tables of some indefinite integrals of bessel functions

11 downloads 3998 Views 2MB Size Report
19 Dec 2013 ... The goal of this table was to express the integrals by Bessel and Struve ... Here Zν(x) denotes some Bessel function or modified Bessel function ...
Werner Rosenheinrich Ernst - Abbe - Hochschule Jena University of Applied Sciences Departement of Basic Sciences Germany

19.12.2016 First variant: 24.09.2003

TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS Integrals of the type Z

xJ02 (x) dx

Z xJ0 (ax)J0 (bx) dx

or

are well-known. Most of the following integrals are not found in the widely used tables of Gradstein/Ryshik, Bateman/Erdélyi, Abramowitz/ Stegun, Prudnikov/Brychkov/Marichev or Jahnke/Emde/Lösch. The goal of this table was to get tables for practicians. So the integrals should be expressed by R Bessel and Struve functions. Indeed, there occured some exceptions. Generally, integrals of the type xµ Jν (x) dx may be written with Lommel functions, see [8], 10 -74, or [3], III . In many cases reccurence relations define more integrals in a simple way. Partially the integrals may be found by MAPLE as well. In some cases MAPLE gives results with hypergeometric functions, see also [2], 9.6., or [4]. Some known integrals are included for completeness. Here Zν (x) denotes some Bessel function or modified Bessel function of the first or second kind. Partially the functions Yν (x) [sometimes called Neumann’s functions or Weber’s functions and denoted by Nν (x)] (2) (1) and the Hankel functions Hν (x) and Hν (x) are also considered. The same holds for the modified Bessel function of the second kind Kν (x). When a formula is continued in the next line, then the last sign ’+’ or ’-’ is repeated in the beginning of the new line. On page 456 the used special functions and defined functions are described. *E* - This sign marks formulas, that were incorrect in previous editions. The pages with corrected errors are listed in the errata in the end. I wish to express my thanks to B. Eckstein, S. O. Zafra, Yao Sun, F. Nouguier, M. Carbonell and R. Oliver for their remarks.

1

References: [1] [2] [3] [4]

M. Abramowitz, I. Stegun: Handbook of Mathematical Functions, Dover Publications, NY, 1970 Y. L. Luke: Mathematical Functions and their Approximations, Academic Press, NY, 1975 Y. L. Luke: Integrals of Bessel Functions, McGraw-Hill, NY, 1962 A. P. Prudnikov, . A. Bryqkov, O. I. Mariqev: Integraly i rdy, t. 2: Special~nye funkcii, Nauka, Moskva, 2003; FIZMATLIT, 2003 [5] E. Jahnke, F. Emde, F. Lösch: Tafeln höherer Funktionen, 6. Auflage, B. G. Teubner, Stuttgart, 1960 [6] I. S. Gradstein, I. M. Ryshik: Summen-, Produkt- und Integraltafeln / Tables of Series, Products, and Integrals, Band 1 / Volume 1, Verlag Harri Deutsch, Thun · Frankfurt/M, 1981 [7] I. S. Gradstein, I. M. Ryshik: Summen-, Produkt- und Integraltafeln / Tables of Series, Products, and Integrals, Band 2 / Volume 2, Verlag Harri Deutsch, Thun · Frankfurt/M, 1981 [8] G. N. Watson: A Treatise on the Theory of Bessel Functions, Cambridge, University Press, 1922 / 1995 [9] P. Humbert: Bessel-integral functions, Proceedings of the Edinburgh Mathematical Society (Series 2), 1933, 3:276-285 [10] B. A. Peavy, Indefinite Integrals Involving Bessel Functions JOURNAL OF RESEARCH of the National Bureau of Standards - B., vol. 718, Nos. 2 and 3, April - September 1967, pp. 131 - 141 [11] B. G. Korenev: Vvedenie v teori besselevyh funkci$ i, Nauka, Moskva, 1971 [12] S. K. H. Auluck: Some integral identities involving products of general solutions of Bessel’s equation of integral order, arxiv.org/abs/1006.4471 [13] H. Bateman, A. Erdélyi: Tables of Integral Transforms, vol. I, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1954 [14] H. Bateman, A. Erdélyi: Tables of Integral Transforms, vol. II, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1954

2

Contents 1. Integrals with one Bessel function 1. 1. xn Zν (x) with integer values of n x2n Z0 (x) x2n+1 Z0 (x) x−2n−1 Z0 (x) x2n Z1 (x) x−2n Z1 (x) x2n+1 Z1 (x) xn Zν (x), ν > 1 Second Antiderivatives of x2n+1−ν Zν (x) a) x2n+1 Z0 (x) b) x2n Z1 (x) 1.1.9. Higher Antiderivatives 1.1.10. Some Integrals of the Type x2n+1 Z1 (x2 + α)/(x2 + α) 1.1.1. 1.1.2. 1.1.3. 1.1.4. 1.1.5. 1.1.6. 1.1.7. 1.1.8.

7 11 13 15 17 19 23 44 44 45 48 50

1. 2. Elementary Function and Bessel Function xn+1/2 Zν (x) R√ x Zν (x) dx a) b) Integrals c) Recurrence Formulas   Iν (x) n ±x 1.2.2. x e · Kν x a) Integrals with ex b) Integrals with e−x     sinh Iν (x) n 1.2.3. x · x· cosh Kν (x)   sin 1.2.4. xn · x · Jν (x) cos 1.2.5. xn · eax · Zν (x) a) General facts b) The Case a > 0 c) The Case a < 0 d) Integrals e) Special Cases   sin −n−1/2 1.2.6. x · x · Jν (x) cos   Iν (x) 1.2.7. x−n−1/2 · e ± x · Kν (x) a) x−n−1/2 · e x · Zν (x) b) x−n−1/2 · e − x · Zν (x) c) General formulas    sinh x Iν (x) 1.2.8. x−n−1/2 cosh x Kν (x) 1.2.9. x2n+1 ln x · Z0 (x) 1.2.10. x2n ln x · Z1 (x) 1.2.11. x2n+ν ln x · Zν (x) a) The Functions Λk and Λ∗k b) Basic Integrals c) Integrals of x2n ln x · Z0 (x) c) Integrals of x2n+1 ln x · Z1 (x) 1.2.1.

57 57 62 67 69 69 71 75 78 81 81 82 90 95 100 103 106 106 107 109 114 119 121 123 123 127 130 133 3

1.2.12. 1.2.13.

xn e±x ln x · Zν (x)

136

2

xn e−x Jν (αx) a) The Case α = 1, Basic Integrals b) Integrals (α = 1) c) General Case α 6= 1, Basic Integrals d) Integrals (α 6= 1) e) Special Cases: ν = 0 f) Special Cases: ν = 1

150 150 157 159 163 167 168

1. 3. Special Function and Bessel Function 1.3.1. Orthogonal Polynomials a) Legendre Polynomials Pn (x) b) Chebyshev Polynomials Tn (x) c) Chebyshev Polynomials Un (x) d) Laguerre Polynomials Ln (x) e) Hermite Polynomials Hn (x) 1.3.2. Exponential Integral 1.3.3. Sine and Cosine Integral 1.3.4. Error function: xn erf(x) Jν (αx) a) The Case α = 1 b) General Case

169 169 174 179 182 186 191 193 196 196 197

2. Products of two Bessel Functions 2.1. Bessel Functions with the the same Argument x : 2.1.1. 2.1.2. 2.1.3.

2.1.4. 2.1.5. 2.1.6. 2.1.7.

2.1.8.

2.1.9.

x2n+1 Zν2 (x) x−2n Zν2 (x) x2n Zν2 (x) a) The Functions Θ(x) and Ω(x) b) Integrals x2n Z0 (x) Z1 (x) x2n+1 Z0 (x) Z1 (x) x−(2n+1) Z0 (x) Z1 (x) x2n+1 Jν (x) Iν (x) and x2n+1 Jν (x) Kν (x) a) ν = 0 b) ν = 1 c) Recurrence Relations x2n Jν (x) I1−ν (x) and x2n Jν (x) K1−ν (x) a) ν = 0 b) ν = 1 c) Recurrence Relations

200 205 208 208 214 219 221 224 227 227 228 229 230 230 231 232

x2n[+1] Jµ (x)Yν (x) a) x2n+1 J0 (x)Y0 (x) b) x−2n J0 (x)Y0 (x) c) x2n J0 (x)Y1 (x) d) x−2n−1 J0 (x)Y1 (x) e) x2n J1 (x)Y0 (x) f) x−2n−1 J0 (x)Y0 (x) g) x2n+1 J1 (x)Y1 (x) h) x−2n J1 (x)Y1 (x)

233 233 234 235 236 237 238 239 240

2.2. Bessel Functions with different Arguments αx and βx : 2.2.1.

x2n+1 Zν (αx)Zν (βx)

241 4

2.2.2. 2.2.3.

2.2.4. 2.2.5. 2.2.6. 2.2.7. 2.2.8. 2.2.9.

a) ν = 0 b) ν = 1 x2n Z0 (αx)Z1 (βx) x2n Zν (αx)Zν (βx) a) Basic Integrals b) Integrals x2n+1 Z0 (αx)Z1 (βx) x2n+1 J0 (αx)I0 (βx) x2n J0 (αx)I1 (βx) x2n J1 (αx)I0 (βx) x2n+1 J1 (αx)I1 (βx) x2n+1 Jν (αx)Yν (βx)

241 251 262 277 277 287 294 298 300 302 304 306

2.3. Bessel Functions with different Arguments x and x + α 2.3.1. x−1 Zν (x)Z1 (x + α) and [x(x + α)]−1 Z1 (x + α)Z1 (x) dx 2.4. Elementary Function and two Bessel Functions R R 2.4.1. x2n+1 ln x Zν2 (x) dx and x2n ln x Z0 (x) Z1 (x) dx R 2.4.2. xn ln x Zν (x) Zν∗ (x) dx a) Integrals with x4n+3 ln x J0 (x) Z0 (x) a) Integrals with x4n+1 ln x J1 (x) Z1 (x) c) Integrals with x2n+1 ln x Iν (x) Kν (x) d) Integrals with x2n+ ln x Iν (x) K1−ν (x) R 2.4.3. Some Cases of xn ln x Zν (x) Zν∗ (αx) dx R 2.4.4. x−1 · exp/ sin / cos (2x) Zν (x) Z1 (x) dx R 2.4.5. Some Cases of xn · eαx Zν (x) Z1 (x) dx   R n sin / cos 2.4.6. Some Cases of x · αx · Zµ (x) Zν∗ (βx) dx sinh / cosh   R sin a) xn · αx · Zµ (x) Zν (βx) dx cos   R n sinh b) x · αx · Zµ (x) Zν (βx) dx cosh

307

308 316 316 316 317 319 323 331 332 335 335 341

3. Products of three Bessel Functions 3.1.

xn Z0m (x)Z13−m (x)

345

a) Basic Integral Z03 (x) b) Basic Integral Z0 (x) Z12 (x) c) Basic Integral Z13 (x) d) Basic Integral x−1 Z03 (x) e) xn Z03 (x) f) xn Z02 (x) Z1 (x) g) xn Z0 (x) Z12 (x) h) xn Z13 (x) i) Recurrence Relations j) x3 Z12 (x) Z0∗ (x) 3.2.

345 349 352 356 360 363 366 368 372 373

xn Zκ (αx) Zµ (βx) Zν (γx)

374

n

a) x Zκ (x) Zµ (x) Zν (2x) b) xn Zκ (αx) Zµ (βx) Zν ((α p + β)x) c) xn Zκ (αx) Zµ (βx) Zν ( α2 ± β 2 x)

374 385 411

4. Products of four Bessel Functions

5

4.1.

xm Z0n (x)Z14−n (x) a) Explicit Integrals b) Basic Integral Z04 (x) c) Basic Integral x Z02 (x)Z12 (x) d) Basic Integral Z14 (x) e) Integrals of xm Z04 (x) f) Integrals of xm Z03 (x) Z1 (x) g) Integrals of xm Z02 (x) Z12 (x) h) Integrals of xm Z0 (x) Z13 (x) i) Integrals of xm Z14 (x) j) Recurrence relations

414 414 415 414 414 426 429 433 436 439 439

5. Quotients 5.1. 5.2.

5.3. 5.4. 5.5.

