221233 221317 221447 221509 221603 221677 221737 221831 221953 222023 222107 222161 222289 222347 222419 222533 222643 222773 222839 222919 222979 223051 223133 223241 223283 223339 223439 223529 223633 223747 223831 223921 224033 224113 224197 224261 224327
tL 2 2969 2979 2980 2963 2978 2974 2980 2987 2977 2978 2989 2974 2970 2984 2981 2977 2981 2981 2991 2977 2984 2990 2977 2996 2978 2979 2987 2981 2988 2991 3006 2990 2981 3002 2988 3002 3002 2993 2995 2997 3004 2998 3009 2999 3000 2994 3004 2998
q 220333 220399 220511 220573 220681 220771 220859 220901 220973 221083 221197 221239 221327 221453 221537 221621 221707 221747 221849 221957 222029 222109 222163 222293 222349 222437 222553 222647 222779 222841 222931 222991 223061 223151 223243 223291 223361 223441 223543 223637 223753 223837 223939 224041 224129 224201 224267 224351
tL 2 2976 2976 2975 2969 2970 2970 2977 2964 2972 2972 2970 2979 2980 2984 2978 2981 2985 2970 2973 2987 2986 2978 2987 2991 2988 2993 3002 2987 2993 2989 2992 2982 2995 2991 2990 2997 2999 2988 2984 2997 2997 2993 2990 2997 2996 3007 3000 3003
q 220351 220403 220513 220579 220687 220783 220861 220903 221021 221087 221201 221251 221393 221461 221539 221623 221713 221773 221873 221987 222041 222113 222193 222311 222361 222461 222557 222659 222787 222857 222941 223007 223063 223207 223247 223303 223367 223463 223547 223667 223757 223841 223963 224047 224131 224209 224291 224359
tL 2 2970 2971 2982 2966 2976 2971 2980 2965 2975 2978 2977 2985 2970 2986 2977 2986 2974 2982 2978 2986 2982 2974 2988 2978 2986 2977 2995 2990 2972 2993 2991 2989 2992 3009 2999 3000 2990 2981 2997 2994 2986 2995 3000 3001 3010 3007 2998 2996
q 220357 220411 220529 220589 220699 220789 220873 220907 221047 221093 221203 221261 221399 221471 221549 221653 221717 221797 221891 221989 222043 222127 222197 222317 222367 222493 222587 222679 222791 222863 222947 223009 223087 223211 223253 223313 223381 223469 223549 223679 223759 223843 223969 224057 224149 224221 224299 224363
tL 2 2978 2967 2960 2977 2970 2969 2992 2972 2982 2981 2970 2983 2974 2970 2980 2987 2987 2992 2993 2981 2981 2978 2983 2992 2985 2975 2993 2994 2992 2990 2987 2995 2995 2995 2995 2999 2988 2997 2991 2991 2993 2995 2995 3000 2998 2992 3006 3016
87
q 220361 220421 220537 220613 220709 220793 220877 220919 221059 221101 221209 221281 221401 221477 221567 221657 221719 221807 221909 221999 222059 222137 222199 222323 222379 222499 222601 222707 222793 222877 222953 223019 223099 223217 223259 223319 223403 223481 223577 223681 223781 223849 223999 224069 224153 224233 224303 224401
tL 2 2968 2974 2975 2964 2977 2975 2975 2984 2988 2979 2970 2970 2986 2970 2982 2978 2978 2980 2982 2984 2983 2989 2979 2993 2979 2988 2988 2982 2989 2981 2984 2993 2983 2992 2985 2988 2990 2996 2981 2998 2992 3005 2998 2996 2985 2988 2999 3005
q 220369 220447 220543 220663 220721 220807 220879 220931 221069 221159 221219 221303 221411 221489 221581 221659 221723 221813 221941 222007 222067 222149 222247 222329 222389 222511 222613 222713 222799 222883 222967 223037 223103 223219 223273 223331 223423 223493 223589 223697 223823 223903 224011 224071 224171 224239 224309 224423
tL 2 2967 2972 2964 2975 2972 2987 2970 2979 2968 2983 2992 2981 2967 2982 2975 2992 2978 2988 2992 2981 2980 2974 2978 2981 2986 2990 2994 2988 2989 2996 2992 2992 2992 2997 2988 2993 2981 2998 2984 2993 3006 3005 2993 3001 3001 2993 2998 3002
q 220373 220469 220553 220667 220747 220811 220889 220933 221071 221171 221227 221311 221413 221497 221587 221671 221729 221827 221951 222011 222073 222151 222269 222337 222403 222527 222619 222731 222823 222913 222977 223049 223129 223229 223277 223337 223429 223507 223621 223711 223829 223919 224027 224101 224177 224251 224317 224429
tL 2 2980 2970 2971 2972 2991 2970 2978 2978 2978 2974 2984 2987 2973 2988 2984 2978 2985 2985 2978 2980 2985 2986 2989 2984 2978 2995 2975 2993 2983 2997 2990 2998 2989 2985 2986 2996 2982 2988 3002 2997 3000 2999 2994 2997 2988 3002 3005 2996
Table 5. Continue 31 q 224443 224513 224611 224699 224771 224891 224951 225067 225143 225221 225289 225353 225461 225527 225613 225697 225779 225871 225961 226027 226133 226217 226337 226427 226511 226609 226663 226777 226823 226937 227081 227153 227219 227299 227399 227471 227533 227597 227653 227729 227873 228013 228113 228203 228299 228353 228443 228511
tL 2 3005 3000 3007 3007 3003 3007 3010 3017 3003 2994 3006 2997 3002 3016 3013 3011 3006 3011 3011 3010 2998 3015 3015 3009 3017 3022 3021 3031 3023 3033 3017 3011 3026 3024 3031 3032 3022 3010 3018 3026 3031 3012 3033 3036 3034 3023 3032 3033
q 224449 224527 224617 224711 224797 224897 224969 225077 225149 225223 225299 225371 225479 225529 225619 225721 225781 225889 225977 226063 226141 226231 226357 226433 226531 226621 226669 226783 226843 226943 227089 227159 227231 227303 227407 227473 227537 227603 227663 227743 227893 228023 228127 228211 228301 228359 228451 228517
tL 2 3001 2996 3000 3001 3000 3003 3016 3011 3008 3010 3003 3009 2999 3007 3008 3005 2998 3010 3016 3007 3023 3023 3016 3027 3028 3010 3015 3011 3019 3016 3015 3021 3011 3029 3024 3026 3013 3023 3026 3017 3027 3018 3028 3033 3023 3030 3036 3041
q 224461 224563 224629 224717 224813 224909 224977 225079 225157 225227 225307 225373 225493 225569 225629 225733 225809 225919 225983 226087 226169 226241 226367 226451 226547 226631 226691 226789 226871 226981 227093 227167 227233 227363 227419 227489 227561 227609 227671 227789 227947 228049 228131 228223 228307 228383 228457 228521
tL 2 3005 2990 3007 3000 3010 3011 3013 3010 3010 3016 3011 3007 3018 3019 3010 3011 3013 3009 3013 3012 3020 3017 3004 3011 3014 3016 3014 3021 3011 3020 3027 3021 3015 3025 3019 3020 3031 3024 3022 3022 3025 3030 3019 3024 3030 3025 3032 3035
q 224467 224569 224633 224729 224831 224911 224993 225089 225161 225241 225341 225383 225499 225581 225637 225749 225821 225931 225989 226099 226183 226267 226379 226453 226549 226637 226697 226799 226901 226991 227111 227177 227251 227371 227431 227497 227567 227611 227693 227797 227951 228061 228139 228233 228311 228409 228461 228523
tL 2 2999 3000 3007 3000 3012 3005 3007 3013 3008 3013 3004 3009 3005 3009 2998 3002 2997 3017 3017 3005 3019 3015 3018 3007 3014 3032 3021 3020 3012 3026 3015 3019 3012 3017 3016 3018 3019 3013 3023 3022 3025 3028 3032 3032 3029 3025 3030 3033
88
q 224473 224579 224669 224737 224863 224921 225023 225109 225163 225257 225343 225427 225503 225583 225671 225751 225829 225941 226001 226103 226189 226283 226381 226463 226553 226643 226741 226813 226903 227011 227113 227189 227257 227377 227453 227501 227569 227627 227699 227827 227977 228077 228181 228251 228331 228419 228469 228539
tL 2 3004 2997 3004 3010 3004 3004 3002 3005 3004 3011 3010 3005 3001 3006 3010 3003 3019 3005 3011 3013 3013 3011 3001 3014 3024 3018 3016 3030 3023 3026 3010 3022 3011 3023 3021 3013 3014 3029 3022 3022 3024 3031 3024 3028 3022 3035 3028 3031
q 224491 224591 224677 224743 224869 224929 225037 225119 225167 225263 225347 225431 225509 225601 225683 225767 225839 225943 226007 226123 226199 226307 226397 226483 226571 226649 226753 226817 226907 227027 227131 227191 227267 227387 227459 227519 227581 227629 227707 227849 227989 228097 228197 228257 228337 228421 228479 228559
tL 2 3008 3002 3001 3001 3000 3007 3008 3003 3007 3008 3004 3017 3005 2997 3018 3012 3004 3023 3012 3011 3014 3012 3011 3012 3007 3020 3016 3025 3014 3018 3023 3026 3025 3013 3020 3021 3017 3028 3019 3012 3040 3027 3027 3032 3025 3029 3025 3034
q 224501 224603 224683 224759 224881 224947 225061 225133 225217 225287 225349 225457 225523 225611 225689 225769 225859 225949 226013 226129 226201 226313 226409 226487 226601 226657 226769 226819 226913 227053 227147 227207 227281 227393 227467 227531 227593 227651 227719 227869 227993 228103 228199 228281 228341 228427 228509 228577
tL 2 3005 3006 3002 2999 3009 3006 2998 3005 3001 3017 3014 3015 3007 3011 3008 3008 3016 3012 3011 3018 3024 3015 3013 3012 3013 3008 3011 3016 3017 3025 3020 3028 3026 3022 3029 3024 3026 3021 3019 3027 3016 3027 3019 3011 3025 3036 3029 3032
Table 5. Continue 32 q 228581 228637 228737 228829 228883 228953 229037 229153 229217 229267 229393 229459 229547 229601 229693 229751 229781 229849 229963 230063 230123 230221 230291 230353 230431 230507 230611 230729 230807 230873 230969 231041 231169 231289 231349 231433 231503 231571 231643 231799 231859 231943 232049 232109 232207 232363 232433 232513
tL 2 3034 3027 3028 3035 3036 3037 3029 3028 3042 3030 3034 3038 3042 3043 3039 3034 3037 3038 3042 3040 3038 3033 3042 3049 3041 3041 3046 3051 3052 3040 3052 3054 3056 3040 3044 3046 3066 3048 3049 3043 3058 3051 3049 3043 3059 3051 3062 3045
q 228587 228647 228751 228841 228887 228959 229081 229157 229223 229283 229399 229469 229549 229613 229699 229753 229799 229897 229979 230077 230137 230227 230303 230357 230449 230539 230647 230743 230819 230891 230977 231053 231197 231293 231359 231443 231529 231589 231661 231809 231871 231947 232051 232117 232217 232367 232439 232523
tL 2 3030 3021 3040 3035 3035 3031 3036 3038 3026 3043 3036 3037 3037 3050 3024 3035 3047 3035 3028 3045 3040 3044 3041 3035 3046 3038 3046 3040 3051 3043 3045 3051 3056 3044 3046 3050 3051 3057 3056 3046 3058 3057 3050 3056 3049 3063 3055 3065
q 228593 228677 228757 228847 228901 228961 229093 229171 229237 229309 229403 229487 229553 229627 229703 229759 229813 229903 229981 230081 230143 230233 230309 230369 230453 230551 230653 230761 230827 230929 230999 231067 231223 231299 231367 231461 231533 231599 231677 231821 231877 231961 232073 232129 232259 232381 232451 232549
tL 2 3037 3022 3033 3031 3031 3018 3030 3047 3038 3035 3030 3030 3036 3037 3041 3036 3031 3041 3031 3048 3034 3046 3043 3038 3030 3046 3040 3047 3045 3045 3053 3028 3043 3050 3051 3053 3058 3045 3054 3056 3066 3055 3056 3056 3059 3059 3052 3074
q 228601 228707 228773 228853 228911 228983 229123 229181 229247 229321 229409 229499 229561 229631 229711 229763 229819 229937 230003 230089 230149 230239 230311 230383 230467 230561 230663 230767 230833 230933 231001 231079 231241 231317 231379 231463 231547 231607 231701 231823 231893 231967 232079 232153 232303 232391 232457 232567
tL 2 3035 3035 3030 3032 3043 3025 3025 3039 3036 3037 3041 3039 3031 3043 3040 3034 3042 3045 3033 3045 3043 3031 3055 3033 3028 3047 3052 3057 3044 3056 3058 3050 3052 3067 3045 3050 3059 3053 3042 3053 3066 3049 3051 3061 3069 3052 3050 3052
89
q 228611 228713 228793 228859 228913 228989 229127 229189 229249 229343 229423 229507 229583 229637 229717 229769 229837 229939 230017 230101 230189 230257 230327 230387 230471 230563 230683 230771 230849 230939 231017 231107 231269 231323 231409 231479 231551 231611 231709 231827 231901 232003 232081 232171 232307 232409 232459 232571
tL 2 3036 3022 3022 3023 3029 3030 3050 3035 3038 3054 3035 3034 3038 3028 3035 3037 3039 3034 3033 3047 3046 3038 3038 3050 3046 3048 3043 3042 3038 3059 3043 3047 3042 3050 3061 3041 3054 3044 3052 3061 3048 3066 3062 3049 3055 3065 3050 3050
q 228617 228731 228797 228869 228923 229003 229133 229199 229253 229351 229433 229519 229589 229639 229727 229771 229841 229949 230047 230107 230203 230273 230339 230389 230479 230567 230693 230773 230861 230941 231019 231109 231271 231331 231419 231481 231559 231613 231719 231839 231919 232007 232091 232187 232333 232411 232487 232591
tL 2 3039 3037 3039 3034 3046 3035 3039 3039 3036 3036 3044 3055 3036 3046 3044 3033 3036 3047 3039 3038 3045 3046 3032 3045 3039 3053 3049 3037 3046 3053 3053 3040 3049 3049 3043 3046 3051 3053 3041 3054 3065 3058 3049 3042 3059 3053 3048 3057
q 228619 228733 228799 228881 228929 229027 229139 229213 229261 229373 229441 229529 229591 229681 229739 229777 229847 229961 230059 230117 230213 230281 230341 230393 230501 230597 230719 230779 230863 230959 231031 231131 231277 231347 231431 231493 231563 231631 231779 231841 231923 232013 232103 232189 232357 232417 232499 232597
tL 2 3037 3036 3035 3035 3029 3031 3032 3040 3032 3031 3029 3044 3048 3035 3035 3033 3044 3043 3042 3038 3036 3046 3049 3042 3039 3055 3050 3047 3047 3058 3049 3054 3050 3047 3059 3053 3064 3055 3057 3052 3051 3066 3056 3056 3055 3056 3052 3063
Table 5. Continue 33 q 232607 232699 232801 232871 232961 233113 233183 233279 233347 233423 233557 233663 233743 233879 233941 234067 234149 234197 234281 234341 234463 234539 234613 234721 234791 234851 234947 235003 235069 235177 235273 235397 235513 235577 235673 235787 235877 235967 236069 236153 236287 236377 236461 236527 236653 236723 236783 236891
tL 2 3064 3061 3052 3054 3070 3076 3069 3067 3067 3068 3058 3070 3063 3080 3067 3070 3064 3063 3065 3060 3059 3082 3072 3067 3071 3071 3079 3078 3080 3081 3092 3084 3083 3083 3084 3067 3079 3081 3077 3087 3083 3079 3093 3076 3076 3095 3078 3087
q 232621 232709 232811 232877 232963 233117 233201 233293 233353 233437 233591 233669 233747 233881 233969 234083 234161 234203 234287 234343 234467 234541 234629 234727 234799 234863 234959 235007 235091 235181 235289 235439 235519 235591 235679 235789 235889 235979 236077 236167 236293 236381 236471 236549 236659 236729 236807 236893
tL 2 3049 3056 3063 3069 3058 3060 3067 3063 3064 3069 3069 3078 3061 3069 3063 3064 3068 3070 3058 3066 3079 3075 3079 3072 3062 3075 3065 3086 3070 3074 3073 3076 3084 3082 3079 3083 3076 3078 3083 3072 3087 3080 3079 3082 3094 3084 3092 3088
q 232633 232711 232819 232891 232987 233141 233221 233297 233357 233477 233599 233683 233759 233911 233983 234089 234167 234211 234293 234361 234473 234547 234653 234733 234803 234869 234961 235009 235099 235199 235307 235441 235523 235601 235699 235793 235891 235997 236087 236207 236297 236387 236477 236563 236681 236737 236813 236897
tL 2 3067 3055 3061 3060 3068 3056 3067 3061 3056 3062 3062 3070 3072 3061 3077 3078 3064 3070 3081 3077 3083 3072 3080 3071 3081 3074 3081 3076 3091 3087 3074 3070 3092 3081 3083 3077 3081 3076 3083 3092 3085 3086 3071 3073 3082 3102 3097 3088
q 232643 232741 232823 232901 233021 233143 233231 233323 233371 233489 233609 233687 233777 233917 233993 234103 234181 234217 234317 234383 234499 234571 234659 234743 234809 234893 234967 235013 235111 235211 235309 235447 235537 235607 235723 235811 235901 236017 236107 236209 236323 236399 236479 236573 236699 236749 236867 236909
tL 2 3046 3060 3059 3057 3066 3086 3065 3069 3069 3065 3069 3066 3067 3060 3064 3070 3058 3065 3083 3077 3074 3077 3070 3072 3077 3083 3068 3079 3072 3075 3080 3082 3072 3076 3075 3082 3072 3081 3082 3077 3087 3086 3092 3080 3090 3088 3089 3082
90
q 232663 232751 232847 232907 233069 233159 233239 233327 233407 233509 233617 233689 233837 233921 234007 234121 234187 234239 234319 234431 234511 234587 234673 234749 234811 234907 234977 235043 235117 235231 235337 235483 235541 235621 235747 235813 235919 236021 236111 236219 236329 236407 236503 236609 236701 236771 236869 236917
tL 2 3055 3061 3054 3067 3061 3060 3066 3060 3062 3054 3058 3066 3071 3076 3065 3070 3066 3073 3073 3069 3088 3070 3076 3080 3070 3084 3073 3076 3081 3073 3075 3072 3081 3076 3071 3083 3072 3070 3098 3079 3080 3087 3093 3097 3086 3084 3088 3075
q 232669 232753 232853 232919 233071 233161 233251 233329 233417 233549 233621 233693 233851 233923 234029 234131 234191 234259 234323 234457 234527 234589 234683 234769 234833 234917 234979 235051 235159 235241 235349 235489 235553 235661 235751 235849 235927 236053 236129 236231 236333 236429 236507 236627 236707 236773 236879 236947
tL 2 3061 3057 3064 3063 3073 3064 3057 3077 3063 3057 3069 3071 3070 3064 3079 3074 3079 3061 3067 3071 3063 3071 3074 3076 3077 3079 3079 3083 3084 3071 3078 3077 3080 3097 3066 3078 3076 3093 3085 3083 3094 3097 3091 3103 3079 3097 3093 3089
q 232681 232777 232861 232937 233083 233173 233267 233341 233419 233551 233641 233713 233861 233939 234043 234139 234193 234271 234331 234461 234529 234599 234713 234781 234847 234931 234989 235057 235171 235243 235369 235493 235559 235663 235783 235871 235951 236063 236143 236261 236339 236449 236519 236641 236713 236779 236881 236981
tL 2 3060 3051 3063 3062 3068 3060 3056 3064 3056 3065 3066 3066 3069 3067 3073 3070 3074 3078 3066 3069 3077 3073 3071 3071 3070 3080 3069 3071 3063 3082 3083 3077 3088 3080 3066 3082 3070 3090 3081 3083 3080 3089 3088 3083 3086 3091 3087 3088
Table 5. Continue 34 q 236983 237071 237157 237217 237301 237379 237563 237683 237749 237857 237959 238009 238093 238159 238223 238307 238369 238463 238531 238657 238727 238829 238883 238967 239081 239179 239263 239357 239431 239531 239597 239699 239783 239857 239957 240041 240101 240173 240271 240353 240479 240587 240659 240739 240841 240899 241013 241069
tL 2 3086 3084 3089 3085 3094 3098 3092 3100 3098 3090 3092 3100 3100 3109 3102 3100 3097 3102 3106 3101 3093 3106 3092 3101 3100 3097 3091 3109 3094 3107 3110 3118 3104 3125 3116 3112 3099 3118 3116 3103 3121 3120 3119 3121 3113 3120 3112 3118
q 236993 237073 237161 237233 237313 237401 237571 237689 237763 237859 237967 238019 238099 238163 238229 238313 238373 238471 238547 238673 238729 238837 238897 238991 239087 239201 239273 239383 239441 239539 239611 239711 239803 239873 239963 240043 240109 240197 240283 240371 240491 240589 240677 240743 240853 240913 241027 241079
tL 2 3092 3089 3094 3084 3085 3084 3096 3085 3104 3107 3091 3098 3091 3112 3102 3095 3100 3108 3101 3095 3104 3096 3111 3112 3102 3108 3110 3110 3104 3111 3105 3113 3116 3112 3102 3122 3113 3111 3119 3119 3117 3115 3114 3117 3117 3108 3123 3115
q 237011 237089 237163 237257 237319 237409 237581 237691 237767 237877 237971 238031 238103 238171 238237 238321 238397 238477 238573 238681 238747 238841 238919 239017 239119 239231 239287 239387 239461 239543 239623 239713 239807 239879 239977 240047 240113 240203 240287 240379 240503 240599 240701 240763 240859 240943 241037 241081
tL 2 3095 3098 3086 3091 3101 3084 3095 3104 3101 3097 3099 3101 3093 3099 3102 3116 3108 3093 3104 3113 3100 3101 3090 3115 3116 3100 3104 3119 3115 3112 3115 3116 3105 3120 3104 3115 3111 3128 3113 3112 3127 3124 3119 3115 3107 3123 3120 3119
q 237019 237091 237169 237271 237331 237467 237607 237701 237781 237883 237973 238037 238109 238181 238247 238331 238417 238481 238591 238691 238759 238853 238921 239023 239137 239233 239297 239389 239489 239557 239633 239731 239831 239893 239999 240049 240131 240209 240319 240421 240509 240607 240707 240769 240869 240953 241049 241093
tL 2 3091 3081 3097 3093 3092 3091 3090 3089 3096 3102 3102 3098 3087 3097 3104 3092 3100 3100 3089 3109 3102 3106 3104 3100 3107 3100 3095 3110 3100 3109 3103 3110 3095 3115 3114 3100 3108 3106 3115 3110 3109 3113 3110 3106 3118 3107 3120 3128
91
q 237043 237137 237173 237277 237343 237487 237619 237707 237791 237901 237977 238039 238141 238201 238261 238339 238423 238499 238627 238703 238781 238859 238939 239027 239147 239237 239329 239417 239509 239567 239641 239737 239843 239929 240007 240059 240139 240257 240341 240433 240517 240623 240719 240797 240881 240959 241051 241117
tL 2 3084 3089 3097 3111 3094 3092 3087 3097 3096 3100 3096 3102 3104 3103 3097 3106 3113 3109 3101 3097 3099 3102 3114 3098 3096 3104 3101 3107 3102 3103 3104 3113 3101 3105 3120 3115 3106 3115 3112 3115 3119 3120 3118 3119 3113 3110 3128 3117
q 237053 237143 237179 237283 237361 237509 237631 237733 237821 237911 237997 238079 238151 238207 238267 238361 238439 238519 238639 238709 238789 238877 238943 239053 239167 239243 239333 239423 239521 239579 239671 239753 239849 239933 240011 240073 240151 240259 240347 240437 240551 240631 240727 240811 240883 240967 241061 241127
tL 2 3089 3081 3094 3093 3091 3098 3093 3091 3094 3097 3095 3094 3110 3094 3098 3098 3101 3101 3101 3097 3104 3107 3100 3114 3102 3101 3104 3110 3111 3106 3104 3107 3113 3116 3108 3113 3109 3124 3108 3126 3112 3118 3118 3108 3117 3111 3123 3115
q 237067 237151 237203 237287 237373 237547 237673 237737 237851 237929 238001 238081 238157 238213 238291 238363 238451 238529 238649 238723 238801 238879 238949 239069 239171 239251 239347 239429 239527 239587 239689 239779 239851 239947 240017 240089 240169 240263 240349 240473 240571 240641 240733 240829 240893 240997 241067 241141
tL 2 3097 3103 3079 3096 3091 3090 3081 3083 3088 3099 3100 3098 3107 3097 3089 3104 3091 3106 3115 3111 3089 3109 3100 3104 3100 3102 3113 3115 3106 3106 3107 3101 3112 3112 3118 3111 3120 3104 3116 3110 3128 3108 3109 3119 3118 3110 3106 3126
Table 5. Continue 35 q 241169 241259 241327 241393 241489 241561 241643 241711 241807 241873 241931 241993 242101 242197 242279 242399 242467 242533 242633 242713 242797 242887 243011 243119 243197 243263 243403 243473 243539 243623 243703 243809 243889 244003 244109 244177 244261 244339 244399 244463 244553 244619 244691 244759 244859 244939 245039 245149
tL 2 3127 3120 3121 3125 3118 3127 3124 3123 3125 3125 3119 3119 3131 3122 3126 3131 3127 3120 3122 3124 3131 3140 3130 3135 3131 3135 3127 3139 3132 3140 3139 3133 3142 3147 3146 3140 3131 3149 3142 3134 3154 3145 3138 3159 3155 3157 3140 3153
q 241177 241261 241333 241421 241511 241567 241651 241727 241811 241877 241939 242009 242119 242201 242309 242413 242479 242551 242639 242729 242807 242911 243031 243121 243203 243301 243421 243479 243553 243631 243707 243829 243911 244009 244121 244199 244291 244351 244403 244471 244561 244633 244703 244781 244861 244943 245071 245171
tL 2 3127 3116 3129 3128 3120 3119 3122 3125 3125 3132 3113 3125 3119 3132 3125 3127 3131 3142 3121 3125 3138 3133 3132 3137 3127 3134 3140 3121 3146 3130 3130 3137 3123 3136 3150 3143 3133 3137 3146 3143 3148 3142 3153 3151 3145 3146 3146 3150
q 241183 241271 241337 241429 241513 241589 241663 241739 241817 241883 241951 242057 242129 242227 242329 242419 242483 242591 242647 242731 242813 242923 243073 243137 243209 243311 243431 243487 243577 243643 243709 243839 243917 244021 244129 244217 244297 244357 244411 244481 244567 244637 244711 244787 244873 244957 245083 245173
tL 2 3118 3113 3109 3115 3127 3133 3116 3124 3122 3121 3132 3118 3125 3118 3126 3121 3122 3125 3134 3132 3131 3138 3132 3134 3129 3140 3140 3135 3142 3139 3142 3140 3143 3142 3129 3132 3142 3142 3139 3139 3137 3151 3146 3145 3140 3142 3147 3150
q 241207 241291 241343 241441 241517 241597 241667 241771 241823 241903 241963 242059 242147 242243 242357 242441 242491 242603 242659 242747 242819 242927 243077 243149 243227 243343 243433 243517 243583 243647 243769 243851 243931 244033 244141 244219 244301 244367 244423 244493 244583 244639 244721 244813 244877 244997 245087 245177
tL 2 3116 3122 3119 3127 3106 3128 3128 3121 3135 3130 3122 3121 3137 3142 3121 3122 3129 3127 3139 3119 3133 3131 3132 3133 3130 3143 3143 3133 3133 3136 3151 3132 3130 3144 3144 3152 3145 3145 3148 3144 3141 3149 3147 3134 3160 3145 3141 3152
92
q 241229 241303 241361 241453 241537 241601 241679 241781 241847 241907 241973 242069 242161 242257 242371 242447 242509 242617 242677 242773 242863 242971 243091 243157 243233 243367 243437 243521 243587 243671 243781 243857 243953 244043 244147 244243 244303 244379 244429 244507 244589 244667 244733 244837 244889 245023 245107 245183
tL 2 3116 3131 3130 3118 3126 3125 3128 3124 3124 3125 3124 3125 3123 3132 3135 3126 3139 3115 3126 3122 3125 3136 3131 3125 3130 3135 3147 3149 3139 3136 3151 3140 3142 3141 3138 3134 3135 3145 3135 3151 3141 3143 3135 3162 3143 3141 3139 3160
q 241249 241313 241363 241463 241543 241603 241687 241783 241861 241919 241979 242083 242171 242261 242377 242449 242519 242621 242681 242779 242867 242989 243101 243161 243239 243391 243461 243527 243589 243673 243787 243863 243973 244087 244157 244247 244313 244381 244451 244529 244597 244669 244747 244841 244897 245029 245129 245209
tL 2 3118 3117 3123 3131 3120 3128 3123 3120 3119 3128 3134 3128 3134 3126 3128 3132 3143 3131 3126 3140 3141 3136 3140 3130 3133 3143 3133 3144 3133 3136 3135 3141 3129 3135 3142 3147 3142 3147 3143 3138 3159 3130 3152 3139 3140 3147 3137 3164
q 241253 241321 241391 241469 241559 241639 241691 241793 241867 241921 241981 242093 242173 242273 242393 242453 242521 242629 242689 242789 242873 242999 243109 243167 243259 243401 243469 243533 243613 243701 243799 243871 243989 244091 244159 244253 244333 244393 244457 244547 244603 244687 244753 244843 244901 245033 245131 245251
tL 2 3123 3125 3119 3120 3126 3116 3118 3124 3141 3122 3121 3127 3132 3133 3144 3124 3136 3132 3136 3128 3136 3135 3129 3141 3136 3139 3122 3134 3140 3134 3140 3130 3142 3137 3135 3141 3141 3135 3146 3149 3138 3140 3141 3140 3148 3139 3150 3154