5.6.

455

Denominator p (x) Z0 (x) + q(x) Z1 (x) a) Typ f (x) Zµ (x)/[p (x) Z0 (x) + q(x) Z1 (x)] Denominator [p (x) Z0 (x) + q(x) Z1 (x)]2 a) Typ f (x) Zµ (x)/[p (x) Z0 (x) + q(x) Z1 (x)]2 b) Typ f (x) Z0n (x) Z12−n (x)/[p (x) Z0 (x) + q(x) Z1 (x)]2 , n = 0, 1, 2 Denominator [p (x) Z0 (x) + q(x) Z1 (x)]3 a) Typ f (x) Zµ (x)/[p (x) Z0 (x) + q(x) Z1 (x)]3 Denominator [p (x) Z0 (x) + q(x) Z1 (x)]4 a) Typ f (x) Zµ (x)/[p (x) Z0 (x) + q(x) Z1 (x)]4 Denominator p (x) Z02 (x) + q(x) Z12 (x) a) Typ f (x) Z0n (x) Z12−n (x)/[p (x) Z02 (x) + q(x) Z12 (x)] , n = 0, 1, 2 b) Typ f (x)q Z0n (x) Z12−n (x)/[p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x)Z12 (x)] , n = 0, 1, 2 Denominator

a(x) Z0 (x) + b(x) Z1 (x) + p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x)

445 445 445 445 448 449 449 450 450 452 452 452 452

6. Miscellaneous

455

7. Used special functions and defined functions

456

8. Errata

457

6

1. Integrals with one Bessel Function: See also [10], 2. . 1.1. xn Zν (x) with integer values of n R 1.1.1. Integrals of the type x2n Z0 (x) dx Let

πx [J1 (x) · H0 (x) − J0 (x) · H1 (x)] , 2 where Hν (x) denotes the Struve function, see [1], chapter 11.1.7, 11.1.8 and 12. And let πx Ψ(x) = [I0 (x) · L1 (x) − I1 (x) · L0 (x)] 2 be defined with the modified Struve function Lν (x). Furthermore, let πx ΦY (x) = [Y1 (x) · H0 (x) − Y0 (x) · H1 (x)] , 2 i πx h (1) (1) (1) ΦH (x) = H1 (x) · H0 (x) − H0 (x) · H1 (x) , 2 i πx h (2) (2) (2) H1 (x) · H0 (x) − H0 (x) · H1 (x) ΦH (x) = 2 and πx ΨK (x) = [K0 (x) · L1 (x) + K1 (x) · L0 (x)] 2 In the following formulas Jν (x) may be substituted by Yν (x) and simultaneously Φ(x) by ΦY (x) or (p) (p) Hν (x), p = 1, 2 and ΦH (x) . Φ(x) =

Well-known integrals: Z J0 (x) dx = xJ0 (x) + Φ(x) = Λ0 (x) Z

I0 (x) dx = xI0 (x) + Ψ(x) = Λ∗0 (x) Z K0 (x) dx = xK0 (x) + ΨK (x)

The new-defined function Λ0 (x) is discussed in 1.2.11 a) on page 123 and so is Λ∗0 (x) on page 125. See also [1], 11.1 . Z Y0 (x) dx = xY0 (x) + ΦY (x) Z

(p)

(p)

(p)

H0 (x) dx = xH0 (x) + ΦH (x) , Z Z Z

Z Z Z

p = 1, 2

x2 J0 (x) dx = x2 J1 (x) − Φ(x) x2 I0 (x) dx = x2 I1 (x) + Ψ(x)

x2 K0 (x) dx = −x2 K1 (x) + ΨK (x)

x4 J0 (x) dx = (x4 − 9x2 )J1 (x) + 3x3 J0 (x) + 9Φ(x) x4 I0 (x) dx = (x4 + 9x2 )I1 (x) − 3x3 I0 (x) + 9Ψ(x)

x4 K0 (x) dx = −(x4 + 9x2 )K1 (x) − 3x3 K0 (x) + 9ΨK (x)

7

∗ E∗

Z

x6 J0 (x) dx = (x6 − 25x4 + 225x2 )J1 (x) + (5x5 − 75x3 )J0 (x) − 225Φ(x)

Z Z

Z

Z

x6 I0 (x) dx = (x6 + 25x4 + 225x2 )I1 (x) − (5x5 + 75x3 )I0 (x) + 225Ψ(x)

x6 K0 (x) dx = −(x6 + 25x4 + 225x2 )K1 (x) − (5x5 + 75x3 )K0 (x) + 225ΨK (x) and so on.

x8 J0 (x) dx = (x8 − 49x6 + 1 225x4 − 11 025x2 )J1 (x) + (7x7 − 245x5 + 3 675x3 )J0 (x) + 11 025Φ(x) x8 I0 (x) dx = (x8 + 49x6 + 1 225x4 + 11 025x2 )I1 (x) − (7x7 + 245x5 + 3 675x3 )I0 (x) + 11 025Ψ(x) Z

x10 J0 (x) dx = (x10 − 81x8 + 3 969x6 − 99 225x4 + 893 025)J1 (x)+ +(9x9 − 567x7 + 19 845x5 − 297 675x3 )J0 (x) − 893 025Φ(x)

Z

x10 I0 (x) dx = (x10 + 81x8 + 3 969x6 + 99 225x4 + 893 025)I1 (x)− −(9x9 + 567x7 + 19 845x5 + 297 675x3 )I0 (x) + 893 025Ψ(x)

Z

x12 J0 (x) dx = (11x11 − 1 089x9 + 68 607x7 − 2 401 245x5 + 36 018 675x3 )J0 (x)+

+(x12 − 121x10 + 9 801x8 − 480 249x6 + 12 006 225x4 − 108 056 025x2 )J1 (x) + 108 056 025Φ(x) Z x12 I0 (x) dx = (x12 + 121x10 + 9 801x8 + 480 249x6 + 12 006 225x4 + 108 056 025x2 )I1 (x)− −(11x11 + 1 089x9 + 68 607x7 + 2 401 245x5 + 36 018 675x3 )I0 (x) + 108 056 025Ψ(x) Let

 n!!

=

2 · 4 · . . . · (n − 2) · n , 1 · 3 · 5 · . . . · (n − 2) · n ,

n = 2m n = 2m + 1

and n!! = 1 in the case n ≤ 0. General formulas: Z

x2n J0 (x) dx =

n−2 X k=0

+

n−1 X

k



(−1)

k=0

[(2n − 1)!!]2 x2n−2k−1 (−1)k [(2n − 1 − 2k)!!] · [(2n − 3 − 2k)!!]

(2n − 1)!! (2n − 1 − 2k)!!

2

! J0 (x)+

! 2n−2k

x

J1 (x) + (−1)n [(2n − 1)!!]2 Φ(x) =

! 2 2n−2k−1 [(2n)!] · (n − k)! · (n − k − 1)! · x = (−1)k 2k+1 J0 (x)+ 2 · (n!)2 · (2n − 2k)! · (2n − 2 − 2k)! k=0 !  2  2 n−1 X (2n)! · (n − k)! (2n)! k 2n−2k n + (−1) x J1 (x) + (−1) Φ(x) 2k · (n!) · (2n − 2k)! 2n · n! n−2 X

k=0

and Z

2n

x

I0 (x) dx =

n−1 X k=0



n−2 X k=0

(2n − 1)!! (2n − 1 − 2k)!! !

[(2n − 1)!!]2 x2n−2k−1 [(2n − 1 − 2k)!!] · [(2n − 3 − 2k)!!]

8

2

! 2n−2k

x

I1 (x)−

I0 (x) + [(2n − 1)!!]2 Ψ(x) =

=

n−1 X k=0



n−2 X k=0

2

(2n)! · (n − k)! 2k · (n!) · (2n − 2k)!

! x2n−2k

[(2n)!]2 · (n − k)! · (n − k − 1)! · x2n−2k−1 22k+1 · (n!)2 · (2n − 2k)! · (2n − 2 − 2k)!

I1 (x)−

!

 I0 (x) +

(2n)! 2n · n!

2 Ψ(x)

Recurrence formulas: Ascending: Z

x2n+2 J0 (x) dx = (2n + 1)x2n+1 J0 (x) + x2n+2 J1 (x) − (2n + 1)2

Z

2n+2

x Z

I0 (x) dx = −(2n + 1)x

2n+2

I0 (x) + x

2

Z

I1 (x) + (2n + 1)

Z

x2n I0 (x) dx x2n K0 (x) dx

x2n−2 J0 (x) dx =

1 (2n − 1)2

  Z (2n − 1) x2n−1 J0 (x) + x2n J1 (x) − x2n J0 (x) dx

x2n−2 I0 (x) dx =

1 (2n − 1)2

  Z (2n − 1) x2n−1 I0 (x) − x2n I1 (x) + x2n I0 (x) dx

2n−2

x

x2n J0 (x) dx

Z

x2n+2 K0 (x) dx = −(2n + 1)x2n+1 K0 (x) − x2n+2 K1 (x) + (2n + 1)2

Descending: Z

Z

2n+1

Z

1 K0 (x) dx = (2n − 1)2

  Z 2n−1 2n 2n (2n − 1) x K0 (x) + x K1 (x) + x K0 (x) dx

In the case n < 0 the previous formulas give Z J0 (x) x2 + 1 dx = J1 (x) − J0 (x) − Φ(x) 2 x x Z x2 − 1 I0 (x) dx = I0 (x) − I1 (x) + Ψ(x) x2 x Z K0 (x) x2 − 1 K0 (x) + K1 (x) + ΨK (x) dx = x2 x   J0 (x) 1 x4 + x2 − 3 x2 − 1 dx = J (x) − J (x) + Φ(x) ∗ E∗ 0 1 x4 9 x3 x2   Z I0 (x) 1 x4 − x2 − 3 x2 + 1 dx = I (x) − I (x) + Ψ(x) ∗ E∗ 0 1 x4 9 x3 x2   Z 1 x4 − x2 − 3 x2 + 1 K0 (x) dx = K (x) + K (x) + Ψ (x) 0 1 K x4 9 x3 x2   Z J0 (x) 1 x4 − x2 + 9 x6 + x4 − 3x2 + 45 dx = J1 (x) − J0 (x) − Φ(x) x6 225 x4 x5   Z I0 (x) 1 x6 − x4 − 3x2 − 45 x4 + x2 + 9 dx = I (x) − I (x) + Ψ(x) 0 1 x6 225 x5 x4   Z K0 (x) 1 x6 − x4 − 3x2 − 45 x4 + x2 + 9 dx = K (x) + K (x) + Ψ (x) and so on. 0 1 K x6 225 x5 x4 Z

Z

 8  J0 (x) 1 x + x6 − 3x4 + 45x2 − 1 575 x6 − x4 + 9x2 − 225 dx = J (x) − J (x) + Φ(x) 0 1 x8 11 025 x7 x6 9

  8 1 x6 + x4 + 9x2 + 225 I0 (x) x − x6 − 3x4 − 45x2 − 1 575 dx = I0 (x) − I1 (x) + Ψ(x) x8 11 025 x7 x6  8 Z J0 (x) 1 x − x6 + 9x4 − 225x2 + 11 025 dx = J1 (x) − 10 x 893 025 x8  x10 + x8 − 3x6 + 45x4 − 1 575x2 + 99 225 − J (x) − Φ(x) 0 x9  Z I0 (x) 1 x10 − x8 − 3x6 − 45x4 − 1 575x2 − 99 225 dx = I0 (x) − x10 893 025 x9  x8 + x6 + 9x4 + 225x2 + 11 025 − I1 (x) + Ψ(x) x8

Z

 12 J0 (x) 1 x + x10 − 3x8 + 45x6 − 1 575x4 + 99 225x2 − 9 823 275 dx = J0 (x) − x12 108 056 025 x11  x10 − x8 + 9x6 − 225x4 + 11 025x2 − 893 025 − J1 (x) + Φ(x) x10  12 Z 1 I0 (x) x − x10 − 3x8 − 45x6 − 1 575x4 − 99 225x2 − 9 823 275 dx = I0 (x) − 12 x 108 056 025 x11  x10 + x8 + 9x6 + 225x4 + 11 025x2 + 893 025 − I (x) + Ψ(x) 1 x10

Z

General formula: With n!! as defined on page 8 holds " ! Z n−1 X (−1)n J0 (x) dx k −2k−1 = x+ (−1) · (2k + 1)!! · (2k − 1)!! · x J0 (x)− x2n [(2n − 1)!!]2 k=0 ! # n−2 X k 2 −2k−2 − 1− (−1) · [(2k + 1)!!] x J1 (x) + Φ(x) = k=0

! (2k + 2)! · (2k)! x+ (−1) 2k+1 J0 (x)− 2 · (k + 1)! · k! · x2k+1 k=0 ! ) n−2 X (−1)k  (2k + 2)! 2 − 1− J1 (x) + Φ(x) x2k+2 2k+1 · (k + 1)! k=0 R R With obviously modifications one gets the the formulas for the integrals x−2n I0 (x) dx and x−2n K0 (x) dx. (−1)n · 22n · (n!)2 = (2n)!