Table 5. Continue 36 q 245257 245321 245419 245519 245591 245671 245747 245849 245911 246011 246131 246203 246271 246349 246473 246557 246637 246709 246787 246839 246929 247001 247099 247241 247339 247409 247519 247601 247651 247739 247813 247901 247997 248063 248137 248201 248293 248371 248461 248543 248621 248707 248783 248851 248893 249017 249107 249199
tL 2 3157 3153 3143 3155 3140 3139 3152 3147 3155 3152 3152 3149 3158 3156 3157 3156 3153 3142 3150 3161 3157 3175 3166 3151 3170 3169 3165 3164 3150 3169 3163 3159 3159 3171 3176 3177 3176 3167 3168 3175 3166 3165 3164 3173 3179 3180 3185 3170
q 245261 245339 245437 245521 245593 245681 245753 245851 245941 246017 246133 246209 246277 246361 246497 246569 246641 246713 246793 246889 246931 247007 247141 247249 247343 247421 247529 247603 247691 247759 247829 247913 247999 248071 248141 248203 248299 248389 248473 248569 248627 248719 248789 248861 248903 249037 249127 249211
tL 2 3147 3154 3143 3149 3147 3160 3152 3153 3154 3156 3151 3153 3151 3155 3169 3158 3161 3164 3163 3162 3164 3167 3154 3170 3167 3178 3170 3160 3163 3173 3163 3169 3160 3164 3166 3165 3175 3171 3169 3163 3176 3171 3167 3172 3181 3161 3180 3175
q 245269 245383 245471 245527 245621 245683 245759 245863 245963 246049 246151 246217 246289 246371 246509 246577 246643 246731 246803 246899 246937 247031 247183 247259 247363 247433 247531 247607 247693 247769 247847 247939 248021 248077 248161 248231 248309 248401 248477 248579 248639 248723 248797 248867 248909 249059 249131 249217
tL 2 3149 3152 3153 3165 3157 3155 3150 3149 3153 3154 3158 3157 3164 3151 3150 3175 3156 3155 3158 3161 3158 3151 3162 3160 3160 3168 3169 3157 3160 3169 3168 3162 3174 3169 3170 3177 3189 3175 3176 3168 3172 3166 3165 3182 3161 3176 3164 3178
q 245279 245389 245473 245533 245627 245711 245771 245881 245977 246073 246167 246223 246317 246391 246511 246599 246661 246739 246809 246907 246941 247067 247193 247279 247369 247439 247547 247609 247697 247771 247853 247943 248033 248089 248167 248243 248317 248407 248483 248587 248641 248737 248813 248869 248971 249079 249133 249229
tL 2 3143 3151 3148 3155 3151 3152 3148 3159 3143 3151 3154 3172 3153 3144 3151 3147 3159 3165 3167 3152 3150 3159 3155 3156 3160 3169 3163 3157 3168 3164 3178 3177 3169 3158 3174 3170 3165 3165 3159 3179 3172 3180 3175 3172 3170 3184 3173 3170
93
q 245291 245407 245477 245561 245629 245719 245783 245897 245981 246097 246173 246241 246319 246403 246523 246607 246683 246769 246811 246913 246947 247069 247201 247301 247381 247451 247553 247613 247711 247781 247873 247957 248041 248099 248177 248257 248323 248431 248509 248593 248657 248749 248821 248879 248981 249089 249143 249233
tL 2 3144 3146 3155 3150 3145 3152 3157 3156 3145 3149 3154 3153 3154 3167 3154 3155 3152 3155 3146 3166 3162 3162 3161 3160 3156 3171 3162 3165 3160 3182 3160 3164 3163 3169 3155 3173 3166 3161 3167 3175 3161 3173 3176 3165 3177 3179 3170 3179
q 245299 245411 245501 245563 245639 245723 245789 245899 245983 246119 246187 246247 246329 246439 246527 246611 246689 246773 246817 246919 246971 247073 247223 247309 247391 247463 247579 247633 247717 247799 247879 247991 248051 248117 248179 248267 248351 248441 248533 248597 248683 248753 248827 248887 248987 249097 249181 249253
tL 2 3151 3147 3147 3157 3143 3151 3149 3155 3151 3144 3147 3150 3151 3163 3148 3153 3156 3162 3160 3153 3157 3157 3158 3161 3151 3153 3150 3161 3160 3162 3166 3163 3184 3159 3169 3158 3173 3179 3171 3186 3169 3176 3177 3188 3167 3171 3176 3165
q 245317 245417 245513 245587 245653 245741 245821 245909 245989 246121 246193 246251 246343 246469 246539 246613 246707 246781 246833 246923 246979 247087 247229 247337 247393 247501 247591 247649 247729 247811 247889 247993 248057 248119 248189 248291 248357 248447 248537 248609 248701 248779 248839 248891 249001 249103 249187 249257
tL 2 3156 3156 3148 3160 3143 3156 3151 3154 3144 3155 3156 3158 3166 3157 3160 3155 3153 3150 3140 3163 3173 3159 3156 3162 3167 3161 3155 3162 3176 3166 3167 3158 3161 3163 3172 3171 3162 3175 3164 3172 3165 3169 3172 3178 3174 3171 3176 3177
Table 5. Continue 37 q 249287 249383 249439 249521 249593 249721 249811 249871 249971 250037 250109 250259 250403 250499 250681 250739 250799 250867 250967 251057 251117 251191 251233 251323 251429 251483 251539 251623 251737 251843 251903 251983 252101 252173 252277 252341 252431 252533 252617 252731 252827 252899 252979 253081 253229 253349 253423 253493
tL 2 3170 3183 3175 3180 3186 3183 3179 3172 3174 3180 3187 3180 3175 3187 3196 3185 3180 3186 3189 3180 3189 3185 3187 3193 3184 3204 3190 3186 3197 3195 3202 3198 3200 3187 3201 3192 3190 3198 3194 3186 3196 3203 3206 3203 3203 3204 3194 3197
q 249311 249397 249449 249533 249607 249727 249827 249881 249973 250043 250123 250267 250409 250501 250687 250741 250807 250871 250969 251059 251143 251197 251257 251347 251431 251491 251543 251639 251761 251857 251917 252001 252139 252181 252283 252359 252443 252541 252641 252737 252829 252911 252983 253103 253243 253361 253427 253501
tL 2 3170 3179 3187 3180 3179 3173 3186 3181 3195 3178 3183 3177 3179 3175 3190 3183 3188 3189 3188 3191 3187 3189 3186 3197 3185 3188 3183 3193 3204 3197 3184 3193 3208 3190 3194 3199 3196 3190 3205 3202 3200 3200 3204 3204 3200 3202 3203 3199
q 249317 249419 249463 249539 249647 249737 249833 249911 249989 250049 250147 250279 250423 250543 250693 250751 250813 250889 250979 251063 251149 251201 251261 251353 251437 251501 251561 251653 251789 251861 251939 252013 252143 252193 252289 252383 252449 252559 252667 252761 252869 252913 253003 253109 253247 253367 253433 253507
tL 2 3171 3181 3172 3186 3187 3173 3176 3178 3190 3177 3177 3183 3170 3184 3182 3191 3185 3180 3181 3191 3190 3177 3201 3197 3194 3191 3186 3188 3191 3192 3191 3198 3201 3186 3203 3199 3206 3207 3196 3201 3198 3195 3197 3199 3193 3219 3197 3203
q 249329 249421 249497 249541 249659 249749 249853 249923 250007 250051 250153 250301 250433 250583 250703 250753 250829 250919 250993 251071 251159 251203 251263 251359 251443 251513 251567 251663 251791 251879 251941 252017 252151 252209 252293 252391 252457 252583 252691 252767 252877 252919 253009 253133 253273 253369 253439 253531
tL 2 3175 3175 3168 3188 3171 3176 3179 3175 3189 3174 3184 3180 3185 3193 3185 3185 3182 3193 3182 3195 3186 3184 3195 3199 3200 3188 3193 3197 3194 3187 3188 3192 3199 3193 3202 3185 3193 3200 3191 3197 3199 3215 3206 3214 3191 3212 3199 3209
94
q 249341 249427 249499 249563 249671 249763 249857 249943 250013 250057 250169 250307 250441 250619 250709 250777 250837 250949 251003 251081 251171 251219 251287 251387 251467 251519 251609 251677 251809 251887 251947 252029 252157 252223 252313 252401 252463 252589 252709 252779 252881 252937 253013 253153 253307 253381 253447 253537
tL 2 3168 3175 3176 3176 3183 3177 3172 3177 3176 3183 3186 3175 3173 3172 3183 3185 3178 3191 3182 3191 3178 3184 3190 3196 3193 3196 3195 3215 3195 3198 3194 3184 3191 3183 3191 3205 3204 3202 3204 3203 3197 3203 3205 3211 3209 3210 3201 3204
q 249367 249433 249503 249583 249677 249779 249859 249947 250027 250073 250199 250343 250451 250643 250721 250787 250841 250951 251033 251087 251177 251221 251291 251393 251473 251527 251611 251701 251831 251893 251969 252037 252163 252233 252319 252409 252481 252607 252713 252817 252887 252949 253049 253157 253321 253387 253469 253543
tL 2 3178 3175 3187 3179 3180 3180 3177 3199 3183 3175 3174 3185 3180 3181 3185 3179 3188 3195 3187 3189 3184 3202 3201 3196 3198 3186 3202 3199 3187 3182 3191 3183 3197 3191 3204 3199 3195 3200 3210 3202 3204 3204 3198 3205 3211 3197 3204 3204
q 249377 249437 249517 249589 249703 249797 249863 249967 250031 250091 250253 250361 250489 250673 250727 250793 250853 250963 251051 251099 251179 251231 251297 251417 251477 251533 251621 251707 251833 251897 251971 252079 252169 252253 252323 252419 252509 252611 252727 252823 252893 252971 253063 253159 253343 253417 253481 253553
tL 2 3175 3164 3177 3187 3179 3176 3181 3186 3187 3180 3179 3182 3192 3181 3192 3191 3179 3190 3187 3193 3195 3191 3199 3193 3188 3190 3197 3200 3194 3185 3202 3190 3200 3200 3197 3206 3201 3199 3193 3208 3208 3197 3196 3214 3208 3201 3212 3201
Table 5. Continue 38 q 253567 253637 253717 253787 253867 253937 254003 254071 254197 254281 254389 254491 254647 254741 254803 254879 254959 255019 255083 255149 255209 255313 255419 255499 255587 255653 255743 255847 255917 255977 256057 256147 256211 256349 256469 256541 256609 256721 256831 256939 257069 257161 257249 257311 257399 257473 257561 257687
tL 2 3206 3227 3197 3201 3213 3207 3211 3207 3203 3222 3216 3232 3211 3215 3220 3222 3215 3224 3219 3218 3222 3213 3216 3217 3221 3218 3223 3231 3222 3222 3218 3225 3220 3235 3236 3229 3234 3229 3229 3218 3222 3225 3251 3235 3244 3237 3230 3232
q 253573 253639 253733 253789 253871 253949 254021 254083 254207 254291 254407 254519 254659 254747 254827 254887 254963 255023 255097 255173 255217 255329 255443 255503 255589 255659 255757 255851 255919 255989 256079 256163 256219 256363 256471 256561 256639 256723 256873 256957 257077 257171 257263 257321 257401 257489 257591 257689
tL 2 3211 3208 3200 3197 3216 3205 3207 3212 3218 3204 3218 3204 3210 3212 3205 3215 3227 3211 3219 3210 3207 3208 3222 3219 3224 3224 3211 3209 3225 3234 3220 3240 3229 3231 3230 3226 3215 3212 3224 3232 3232 3233 3234 3236 3230 3240 3234 3235
q 253601 253651 253741 253801 253879 253951 254027 254119 254209 254299 254413 254537 254663 254753 254831 254899 254971 255043 255107 255179 255239 255349 255457 255511 255613 255667 255763 255859 255923 256019 256093 256169 256279 256369 256483 256567 256643 256757 256877 256967 257093 257177 257273 257339 257407 257497 257611 257707
tL 2 3205 3201 3210 3215 3220 3206 3202 3213 3206 3199 3211 3209 3209 3222 3220 3212 3224 3216 3228 3221 3215 3211 3222 3216 3225 3221 3214 3228 3224 3221 3218 3221 3231 3230 3229 3216 3236 3235 3222 3243 3224 3217 3225 3238 3227 3240 3233 3242
q 253607 253661 253751 253811 253901 253969 254039 254141 254213 254329 254437 254557 254699 254773 254833 254911 254977 255049 255121 255181 255247 255361 255467 255517 255617 255679 255767 255869 255947 256021 256117 256181 256301 256391 256489 256577 256651 256771 256889 256981 257099 257189 257281 257351 257437 257501 257627 257711
tL 2 3206 3215 3203 3199 3203 3212 3201 3213 3206 3215 3217 3215 3221 3218 3222 3222 3215 3222 3210 3219 3215 3216 3225 3214 3222 3221 3221 3231 3225 3216 3222 3218 3217 3226 3218 3216 3231 3222 3225 3232 3228 3224 3224 3231 3240 3230 3237 3237
95
q 253609 253679 253763 253819 253907 253987 254041 254147 254249 254369 254447 254593 254713 254777 254857 254927 254987 255053 255127 255191 255251 255371 255469 255523 255637 255709 255803 255877 255961 256031 256121 256187 256307 256393 256493 256579 256661 256799 256901 257003 257107 257219 257287 257353 257443 257503 257639 257713
tL 2 3206 3198 3202 3206 3209 3212 3201 3202 3199 3216 3212 3210 3217 3213 3220 3214 3214 3217 3218 3212 3217 3217 3217 3210 3221 3229 3224 3206 3238 3225 3227 3234 3226 3228 3242 3226 3223 3239 3221 3225 3230 3236 3234 3228 3236 3227 3243 3231
q 253613 253681 253769 253823 253909 253993 254047 254161 254257 254377 254461 254623 254729 254783 254869 254929 254993 255071 255133 255193 255253 255383 255473 255551 255641 255713 255839 255887 255971 256033 256129 256189 256313 256423 256499 256589 256687 256801 256903 257017 257123 257221 257293 257371 257447 257519 257657 257717
tL 2 3211 3212 3214 3210 3192 3196 3207 3213 3212 3214 3202 3205 3223 3213 3200 3207 3212 3224 3217 3215 3223 3223 3214 3223 3208 3223 3230 3226 3223 3222 3224 3226 3227 3219 3214 3231 3224 3219 3225 3224 3232 3231 3232 3236 3229 3237 3232 3234
q 253633 253703 253777 253853 253919 253999 254053 254179 254279 254383 254489 254627 254731 254791 254873 254941 255007 255077 255137 255197 255259 255413 255487 255571 255649 255733 255841 255907 255973 256049 256133 256199 256337 256441 256517 256603 256699 256813 256931 257053 257141 257239 257297 257381 257459 257539 257671 257731
tL 2 3205 3201 3206 3204 3210 3201 3225 3224 3211 3222 3221 3212 3214 3211 3215 3212 3213 3216 3209 3221 3204 3223 3219 3233 3221 3225 3224 3208 3228 3213 3213 3223 3226 3229 3231 3220 3232 3224 3224 3237 3231 3230 3234 3225 3244 3219 3238 3233