(

n−1 X

k

10

1.1.2. Integrals of the type

R

x2n+1 Z0 (x) dx (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν (x), p = 1, 2. Z x J0 (x) dx = xJ1 (x) Z x I0 (x) dx = x I1 (x) Z x K0 (x) dx = −x K1 (x) Z Z Z

Z Z Z

Z Z Z

  x3 J0 (x) dx = x 2x J0 (x) + (x2 − 4) J1 (x)   x3 I0 (x) dx = x (x2 + 4) I1 (x) − 2x I0 (x)

  x3 K0 (x) dx = −x (x2 + 4) K1 (x) + 2x K0 (x)

  x5 J0 (x) dx = x (4x3 − 32x) J0 (x) + (x4 − 16x2 + 64) J1 (x)   x5 I0 (x) dx = x (x4 + 16x2 + 64) I1 (x) − (4x3 + 32x) I0 (x)

  x5 K0 (x) dx = −x (x4 + 16x2 + 64) K1 (x) + (4x3 + 32x) K0 (x)

  x7 J0 (x) dx = x (6x5 − 144x3 + 1 152x) J0 (x) + (x6 − 36x4 + 576x2 − 2 304) J1 (x)   x7 I0 (x) dx = x (x6 + 36x4 + 576x2 + 2 304) I1 (x) − (6x5 + 144x3 + 1 152x) I0 (x)

  x7 K0 (x) dx = −x (x6 + 36x4 + 576x2 + 2 304) K1 (x) + (6x5 + 144x3 + 1 152x) K0 (x) Z

x9 J0 (x) dx =

  = x (8x7 − 384x5 + 9 216x3 − 73 728x) J0 (x) + (x8 − 64x6 + 2 304x4 − 36 864x2 + 147 456) J1 (x) Z x9 I0 (x) dx =   = x (x8 + 64x6 + 2 304x4 + 36 864x2 + 147 456) I1 (x) − (8x7 + 384x5 + 9 216x3 + 73 728x) I0 (x) Z x9 K0 (x) dx =   = −x (x8 + 64x6 + 2 304x4 + 36 864x2 + 147 456) K1 (x) + (8x7 + 384x5 + 9 216x3 + 73 728x) K0 (x) Let Z

xm J0 (x) dx = x[Pm (x)J0 (x) + Qm (x)J1 (x)] and Z

Z

∗ xm I0 (x) dx = x[Q∗m (x)I1 (x) − Pm (x)I0 (x)] ,

∗ xm K0 (x) dx = −x[Q∗m (x)K1 (x) + Pm (x)K0 (x)] ,

then holds P11 (x) = 10 x9 − 800 x7 + 38400 x5 − 921600 x3 + 7372800 x Q11 (x) = x10 − 100 x8 + 6400 x6 − 230400 x4 + 3686400 x2 − 14745600 ∗ P11 (x) = 10 x9 + 800 x7 + 38400 x5 + 921600 x3 + 7372800 x ∗ Q11 (x) = x10 + 100 x8 + 6400 x6 + 230400 x4 + 3686400 x2 + 14745600 11

*E*

P13 (x) = 12 x11 − 1440 x9 + 115200 x7 − 5529600 x5 + 132710400 x3 − 1061683200 x Q13 (x) = x12 − 144 x10 + 14400 x8 − 921600 x6 + 33177600 x4 − 530841600 x2 + 2123366400 ∗ P13 (x) = 12 x11 + 1440 x9 + 115200 x7 + 5529600 x5 + 132710400 x3 + 1061683200 x ∗ Q13 (x) = x12 + 144 x10 + 14400 x8 + 921600 x6 + 33177600 x4 + 530841600 x2 + 2123366400

*E*

P15 (x) = 14 x13 − 2352 x11 + 282240 x9 − 22579200 x7 + 1083801600 x5 − 26011238400 x3 + 208089907200 x Q15 (x) = x14 − 196 x12 + 28224 x10 − 2822400 x8 + 180633600 x6 − 6502809600 x4 + 104044953600 x2 − 416179814400 ∗ P15 (x) = = 14 x13 − 2352 x11 + 282240 x9 + 22579200 x7 + 1083801600 x5 + 26011238400 x3 + 208089907200 x *E* Q∗15 (x) = x14 + 196 x12 + 28224 x10 + 2822400 x8 + 180633600 x6 + 6502809600 x4 + 104044953600 x2 + 416179814400 Recurrence formulas: Z Z x2n+1 J0 (x) dx = 2nx2n J0 (x) + x2n+1 J1 (x) − 4n2 x2n−1 J0 (x) dx Z

2n+1

x Z

2n+1

x

2n

I0 (x) dx = −2nx

2n

K0 (x) dx = −2nx

2n+1

I0 (x) + x

2n+1

K0 (x) − x

I1 (x) + 4n

2

K1 (x) + 4n

Z

2

Z

x2n−1 I0 (x) dx x2n−1 K0 (x) dx

General formula: With n!! as defined on page 8 holds Z

2n+1

x

J0 (x) dx =

n−1 X k=0

+

n X

k

[(2n)!!]2 x2n−2k (−1) [(2n − 2k)!!] · [(2n − 2k − 2)!!] k



(−1)

k=0

(2n)!! (2n − 2k)!! !

2

! J0 (x)+

! 2n+1−2k

x

J1 (x) =

! 2 2k · n! 2n+1−2k = J0 (x) + (−1) x J1 (x) . (n − k)! k=0 k=0 R R With obviously modifications one gets the the formulas for the integrals x2n+1 I0 (x) dx and x2n+1 K0 (x) dx. n−1 X

22k+1 · (n!)2 x2n−2k (−1) (n − k)! · (n − k − 1)! k

12

n X

k



1.1.3. Integrals of the type The basic integral Z J0 (x) dx x

R

x−2n−1 · Z0 (x) dx

Z can be expressed by 0

x

1 − J0 (t) dt or t

Z



− x

J0 (t) dt = Ji0 (x) , t

see [1], equation 11.1.19 and the following formulas. There are given asymptotic expansions and polynomial approximations as well. Tables of these functions may be found by [1], [11.13] or [11.22]. The function Ji0 (x) is introduced and discussed in [9]. For fast computations of this integrals one should use approximations with Chebyshev polynomials, see [2], tables 9.3 . I got the information from F. Nouguier, that there is an error in a formula in [9], p. 278. The true formula is ∞ 2x sin πx X (−1)s−1 sin πx [Ji0 (s) − ln s] . (γ − ln 2) + Ji0 (x) − ln x = πx π s2 − x2 s=1 The power series in Z

I0 (x) dx x

=

ln x +

∞ X k=1

 x 2k 1 2k · (k!)2 2

∗ E∗

can be used without numerical problems. (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν (x), p = 1, 2. Z Z J0 (x) dx J0 (x) J1 (x) 1 J0 (x) dx = − + − 3 2 x 2x 4x 4 x Z Z I0 (x) I1 (x) 1 I0 (x) dx I0 (x) dx =− − + x3 2x2 4x 4 x     Z Z J0 (x) dx 1 1 1 J0 (x) dx 1 1 = − 4 J0 (x) + − + J1 (x) + x5 32x2 4x 64x 16x3 64 x     Z Z 1 1 1 1 I0 (x) dx I0 (x) dx 1 =− + 4 I0 (x) − + I1 (x) + x5 32x2 4x 64x 16x3 64 x Z Z 4 2 4 2 −x + 8 x − 192 x − 4 x + 64 1 J0 (x) dx J0 (x) dx = J0 (x) + J1 (x) − 7 6 5 x 1152 x 2304 x 2304 x Z Z I0 (x) dx x4 + 8 x2 + 192 x4 + 4 x2 + 64 1 I0 (x) dx =− I0 (x) − I1 (x) + x7 1152 x6 2304 x5 2304 x Z J0 (x) dx = x9 Z x6 − 8 x4 + 192 x2 − 9216 −x6 + 4 x4 − 64 x2 + 2304 1 J0 (x) dx = J (x) + J (x) + 0 1 8 7 73728 x 147456 x 147456 x Z I0 (x) dx = x9 Z x6 + 8 x4 + 192 x2 + 9216 x6 + 4 x4 + 64 x2 + 2304 1 I0 (x) dx =− I (x) − I (x) + 0 1 8 7 73728 x 147456 x 147456 x Z J0 (x) dx −x8 + 8 x6 − 192 x4 + 9216 x2 − 737280 = J0 (x)+ x11 7372800 x10 Z x8 − 4 x6 + 64 x4 − 2304 x2 + 147456 J0 (x) dx 1 + J (x) − 1 9 14745600 x 14745600 x Z I0 (x) dx x8 + 8 x6 + 192 x4 + 9216 x2 + 737280 ∗E ∗ =− I0 (x)− x11 7372800 x10 Z x8 + 4 x6 + 64 x4 + 2304 x2 + 147456 1 I0 (x) dx − I (x) + 1 14745600 x9 14745600 x 13

Descending recurrence formulas:   Z Z 1 x−2n−1 J0 (x) dx = 2 x−2n+1 J1 (x) − 2nx−2n J0 (x) − x−2n+1 J0 (x) dx 4n   Z Z 1 x−2n−1 I0 (x) dx = 2 −x−2n+1 I1 (x) − 2nx−2n I0 (x) + x−2n+1 I0 (x) dx 4n General formula: With n!! as defined on page 8 holds Z J0 (x) dx = x2n+1 ( n−1 ! ! ) Z n−1 2 X X (−1)n J0 (x) dx k (2k + 2)!! · (2k)!! k [(2k)!!] (−1) J0 (x) − (−1) J1 (x) + = = ∗E∗ [(2n)!!]2 x2k+2 x2k+1 x k=0 k=0 ( n−1 ! ! ) Z n−1 2k+1 2k 2 X X (−1)n 2 · (k + 1)! · k! 2 · (k!) J (x) dx 0 = 2n (−1)k J0 (x) − (−1)k J1 (x) + ∗E∗ 2 · (n!)2 x2k+2 x2k+1 x k=0 k=0 R With obviously modifications one gets the the formula for the integral x−2n−1 I0 (x) dx .