Table 5. Continue 39 q 257783 257867 257953 258031 258119 258197 258299 258373 258443 258527 258611 258673 258733 258809 258949 259001 259123 259183 259277 259397 259499 259583 259643 259723 259813 259933 260003 260089 260201 260317 260413 260483 260569 260651 260753 260857 260941 261011 261071 261223 261323 261407 261467 261581 261641 261739 261823 261973
tL 2 3236 3236 3229 3227 3229 3240 3247 3232 3229 3238 3235 3243 3233 3243 3237 3228 3244 3246 3242 3246 3257 3235 3245 3242 3261 3247 3250 3250 3255 3246 3240 3246 3245 3255 3255 3266 3251 3252 3263 3259 3251 3261 3242 3261 3261 3260 3264 3268
q 257791 257869 257981 258061 258127 258211 258317 258389 258449 258539 258613 258677 258737 258827 258959 259009 259151 259201 259309 259411 259507 259603 259657 259733 259823 259937 260009 260111 260207 260329 260417 260489 260573 260671 260761 260861 260951 261013 261077 261229 261329 261427 261509 261587 261643 261757 261847 261977
tL 2 3226 3228 3237 3233 3222 3222 3243 3240 3239 3242 3239 3243 3242 3247 3243 3237 3236 3247 3251 3245 3243 3248 3258 3245 3244 3250 3246 3243 3243 3254 3249 3249 3254 3256 3260 3257 3253 3253 3263 3256 3250 3252 3259 3264 3266 3260 3268 3269
q 257797 257879 257987 258067 258131 258233 258319 258403 258469 258551 258617 258691 258743 258847 258967 259019 259157 259211 259321 259421 259517 259619 259667 259751 259829 259943 260011 260137 260209 260339 260419 260527 260581 260677 260773 260863 260959 261017 261089 261241 261337 261431 261523 261593 261673 261761 261881 261983
tL 2 3229 3238 3230 3253 3243 3230 3238 3234 3242 3254 3242 3229 3247 3240 3252 3249 3239 3234 3253 3251 3249 3236 3259 3239 3247 3255 3243 3257 3246 3255 3255 3252 3256 3262 3263 3263 3255 3252 3257 3259 3262 3276 3265 3262 3258 3275 3264 3266
q 257837 257893 257989 258101 258143 258241 258329 258407 258487 258563 258623 258697 258763 258871 258971 259033 259159 259213 259339 259429 259531 259621 259681 259771 259837 259949 260017 260171 260213 260363 260441 260539 260587 260713 260791 260873 260969 261031 261101 261251 261347 261433 261529 261601 261697 261773 261887 262007
tL 2 3233 3238 3230 3236 3234 3238 3245 3238 3236 3225 3233 3250 3236 3248 3236 3241 3248 3236 3244 3247 3245 3238 3250 3250 3251 3249 3248 3256 3257 3252 3246 3234 3246 3244 3252 3248 3269 3263 3254 3270 3255 3262 3257 3254 3272 3270 3263 3264
96
q 257857 257903 257993 258107 258157 258253 258331 258413 258491 258569 258631 258703 258779 258887 258977 259081 259163 259219 259379 259451 259537 259627 259691 259781 259841 259967 260023 260179 260231 260387 260453 260543 260609 260717 260807 260879 260983 261043 261127 261271 261353 261439 261557 261619 261707 261787 261917 262027
tL 2 3233 3231 3235 3228 3231 3231 3237 3235 3240 3236 3246 3244 3246 3236 3241 3236 3262 3243 3247 3262 3244 3241 3239 3250 3255 3252 3248 3249 3249 3257 3256 3253 3256 3264 3252 3252 3254 3255 3270 3263 3261 3256 3262 3260 3268 3257 3250 3264
q 257861 257921 258019 258109 258161 258277 258337 258421 258499 258581 258637 258707 258787 258917 258983 259099 259169 259229 259381 259453 259547 259631 259697 259783 259867 259991 260047 260189 260263 260399 260461 260549 260629 260723 260809 260893 260987 261059 261167 261281 261379 261451 261563 261631 261713 261791 261959 262049
tL 2 3238 3239 3242 3219 3233 3230 3237 3247 3248 3242 3245 3241 3247 3240 3237 3234 3241 3231 3253 3245 3249 3252 3245 3248 3246 3242 3247 3251 3254 3256 3259 3258 3261 3247 3250 3269 3254 3261 3258 3263 3251 3261 3261 3256 3266 3256 3269 3263
q 257863 257947 258023 258113 258173 258283 258353 258437 258521 258607 258659 258721 258803 258919 258991 259121 259177 259271 259387 259459 259577 259639 259717 259801 259907 259993 260081 260191 260269 260411 260467 260551 260647 260747 260849 260921 260999 261061 261169 261301 261389 261463 261577 261637 261721 261799 261971 262051
tL 2 3236 3248 3230 3233 3228 3239 3232 3252 3241 3233 3237 3243 3227 3241 3236 3232 3229 3242 3249 3248 3242 3232 3247 3242 3251 3248 3252 3244 3252 3249 3260 3257 3255 3267 3255 3250 3267 3267 3268 3254 3258 3256 3255 3252 3251 3252 3261 3262
Table 5. Continue 40 q 262069 262133 262193 262303 262369 262469 262543 262643 262709 262783 262901 263023 263101 263191 263267 263369 263429 263519 263591 263657 263803 263867 263933 264013 264091 264167 264283 264353 264463 264581 264659 264763 264827 264899 264991 265091 265157 265247 265333 265423 265511 265571 265709 265781 265847 265957 266029 266089
tL 2 3258 3259 3266 3272 3264 3265 3278 3282 3271 3261 3267 3264 3270 3266 3276 3265 3280 3267 3266 3268 3269 3261 3274 3283 3270 3290 3269 3277 3280 3279 3281 3285 3272 3275 3289 3281 3280 3283 3287 3298 3280 3274 3281 3305 3293 3293 3300 3292
q 262079 262139 262217 262313 262387 262489 262553 262649 262723 262807 262909 263047 263111 263201 263269 263383 263437 263521 263597 263677 263819 263869 263941 264029 264101 264169 264289 264359 264487 264599 264697 264769 264829 264919 264997 265093 265163 265249 265337 265427 265513 265579 265711 265787 265861 265961 266047 266093
tL 2 3265 3257 3260 3254 3269 3273 3264 3274 3264 3278 3272 3276 3273 3270 3277 3264 3270 3281 3271 3273 3269 3274 3268 3279 3273 3269 3268 3277 3279 3291 3288 3280 3280 3284 3282 3286 3290 3280 3289 3278 3289 3282 3288 3298 3290 3284 3293 3293
q 262103 262144 262231 262321 262391 262501 262567 262651 262733 262819 262937 263063 263119 263209 263273 263387 263443 263533 263609 263723 263821 263881 263951 264031 264113 264179 264301 264371 264527 264601 264731 264779 264839 264931 265003 265117 265169 265261 265339 265451 265541 265607 265717 265807 265871 265987 266051 266099
tL 2 3266 3258 3274 3263 3262 3267 3273 3270 3252 3266 3268 3266 3276 3270 3285 3262 3269 3274 3270 3283 3274 3279 3269 3282 3284 3267 3274 3284 3288 3286 3281 3281 3276 3281 3286 3271 3278 3287 3286 3284 3282 3300 3302 3288 3274 3298 3300 3291
q 262109 262147 262237 262331 262399 262511 262583 262657 262739 262853 262949 263071 263129 263213 263287 263399 263489 263537 263611 263729 263827 263899 263953 264053 264127 264211 264323 264391 264529 264619 264739 264787 264871 264949 265007 265123 265193 265271 265381 265459 265543 265613 265729 265813 265873 266003 266053 266111
tL 2 3264 3248 3271 3266 3274 3255 3269 3275 3273 3268 3269 3278 3274 3272 3275 3264 3272 3269 3271 3266 3276 3276 3263 3275 3284 3279 3270 3278 3275 3281 3288 3274 3292 3281 3283 3285 3284 3277 3284 3283 3284 3291 3285 3290 3282 3286 3283 3297
97
q 262111 262151 262253 262337 262411 262513 262597 262681 262741 262877 262957 263077 263167 263227 263293 263401 263491 263561 263621 263737 263843 263909 263957 264059 264133 264221 264331 264403 264553 264631 264743 264791 264881 264959 265021 265129 265207 265273 265399 265471 265547 265619 265739 265819 265883 266009 266059 266117
tL 2 3263 3273 3265 3266 3260 3264 3274 3258 3274 3280 3262 3262 3266 3272 3258 3275 3272 3278 3263 3275 3283 3276 3272 3268 3271 3280 3274 3277 3283 3274 3278 3285 3270 3286 3297 3283 3284 3282 3296 3294 3288 3294 3285 3284 3300 3275 3295 3286
q 262121 262153 262261 262349 262433 262519 262621 262693 262747 262883 262981 263083 263171 263239 263303 263411 263503 263567 263647 263759 263849 263911 263983 264071 264137 264263 264343 264437 264559 264637 264749 264793 264889 264961 265037 265141 265231 265277 265403 265483 265561 265621 265747 265831 265891 266023 266081 266129
tL 2 3264 3263 3269 3255 3272 3265 3265 3259 3264 3259 3270 3285 3265 3278 3263 3278 3280 3275 3285 3271 3279 3277 3286 3267 3284 3267 3277 3282 3275 3270 3277 3292 3283 3271 3277 3284 3286 3271 3291 3289 3288 3294 3282 3295 3291 3305 3288 3285
q 262127 262187 262271 262351 262459 262541 262627 262697 262781 262897 263009 263089 263183 263257 263323 263423 263513 263573 263651 263761 263863 263927 264007 264083 264139 264269 264349 264443 264577 264643 264757 264811 264893 264977 265079 265151 265241 265313 265417 265493 265567 265703 265757 265841 265921 266027 266083 266137
tL 2 3258 3266 3265 3273 3267 3273 3279 3268 3268 3277 3263 3263 3269 3256 3271 3262 3279 3270 3279 3281 3276 3286 3274 3279 3285 3279 3283 3280 3291 3285 3285 3289 3277 3290 3271 3296 3280 3289 3278 3275 3292 3286 3298 3286 3303 3292 3286 3294
Table 5. Continue 41 q 266153 266269 266353 266447 266549 266663 266701 266821 266899 266957 267037 267167 267229 267307 267401 267451 267517 267581 267637 267677 267739 267811 267893 267959 268069 268199 268283 268487 268531 268643 268757 268811 268861 268937 269023 269089 269183 269237 269341 269413 269513 269579 269683 269761 269891 269987 270073 270163
tL 2 3291 3280 3282 3307 3291 3295 3297 3293 3293 3291 3304 3290 3288 3312 3306 3296 3311 3289 3309 3299 3298 3292 3300 3299 3304 3302 3314 3303 3303 3304 3322 3303 3301 3301 3319 3309 3307 3321 3318 3307 3308 3309 3313 3323 3323 3319 3312 3314
q 266159 266281 266359 266449 266587 266671 266711 266837 266909 266971 267049 267187 267233 267317 267403 267469 267521 267587 267643 267679 267749 267829 267899 267961 268091 268207 268291 268493 268537 268661 268759 268813 268883 268969 269029 269117 269189 269251 269351 269419 269519 269597 269701 269779 269897 270001 270097 270167
tL 2 3289 3301 3302 3280 3294 3289 3302 3294 3297 3293 3294 3303 3294 3304 3296 3294 3287 3293 3305 3293 3301 3292 3314 3300 3298 3302 3296 3293 3305 3308 3309 3305 3315 3312 3314 3310 3323 3308 3310 3309 3319 3316 3306 3308 3321 3319 3321 3315
q 266177 266291 266369 266477 266599 266677 266719 266839 266921 266977 267097 267193 267259 267341 267413 267479 267523 267593 267647 267713 267763 267833 267901 268003 268123 268211 268297 268501 268547 268693 268771 268817 268897 268973 269039 269131 269201 269257 269377 269429 269527 269617 269713 269783 269923 270029 270121 270191
tL 2 3282 3291 3298 3297 3285 3292 3301 3305 3298 3298 3301 3302 3298 3299 3302 3292 3308 3302 3300 3309 3296 3298 3295 3295 3307 3306 3308 3309 3304 3312 3302 3313 3311 3311 3313 3309 3311 3312 3306 3313 3308 3314 3320 3314 3312 3317 3314 3326
q 266183 266293 266381 266479 266603 266681 266759 266863 266927 266983 267131 267199 267271 267353 267419 267481 267541 267601 267649 267719 267781 267857 267907 268013 268133 268237 268343 268507 268573 268721 268777 268819 268909 268979 269041 269141 269209 269281 269383 269431 269539 269623 269719 269791 269939 270031 270131 270209
tL 2 3285 3304 3292 3294 3292 3293 3289 3311 3306 3299 3294 3291 3295 3295 3292 3295 3310 3299 3304 3294 3307 3304 3300 3316 3304 3303 3292 3319 3314 3305 3312 3300 3313 3315 3309 3317 3326 3316 3318 3305 3314 3311 3322 3317 3318 3308 3316 3311
98
q 266221 266297 266401 266489 266633 266683 266767 266867 266933 266993 267133 267203 267277 267373 267431 267493 267551 267611 267661 267721 267791 267863 267913 268043 268153 268253 268403 268517 268607 268729 268781 268823 268913 268993 269057 269167 269219 269317 269387 269441 269543 269641 269723 269851 269947 270037 270133 270217
tL 2 3288 3299 3293 3292 3311 3295 3300 3297 3299 3300 3307 3299 3302 3298 3309 3299 3293 3308 3299 3309 3299 3288 3303 3307 3310 3302 3316 3302 3310 3303 3310 3316 3310 3305 3310 3307 3320 3310 3313 3326 3318 3318 3313 3331 3317 3322 3315 3321
q 266239 266333 266411 266491 266641 266687 266797 266891 266947 266999 267139 267217 267299 267389 267433 267497 267557 267613 267667 267727 267797 267877 267929 268049 268171 268267 268439 268519 268613 268733 268783 268841 268921 268997 269063 269177 269221 269327 269389 269461 269561 269651 269741 269879 269953 270059 270143 270223
tL 2 3284 3293 3278 3294 3294 3289 3299 3294 3296 3309 3303 3289 3294 3292 3298 3302 3292 3293 3294 3308 3301 3304 3307 3315 3318 3301 3300 3312 3309 3295 3298 3317 3304 3309 3311 3308 3312 3307 3314 3312 3316 3304 3307 3319 3320 3314 3329 3313
q 266261 266351 266417 266521 266647 266689 266801 266897 266953 267017 267143 267227 267301 267391 267439 267511 267569 267629 267671 267737 267803 267887 267941 268063 268189 268271 268459 268529 268637 268747 268789 268843 268927 268999 269069 269179 269231 269333 269393 269473 269573 269663 269749 269887 269981 270071 270157 270229
tL 2 3270 3294 3289 3304 3301 3301 3297 3306 3289 3291 3302 3300 3292 3295 3301 3301 3307 3293 3301 3290 3307 3299 3289 3312 3300 3312 3308 3304 3297 3322 3313 3304 3306 3312 3317 3310 3309 3313 3303 3315 3321 3314 3317 3315 3315 3314 3316 3329
Table 5. Continue 42 q 270239 270311 270407 270493 270563 270631 270709 270797 270913 270973 271067 271169 271253 271351 271441 271501 271603 271703 271807 271867 271967 272039 272179 272231 272299 272353 272411 272533 272603 272719 272809 272917 272989 273061 273131 273253 273313 273473 273569 273653 273787 273899 273967 274061 274123 274199 274271 274361
tL 2 3318 3303 3312 3311 3329 3324 3318 3329 3330 3332 3324 3326 3324 3331 3328 3327 3330 3335 3336 3316 3332 3331 3336 3338 3331 3335 3325 3331 3329 3338 3329 3340 3332 3333 3347 3344 3347 3345 3341 3338 3343 3342 3341 3335 3347 3340 3335 3353
q 270241 270323 270421 270509 270577 270653 270719 270799 270923 271003 271079 271177 271261 271357 271451 271517 271619 271723 271811 271879 271969 272053 272183 272249 272317 272359 272417 272537 272621 272737 272813 272927 272999 273067 273149 273269 273323 273503 273601 273697 273797 273901 273971 274069 274139 274201 274277 274403
tL 2 3320 3325 3313 3326 3316 3331 3334 3322 3334 3311 3341 3323 3326 3336 3327 3333 3329 3316 3324 3334 3329 3340 3331 3329 3337 3337 3334 3334 3326 3336 3337 3334 3337 3331 3330 3342 3336 3341 3333 3345 3345 3340 3345 3342 3344 3339 3335 3343
q 270269 270329 270437 270527 270583 270659 270737 270821 270931 271013 271097 271181 271273 271363 271463 271549 271637 271729 271829 271897 271981 272059 272189 272257 272329 272369 272423 272539 272651 272759 272863 272933 273001 273073 273157 273271 273349 273517 273613 273709 273803 273913 273979 274081 274147 274213 274283 274423
tL 2 3319 3317 3312 3323 3319 3321 3330 3320 3326 3327 3315 3330 3337 3324 3327 3322 3323 3327 3330 3331 3326 3329 3325 3322 3328 3334 3325 3343 3332 3335 3332 3341 3340 3341 3327 3335 3348 3339 3354 3351 3337 3351 3344 3336 3343 3341 3350 3341
q 270271 270337 270443 270539 270587 270667 270749 270833 270937 271021 271109 271211 271277 271367 271471 271553 271639 271753 271841 271903 272003 272093 272191 272263 272333 272381 272449 272549 272659 272761 272879 272959 273029 273083 273181 273281 273359 273521 273617 273719 273821 273919 273997 274093 274163 274223 274301 274441
tL 2 3321 3324 3330 3317 3329 3314 3318 3325 3322 3330 3328 3310 3327 3327 3328 3324 3330 3334 3330 3323 3339 3330 3328 3344 3338 3329 3335 3328 3335 3337 3337 3331 3333 3342 3340 3347 3340 3339 3346 3331 3347 3342 3336 3340 3347 3351 3341 3342
99
q 270287 270343 270451 270547 270593 270679 270761 270841 270953 271027 271127 271217 271279 271393 271483 271571 271651 271769 271849 271919 272009 272131 272201 272267 272341 272383 272453 272563 272683 272771 272887 272971 273043 273107 273187 273283 273367 273527 273629 273727 273827 273929 274007 274103 274171 274237 274333 274451
tL 2 3308 3324 3309 3310 3308 3320 3325 3323 3329 3324 3330 3324 3332 3317 3329 3314 3325 3330 3329 3323 3334 3334 3336 3339 3325 3331 3335 3332 3332 3340 3332 3335 3329 3344 3337 3346 3331 3339 3337 3331 3345 3336 3356 3351 3344 3346 3344 3353
q 270299 270371 270461 270551 270601 270689 270763 270859 270961 271043 271129 271231 271289 271409 271489 271573 271657 271771 271853 271927 272011 272141 272203 272269 272347 272399 272477 272567 272693 272777 272903 272981 273047 273113 273193 273289 273433 273529 273641 273739 273857 273941 274019 274117 274177 274243 274349 274453
tL 2 3316 3310 3312 3313 3321 3324 3312 3329 3321 3316 3315 3314 3321 3316 3324 3320 3331 3327 3328 3322 3335 3330 3335 3334 3327 3343 3332 3335 3330 3324 3330 3334 3344 3332 3340 3341 3349 3358 3334 3341 3341 3346 3352 3327 3341 3351 3348 3339
q 270307 270379 270463 270553 270619 270701 270791 270899 270967 271057 271163 271241 271333 271429 271499 271597 271693 271787 271861 271939 272029 272171 272227 272287 272351 272407 272507 272581 272717 272807 272911 272983 273059 273127 273233 273311 273457 273551 273643 273773 273881 273943 274033 274121 274187 274259 274357 274457
tL 2 3311 3320 3319 3335 3319 3317 3325 3336 3332 3317 3327 3322 3316 3315 3326 3331 3319 3322 3333 3327 3329 3330 3335 3341 3331 3341 3338 3328 3332 3329 3341 3340 3344 3330 3339 3347 3338 3338 3336 3334 3341 3348 3350 3346 3344 3352 3343 3337
Table 5. Continue 43 q 274471 274609 274709 274787 274847 274931 275003 275087 275167 275269 275371 275449 275521 275591 275669 275767 275897 275941 276011 276079 276181 276251 276343 276439 276503 276589 276673 276781 276847 276929 277021 277157 277223 277297 277421 277531 277601 277687 277787 277883 277993 278071 278149 278233 278347 278459 278543 278609
tL 2 3352 3339 3345 3355 3358 3353 3347 3346 3349 3355 3353 3346 3358 3362 3354 3361 3366 3351 3356 3354 3356 3365 3360 3359 3355 3354 3360 3356 3360 3360 3359 3363 3369 3349 3358 3373 3377 3372 3376 3366 3367 3369 3370 3364 3369 3372 3371 3368
q 274489 274627 274711 274811 274853 274943 275027 275129 275183 275299 275389 275453 275531 275593 275677 275773 275911 275963 276019 276083 276187 276257 276347 276443 276517 276593 276707 276817 276869 276949 277051 277163 277231 277301 277427 277547 277603 277691 277789 277889 277999 278087 278177 278237 278353 278479 278549 278611
tL 2 3348 3350 3347 3349 3337 3349 3343 3353 3353 3356 3347 3361 3358 3346 3364 3358 3359 3359 3369 3366 3342 3347 3366 3359 3358 3363 3354 3356 3352 3351 3354 3371 3355 3377 3353 3368 3370 3369 3360 3364 3372 3377 3376 3378 3382 3372 3376 3366
q 274517 274661 274723 274817 274861 274951 275039 275131 275201 275309 275393 275459 275543 275599 275699 275783 275917 275969 276037 276091 276191 276277 276359 276449 276527 276599 276721 276821 276883 276953 277063 277169 277247 277309 277429 277549 277637 277703 277793 277891 278017 278111 278191 278261 278363 278489 278557 278617
tL 2 3351 3354 3350 3348 3344 3359 3344 3338 3345 3359 3339 3349 3365 3357 3360 3349 3352 3349 3353 3359 3368 3353 3345 3358 3365 3342 3358 3363 3349 3361 3367 3370 3364 3364 3378 3371 3372 3370 3385 3375 3365 3371 3364 3373 3376 3367 3376 3373
q 274529 274667 274739 274829 274867 274957 275047 275147 275207 275321 275399 275461 275549 275623 275711 275813 275921 275981 276041 276113 276209 276293 276371 276461 276553 276623 276739 276823 276901 276961 277073 277177 277259 277331 277483 277567 277639 277741 277813 277897 278029 278119 278207 278269 278387 278491 278561 278623
tL 2 3358 3349 3339 3356 3347 3348 3351 3353 3341 3350 3346 3357 3354 3344 3359 3354 3337 3359 3365 3354 3363 3352 3366 3352 3362 3358 3355 3356 3362 3366 3361 3368 3362 3353 3365 3359 3362 3370 3357 3370 3379 3362 3370 3368 3365 3364 3367 3363
100
q 274579 274679 274751 274831 274871 274961 275053 275153 275227 275323 275419 275489 275573 275641 275719 275827 275923 275987 276043 276137 276229 276319 276373 276467 276557 276629 276763 276827 276907 276977 277087 277183 277261 277363 277493 277577 277643 277747 277829 277903 278041 278123 278209 278279 278393 278497 278563 278627
tL 2 3352 3349 3348 3353 3349 3346 3348 3353 3352 3354 3351 3348 3336 3350 3348 3342 3359 3355 3360 3368 3354 3349 3352 3357 3367 3358 3372 3353 3370 3368 3359 3369 3374 3354 3377 3362 3371 3368 3379 3368 3364 3370 3375 3369 3373 3371 3369 3369
q 274583 274693 274777 274837 274889 274973 275059 275159 275251 275339 275423 275491 275579 275651 275729 275837 275929 275999 276047 276151 276239 276323 276389 276487 276581 276637 276767 276833 276917 277003 277097 277213 277273 277373 277499 277579 277657 277751 277847 277919 278051 278143 278219 278321 278413 278501 278581 278639
tL 2 3346 3348 3346 3347 3342 3354 3359 3358 3344 3349 3353 3354 3353 3348 3355 3346 3349 3358 3355 3354 3353 3362 3350 3359 3364 3360 3347 3354 3360 3370 3373 3362 3367 3374 3378 3365 3354 3365 3378 3368 3375 3376 3366 3368 3374 3369 3366 3366
q 274591 274697 274783 274843 274909 274993 275083 275161 275263 275357 275447 275503 275581 275657 275741 275881 275939 276007 276049 276173 276247 276337 276401 276499 276587 276671 276779 276839 276919 277007 277099 277217 277279 277411 277513 277597 277663 277757 277859 277961 278063 278147 278227 278329 278437 278503 278591 278651
tL 2 3333 3343 3336 3339 3345 3351 3350 3340 3355 3343 3358 3349 3345 3352 3351 3350 3360 3365 3348 3343 3349 3356 3357 3366 3356 3356 3365 3353 3365 3361 3358 3374 3370 3374 3368 3363 3370 3364 3360 3358 3370 3374 3364 3368 3374 3372 3375 3375
Table 5. Continue 44 q 278671 278753 278827 278903 279007 279121 279187 279329 279431 279541 279593 279659 279761 279857 279967 280037 280129 280223 280303 280409 280513 280589 280639 280717 280817 280897 280949 281033 281153 281233 281297 281363 281527 281579 281647 281719 281791 281849 281927 282001 282091 282167 282287 282383 282439 282571 282677 282713
tL 2 3366 3369 3372 3375 3379 3364 3380 3365 3381 3378 3369 3388 3377 3384 3378 3376 3389 3397 3381 3382 3388 3388 3385 3393 3386 3384 3379 3385 3392 3384 3375 3396 3399 3397 3395 3386 3385 3392 3390 3392 3395 3389 3382 3399 3390 3389 3403 3406
q 278687 278767 278843 278909 279023 279127 279203 279337 279443 279551 279607 279679 279767 279863 279977 280061 280139 280229 280321 280411 280537 280591 280673 280729 280837 280909 280957 281053 281159 281243 281317 281381 281531 281581 281651 281737 281797 281857 281933 282011 282097 282221 282299 282389 282461 282577 282679 282767
tL 2 3375 3375 3374 3378 3372 3366 3384 3370 3371 3370 3370 3376 3377 3394 3381 3377 3382 3379 3398 3388 3391 3374 3393 3383 3375 3392 3394 3381 3376 3394 3387 3391 3392 3393 3384 3394 3389 3407 3385 3397 3391 3385 3393 3388 3395 3413 3408 3405
q 278689 278801 278849 278911 279029 279131 279211 279353 279451 279553 279613 279689 279779 279883 279991 280069 280183 280243 280327 280451 280541 280597 280681 280751 280843 280913 280963 281063 281167 281249 281321 281419 281539 281609 281653 281747 281803 281867 281947 282019 282101 282229 282307 282391 282481 282589 282683 282769
tL 2 3368 3373 3377 3379 3367 3380 3378 3385 3378 3383 3381 3389 3382 3375 3372 3384 3381 3390 3389 3385 3376 3383 3379 3390 3381 3383 3394 3384 3396 3396 3388 3405 3383 3385 3380 3390 3410 3393 3392 3395 3385 3385 3391 3400 3389 3403 3396 3406
q 278701 278807 278867 278917 279047 279137 279221 279397 279479 279557 279619 279707 279817 279913 280001 280097 280187 280249 280337 280463 280547 280603 280697 280759 280859 280921 280967 281069 281189 281251 281327 281423 281549 281621 281663 281761 281807 281887 281959 282053 282103 282239 282311 282407 282487 282599 282691 282773
tL 2 3389 3368 3368 3363 3381 3376 3379 3379 3375 3382 3380 3377 3376 3378 3383 3378 3381 3388 3380 3390 3376 3381 3375 3379 3380 3388 3389 3390 3394 3390 3386 3399 3397 3388 3401 3396 3387 3399 3391 3394 3397 3401 3405 3399 3395 3388 3405 3401
101
q 278717 278809 278879 278947 279073 279143 279269 279407 279481 279571 279637 279709 279823 279919 280009 280099 280199 280253 280339 280487 280549 280607 280699 280769 280871 280927 280979 281081 281191 281273 281339 281429 281551 281623 281669 281767 281833 281893 281971 282059 282127 282241 282313 282409 282493 282617 282697 282797
tL 2 3370 3376 3374 3367 3373 3379 3382 3363 3379 3377 3369 3389 3371 3382 3383 3393 3391 3391 3379 3386 3386 3382 3390 3377 3388 3384 3391 3385 3385 3384 3391 3400 3389 3395 3378 3381 3387 3387 3396 3404 3389 3389 3402 3403 3391 3400 3404 3399
q 278741 278813 278881 278981 279109 279173 279311 279413 279511 279577 279641 279731 279841 279941 280013 280103 280207 280277 280351 280499 280561 280613 280703 280771 280879 280933 280997 281117 281207 281279 281353 281431 281557 281627 281683 281777 281837 281921 281989 282071 282143 282253 282349 282413 282559 282661 282703 282809
tL 2 3378 3377 3381 3382 3362 3366 3374 3377 3375 3378 3374 3382 3391 3388 3396 3376 3392 3372 3385 3394 3384 3390 3377 3393 3394 3386 3392 3397 3381 3396 3402 3390 3396 3399 3394 3392 3404 3387 3385 3388 3398 3394 3402 3398 3400 3397 3401 3410
q 278743 278819 278891 279001 279119 279179 279317 279421 279523 279583 279649 279751 279847 279949 280031 280121 280219 280297 280373 280507 280583 280627 280711 280811 280883 280939 281023 281131 281227 281291 281357 281509 281563 281641 281717 281783 281839 281923 281993 282089 282157 282281 282377 282427 282563 282671 282707 282827
tL 2 3373 3380 3376 3361 3375 3391 3393 3363 3389 3376 3381 3386 3377 3393 3373 3363 3378 3391 3378 3379 3387 3386 3381 3392 3375 3390 3387 3383 3380 3387 3389 3393 3383 3396 3393 3399 3398 3401 3389 3406 3402 3399 3400 3397 3397 3397 3405 3387