14

1.1.4. Integrals of the type

R

x2n Z1 (x) dx (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν , p = 1, 2. Z J1 (x) dx = − J0 (x) Z I1 (x) dx = I0 (x) Z K1 (x) dx = −K0 (x) Z Z Z

Z Z Z

Z Z Z

x2 J1 (x) dx = x [2J1 (x) − x J0 (x)] x2 I1 (x) dx = x [x I0 (x) − 2I1 (x)]

x2 K1 (x) dx = −x [x K0 (x) + 2K1 (x)]

  x4 J1 (x) dx = x (4x2 − 16) J1 (x) − (x3 − 8x) J0 (x)   x4 I1 (x) dx = x (x3 + 8x) I0 (x) − (4x2 + 16) I1 (x)

  x4 K1 (x) dx = −x (x3 + 8x) K0 (x) + (4x2 + 16) K1 (x)

  x6 J1 (x) dx = x (6x4 − 96x2 + 384) J1 (x) − (x5 − 24x3 + 192x) J0 (x)   x6 I1 (x) dx = x (x5 + 24x3 + 192x) I0 (x) − (6x4 + 96x2 + 384) I1 (x)

  x6 K1 (x) dx = −x (x5 + 24x3 + 192x) K0 (x) + (6x4 + 96x2 + 384) K1 (x) Z

x8 J1 (x) dx =

  = x (8x6 − 288x4 + 4 608x2 − 18 432) J1 (x) − (x7 − 48x5 + 1 152x3 − 9 216x) J0 (x) Z x8 I1 (x) dx =   = x (x7 + 48x5 + 1 152x3 + 9 216x) I0 (x) − (8x6 + 288x4 + 4 608x2 + 18 432) I1 (x) Z x8 K1 (x) dx =   = −x (x7 + 48x5 + 1 152x3 + 9 216x) K0 (x) + (8x6 + 288x4 + 4 608x2 + 18 432) K1 (x) Z

 x10 J1 (x) dx = x (10x8 − 640x6 + 23 040x4 − 368 640x2 + 1 474 560) J1 (x)−  − (x9 − 80x7 + 3 840x5 − 92 160x3 + 737 280x) J0 (x) Z

 x10 I1 (x) dx = x (x9 + 80x7 + 3 840x5 + 92 160x3 + 737 280x) I0 (x)−  −(10x8 + 640x6 + 23 040x4 + 368 640x2 + 1 474 560) I1 (x)

Z

 x10 K1 (x) dx = −x (x9 + 80x7 + 3 840x5 + 92 160x3 + 737 280x) K0 (x)+ 15

 +(10x8 + 640x6 + 23 040x4 + 368 640x2 + 1 474 560) K1 (x) Let Z

Z

xm J1 (x) dx = x[Qm (x)J1 (x) − Pm (x)J0 (x)] and Z

∗ xm I1 (x) dx = x[Pm (x)I0 (x) − Q∗m (x)I1 (x)] ,

∗ xm K1 (x) dx = −x[Pm (x)I0 (x) + Q∗m (x)I1 (x)] ,

then holds P12 (x) = x11 − 120 x9 + 9600 x7 − 460800 x5 + 11059200 x3 − 88473600 x Q12 (x) = 12 x10 − 1200 x8 + 76800 x6 − 2764800 x4 + 44236800 x2 − 176947200 ∗ P12 (x) = x11 + 120 x9 + 9600 x7 + 460800 x5 + 11059200 x3 + 88473600 x ∗ Q12 (x) = 12 x10 + 1200 x8 + 76800 x6 + 2764800 x4 + 44236800 x2 + 176947200

*E*

P14 (x) = x13 − 168 x11 + 20160 x9 − 1612800 x7 + 77414400 x5 − 1857945600 x3 + 14863564800 x Q14 (x) = 14 x12 − 2016 x10 + 201600 x8 − 12902400 x6 + 464486400 x4 − 7431782400 x2 + 29727129600 ∗ P14 (x) = x13 + 168 x11 + 20160 x9 + 1612800 x7 + 77414400 x5 + 1857945600 x3 + 14863564800 x ∗ Q14 (x) = 14 x12 + 2016 x10 + 201600 x8 + 12902400 x6 + 464486400 x4 + 7431782400 x2 + 29727129600 Recurrence formulas: Z Z x2n+2 J1 (x) dx = −x2n+2 J0 (x) + (2n + 2)x2n+1 J1 (x) − 4n(n + 1) x2n J1 (x) dx Z

2n+2

x Z

2n+2

x

2n+2

I1 (x) dx = x

2n+2

K1 (x) dx = −x

2n+1

I0 (x) − (2n + 2)x

Z I1 (x) + 4n(n + 1)

2n+1

K0 (x) − (2n + 2)x

x2n I1 (x) dx Z

K1 (x) + 4n(n + 1)

x2n K1 (x) dx

General formula: With n!! as defined on page 8 holds ! [(2n)!!] · [(2n − 2)!!] · x2n−1−2k x J1 (x) dx = (−1) J1 (x)− [(2n − 2 − 2k)!!]2 k=0 ! n−1 2n−2k X (2n)!! · (2n − 2)!! · x J0 (x) = − (−1)k [(2n − 2k)!!] · [(2n − 2 − 2k)!!] k=0 ! n−1 2k+1 X · (n!) · (n − 1)! · x2n−1−2k k 2 = (−1) J1 (x)− [(n − 1 − k)!]2 k=0 ! n−1 2k 2n−2k X 2 · n! · (n − 1)!! · x J0 (x) − (−1)k (n − k)! · (n − 1 − k)! k=0 R R With obviously modifications one gets the the formulas for the integrals x2n I1 (x) dx and x2n K1 (x) dx. Z

2n

n−1 X

k

16

1.1.5. Integrals of the type

R

x−2n · Z1 (x) dx

About the integrals Z

J0 (x) dx x

Z and

I0 (x) dx x

see 1.1.3, page 13. In the following formulas J0 (x) may be substituted by Y0 (x) and simultaneously J1 (x) by Y1 (x). Z Z 1 J1 (x) dx 1 J0 (x) dx = − J (x) + 1 x2 2x 2 x Z Z 1 I1 (x) dx 1 I0 (x) dx = − I1 (x) + 2 x 2x 2 x Z Z 1 x2 − 4 1 J1 (x) dx J0 (x) dx = − J (x) + J (x) − 0 1 x4 8 x2 16 x3 16 x Z Z 2 1 x +4 1 I0 (x) dx I1 (x) dx = − 2 I0 (x) − I1 (x) + 4 3 x 8x 16 x 16 x Z J1 (x) dx = x6 Z x2 − 8 −x4 + 4 x2 − 64 1 J0 (x) dx = J0 (x) + J1 (x) + 4 5 192 x 384 x 384 x Z Z 2 4 2 I1 (x) dx x +8 x + 4 x + 64 1 I0 (x) dx =− I0 (x) − I1 (x) + x6 192 x4 384 x5 384 x Z J1 (x) dx = x8 Z x6 − 4 x4 + 64 x2 − 2304 1 −x4 + 8 x2 − 192 J0 (x) dx = J (x) + J (x) − 0 1 9216 x6 18432 x7 18432 x Z Z 4 2 6 4 2 x + 8 x + 192 x + 4 x + 64 x + 2304 1 I1 (x) dx I0 (x) dx =− I0 (x) − I1 (x) + 8 6 7 x 9216 x 18432 x 18432 x Z J1 (x) dx = x10 =

x6 − 8 x4 + 192 x2 − 9216 −x8 + 4 x6 − 64 x4 + 2304 x2 − 147456 J (x) + J1 (x)+ 0 737280 x8 1474560 x9 Z 1 J0 (x) dx + 1474560 x Z I1 (x) dx = x10

=−

x8 + 4 x6 + 64 x4 + 2304 x2 + 147456 x6 + 8 x4 + 192 x2 + 9216 I (x) − I1 (x)+ 0 737280 x8 1474560 x9 Z 1 I0 (x) dx + 1474560 x

Recurrence formulas: Z Z J1 (x) dx J0 (x) J1 (x) 1 J1 (x) dx ∗E ∗ =− − − x2n+2 4n(n + 1)x2n (2n + 2)x2n+1 4n(n + 1) x2n Z Z I0 (x) I1 (x) 1 I1 (x) dx I1 (x) dx = − − + ∗E ∗ x2n+2 4n(n + 1)x2n (2n + 2)x2n+1 4n(n + 1) x2n 17

General formula: With n!! as defined on page 8 holds Z (−1)n+1 J1 (x) dx = · x2n (2n)!! · (2n − 2)!! ( n−2 ! ! ) Z n−1 2 X X J0 (x) dx k (2k + 2)!! · (2k)!! k [(2k)!!] · (−1) J0 (x) − (−1) J1 (x) + = x2k+2 x2k+1 x k=0

k=0

= " ·

n−2 X k=0

2k+1 k2

(−1)

· (k + 1)! · k! x2k+2

(−1)n+1 · 22n−1 · n! · (n − 1)!

!

n−1 X

J0 (x) −

k=0

k2

(−1)

2k

· (k!)2

x2k+1

With obviously modifications one gets the the formula for the integral

18

R

!

Z J1 (x) +

J0 (x) dx x

x−2n I1 (x) dx .

#

1.1.6. Integrals of the type

R

x2n+1 Z1 (x) dx

Φ(x), ΦY (x), Ψ(x) and ΨK (x) are the same as in 1.1.1, page 7 . In the following formulas Jν (x) may be substituted by Yν (x) and simultaneously Φ(x) by ΦY (x) or (p) (p) Hν (x), p = 1, 2 and ΦH (x) . Z x J1 (x) dx = Φ(x) Z x I1 (x) dx = −Ψ(x) Z x K1 (x) dx = ΨK (x) Z Z Z

Z Z Z

Z

Z Z

x3 J1 (x) dx = 3x2 J1 (x) − x3 J0 (x) − 3Φ(x) x3 I1 (x) dx = −3x2 I1 (x) + x3 I0 (x) − 3Ψ(x)

x3 K1 (x) dx = −3x2 K1 (x) − x3 K0 (x) + 3ΨK (x)

x5 J1 (x) dx = (5x4 − 45x2 ) J1 (x) − (x5 − 15x3 ) J0 (x) + 45Φ(x) x5 I1 (x) dx = −(5x4 + 45x2 ) I1 (x) + (x5 + 15x3 ) I0 (x) − 45Ψ(x)

x5 K1 (x) dx = −(5x4 + 45x2 ) K1 (x) − (x5 + 15x3 ) K0 (x) + 45ΨK (x)

x7 J1 (x) dx = (7x6 − 175x4 + 1 575x2 ) J1 (x) − (x7 − 35x5 + 525x3 ) J0 (x) − 1 575Φ(x)

∗ E∗

x7 I1 (x) dx = −(7x6 + 175x4 + 1 575x2 ) I1 (x) + (x7 + 35x5 + 525x3 ) I0 (x) − 1 575Ψ(x)

x7 K1 (x) dx = −(7x6 + 175x4 + 1 575x2 ) K1 (x) − (x7 + 35x5 + 525x3 ) K0 (x) + 1 575ΨK (x) Z

x9 J1 (x) dx =

= (9x8 − 441x6 + 11 025x4 − 99 225x2 ) J1 (x) − (x9 − 63x7 + 2 205x5 − 33 075x3 ) J0 (x) + 99 225 Φ(x) Z x9 I1 (x) dx = = −(9x8 + 441x6 + 11 025x4 + 99 225x2 ) I1 (x) + (x9 + 63x7 + 2 205x5 + 33 075x3 ) I0 (x) − 99 225 Ψ(x) Z x9 K1 (x) dx = = −(9x8 + 441x6 + 11 025x4 + 99 225x2 ) K1 (x) − (x9 + 63x7 + 2 205x5 + 33 075x3 ) K0 (x) + 99 225 Ψ(x) General formula: With n!! as defined on page 8 holds ! 2n−2k (2n + 1)!! · (2n − 1)!! · x x2n+1 J1 (x) dx = (−1)k J1 (x)− [(2n − 1 − 2k)!!]2 k=0 ! n−1 2n+1−2k X k (2n + 1)!! · (2n − 1)!! · x − (−1) J0 (x) + (−1)n · (2n + 1)!! · (2n − 1)!! Φ(x) = (2n + 1 − 2k)!! · (2n − 1 − 2k)!! Z

n−1 X

k=0

19

=

n−1 X k=0

n−1 X



k=0

(2n + 2)! · (2n)! · [(n − k)!]2 · x2n−2k (−1)k 22k+1 · (n + 1)! · n! · [(2n − 2k)!]2

! J1 (x)

(2n + 2)! · (2n)! · (n + 1 − k)! · (n − k)! · x2n+1−2k (−1) 22k · (n + 1)! · n! · (2n + 2 − 2k)! · (2n − 2k)!