Table 5. Continue 45 q 282833 282911 283001 283097 283159 283267 283411 283519 283601 283687 283793 283859 283961 284059 284149 284227 284269 284387 284477 284539 284623 284701 284743 284807 284881 284989 285091 285161 285281 285377 285473 285557 285631 285707 285767 285871 285997 286063 286243 286381 286457 286499 286589 286673 286751 286813 286987 287093
tL 2 3399 3402 3402 3407 3414 3400 3404 3403 3399 3406 3403 3413 3395 3418 3409 3409 3415 3400 3408 3404 3399 3413 3416 3419 3412 3411 3406 3416 3406 3421 3430 3422 3421 3416 3433 3413 3418 3426 3414 3427 3422 3422 3432 3428 3418 3424 3425 3422
q 282847 282913 283007 283099 283163 283277 283447 283541 283607 283697 283799 283861 283979 284083 284153 284231 284293 284407 284483 284551 284633 284707 284747 284813 284897 285007 285101 285179 285283 285421 285497 285559 285641 285709 285773 285937 286001 286073 286249 286393 286459 286513 286591 286687 286753 286831 286999 287099
tL 2 3408 3397 3399 3397 3398 3407 3398 3392 3394 3402 3412 3413 3410 3402 3415 3404 3412 3407 3404 3411 3418 3414 3414 3414 3420 3411 3412 3408 3412 3412 3414 3421 3413 3415 3412 3420 3418 3432 3428 3425 3428 3434 3434 3423 3436 3422 3432 3428
q 282851 282917 283009 283111 283181 283289 283463 283553 283609 283721 283807 283873 284003 284093 284159 284233 284311 284413 284489 284561 284651 284723 284749 284819 284899 285023 285113 285191 285287 285433 285517 285569 285643 285721 285781 285949 286009 286103 286289 286397 286469 286519 286609 286697 286763 286859 287003 287107
tL 2 3396 3395 3408 3401 3400 3400 3395 3404 3411 3403 3397 3405 3397 3398 3409 3410 3415 3405 3413 3420 3413 3407 3410 3413 3418 3415 3407 3409 3425 3416 3419 3423 3421 3427 3431 3414 3419 3422 3409 3410 3420 3429 3419 3427 3430 3427 3428 3427
q 282869 282959 283027 283117 283183 283303 283487 283571 283631 283741 283813 283909 284023 284111 284161 284237 284341 284423 284507 284573 284657 284729 284759 284831 284917 285031 285119 285199 285289 285451 285521 285599 285661 285731 285823 285953 286019 286129 286301 286411 286477 286541 286613 286703 286771 286873 287047 287117
tL 2 3392 3398 3399 3401 3400 3403 3400 3395 3403 3410 3404 3404 3411 3408 3413 3404 3398 3409 3405 3411 3414 3408 3414 3424 3418 3409 3412 3412 3415 3417 3418 3420 3421 3418 3419 3413 3422 3415 3422 3426 3418 3417 3435 3434 3433 3427 3438 3426
102
q 282881 282973 283051 283121 283193 283369 283489 283573 283637 283763 283817 283937 284041 284117 284173 284243 284357 284429 284509 284587 284659 284731 284777 284833 284927 285049 285121 285221 285301 285457 285533 285611 285667 285749 285827 285977 286043 286163 286333 286421 286483 286543 286619 286711 286777 286927 287057 287137
tL 2 3396 3396 3407 3400 3412 3406 3405 3421 3408 3404 3405 3403 3409 3405 3413 3403 3416 3418 3407 3405 3405 3418 3420 3405 3415 3416 3411 3422 3409 3419 3418 3420 3421 3425 3416 3432 3427 3417 3422 3427 3423 3430 3421 3420 3425 3424 3433 3433
q 282889 282977 283079 283133 283207 283397 283501 283579 283639 283769 283831 283949 284051 284129 284191 284261 284369 284447 284521 284591 284681 284737 284783 284839 284957 285071 285139 285227 285317 285463 285539 285613 285673 285757 285839 285979 286049 286171 286367 286427 286487 286547 286633 286721 286789 286973 287059 287141
tL 2 3404 3399 3414 3408 3407 3405 3408 3415 3407 3401 3410 3408 3401 3398 3416 3402 3406 3413 3408 3419 3421 3416 3403 3412 3408 3423 3411 3419 3417 3406 3422 3429 3416 3427 3428 3412 3423 3425 3424 3434 3434 3420 3423 3426 3428 3427 3436 3435
q 282907 282991 283093 283139 283211 283403 283511 283583 283669 283771 283837 283957 284057 284131 284201 284267 284377 284467 284527 284593 284689 284741 284803 284857 284969 285079 285151 285251 285343 285469 285553 285629 285697 285763 285841 285983 286061 286199 286369 286453 286493 286553 286651 286733 286801 286981 287087 287149
tL 2 3413 3397 3395 3416 3395 3398 3400 3407 3410 3406 3418 3405 3404 3404 3416 3411 3411 3412 3405 3412 3406 3427 3410 3418 3410 3410 3418 3418 3422 3412 3418 3424 3428 3421 3418 3423 3418 3426 3425 3414 3427 3423 3431 3423 3428 3426 3424 3425
Table 5. Continue 46 q 287159 287237 287291 287383 287503 287629 287747 287851 287933 288061 288191 288257 288359 288433 288529 288647 288697 288817 288907 288989 289033 289109 289169 289243 289309 289397 289477 289589 289717 289771 289859 289967 290027 290107 290189 290317 290393 290471 290533 290621 290671 290767 290861 290971 291041 291113 291209 291299
tL 2 3435 3437 3430 3432 3428 3430 3431 3420 3438 3422 3431 3428 3437 3422 3438 3436 3445 3442 3421 3446 3451 3430 3439 3451 3432 3453 3443 3453 3440 3437 3443 3436 3433 3439 3444 3450 3440 3448 3452 3448 3466 3443 3452 3466 3439 3467 3455 3459
q 287167 287239 287297 287387 287537 287669 287783 287857 287939 288077 288199 288283 288361 288461 288539 288649 288731 288823 288913 288991 289039 289111 289171 289249 289319 289417 289489 289603 289721 289789 289871 289973 290033 290113 290201 290327 290399 290473 290539 290623 290677 290791 290869 290987 291043 291143 291217 291331
tL 2 3420 3435 3427 3436 3429 3434 3440 3423 3443 3435 3437 3437 3439 3445 3429 3436 3437 3443 3434 3448 3440 3434 3438 3459 3448 3450 3444 3436 3443 3438 3446 3445 3453 3457 3447 3442 3434 3441 3447 3449 3453 3457 3449 3458 3443 3454 3447 3463
q 287173 287251 287321 287393 287549 287671 287789 287863 287977 288089 288203 288293 288383 288467 288551 288653 288733 288833 288929 288997 289049 289127 289181 289253 289343 289423 289511 289607 289727 289837 289889 289987 290039 290119 290209 290347 290419 290489 290557 290627 290701 290803 290879 290993 291077 291167 291253 291337
tL 2 3421 3424 3435 3435 3412 3429 3439 3418 3426 3435 3432 3434 3429 3423 3450 3428 3424 3445 3444 3439 3441 3431 3439 3442 3440 3435 3452 3441 3452 3447 3439 3449 3450 3441 3451 3442 3443 3451 3443 3454 3449 3450 3451 3456 3458 3463 3454 3450
q 287179 287257 287327 287437 287557 287681 287801 287867 288007 288109 288209 288307 288389 288481 288559 288661 288751 288839 288931 289001 289063 289129 289189 289273 289349 289439 289543 289637 289733 289841 289897 289999 290041 290137 290219 290351 290429 290497 290593 290657 290707 290821 290897 290999 291089 291169 291257 291349
tL 2 3426 3422 3441 3429 3436 3433 3433 3435 3424 3428 3445 3428 3444 3445 3439 3438 3436 3435 3443 3435 3433 3445 3440 3435 3446 3441 3454 3454 3444 3438 3446 3435 3451 3445 3441 3452 3450 3446 3441 3456 3449 3448 3466 3443 3450 3466 3446 3455
103
q 287191 287269 287333 287449 287579 287689 287813 287873 288023 288137 288227 288313 288403 288493 288571 288679 288767 288851 288947 289019 289067 289139 289193 289283 289361 289453 289559 289643 289741 289843 289937 290011 290047 290141 290233 290359 290441 290509 290597 290659 290711 290827 290923 291007 291101 291173 291271 291359
tL 2 3430 3433 3428 3442 3423 3429 3436 3434 3425 3441 3423 3434 3430 3444 3446 3432 3445 3446 3444 3432 3445 3434 3437 3446 3442 3443 3448 3445 3449 3449 3450 3459 3445 3460 3449 3446 3445 3441 3443 3451 3461 3451 3442 3448 3455 3459 3454 3457
q 287219 287279 287341 287491 287597 287701 287821 287887 288049 288179 288241 288317 288413 288499 288577 288683 288773 288853 288973 289021 289099 289141 289213 289291 289369 289463 289573 289657 289759 289847 289951 290021 290057 290161 290243 290369 290443 290527 290611 290663 290737 290837 290959 291013 291103 291191 291287 291367
tL 2 3441 3429 3419 3426 3422 3420 3429 3438 3435 3438 3423 3430 3435 3437 3435 3436 3440 3444 3441 3439 3446 3436 3438 3450 3448 3445 3430 3433 3444 3446 3439 3443 3460 3456 3449 3444 3441 3453 3446 3463 3450 3458 3457 3450 3448 3458 3450 3454
q 287233 287281 287347 287501 287611 287731 287849 287921 288053 288181 288247 288349 288427 288527 288583 288689 288803 288877 288979 289031 289103 289151 289241 289297 289381 289469 289577 289669 289763 289853 289957 290023 290083 290183 290249 290383 290447 290531 290617 290669 290761 290839 290963 291037 291107 291199 291293 291371
tL 2 3444 3433 3425 3435 3432 3435 3431 3432 3442 3429 3427 3444 3445 3431 3437 3437 3441 3449 3438 3439 3436 3444 3449 3442 3445 3435 3441 3449 3436 3442 3447 3444 3446 3448 3437 3437 3449 3448 3441 3458 3440 3446 3450 3441 3452 3450 3451 3443
Table 5. Continue 47 q 291373 291481 291559 291677 291751 291857 291971 292057 292141 292241 292343 292441 292493 292577 292679 292727 292819 292921 293071 293129 293207 293311 293431 293507 293639 293723 293827 293957 294029 294131 294199 294269 294319 294397 294499 294641 294751 294799 294887 294953 295037 295123 295237 295313 295417 295517 295663 295769
tL 2 3450 3452 3456 3449 3449 3457 3459 3463 3461 3469 3451 3464 3458 3471 3465 3462 3464 3458 3463 3460 3460 3469 3467 3477 3474 3466 3467 3469 3470 3476 3478 3468 3468 3464 3478 3484 3492 3470 3474 3485 3485 3484 3467 3487 3472 3485 3477 3483
q 291377 291491 291563 291689 291779 291869 291979 292069 292147 292249 292351 292459 292517 292601 292681 292753 292837 292933 293081 293147 293213 293329 293441 293543 293651 293729 293831 293983 294043 294149 294211 294277 294337 294403 294509 294647 294757 294803 294893 294979 295039 295129 295247 295319 295429 295541 295693 295777
tL 2 3455 3462 3455 3456 3463 3463 3456 3458 3457 3466 3465 3465 3458 3456 3461 3459 3465 3468 3470 3470 3462 3468 3464 3463 3476 3458 3477 3466 3476 3478 3477 3481 3472 3459 3471 3470 3458 3457 3476 3480 3474 3471 3475 3477 3487 3480 3487 3489
q 291419 291503 291569 291691 291791 291877 291983 292079 292157 292267 292363 292469 292531 292627 292693 292759 292841 292969 293087 293149 293221 293339 293453 293599 293659 293749 293861 293989 294053 294157 294223 294289 294341 294431 294523 294649 294761 294809 294911 294989 295049 295153 295259 295333 295433 295553 295699 295787
tL 2 3451 3468 3459 3450 3459 3456 3455 3456 3452 3470 3453 3464 3466 3473 3460 3465 3467 3469 3461 3460 3473 3463 3476 3468 3473 3471 3475 3467 3469 3475 3478 3469 3468 3480 3464 3477 3488 3480 3485 3464 3471 3486 3474 3490 3481 3477 3491 3479
q 291437 291509 291619 291701 291817 291887 291997 292081 292181 292283 292367 292471 292541 292631 292703 292777 292849 292973 293093 293173 293257 293351 293459 293603 293677 293767 293863 293999 294059 294167 294227 294293 294347 294439 294529 294659 294773 294821 294919 294991 295073 295187 295271 295357 295439 295567 295703 295819
tL 2 3455 3464 3450 3461 3467 3455 3457 3461 3466 3462 3466 3452 3467 3456 3471 3462 3466 3470 3470 3462 3469 3475 3464 3473 3479 3466 3469 3477 3469 3474 3471 3474 3459 3483 3477 3476 3475 3478 3477 3480 3475 3496 3480 3476 3479 3485 3475 3477
104
q 291439 291521 291647 291721 291829 291899 292021 292091 292183 292301 292381 292477 292549 292661 292709 292793 292867 292979 293099 293177 293261 293357 293467 293617 293681 293773 293893 294001 294067 294169 294241 294311 294353 294461 294551 294673 294781 294829 294923 294997 295079 295199 295277 295363 295441 295571 295727 295831
tL 2 3458 3452 3468 3458 3435 3457 3464 3464 3466 3462 3452 3460 3470 3461 3466 3459 3478 3472 3460 3471 3481 3460 3461 3474 3463 3472 3472 3486 3474 3479 3470 3477 3477 3465 3475 3473 3471 3467 3484 3476 3478 3483 3489 3485 3485 3464 3487 3482
q 291443 291539 291649 291727 291833 291901 292027 292093 292223 292309 292393 292483 292561 292667 292711 292801 292879 292993 293107 293179 293263 293399 293473 293621 293701 293791 293899 294013 294103 294179 294247 294313 294383 294467 294563 294703 294787 294859 294947 295007 295081 295201 295283 295387 295459 295591 295751 295837
tL 2 3454 3458 3461 3454 3464 3451 3457 3461 3465 3467 3469 3475 3450 3463 3460 3452 3463 3468 3464 3454 3462 3463 3471 3461 3469 3470 3472 3473 3469 3470 3466 3471 3467 3473 3473 3486 3486 3481 3468 3485 3479 3478 3477 3471 3487 3485 3476 3486
q 291457 291547 291661 291743 291853 291923 292037 292133 292231 292319 292427 292489 292573 292673 292717 292807 292909 293021 293123 293201 293269 293413 293483 293633 293717 293803 293941 294023 294127 294181 294251 294317 294391 294479 294629 294731 294793 294869 294949 295033 295111 295219 295291 295411 295513 295601 295759 295843
tL 2 3442 3454 3453 3460 3448 3457 3465 3464 3459 3463 3453 3454 3455 3464 3447 3463 3484 3483 3467 3477 3462 3473 3467 3470 3482 3456 3477 3467 3471 3472 3480 3477 3470 3487 3475 3478 3480 3479 3484 3475 3477 3482 3475 3487 3487 3479 3482 3490