!

k

+(−1)n

J0 (x)+

(2n + 2)! · (2n)! Φ(x) 22n+1 · (n + 1)! · n!

With obviously modifications one gets the the formulas for the integrals

R

x2n+1 I1 (x) dx and

R

x2n+1 K1 (x) dx.

Recurrence formulas: Z Z x2n+1 J1 (x) dx = −x2n+1 J0 (x) + (2n + 1)x2n J1 (x) − (2n − 1)(2n + 1) x2n−1 J1 (x) dx Z

2n+1

x Z

2n+1

I1 (x) dx = x

2n

I0 (x) − (2n + 1)x

Z I1 (x) + (2n − 1)(2n + 1)

x2n+1 K1 (x) dx = −x2n+1 K0 (x) − (2n + 1)x2n K1 (x) + (2n − 1)(2n + 1)

x2n−1 I1 (x) dx Z

x2n−1 K1 (x) dx

Descending: Z

J1 (x) dx J0 (x) J1 (x) 1 =− − − 2 2n+1 2 2n−1 2n x (4n − 1)x (2n + 1)x 4n − 1

Z

J1 (x) dx x2n−1

Z

I0 (x) I1 (x) 1 I1 (x) dx =− − + 2 x2n+1 (4n2 − 1)x2n−1 (2n + 1)x2n 4n − 1

Z

I1 (x) dx x2n−1

Z

K0 (x) K1 (x) 1 K1 (x) dx = − + 2 2n+1 2 2n−1 2n x (4n − 1)x (2n + 1)x 4n − 1

Z

J1 (x) dx = x · J0 (x) − J1 (x) + Φ(x) x

Z

I1 (x) dx = x · I0 (x) − I1 (x) + Ψ(x) x

Z

Z

K1 (x) dx x2n−1

K1 (x) dx = −x · K0 (x) − K1 (x) − ΨK (x) x   Z J1 (x) 1 x2 − 1 x2 + 1 dx = J1 (x) − J0 (x) − Φ(x) x3 3 x2 x  2  Z I1 (x) 1 x +1 x2 − 1 dx = − I1 (x) + I0 (x) + Ψ(x) x3 3 x2 x  2  Z K1 (x) 1 x +1 x2 − 1 dx = − K (x) − K (x) − Ψ (x) 1 0 K x3 3 x2 x   Z J1 (x) 1 x4 + x2 − 3 x4 − x2 + 9 dx = J0 (x) − J1 (x) + Φ(x) x5 45 x3 x4   Z I1 (x) 1 x4 − x2 − 3 x4 + x2 + 9 dx = I0 (x) − I1 (x) + Ψ(x) x5 45 x3 x4  4  Z x − x2 − 3 K1 (x) 1 x4 + x2 + 9 dx = − K0 (x) − K1 (x) − ΨK (x) x5 45 x3 x4  6  Z 1 x − x4 + 9x2 − 225 x6 + x4 − 3x2 + 45 J1 (x) dx = J1 (x) − J0 (x) − Φ(x) x7 1 575 x6 x5

20

  6 1 x6 − x4 − 3x2 − 45 I1 (x) x + x4 + 9x2 + 225 dx = I1 (x) + I0 (x) + Ψ(x) − x7 1 575 x6 x5   6 Z K1 (x) 1 x6 − x4 − 3x2 − 45 x + x4 + 9x2 + 225 dx = K1 (x) − K0 (x) − Ψk (x) − x7 1 575 x6 x5 Z J1 (x) dx = x9   8 1 x8 − x6 + 9x4 − 225x2 + 11 025 x + x6 − 3x4 + 45x2 − 1 575 = J0 (x) − J1 (x) + Φ(x) 99 225 x7 x8 Z I1 (x) dx = x9  8  1 x8 + x6 + 9x4 + 225x2 + 11 025 x − x6 − 3x4 − 45x2 − 1 575 = I0 (x) − I1 (x) + Ψ(x) 99 225 x7 x8 Z K1 (x) dx = x9   8 1 x8 + x6 + 9x4 + 225x2 + 11 025 x − x6 − 3x4 − 45x2 − 1 575 = K (x) − I (x) − Ψ (x) − 0 1 K 99 225 x7 x8  10 Z J1 (x) 1 x − x8 + 9x6 − 225x4 + 11 025x2 − 893 025 dx = J1 (x)− x11 9 823 275 x10  x10 + x8 − 3x6 + 45x4 − 1 575x2 + 99 225 − J (x) − Φ(x) 0 x9  10 Z I1 (x) 1 x + x8 + 9x6 + 225x4 + 11 025x2 + 893 025 dx = − I1 (x)+ 11 x 9 823 275 x10  x10 − x8 − 3x6 − 45x4 − 1 575x2 − 99 225 I0 (x) + Ψ(x) + x9  10 Z K1 (x) 1 x + x8 + 9x6 + 225x4 + 11 025x2 + 893 025 dx = − K1 (x)− x11 9 823 275 x10  x10 − x8 − 3x6 − 45x4 − 1 575x2 − 99 225 − K0 (x) + ΨK (x) x9 Z

General formula: With n!! as defined on page 8 holds ( ! Z n−1 X (−1)k · (2k + 1)!! · (2k − 1)!! J1 (x) dx (−1)n = x+ J0 (x)− x2n+1 (2n + 1)!! · (2n − 1)!! x2k+1 k=0 ! ) n−1 2 X k [(2k + 1)!!] − 1− (−1) J1 (x) + Φ(x) = x2k+2 k=0 ( ! n−1 X 22n+1 · (n + 1)! · n! (2k + 2)! · (2k)! k = x− (−1) 2k+1 J0 (x)− (2n + 2)! · (2n)! 2 · (k + 1)! · k! · x2k+1 k=0 ! ) n−1 X [(2k + 2)!]2 k − 1− (−1) 2k+2 J1 (x) + Φ(x) 2 · [(k + 1)!]2 · x2k+2 k=0 R R With obviously modifications one gets the the formulas for the integrals x−2n−1 I1 (x) dx and x−2n−1 K1 (x) dx.

21

1.1.7. Integrals of the type

R

xn Zν (x) dx, ν > 1 :

From the well-known recurrence relations one gets immadiately Z Z Z Z Jν+1 (x) dx = −2Jν (x) + Jν−1 (x) dx and Iν+1 (x) dx = 2Iν (x) − Iν−1 (x) dx . With this formulas follows Z x n X J2ν (t) dt = Λ0 (x) − 2 J2κ−1 (x) , 0

J2ν+1 (t) dt = 1 − J0 (x) − 2 0

κ=1

x

Z

n

I2ν (t) dt = (−1)

Λ∗0 (x)+2

0

n X

x

Z

n+κ

(−1)

Z

n X

J2κ (x)

κ=1 x

I2κ−1 (x) ,

I2ν+1 (t) dt = (−1)n [I0 (x)−1]+2

0

κ=1

n X

(−1)n+κ I2κ (x)

κ=1

Λ∗0 (x)

The integrals Λ0 (x) and are defined on page 7 and discussed on page 123 and 125. Holds Z Z n n X X Y2ν (x) dx = xY0 (x) + ΦY (x) − 2 Y2κ−1 (x) , Y2ν+1 (x) dx = −Y0 (x) − 2 Y2κ−1 (x) κ=1

Z

(1)

(1)

(1)

H2ν (x) dx = xH0 (x) + ΦH (x) − 2

n X

κ=1

Z

(1)

(1)

(1)

H2ν+1 (x) dx = −H0 (x) − 2

H2κ−1 (x) ,

κ=1

Z

(2)

(2)

(2)

H2ν (x) dx = xH0 (x) + ΦH (x) − 2

n X

(1)

H2κ−1 (x)

κ=1

Z

(2)

(2)

(2)

H2ν+1 (x) dx = −H0 (x) − 2

H2κ−1 (x) ,

κ=1

Z

n X

n X

(2)

H2κ−1 (x)

κ=1 n X

o n πx (−1)n+κ K2κ−1 (x) , [K0 (x)L1 (x) + K1 (x)L0 (x)] + 2 K2ν (x) dx = (−1)n xK0 (x) + 2 κ=1 Z

K2ν+1 (x) dx = (−1)n+1 K0 (x) + 2

n X

(−1)n+κ+1 K2κ (x)

κ=1 (1)

(2)

About the functions ΦY (x), ΦH (x), ΦH (x) see page 7. Further on, holds " Z x

t J2ν+1 (t) dt = (2ν + 1)Λ0 (x) − x J0 (x) + 2 0

Z

"

x

t J2ν (t) dt = −x J1 (x) + 2

J2κ (x) − 4

ν−1 X

# J2κ+1 (x) + 2ν[1 − J0 (x)] − 4

t I2ν+1 (t) dt = (−1)

(2ν +

1)Λ∗0 (x)

− xI0 (x) − 2x

0

ν X κ=1

"

x ν+1

t I2ν (t) dt = (−1) 0

xI1 (x) + 2x

ν−1 X

(ν − κ)J2κ+1 (x)

ν−1 X

(ν − κ)J2κ (x)

κ=1

" ν+1

ν−1 X κ=0

κ=1

x

Z

#

κ=1

0

Z

ν X

κ

κ

(−1) I2κ (x) − 4

ν−1 X

(−1) (ν − κ)I2κ+1 (x)

κ=0

(−1) I2κ+1 (x) + 2ν[1 − I0 (x)] − 4

κ=1

# κ

ν−1 X

# κ

(−1) (ν − κ)I2κ (x)

κ=1

Some of the previous sums may cause numerical problems, if x is located near 0. For instance, the sum Z x t I6 (t) dt = xJ1 (x) − 2xJ3 (x) + 2xJ5 (x) + 6 − 6J0 (x) + 8J2 (x) − 4J4 (x) 0

gives with x = 0.3 0.045 508 152 001 − 0.000 339 402 714 + 0.000 000 381 114 + 6 − 6.135 761 276 110 + 0.090 676 901 288− −0.000 084 755 400 = 6.136 185 434 403 − 6.136 185 434 224 = 0.000 000 000 179 ,

22

which means the loss of 10 decimal digits. For that reason the value of such integrals should be computed by the power series or other formulas. See also the following remark. In the following the integrals are expressed by Z0 (x) and Z1 (x). Integrals with −2 ≤ n ≤ 4 are written explicitely: at first n = 0, 1, 2, 3, 4, after them n = −1, −2. In (n) (n) (n) (n) the other cases the functions Pν (x), Qν (x) and the coefficients Rν , Sν describe the integral Z Z J0 (x) dx (n) (n) . xn · Jν (x) dx = Pν(n) (x) J0 (x) + Q(n) (x)J (x) + R Λ (x) + S 1 0 ν ν ν x Furthermore, let Z Z I0 (x) dx n ∗ (n),∗ (n),∗ (n),∗ ∗ (n),∗ x · Iν (x) dx = Pν (x) I0 (x) + Qν (x)I1 (x) + Rν . Λ0 (x) + Sν x R Concerning x−1 · Z0 (x) dx see 1.1.3., page 13. Simple recurrence formula: Z xn · Jν+1 (x) dx Z

n

x · Iν+1 (x) dx

Z =



xn−1 · Jν (x) dx −

Z =

−2ν

n−1

x

Z

Z · Jν (x) dx +

xn · Jν−1 (x) dx xn · Jν−1 (x) dx

The integrals of xn Z0 (x) and xn Z1 (x) to start this recurrences are already described. Remark: (m) Let Fν (x) denote the antiderivative of xm Zν (x) as given in the following tables. They do not exist in (m) the point x = 0 in the case ν + m < 0. However, even if ν + m ≥ 0 the value of Fν (0) sometimes turns out to be a limit of the type ∞ − ∞. For instance, holds Z J3 (x) dx J0 (x) 2J1 (x) 1 (−2) (−2) = − = F3 (x) with lim F3 (x) = − . x→0 x2 x2 x3 8 (m)

With Lν,m = limx→0 Fν (x) for the Bessel functions Jν (x) and L∗ν,m for the modified Bessel functions Iν (x) one has the following limits in the tables of integrals (The values Lν,m = 0 are omitted.): L2,−1 = −1/2, L∗2,−1 = 1/2 L3,0 = −1, L3,−2 = −1/8; L∗3,0 = −1, L∗3,−2 = 1/8 L4,1 = −4, L4,−1 = −1/4, L4,−3 = −1/48; L∗4,1 = 4, L∗4,−1 = −1/4, L∗4,−3 = 1/48 L5,2 = −24, L5,0 = −1, L5,−2 = −1/24, L5,−4 = −1/384; L∗5,2 = −24, L∗5,0 = 1, L∗5,−2 = −1/24, L∗5,−4 = 1/384 L6,3 = −192, L6,1 = −6, L6,−1 = −1/6, L6,−3 = −1/192, L6,−5 = −1/3840; L∗6,3 = 192, L∗6,1 = −6, L∗6,−1 = 1/6, L∗6,−3 = −1/192, L∗6,−5 = 1/3840 L7,4 = −1920, L7,2 = −48, L7,0 = −1, L7,−2 = −1/48, L7,−4 = −1/1920, L7,−6 = −1/46080; L∗7,4 = −1920, L∗7,2 = 48, L∗7,0 = −1, L∗7,−2 = 1/48, L∗7,−4 = −1/1920, L∗7,−6 = 1/46080 L8,5 = −23040, L8,3 = −480, L8,1 = −8, L8,−1 = −1/8, L8,−3 = −1/480, L8,−5 = −1/23040; L∗8,5 = 23040, L∗8,3 = −480, L∗8,1 = 8, L∗8,−1 = −1/8, L∗8,−3 = 1/480, L∗8,−5 = −1/23040 L9,6 = −322560, L9,4 = −5760, L9,2 = −80, L9,0 = −1, L9,−2 = −1/80, L9,−4 = −1/5760, L9,−6 = −1/322560; L∗9,6 = −322560, L∗9,4 = 5760, L∗9,2 = −80, L∗9,0 = 1, L∗9,−2 = −1/80, L∗9,−4 = 1/5760, L∗9,−6 = −1/322560 L10,7 = −5160960, L10,5 = −80640, L10,3 = −960, L10,1 = −10, L10,−1 = −1/10, L10,−3 = −1/960, L10,−5 = −1/80640; L∗10,7 = 5160960, L∗10,5 = −80640, L∗10,3 = 960, L∗10,1 = −10, L∗10,−1 = 1/10, L∗10,−3 = −1/960, L∗10,−5 = 1/80640 23

(m)

In the described cases of limits of the type ∞−∞ the numerical computation of Fν (x) causes difficulties, if 0 < x x∗i,n holds |D0,n (x)| < |D0,n (x∗i,n )|. n = 0, i =

1

2

3

4

5

6

7

8

9

10

x∗i,0

1.143

4.058

7.146

10.264

13.394

16.527

19.664

22.801

25.940

29.079

50.87

-21.784

13.293

-9.4707

7.3310

-5.9717

5.0342

-4.3496

3.8281

-3.4179

n = 1, i =

1

2

3

4

5

6

7

8

9

10

x∗i,1

2.473

5.561

8.681

11.812

14.947

18.085

21.223

24.363

27.503

30.643

158.930

-43.0361

19.1585

-10.6855

6.7779

-4.6705

3.4092

-2.5962

2.0420

-1.6478

n = 2, i =

3

4

5

6

7

8

9

10

11

12

x∗i,2

7.100

10.233

13.369

16.508

19.647

22.787

25.927

29.068

32.209

35.350

-85.8809

31.2037

-14.5367

7.8808

-4.7310

3.0556

-2.0851

1.4850

-1.0945

0.8296

n = 3, i =

4

5

6

7

8

9

10

11

12

13

x∗i,3

11.793

14.932

18.072

21.213

24.353

27.494

30.635

33.777

36.918

40.059

548.133

-222.407

106.176

-56.7759

33.0053

-20.4558

13.3362

-9.0584

6.3648

-4.6012

n = 4, i =

5

6

7

8

9

10

11

12

13

14

x∗i,4

16.499

19.649

22.780

25.922

29.063

32.204

35.345

38.487

41.628

44.770

-369.198

158.653

-76.8752

40.7761

-23.2093

13.9787

-8.8181

5.7815

-3.9164

2.7284

3

10

4

10

5

10

7

10

10

8

D0,0 (x∗i )

D0,1 (x∗i )

D0,2 (x∗i )

D0,3 (x∗i )

D0,4 (x∗i )

For 8 ≤ x ≤ 30 the special approximation holds: Z

x



t J0 (t) dt ≈ 0.477 988 797 935 +

0

9 (0) X c k=0

k xk



2k + 1 sin x − π 4



with −9

−5.0 · 10

< 0.477 988 797 935 +

9 (0) X c k=0

(0)

k 1 2 3 4 5

ck 0.797 0.099 0.155 0.369 1.170

884 735 775 550 795

516 119 947 899 416

k 538 074 720 387 963

6 7 8 9 10

k xk

 Z x √ 2k + 1 sin x − π − t J0 (t) dt < 6 · 10−9 . 4 0 

(0)

ck

4.733 533 047 132 18.859 909 855 69 99.846 038 227 04 256.775 583 671 0 1 527.508 571 668

59

Function J1 (x): Approximation by Chebyshev polynomials, based on [2], 9.7.: x

Z





t J1 (t) dt



0



17 X

qk T2k

k=0

x 8

,

0≤x≤8

with the coefficients: k 0 1 2 3 4 5 6 7 8

qk 0.37975 -0.24153 -0.12554 0.31360 -0.14432 0.03274 -0.00458 0.00044 -0.00003

25427 71053 99442 55017 03488 98779 83639 24559 13683

04720 32677 21699 12763 73845 87894 64558 29648 81557

47384 35417 83184 75964 84716 78550 05653 31876 99050

k

qk

9 10 11 12 13 14 15 16 17

0.00000 17101 75937 74175 -0.00000 00740 94524 46089 0.00000 00026 16214 44822 -0.00000 00000 76805 72461 0.00000 00000 01905 60154 -0.00000 00000 00040 50286 0.00000 00000 00000 74601 -0.00000 00000 00000 01203 0.00000 00000 00000 00017

Difference between approximation and true frunction: R √ P ....... √x 17 qk T2k (x/8) − x t J1 (t) dt k=0 . . . . 0 . . 4E-20 .. ..... .... ... .... . . . 3E-20 ........ .. ... .. ....... .... ... ..... . . . .. . . 2E-20 ......... ... ... .. .... .. .... ... ... ..... .... ....... .... ... . ... . .. 1E-20 ........ ... ... .. .. ... ... . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................................................................................................................................. ........... ..................................................................................................................................................................................................................................................... ... 3 ........... 1 ... .... .. x 2 ....... 4 7.. .... .. ... .......... ..6 ... ... .. .........5... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . .... .......... ... ... ... .. .. ......... ..... -1E-20........ . . . . . . . ... . . . . . . . . . . . . . . .................. ........ ... ... . . .... . . . ... . ... .... . . . . . . . . . ... . . . . . ... . ... ............. -2E-20........ . ... . . . . ... . ... .... .. ... . . . . . . . . . ..... .. ... -3E-20....... . .. . ... ... .. . . . . . . . . . . . . . ... . -4E-20 ... . ... ... . ... .. .... . . . . ... .. -5E-20 ... ... ... .. . ... ... . . . . . . ..... -6E-20 ... ... ... Asymptotic expansion for x → ∞: r   Z x√ ∞ 4Γ 2 (5/4) 2 X bk 2k + 1 t J1 (t) dt ∼ − sin x + π π π xk 4 0 k=0

2

b0 = 1 ,

4Γ (5/4) = 1.046 049 620 053 102 π 63 1113 111573 3643101 294285915 3 b1 = , b2 = − , b3 = , b4 = − , b5 = , b6 = − , 8 128 1024 32768 262144 4194304 14192615745 6373074947085 408344927902065 b7 = , b8 = − , b9 = , ... 33554432 2147483648 17179869184 k 0 1 2 3 4

1.000 0.375 -0.492 1.086 -3.404

bk 000 000 187 914 937

000 000 500 063 744

|bk /bk−1 | 0.3750 1.3125 2.2083 3.1327 60

k 5 6 7 8 9

bk 13.897 327 42 -70.163 229 70 422.972 910 0 -2 967.694 284 23 768.803 10

|bk /bk−1 | 4.0815 5.0487 6.0284 7.0163 8.0092

Let 4Γ 2 (5/4) D1,n (x) = − π

r

  Z x n √ 2 X bk 2k + 1 sin x + t J1 (t) dt , π − k π x 4 0 k=0

then its first maximum and minimum values of interest are D1,n (x∗i,n ). In the case x > x∗i,n holds |D1,n (x)| < |D1,n (x∗i,n )|. n = 0, i =

1

2

3

4

5

6

7

8

9

10

x∗i,0

2.470

6.470

8.675

11.807

14.943

18.081

21.220

24.360

27.500

30.641

-98.4511

50.5537

-33.4821

24.9168

-19.8073

16.4242

-14.0227

12.2312

-10.8443

9.7390

n = 1, i =

2

3

4

5

6

7

8

9

10

11

x∗i,1

3.974

7.097

10.230

13.367

15.506

16.645

22.786

25.926

29.067

32.208

-194.456

70.4454

-35.5457

21.2582

-14.0945

10.0128

-7.4731

5.7878

-4.6133

3.7625

n = 2, i =

3

4

5

6

7

8

9

10

11

12

x∗i,2

8.654

12.654

14.931

18.071

21.212

24.353

27.494

30.635

33.776

36.917

117.286

-48.9485

24.7672

-14.1826

8.8517

-5.8853

4.1071

-2.9778

2.2269

-1.7083

n = 3, i =

4

5

6

7

8

9

10

11

12

13

x∗i,3

13.358

16.498

19.639

22.780

29.921

29.063

32.204

35.345

38.487

41.628

-773.343

342.802

-173.926

97.2278

-58.4641

37.2099

-24.7842

17.1337

-12.2177

8.9436

n = 4, i =

4

5

6

7

8

9

10

11

12

13

x∗i,4

11.785

14.926

18.067

21.208

24.349

27.491

30.632

33.774

36.915

40.057

409.325

-133.167

53.0102

-24.2927

12.3500

-6.7990

3.9863

-2.4597

1.5831

-1.0557

3

10

4

10

5

10

7

10

7

10

D1,0 (x∗i )

D1,1 (x∗i )

D1,2 (x∗i )

D0,3 (x∗i )

D1,4 (x∗i )