Table 5. Continue 48 q 295847 295901 295961 296047 296159 296249 296347 296473 296519 296587 296687 296749 296819 296921 296987 297083 297191 297317 297421 297503 297607 297683 297793 297881 297967 298043 298157 298213 298307 298399 298513 298621 298691 298777 298853 299011 299087 299179 299281 299359 299419 299513 299617 299701 299777 299903 299983 300089
tL 2 3471 3488 3490 3474 3485 3485 3483 3482 3484 3506 3492 3488 3492 3489 3498 3493 3490 3495 3496 3491 3489 3486 3488 3491 3476 3500 3506 3496 3506 3508 3506 3503 3505 3507 3494 3511 3519 3509 3497 3510 3507 3515 3507 3503 3513 3513 3499 3512
q 295853 295903 295973 296071 296183 296251 296353 296477 296551 296591 296693 296753 296827 296929 297019 297097 297233 297359 297439 297509 297613 297691 297797 297889 297971 298049 298159 298223 298327 298409 298559 298631 298693 298799 298861 299017 299099 299191 299287 299363 299447 299521 299623 299711 299807 299909 299993 300109
tL 2 3491 3490 3488 3485 3486 3493 3483 3487 3484 3488 3492 3487 3486 3482 3496 3484 3482 3499 3490 3497 3477 3497 3493 3494 3502 3499 3508 3496 3503 3511 3500 3497 3509 3499 3509 3508 3503 3506 3508 3503 3504 3512 3499 3497 3517 3506 3508 3520
q 295861 295909 295993 296083 296201 296269 296363 296479 296557 296627 296713 296767 296831 296941 297023 297113 297247 297371 297457 297523 297617 297707 297809 297893 297989 298063 298169 298237 298339 298411 298579 298651 298709 298801 298897 299027 299107 299197 299311 299371 299471 299527 299653 299723 299843 299933 300007 300119
tL 2 3480 3492 3487 3485 3488 3497 3486 3496 3493 3493 3482 3496 3499 3491 3491 3495 3491 3503 3498 3501 3502 3488 3490 3504 3497 3496 3504 3503 3500 3506 3498 3495 3499 3505 3508 3506 3503 3508 3509 3506 3515 3510 3505 3501 3514 3514 3516 3512
q 295871 295937 296011 296099 296213 296273 296369 296489 296561 296651 296719 296771 296833 296969 297049 297133 297251 297377 297467 297533 297623 297719 297811 297907 297991 298087 298171 298247 298343 298427 298583 298667 298723 298817 298937 299029 299113 299209 299317 299389 299473 299539 299671 299731 299857 299941 300017 300137
tL 2 3482 3481 3496 3483 3481 3500 3484 3489 3495 3487 3482 3486 3493 3492 3501 3482 3510 3498 3491 3491 3487 3501 3498 3491 3495 3496 3489 3497 3497 3503 3511 3502 3510 3507 3501 3499 3501 3505 3508 3491 3510 3515 3507 3495 3502 3508 3512 3517
105
q 295873 295943 296017 296117 296221 296279 296377 296503 296563 296663 296729 296773 296843 296971 297061 297151 297257 297391 297469 297581 297629 297727 297833 297911 298013 298093 298187 298261 298349 298451 298589 298679 298733 298819 298943 299053 299137 299213 299329 299393 299477 299567 299681 299743 299861 299951 300023 300149
tL 2 3492 3487 3494 3483 3485 3490 3491 3486 3493 3499 3484 3482 3497 3484 3482 3490 3494 3494 3495 3494 3499 3500 3481 3496 3500 3494 3489 3495 3512 3498 3506 3500 3502 3504 3506 3503 3509 3504 3508 3512 3504 3514 3511 3520 3509 3497 3500 3514
q 295877 295949 296027 296129 296237 296287 296437 296507 296579 296669 296731 296797 296909 296981 297067 297161 297263 297397 297481 297589 297641 297757 297841 297931 298021 298099 298201 298283 298369 298477 298601 298681 298757 298841 298993 299059 299147 299239 299333 299401 299479 299569 299683 299749 299881 299969 300043 300151
tL 2 3491 3493 3481 3478 3491 3481 3489 3485 3482 3484 3492 3482 3498 3488 3491 3489 3487 3493 3500 3497 3490 3505 3482 3495 3500 3501 3508 3495 3508 3499 3500 3499 3508 3498 3506 3495 3494 3509 3510 3499 3499 3508 3510 3510 3499 3511 3509 3503
q 295879 295951 296041 296137 296243 296299 296441 296509 296581 296683 296741 296801 296911 296983 297079 297169 297289 297403 297487 297601 297659 297779 297853 297953 298031 298153 298211 298303 298373 298483 298607 298687 298759 298847 298999 299063 299171 299261 299357 299417 299501 299603 299699 299771 299891 299977 300073 300163
tL 2 3485 3482 3487 3489 3480 3474 3488 3490 3481 3478 3494 3488 3492 3501 3493 3504 3489 3481 3498 3497 3494 3502 3498 3499 3493 3502 3493 3509 3502 3504 3510 3504 3495 3502 3519 3509 3503 3498 3506 3511 3507 3512 3511 3510 3506 3500 3502 3504
Table 5. Continue 49 q 300187 300247 300331 300431 300499 300593 300673 300743 300799 300877 300967 301051 301153 301237 301331 301409 301487 301583 301657 301751
tL 2 3507 3506 3513 3506 3510 3501 3519 3513 3516 3513 3517 3514 3511 3519 3519 3528 3516 3523 3528 3513
q 300191 300277 300343 300439 300511 300623 300683 300749 300809 300889 300973 301057 301159 301241 301333 301423 301489 301591 301669 301753
tL 2 3515 3516 3525 3503 3503 3506 3504 3505 3518 3532 3512 3502 3510 3505 3516 3526 3524 3517 3516 3523
q 300193 300299 300347 300463 300557 300631 300691 300757 300821 300893 300977 301073 301177 301243 301349 301429 301493 301601 301673 301759
tL 2 3506 3517 3505 3517 3516 3518 3512 3508 3513 3512 3522 3531 3523 3530 3526 3520 3520 3512 3538 3521
q 300221 300301 300367 300481 300569 300647 300719 300761 300823 300929 300997 301079 301181 301247 301361 301447 301501 301619 301681 301789
tL 2 3508 3517 3506 3512 3519 3518 3507 3522 3520 3515 3511 3520 3520 3517 3518 3517 3514 3527 3523 3531
106
q 300229 300317 300397 300491 300581 300649 300721 300763 300851 300931 301013 301123 301183 301267 301363 301459 301531 301627 301703 301793
tL 2 3515 3515 3516 3507 3532 3519 3501 3512 3511 3515 3522 3521 3510 3512 3514 3519 3515 3524 3523 3527
q 300233 300319 300413 300493 300583 300661 300733 300779 300857 300953 301027 301127 301211 301303 301381 301463 301577 301643 301711 301813
tL 2 3521 3514 3520 3512 3508 3512 3503 3514 3503 3513 3514 3531 3512 3516 3519 3526 3527 3518 3525 3519
q 300239 300323 300427 300497 300589 300667 300739 300787 300869 300961 301039 301141 301219 301319 301403 301471 301579 301649 301747
tL 2 3504 3518 3500 3513 3508 3502 3517 3519 3520 3522 3505 3526 3527 3524 3511 3522 3522 3528 3515
Table 6. The sizes tL2 = tL2 (2, q) of complete lexiarcs in planes PG(2, q), 301813 < q ≤ 321007, q prime power q 301831 301907 301991 302123 302213 302297 302429 302563 302597 302723 302831 302891 302969 303011 303089 303157 303293 303361 303421 303497 303581 303647 303713 303817 303917 304013 304069 304163 304259 304363 304433 304501 304559 304663 304757 304831 304901 304961 305033 305119 305237 305351 305411 305477 305551 305621 305743 305821
tL 2 3519 3526 3526 3533 3517 3514 3530 3525 3514 3527 3539 3526 3526 3531 3520 3523 3531 3533 3538 3540 3539 3528 3532 3532 3539 3528 3547 3534 3529 3543 3537 3542 3542 3533 3543 3538 3536 3544 3531 3555 3545 3550 3549 3544 3559 3535 3551 3539
q 301841 301913 301993 302143 302221 302299 302443 302567 302609 302747 302833 302903 302971 303013 303091 303187 303299 303367 303431 303529 303587 303649 303727 303827 303931 304021 304081 304169 304279 304373 304439 304511 304561 304687 304763 304847 304903 304979 305047 305131 305243 305353 305413 305479 305563 305633 305749 305839
tL 2 3526 3523 3527 3523 3511 3512 3524 3527 3519 3527 3533 3531 3541 3515 3528 3525 3525 3532 3527 3538 3535 3525 3535 3535 3537 3521 3535 3536 3542 3543 3541 3546 3546 3544 3537 3540 3547 3549 3532 3545 3546 3547 3536 3542 3546 3542 3536 3562
q 301843 301927 301997 302167 302227 302317 302459 302573 302629 302759 302837 302909 302977 303019 303097 303217 303307 303371 303463 303539 303593 303679 303731 303839 303937 304033 304091 304193 304301 304391 304457 304517 304597 304709 304771 304849 304907 304981 305069 305143 305267 305363 305419 305483 305581 305639 305759 305849
tL 2 3522 3523 3521 3522 3535 3510 3525 3530 3524 3533 3534 3523 3530 3526 3520 3527 3533 3516 3535 3532 3535 3538 3534 3530 3538 3551 3543 3540 3537 3545 3540 3539 3535 3546 3540 3542 3537 3552 3554 3534 3545 3540 3555 3534 3542 3529 3546 3548
q 301867 301933 301999 302171 302261 302329 302483 302579 302647 302767 302843 302921 302983 303029 303119 303257 303313 303377 303469 303547 303613 303683 303749 303859 303959 304039 304099 304211 304303 304393 304459 304523 304609 304723 304781 304867 304933 305017 305093 305147 305281 305369 305423 305489 305593 305663 305761 305857
tL 2 3527 3522 3528 3514 3539 3517 3524 3532 3537 3523 3526 3524 3529 3535 3530 3530 3522 3533 3532 3531 3527 3531 3534 3530 3539 3539 3539 3523 3534 3535 3535 3542 3540 3522 3551 3536 3537 3541 3547 3542 3554 3553 3533 3543 3545 3540 3545 3545
107
q 301877 301943 302009 302173 302273 302399 302507 302581 302663 302779 302851 302927 302989 303049 303139 303271 303323 303379 303473 303551 303617 303689 303767 303871 303983 304049 304127 304217 304331 304411 304477 304537 304631 304729 304789 304879 304937 305021 305101 305209 305297 305377 305441 305497 305597 305717 305771 305861
tL 2 3526 3536 3510 3526 3518 3521 3517 3532 3536 3530 3528 3536 3524 3530 3530 3534 3541 3526 3538 3530 3514 3527 3537 3535 3543 3536 3529 3546 3537 3531 3535 3539 3548 3552 3537 3545 3545 3537 3538 3554 3540 3538 3548 3530 3544 3538 3548 3551
q 301897 301949 302053 302189 302279 302411 302513 302587 302681 302791 302857 302941 302999 303053 303143 303283 303337 303389 303491 303553 303619 303691 303781 303889 303997 304063 304151 304223 304349 304417 304481 304541 304643 304739 304807 304883 304943 305023 305111 305219 305329 305401 305449 305521 305603 305719 305783 305867
tL 2 3506 3522 3528 3521 3520 3517 3525 3518 3532 3534 3525 3523 3520 3534 3516 3530 3529 3542 3524 3534 3526 3532 3525 3542 3532 3545 3545 3536 3525 3536 3538 3538 3536 3523 3544 3535 3550 3551 3533 3541 3554 3548 3544 3552 3545 3547 3557 3550
q 301901 301979 302111 302191 302287 302417 302551 302593 302711 302801 302873 302959 303007 303073 303151 303287 303341 303409 303493 303571 303643 303703 303803 303907 304009 304067 304153 304253 304357 304429 304489 304553 304651 304751 304813 304897 304949 305029 305113 305231 305339 305407 305471 305533 305611 305741 305803 305873
tL 2 3522 3516 3527 3527 3529 3537 3513 3528 3528 3532 3534 3530 3531 3516 3539 3529 3526 3530 3537 3526 3530 3533 3529 3545 3536 3534 3539 3531 3525 3535 3529 3546 3541 3555 3544 3531 3533 3537 3548 3549 3530 3543 3548 3545 3554 3544 3554 3544
Table 6. Continue 1 q 305917 306023 306133 306193 306301 306377 306457 306517 306589 306707 306821 306877 306947 307033 307129 307201 307277 307367 307471 307577 307639 307733 307871 308003 308101 308153 308303 308359 308489 308527 308621 308723 308849 308929 309011 309083 309157 309259 309313 309433 309493 309571 309667 309769 309853 309977 310081 310169
tL 2 3545 3543 3562 3551 3541 3563 3550 3545 3562 3543 3544 3556 3548 3559 3554 3567 3548 3561 3561 3563 3561 3555 3560 3557 3571 3554 3566 3556 3559 3563 3564 3568 3572 3565 3560 3567 3573 3576 3564 3582 3583 3559 3574 3579 3558 3575 3582 3574
q 305927 306029 306139 306209 306329 306389 306463 306529 306643 306727 306827 306883 306949 307067 307147 307243 307283 307381 307481 307583 307651 307759 307873 308017 308107 308213 308309 308383 308491 308537 308639 308761 308851 308933 309013 309091 309167 309269 309317 309437 309503 309577 309671 309779 309857 309989 310087 310181
tL 2 3548 3551 3543 3543 3553 3560 3550 3563 3559 3544 3556 3557 3554 3551 3556 3555 3550 3550 3566 3561 3563 3554 3563 3565 3562 3571 3563 3571 3558 3561 3574 3565 3570 3558 3563 3568 3561 3572 3568 3565 3568 3564 3579 3565 3579 3572 3572 3569
q 305933 306041 306149 306239 306331 306407 306473 306533 306653 306739 306829 306893 306953 307079 307163 307253 307289 307397 307511 307589 307669 307817 307891 308027 308117 308219 308311 308411 308501 308551 308641 308773 308857 308939 309019 309107 309173 309271 309359 309457 309521 309583 309677 309781 309877 310019 310091 310187
tL 2 3535 3548 3546 3534 3548 3550 3549 3553 3557 3558 3554 3554 3546 3563 3557 3562 3544 3563 3572 3560 3566 3567 3552 3573 3565 3563 3557 3554 3566 3550 3559 3565 3564 3558 3564 3568 3557 3577 3567 3573 3567 3566 3583 3563 3573 3585 3565 3582
q 305947 306049 306157 306247 306347 306419 306479 306541 306661 306749 306847 306899 306991 307091 307169 307259 307301 307399 307523 307609 307687 307823 307903 308041 308129 308249 308317 308423 308507 308569 308663 308801 308887 308951 309031 309109 309193 309277 309367 309461 309523 309599 309707 309797 309899 310021 310111 310223
tL 2 3552 3553 3552 3551 3541 3553 3541 3552 3556 3559 3549 3556 3544 3561 3557 3568 3550 3551 3563 3561 3553 3556 3560 3553 3563 3564 3571 3569 3561 3565 3572 3556 3572 3573 3565 3576 3571 3581 3564 3570 3568 3564 3565 3570 3578 3577 3588 3566
108