For 8 ≤ x ≤ 30 holds Z

x



t J1 (t) dt ≈ 1.046 049046 618046 299 +

0

9 (1) X c k=0

k xk



2k + 1 π sin x + 4



with −7.0 · 10−9 < 1.046 049 046 618 +

9 (1) X c k=0

(1)

k 1 2 3 4 5

ck -0.797 -0.299 0.392 -0.867 2.645

884 206 563 123 254

661 773 542 732 609

354 536 201 390 577

k xk

  Z x √ 2k + 1 sin x + π − t J0 (t) dt < 5 · 10−9 . 4 0 (1)

k

ck

6 7 8 9 10

-10.914 764 692 58 40.086 327 439 47 -264.350 611 778 9 464.583 909 606 6 -5 043.243 969 567

Modified Bessel Functions: Z 0

x



∞ √ X t I0 (t) dt = 2 x k=0

4k

x2n+1 = · (k!)2 · (4k + 3)

 x x3 x5 x7 x9 x11 x13 x15 =2 x + + + + + + + + ... 3 28 704 34 560 2 801 664 339 148 800 57 330 892 800 12 901 574 246 400 Z x√ ∞ √ X x2n+2 t I1 (t) dt = x = 4k · (k!)2 · (4k + 5) · (k + 1) 0 k=0  2  √ x x4 x6 x8 x10 x12 x14 = x + + + + + + + ... 5 72 2 496 156 672 15 482 880 2 211 840 000 431 043 379 200 √



61

1.2.1. b) Integrals: Z

x3/2 J0 (x) dx = x3/2 J1 (x) −

1 2

Z



x J1 (x) dx

Z 3 √ x J1 (x) dx = −x J0 (x) + x J0 (x) dx 2 Z Z 1 √ x3/2 I0 (x) dx = x3/2 I1 (x) − x I1 (x) dx 2 Z Z 3 √ x3/2 I1 (x) dx = x3/2 I0 (x) − x I0 (x) dx 2   Z Z √ 3x 9 √ 5/2 2 x J0 (x) dx x J0 (x) dx = x J0 (x) + x J1 (x) − 2 4   Z Z √ 5 5 √ x5/2 J1 (x) dx = x −x2 J0 (x) + xJ1 (x) − x J1 (x) dx 2 4   Z Z √ 3x 9 √ 5/2 2 x I0 (x) dx = x − I0 (x) + x I1 (x) + x I0 (x) dx 2 4   Z Z √ 5 5 √ 5/2 2 x I1 (x) dx = x x J0 (x) − xI1 (x) + x I1 (x) dx 2 4     Z Z √ 5x2 25 25 √ x7/2 J0 (x) dx = x J0 (x) + x3 − x J1 (x) + x J1 (x) dx 2 4 8    Z Z √ 21 7 2 63 √ 3 7/2 x J1 (x) dx = x −x + x J0 (x) + x J1 (x) − x J0 (x) dx 4 2 8     Z Z √ 5x2 25 25 √ 7/2 3 x I0 (x) dx = x − x I1 (x) dx I0 (x) + x + x I1 (x) − 2 4 8    Z Z √ 21 7 63 √ x7/2 I1 (x) dx = x x3 + x I0 (x) − x2 I1 (x) − x I0 (x) dx 4 2 8 Z

3/2

    Z 7 3 147 49 2 441 √ x − x J0 (x) + x4 − x J1 (x) + x J0 (x) dx 2 8 4 16      Z Z √ 9 3 225 225 √ 45 2 9/2 4 x J0 (x) + x − x J1 (x) + x J1 (x) dx = x −x + x J1 (x) dx 4 2 8 16       Z Z √ 49 2 7 3 147 441 √ 9/2 4 x I0 (x) dx = x − x + x I0 (x) + x + x I1 (x) + x I0 (x) dx 2 8 4 16      Z Z √ 45 2 9 3 225 225 √ x9/2 I1 (x) dx = x x4 + x I0 (x) − x + x I1 (x) + x I1 (x) dx 4 2 8 16 R To find x(2n+1)/2 Iν (x) dx with n > 4 use the recurrence formulas (see page 67).      Z Z √ 9 4 405 2 81 3 2025 2025 √ 11/2 5 x J0 (x) dx = x x − x J0 (x) + x − x + x J1 (x) − x J1 (x) dx 2 8 4 16 32      Z Z √ 77 3 1617 11 4 539 2 4851 √ 11/2 5 x J1 (x) dx = x −x + x − x J0 (x) + x − x J1 (x) + x J0 (x) dx 4 16 2 8 32 Z

Z

x9/2 J0 (x) dx =

x13/2 J0 (x) dx =





3/2



x

 x

    11 5 847 3 17787 121 4 5929 2 x − x + x J0 (x) + x6 − x + x J1 (x) − 2 8 32 4 16 Z 53361 √ − x J0 (x) dx 64 62

Z



     117 4 5265 2 13 5 1053 3 26325 6 x J1 (x) dx = x −x + x − x J0 (x) + x − x + x J1 (x) − 4 16 2 8 32 Z 26325 √ x J1 (x) dx − 64   Z √ 13 6 1521 4 68445 2 15/2 ∗E ∗ x x − x + x J0 (x)+ J0 (x) dx = x 2 8 32    Z 169 5 13689 3 342225 342225 √ x J1 (x) dx + x7 − x + x − x J1 (x) + 4 16 64 128   Z √ 165 5 12705 3 266805 15/2 7 x J1 (x) dx = x −x + x − x + x J0 (x)+ 4 16 64    Z 15 6 1815 4 88935 2 800415 √ + x − x + x J1 (x) − x J0 (x) dx 2 8 32 128   Z √ 15 7 2475 5 190575 3 4002075 x17/2 J0 (x) dx = x x − x + x − x J0 (x)+ 2 8 32 128    Z √ 225 6 27225 4 1334025 2 12006225 8 + x − x + x − x J1 (x) + x J0 (x) dx 4 16 64 256   Z √ 221 6 25857 4 1163565 2 x17/2 J1 (x) dx = x −x8 + x − x + x J0 (x)+ 4 16 64    Z 17 7 2873 5 232713 3 5817825 5817825 √ x J1 (x) dx x − x + x − x J1 (x) + + 2 8 32 128 256   Z √ 17 8 3757 6 439569 4 19780605 2 19/2 x J0 (x) dx = x x − x + x − x J0 (x)+ 2 8 32 128    Z 98903025 √ 289 7 48841 5 3956121 3 98903025 x + x − x + x J1 (x) − + x9 − x J1 (x) dx 4 16 64 256 512   Z √ 285 7 47025 5 3620925 3 76039425 19/2 9 x J1 (x) dx = x −x + x − x + x − x J0 (x)+ 4 16 64 256    Z 19 8 4275 6 517275 4 25346475 2 228118275 √ + x − x + x − x J1 (x) + x J0 (x) dx 2 8 32 128 512 Z x21/2 J0 (x) dx = 13/2



 19 9 5415 7 893475 5 68797575 3 1444749075 x − x + x − x + x J0 (x)+ 2 8 32 128 512    361 8 81225 6 9828225 4 481583025 2 10 x + x − x + x J1 (x) − + x − 4 16 64 256 Z 4334247225 √ − x J0 (x) dx 1024   Z √ 357 8 78897 6 9230949 4 415392705 2 21/2 10 x J1 (x) dx = x −x + x − x + x − x J0 (x)+ 4 16 64 256    Z 21 9 6069 7 1025661 5 83078541 3 2076963525 2076963525 √ + x − x + x − x + x J1 (x) − x J1 (x) dx 2 8 32 128 512 1024 Z



x



 21 10 7497 8 1656837 6 193849929 4 8723246805 2 x J0 (x) dx = x x − x + x − x + x J0 (x)+ 2 8 32 128 512    441 9 127449 7 21538881 5 1744649361 3 43616234025 + x11 − x + x − x + x − x J1 (x) + 4 16 64 256 1024 23/2



63

Z 43616234025 √ + x J1 (x) dx 2048 Z x23/2 J1 (x) dx = =

=





x

  437 9 124545 7 20549925 5 1582344225 3 33229228725 −x11 + x − x + x − x + x J0 (x)+ 4 16 64 256 1024    23 10 8303 8 1868175 6 226049175 4 11076409575 2 + x − x + x − x + x J1 (x) − 2 8 32 128 512 Z 99687686175 √ − x J0 (x) dx 2048 Z x25/2 J0 (x) dx =



 23 11 10051 9 2864535 7 472648275 5 36393917175 3 764272260675 x − x + x − x + x − x J0 (x)+ 2 8 32 128 512 2048    529 10 190969 8 42968025 6 5199131025 4 254757420225 2 12 x + x − x + x − x J1 (x) + + x − 4 16 64 256 1024 Z 2292816782025 √ + x J0 (x) dx 4096 Z x25/2 J1 (x) dx =

x



  525 10 187425 8 41420925 6 4846248225 4 218081170125 2 −x12 + x − x + x − x + x J0 (x)+ 4 16 64 256 1024    25 11 11025 9 3186225 7 538472025 5 43616234025 3 1090405850625 + x − x + x − x + x − x J1 (x) + 2 8 32 128 512 2048 Z 1090405850625 √ + x J1 (x) dx 4096 Z x27/2 J0 (x) dx = =



x

 25 12 13125 10 4685625 8 1035523125 6 121156205625 4 5452029253125 2 x − x + x − x + x − x J0 (x)+ = x 2 8 32 128 512 2048  625 11 275625 9 79655625 7 13461800625 5 1090405850625 3 + x13 − x + x − x + x − x + 4 16 64 256 1024   Z 27260146265625 √ 27260146265625 x J1 (x) − x J1 (x) dx + 4096 8192  Z √ 621 11 271377 9 77342445 7 12761503425 5 x27/2 J1 (x) dx = x −x13 + x − x + x − x + 4 16 64 256   27 12 14283 10 5156163 8 1160136675 6 982635763725 3 20635351038225 x − x J0 (x) + x − x + x − x + 1024 4096 2 8 32 128   Z 140376537675 4 6878450346075 2 61906053114675 √ + x − x J1 (x) + x J0 (x) dx 512 2048 8192 Z