q 305971 306083 306167 306253 306349 306421 306491 306563 306689 306763 306853 306913 307009 307093 307171 307261 307337 307409 307529 307627 307691 307831 307919 308051 308137 308263 308323 308437 308509 308573 308681 308809 308899 308989 309037 309121 309223 309289 309371 309469 309539 309623 309713 309811 309929 310027 310117 310229
tL 2 3537 3554 3543 3547 3548 3551 3552 3550 3562 3551 3568 3554 3559 3563 3550 3561 3566 3548 3547 3558 3551 3559 3573 3560 3571 3548 3565 3563 3565 3558 3578 3562 3564 3560 3569 3568 3556 3568 3570 3569 3564 3572 3583 3572 3572 3560 3565 3574
q 305999 306091 306169 306259 306359 306431 306503 306577 306701 306781 306857 306919 307019 307103 307187 307267 307339 307423 307537 307631 307693 307843 307939 308081 308141 308291 308327 308447 308519 308587 308701 308813 308923 308999 309059 309131 309241 309293 309391 309479 309541 309629 309731 309823 309931 310043 310127 310231
tL 2 3543 3556 3536 3549 3548 3554 3553 3549 3545 3548 3543 3563 3564 3560 3559 3558 3557 3558 3547 3559 3560 3551 3567 3553 3562 3560 3563 3578 3562 3562 3571 3560 3576 3563 3565 3566 3574 3564 3556 3569 3576 3572 3569 3567 3570 3572 3576 3576
q 306011 306121 306191 306263 306367 306437 306511 306587 306703 306809 306871 306941 307031 307121 307189 307273 307361 307451 307543 307633 307711 307859 307969 308093 308149 308293 308333 308467 308521 308597 308713 308827 308927 309007 309079 309137 309251 309311 309403 309481 309559 309637 309737 309851 309937 310049 310129 310237
tL 2 3542 3543 3540 3561 3552 3555 3542 3546 3539 3562 3558 3561 3555 3551 3557 3561 3557 3562 3569 3551 3563 3559 3561 3563 3560 3573 3567 3560 3573 3569 3564 3559 3558 3570 3573 3572 3577 3567 3570 3573 3575 3576 3567 3570 3571 3560 3568 3564
Table 6. Continue 2 q 310243 310357 310439 310507 310577 310711 310771 310831 310931 311027 311153 311237 311329 311419 311551 311653 311713 311807 311951 312031 312101 312209 312253 312331 312401 312517 312589 312677 312743 312857 312941 313009 313129 313211 313297 313351 313477 313567 313619 313711 313777 313889 313961 313997 314113 314189 314257 314351
tL 2 3574 3566 3565 3573 3570 3580 3571 3577 3586 3585 3582 3575 3587 3575 3582 3582 3582 3585 3581 3587 3588 3586 3587 3583 3591 3594 3590 3580 3583 3591 3587 3579 3595 3592 3597 3589 3602 3602 3600 3588 3596 3589 3600 3590 3593 3597 3604 3595
q 310249 310361 310447 310511 310591 310721 310781 310861 310949 311033 311173 311279 311341 311447 311557 311659 311737 311821 311957 312043 312107 312211 312269 312343 312407 312527 312601 312679 312757 312863 312943 313031 313133 313219 313301 313373 313507 313571 313637 313717 313783 313897 313969 314003 314117 314213 314261 314357
tL 2 3570 3565 3569 3560 3571 3572 3578 3583 3584 3575 3569 3577 3580 3583 3580 3583 3593 3594 3588 3591 3587 3571 3590 3590 3574 3597 3585 3578 3583 3591 3588 3596 3590 3602 3601 3589 3592 3606 3590 3598 3611 3593 3594 3603 3608 3606 3596 3593
q 310273 310363 310459 310547 310627 310727 310789 310867 310969 311041 311177 311291 311347 311453 311561 311677 311743 311827 311963 312047 312121 312217 312281 312349 312413 312551 312617 312701 312773 312887 312967 313037 313147 313241 313307 313381 313517 313583 313639 313721 313829 313909 313979 314021 314129 314219 314263 314359
tL 2 3585 3560 3561 3574 3578 3577 3579 3583 3568 3580 3575 3585 3584 3581 3579 3579 3583 3577 3573 3579 3585 3588 3582 3583 3592 3581 3592 3586 3584 3587 3596 3587 3578 3598 3594 3592 3601 3608 3614 3585 3604 3595 3599 3595 3603 3596 3598 3602
q 310283 310379 310463 310553 310643 310729 310801 310883 310987 311099 311183 311293 311359 311473 311567 311681 311747 311867 311981 312071 312161 312229 312283 312353 312427 312553 312619 312703 312779 312899 312971 313081 313151 313249 313321 313387 313543 313589 313661 313727 313849 313921 313981 314059 314137 314227 314267 314399
tL 2 3575 3568 3576 3568 3576 3573 3579 3581 3583 3588 3577 3582 3582 3575 3589 3572 3581 3579 3586 3590 3591 3586 3582 3580 3585 3588 3582 3589 3585 3581 3590 3580 3598 3591 3598 3595 3591 3593 3596 3608 3604 3604 3586 3595 3608 3607 3604 3595
109
q 310291 310397 310481 310559 310663 310733 310819 310889 310997 311111 311189 311299 311371 311533 311569 311683 311749 311869 312007 312073 312197 312233 312289 312371 312451 312563 312623 312709 312799 312929 312979 313087 313153 313267 313331 313399 313549 313597 313669 313739 313853 313931 313987 314063 314159 314233 314299 314401
tL 2 3584 3582 3579 3574 3563 3571 3580 3576 3574 3589 3567 3587 3569 3574 3579 3575 3581 3588 3580 3584 3588 3587 3591 3597 3601 3603 3586 3598 3585 3592 3601 3592 3591 3588 3591 3606 3588 3591 3599 3591 3584 3593 3603 3599 3601 3591 3597 3610
q 310313 310423 310489 310567 310693 310741 310823 310901 311009 311123 311197 311303 311393 311537 311603 311687 311791 311881 312023 312083 312199 312241 312311 312383 312469 312581 312643 312727 312839 312931 312989 313109 313163 313273 313333 313409 313553 313603 313679 313741 313879 313933 313991 314077 314161 314239 314329 314407
tL 2 3576 3580 3571 3573 3578 3570 3572 3581 3581 3583 3587 3576 3589 3572 3604 3586 3587 3582 3571 3589 3578 3592 3587 3586 3582 3598 3598 3589 3590 3597 3597 3608 3585 3587 3590 3600 3603 3591 3598 3594 3583 3599 3603 3605 3604 3595 3604 3607
q 310333 310433 310501 310571 310697 310747 310829 310927 311021 311137 311203 311323 311407 311539 311609 311711 311803 311897 312029 312089 312203 312251 312313 312397 312509 312583 312673 312737 312841 312937 313003 313127 313207 313289 313343 313471 313561 313613 313699 313763 313883 313949 313993 314107 314173 314243 314339 314423
tL 2 3568 3570 3564 3575 3571 3578 3574 3569 3583 3580 3587 3583 3589 3585 3587 3586 3589 3589 3589 3586 3581 3585 3578 3595 3599 3585 3586 3597 3590 3587 3596 3582 3595 3597 3589 3597 3588 3590 3596 3583 3604 3597 3601 3600 3603 3599 3593 3584
Table 6. Continue 3 q 314441 314543 314603 314711 314779 314917 315011 315097 315199 315313 315409 315481 315551 315617 315701 315811 315899 316003 316087 316189 316243 316339 316429 316501 316621 316691 316769 316847 316907 316991 317071 317179 317267 317351 317431 317503 317599 317693 317743 317827 317923 317987 318127 318203 318271 318319 318407 318503
tL 2 3609 3601 3616 3602 3600 3609 3604 3597 3609 3606 3604 3607 3612 3606 3634 3616 3609 3612 3611 3615 3617 3608 3603 3610 3619 3613 3618 3617 3619 3629 3623 3609 3618 3626 3611 3630 3624 3619 3630 3616 3616 3626 3626 3612 3635 3628 3616 3626
q 314453 314549 314623 314719 314807 314927 315013 315103 315223 315349 315421 315493 315559 315631 315703 315829 315907 316031 316097 316193 316259 316343 316439 316507 316633 316697 316777 316853 316919 317003 317077 317189 317269 317353 317437 317539 317609 317701 317771 317831 317957 318001 318137 318209 318281 318323 318419 318523
tL 2 3619 3597 3609 3611 3594 3611 3600 3606 3601 3606 3606 3604 3597 3603 3611 3598 3608 3608 3608 3604 3604 3612 3622 3612 3617 3613 3606 3611 3621 3617 3612 3625 3616 3617 3626 3619 3628 3619 3630 3609 3619 3623 3621 3616 3621 3626 3624 3629
q 314467 314569 314627 314723 314813 314933 315037 315109 315247 315361 315437 315517 315569 315643 315739 315851 315937 316033 316109 316201 316271 316363 316453 316531 316637 316699 316783 316859 316937 317011 317087 317197 317279 317363 317453 317557 317617 317711 317773 317839 317959 318007 318161 318211 318287 318337 318431 318557
tL 2 3601 3609 3596 3608 3605 3607 3592 3609 3604 3605 3612 3610 3605 3606 3608 3611 3614 3602 3617 3605 3603 3600 3627 3605 3615 3615 3614 3614 3618 3621 3603 3616 3612 3621 3616 3620 3615 3621 3620 3637 3626 3614 3623 3616 3617 3620 3617 3615
q 314491 314581 314641 314747 314827 314953 315047 315127 315251 315373 315449 315521 315589 315671 315743 315857 315949 316037 316133 316213 316291 316373 316469 316567 316649 316703 316793 316861 316951 317021 317089 317209 317321 317371 317459 317563 317621 317717 317777 317857 317963 318023 318173 318229 318289 318347 318443 318559
tL 2 3596 3597 3591 3604 3607 3616 3603 3599 3609 3599 3608 3610 3605 3605 3602 3613 3613 3610 3606 3616 3617 3609 3615 3604 3614 3616 3614 3606 3613 3624 3617 3619 3609 3615 3619 3624 3626 3627 3633 3630 3614 3623 3632 3622 3627 3630 3635 3618
110
q 314497 314591 314651 314761 314851 314957 315059 315179 315257 315377 315451 315527 315593 315677 315751 315881 315961 316051 316139 316219 316297 316391 316471 316571 316661 316717 316801 316879 316957 317029 317123 317227 317323 317399 317483 317587 317651 317729 317783 317887 317969 318077 318179 318233 318299 318349 318457 318569
tL 2 3605 3610 3608 3601 3603 3602 3615 3606 3602 3611 3616 3606 3605 3603 3597 3610 3607 3606 3618 3614 3613 3614 3607 3623 3606 3609 3601 3617 3625 3609 3617 3611 3624 3628 3613 3615 3624 3633 3617 3625 3618 3622 3627 3628 3615 3638 3618 3616
q 314513 314597 314693 314771 314879 314983 315067 315181 315269 315389 315461 315529 315599 315691 315779 315883 315967 316067 316153 316223 316301 316403 316493 316577 316663 316753 316817 316891 316961 317047 317159 317257 317327 317411 317489 317591 317663 317731 317789 317903 317971 318103 318181 318247 318301 318377 318467 318581
tL 2 3610 3607 3604 3601 3603 3597 3611 3600 3604 3608 3614 3611 3590 3608 3618 3616 3604 3599 3606 3607 3618 3604 3625 3596 3609 3616 3613 3621 3617 3613 3618 3622 3618 3632 3620 3621 3621 3625 3627 3634 3610 3622 3618 3634 3620 3622 3613 3633
q 314527 314599 314707 314777 314903 314989 315083 315193 315281 315407 315467 315547 315613 315697 315803 315893 315977 316073 316177 316241 316321 316423 316499 316583 316681 316759 316819 316903 316969 317063 317171 317263 317333 317419 317491 317593 317671 317741 317797 317921 317983 318107 318191 318259 318313 318403 318473 318589
tL 2 3603 3596 3597 3594 3605 3602 3613 3598 3617 3607 3617 3603 3615 3615 3605 3608 3614 3607 3610 3613 3613 3599 3611 3626 3621 3610 3623 3626 3626 3623 3612 3623 3614 3619 3613 3609 3621 3618 3621 3622 3610 3618 3618 3626 3612 3628 3619 3632
Table 6. Continue 4 q 318601 318683 318751 318833 318911 319031 319097 319169 319279 319351 319433 319489 319577 319679 319733 319829 319927 320009 320063 320141 320219 320293 320389 320483 320591 320669 320767 320861 320941
tL 2 3631 3639 3623 3628 3629 3635 3635 3638 3619 3635 3628 3631 3633 3638 3636 3629 3631 3638 3632 3631 3639 3637 3626 3639 3629 3641 3639 3624 3637
q 318629 318691 318781 318841 318917 319037 319117 319183 319289 319357 319439 319499 319589 319681 319747 319831 319931 320011 320081 320143 320237 320303 320401 320513 320609 320687 320791 320867 320953
tL 2 3625 3636 3618 3636 3630 3633 3625 3630 3629 3640 3627 3631 3636 3635 3625 3635 3636 3635 3632 3621 3640 3637 3641 3632 3638 3632 3642 3641 3640
q 318641 318701 318793 318863 318919 319049 319127 319201 319313 319387 319441 319511 319591 319687 319757 319849 319937 320027 320083 320149 320239 320317 320417 320521 320611 320693 320821 320899 321007
tL 2 3629 3615 3627 3632 3635 3634 3637 3624 3633 3633 3641 3622 3628 3636 3636 3628 3638 3635 3634 3628 3639 3631 3636 3636 3632 3648 3647 3647 3645
q 318653 318713 318809 318881 318949 319057 319129 319211 319321 319391 319453 319519 319601 319691 319763 319883 319967 320039 320101 320153 320267 320329 320431 320533 320627 320699 320833 320911
tL 2 3632 3623 3625 3636 3636 3645 3624 3633 3624 3640 3631 3633 3643 3640 3627 3625 3619 3641 3636 3637 3631 3645 3648 3631 3638 3641 3644 3637
111
q 318671 318737 318811 318883 318979 319061 319133 319223 319327 319399 319469 319541 319607 319699 319811 319897 319973 320041 320107 320179 320269 320339 320449 320539 320647 320713 320839 320923
tL 2 3636 3636 3623 3637 3629 3641 3632 3630 3612 3636 3637 3631 3631 3623 3634 3632 3639 3639 3639 3629 3638 3638 3640 3639 3648 3643 3638 3643
q 318677 318743 318817 318889 319001 319069 319147 319237 319339 319411 319477 319547 319639 319727 319817 319901 319981 320053 320113 320209 320273 320377 320471 320561 320657 320741 320843 320927
tL 2 3636 3630 3625 3629 3633 3623 3621 3633 3622 3619 3627 3646 3641 3638 3628 3629 3635 3622 3630 3644 3647 3642 3622 3640 3640 3632 3633 3632
q 318679 318749 318823 318907 319027 319093 319159 319259 319343 319427 319483 319567 319673 319729 319819 319919 319993 320057 320119 320213 320291 320387 320477 320563 320659 320759 320851 320939
tL 2 3617 3630 3615 3629 3629 3621 3629 3625 3638 3644 3630 3626 3631 3630 3626 3647 3635 3637 3648 3626 3634 3637 3632 3639 3633 3639 3646 3642