27 13 16767 11 7327179 9 2088246015 7 344560592475 5 x − x + x − x + x − 2 8 32 128 512   26531165620575 3 557154478032075 729 12 385641 10 139216401 8 − x + x J0 (x) + x14 − x + x − x + 2048 8192 4 16 64 x29/2 J0 (x) dx =

x

64

  Z 31323690225 6 3790166517225 4 185718159344025 2 1671463434096225 √ + x − x + x J1 (x) − x J0 (x) dx 256 1024 4096 16384  Z √ 725 12 380625 10 135883125 8 30030170625 6 x29/2 J1 (x) dx = x −x14 + x − x + x − x + 4 16 64 256   3513529963125 4 158108848340625 2 29 13 18125 11 7993125 9 2310013125 7 + x − x J0 (x)+ x − x + x − x + 1024 4096 2 8 32 128   Z 390392218125 5 31621769668125 3 790544241703125 790544241703125 √ x J1 (x) dx + x − x + x J1 (x) − 512 2048 8192 16384 Z Z √ √ J0 (x) √ dx = 2 xJ0 (x) + 2 xJ1 (x) dx x Z Z √ √ J1 (x) √ dx = −2 xJ1 (x) + 2 xJ0 (x) dx x Z Z √ √ I0 (x) √ dx = 2 xI0 (x) − 2 xJ1 (x) dx x Z Z √ √ I1 (x) √ dx = −2 xI1 (x) + 2 xI0 (x) dx x √ Z Z √ x x−3/2 · J0 (x) dx = xJ0 (x) dx [−2J0 (x) + 4xJ1 (x)] − 4 x √ Z Z x 4 √ [4xJ0 (x) − 2J1 (x)] + xJ1 (x) dx x−3/2 · J1 (x) dx = 3x 3 √ Z Z √ x −3/2 xI0 (x) dx x · I0 (x) dx = − [2I0 (x) + 4xI1 (x)] + 4 x √ Z Z x 4 √ x−3/2 · I1 (x) dx = xI1 (x) dx [4xI0 (x) − 2I1 (x)] − 3x 3 √ Z Z   8 √ x −5/2 2 x · J0 (x) dx = 2 −8x − 6 J0 (x) + 4xJ1 (x) − xJ1 (x) dx 9x 9 √ Z Z x 8 √ x−5/2 · J1 (x) dx = 2 [−4xJ0 (x) + (8x2 − 2)J1 (x)] − xJ0 (x) dx 5x 5 √ Z Z   8 √ x −5/2 2 x · I0 (x) dx = 2 8x − 6 I0 (x) − 4xI1 (x) − xI1 (x) dx 9x 9 √ Z Z x 8 √ x−5/2 · I1 (x) dx = 2 [−4xI0 (x) − (8x2 + 2)I1 (x)] + xI0 (x) dx 5x 5 √ Z Z 16 √ x 2 3 −7/2 x · J0 (x) dx = [(8 x − 10)J0 (x) + (−16 x + 4 x)J1 (x)] + xJ0 (x) dx 25 x3 25 √ Z Z x 16 √ 3 2 x−7/2 · J1 (x) dx = [(−16 x − 12 x)J (x) + (8 x − 18)J (x)] − xJ1 (x) dx 0 1 63 x3 63 √ Z Z x 16 √ −7/2 2 3 x · I0 (x) dx = − [(8 x + 10)I0 (x) + (16 x + 4 x)I1 (x)] + xI0 (x) dx 25 x3 25 √ Z Z x 16 √ 3 2 x−7/2 · I1 (x) dx = [(16 x − 12 x)I (x) − (8 x + 18)I (x)] − xI1 (x) dx 0 1 63 x3 63 R To find x−(2n+1)/2 Iν (x) dx with n > 4 use the recurrence formulas (see page 67). Z



−9/2

x

  x  32 · J0 (x) dx = 32 x4 + 24 x2 − 126 J0 (x) + (−16 x3 + 36 x)J1 (x) + 4 441 x 441

65

Z



xJ1 (x) dx



Z

−9/2

x

x 32 [(16 x3 − 20 x)J0 (x) + (−32 x4 + 8 x2 − 50)J1 (x)] + · J1 (x) dx = 4 225 x 225

Z



xJ0 (x) dx



Z √ 64 x 4 2 5 3 [(−32 x +40 x −450)J0 (x)+(64 x −16 x +100 x)J1 (x)]− xJ0 (x) dx x ·J0 (x) dx = 2025 x5 2025 √ Z Z √ 64 x 5 3 4 2 x−11/2 ·J1 (x) dx = [(64 x +48 x −252 x)J (x)+(−32 x +72 x −882)J (x)]+ xJ1 (x) dx 0 1 5 4851 x 4851 Z x−13/2 · J0 (x) dx = Z

−11/2



=

 128 x  (−128 x6 − 96 x4 + 504 x2 − 9702)J0 (x) + (64 x5 − 144 x3 + 1764 x)J1 (x) − 6 53361 x 53361 √ Z x [(−64 x5 + 80 x3 − 900 x)J0 (x)+ x−13/2 · J1 (x) dx = 26325 x6 Z √ 128 6 4 2 xJ0 (x) dx +(128 x − 32 x + 200 x − 4050)J1 (x)] − 26325 √ Z x [(128 x6 − 160 x4 + 1800 x2 − 52650)J0 (x)+ x−15/2 · J0 (x) dx = 342225 x7 Z √ 256 +(−256 x7 + 64 x5 − 400 x3 + 8100 x)J1 (x)] + xJ0 (x) dx 342225 √ Z x x−15/2 · J1 (x) dx = [(−256 x7 − 192 x5 + 1008 x3 − 19404 x)J0 (x)+ 800415 x7 Z √ 256 xJ1 (x) dx +(128 x6 − 288 x4 + 3528 x2 − 106722)J1 (x)] − 800415 Z

Z

Z



xJ1 (x) dx



x [(512 x8 + 384 x6 − 2016 x4 + 38808 x2 − 1600830)J0 (x)+ 12006225 x8 Z √ 512 7 5 3 +(−256 x + 576 x − 7056 x + 213444 x)J1 (x)] + xJ1 (x) dx 12006225 √ Z x x−17/2 · J1 (x) dx = [(256 x7 − 320 x5 + 3600 x3 − 105300 x)J0 (x)+ 5817825 x8 Z √ 512 +(−512 x8 + 128 x6 − 800 x4 + 16200 x2 − 684450)J1 (x)] + xJ0 (x) dx 5817825

x−17/2 · J0 (x) dx =



x [(−512 x8 + 640 x6 − 7200 x4 + 210600 x2 − 11635650)J0 (x)+ 98903025 x9 Z √ 1024 9 7 5 3 +(1024 x − 256 x + 1600 x − 32400 x + 1368900 x)J1 (x)] − xJ0 (x) dx 98903025 √ Z x x−19/2 · J1 (x) dx = [(1024 x9 + 768 x7 − 4032 x5 + 77616 x3 − 3201660 x)J0 (x)+ 228118275 x9 Z √ 1024 xJ1 (x) dx ∗ E∗ +(−512 x8 + 1152 x6 − 14112 x4 + 426888 x2 − 24012450)J1 (x)] + 228118275 x−19/2 · J0 (x) dx =

Z

x−21/2 · J0 (x) dx =



=

x [(−2048 x10 − 1536 x8 + 8064 x6 − 155232 x4 + 6403320 x2 − 456236550)J0 (x)+ 4334247225 x10 66

Z √ 2048 1024 +(1024 x − 2304 x + 28224 x − 853776 x + 48024900 x)J1 (x)] − + xJ1 (x) dx 4334247225 228118275 √ Z x [(−1024 x9 + 1280 x7 − 14400 x5 + 421200 x3 − 23271300 x)J0 (x)+ x−21/2 · J1 (x) dx = 2076963525 x10 Z √ 2048 +(2048 x10 − 512 x8 + 3200 x6 − 64800 x4 + 2737800 x2 − 197806050)J1 (x)] − xJ0 (x) dx 2076963525 Z x−23/2 · J0 (x) dx = 9

7

5

3



x [(2048 x10 − 2560 x8 + 28800 x6 − 842400 x4 + 46542600 x2 − 4153927050)J0 (x)+ 43616234025 x11 Z √ 4096 xJ0 (x) dx +(−4096 x11 +1024 x9 −6400 x7 +129600 x5 −5475600 x3 +395612100 x)J1 (x)]+ 43616234025 Z x−23/2 · J1 (x) dx = =



x [(−4096 x11 − 3072 x9 + 16128 x7 − 310464 x5 + 12806640 x3 − 912473100 x)J0 (x)+ 99687686175 x11 Z √ 4096 10 8 6 4 2 +(2048 x −4608 x +56448 x −1707552 x +96049800 x −8668494450)J1 (x)]− xJ1 (x) dx 99687686175 =

Z



x−25/2 · J0 (x) dx =

x [(8192 x12 + 6144 x10 − 32256 x8 + 620928 x6 − 25613280 x4 + 2292816782025 x12

+1824946200 x2 − 199375372350)J0 (x) + (−4096 x11 + 9216 x9 − 112896 x7 + 3415104 x5 − 192099600 x3 + Z √ 8192 +17336988900 x)J1 (x)] + xJ1 (x) dx 2292816782025 Z x−25/2 · J1 (x) dx = √

=

x [(4096 x11 − 5120 x9 + 57600 x7 − 1684800 x5 + 93085200 x3 − 8307854100 x)J0 (x)+ 1090405850625 x12

+(−8192 x12 + 2048 x10 − 12800 x8 + 259200 x6 − 10951200 x4 + 791224200 x2 − 87232468050)J1 (x)]+ Z √ 8192 + xJ0 (x) dx 1090405850625 1.2.1. c) Recurrence Formulas: Ascending:

Z

Z

xn+5/2 J1 (x) dx = xn+3/2 Z

Z

xn+5/2 J0 (x) dx = xn+3/2

   Z 5 (2n + 1)(2n + 5) n+ J1 (x) − x J0 (x) − xn+1/2 J1 (x) dx 2 4

     2 Z 3 3 xn+5/2 I0 (x) dx = xn+3/2 x I1 (x) − n + I0 (x) + n + xn+1/2 I0 (x) dx 2 2

n+5/2

x

    2 Z 3 3 n+ J0 (x) + x J1 (x) − n + xn+1/2 J0 (x) dx 2 2

n+3/2

I1 (x) dx = x

    Z 5 (2n + 1)(2n + 5) x I0 (x) − n + I1 (x) + xn+1/2 I1 (x) dx 2 4

67

Descending: Z xn−3/2 J0 (x) dx =

1 (2n − 1)2

  Z xn−1/2 [2(2n − 1) J0 (x) + 4x J1 (x)] − 4 xn+1/2 J0 (x) dx

  Z 1 xn−1/2 [2(2n + 1) J1 (x) − 4x J0 (x)] − 4 xn+1/2 J1 (x) dx (2n + 1)(2n − 3)   Z Z 1 n−1/2 n−3/2 n+1/2 x I0 (x) dx = x [2(2n − 1) I0 (x) − 4x I1 (x)] + 4 x I0 (x) dx (2n − 1)2   Z Z 1 n−3/2 n−1/2 n+1/2 x I1 (x) dx = x [2(2n + 1) I1 (x) − 4x J0 (x)] + 4 x J1 (x) dx (2n + 1)(2n − 3)

Z

xn−3/2 J1 (x) dx =

68

1.2.2. Integrals of the type

R

n ±x

x e

 ·

Iν (x) Kν x

 dx

See also [1], 11.3. a) Integrals with ex : Z

x

Z

x

e I0 (x) dx = xe [I0 (x) − I1 (x)] , Z

Z

ex K0 (x) dx = xex [K0 (x) + K1 (x)] , Z Z Z Z Z Z

ex · I1 (x) dx = ex [I0 (x) − I1 (x)] x ex K1 (x) dx = −ex [K0 (x) + K1 (x)] x

ex I1 (x) dx = ex [(1 − x)I0 (x) + xI1 (x)]

ex K1 (x) dx = −ex [(1 − x)K0 (x) − xK1 (x)] xex I0 (x) dx =

xex [xI0 (x) + (1 − x)I1 (x)] 3

x ex K0 (x) dx =

xex [x K0 (x) + (x − 1) K1 (x)] 3

x ex I1 (x) dx =

xex [−xI0 (x) + (2 + x)I1 (x)] 3

x ex K1 (x) dx =

xex [x K0 (x) + (x + 2) K1 (x)] 3

 xex  (2 x + 3 x2 )I0 (x) + (−4 + 4 x − 3 x2 )I1 (x) 15 Z  xex  2 x2 ex K0 (x) dx = (3x + 2x) K0 (x) + (3 x2 − 4 x + 4) K1 (x) 15 Z  xex  x2 ex I1 (x) dx = (x − x2 )I0 (x) + (−2 + 2x + x2 )I1 (x) 5 Z  xex  2 (x − x) K0 (x) + (x2 + 2x − 2) K1 (x) x2 ex K1 (x) dx = 5 Z x   xe x3 ex I0 (x) dx = (−6 x + 6 x2 + 5 x3 )I0 (x) + (12 − 12 x + 9 x2 − 5 x3 )I1 (x) 35 Z  xex  x3 ex K0 (x) dx = (5 x3 + 6 x2 − 6 x) K0 (x) + (5 x3 − 9 x2 + 12 x − 12) K1 (x) 35 Z  xex  x3 ex I1 (x) dx = (−8 x + 8 x2 − 5 x3 )I0 (x) + (16 − 16 x + 12 x2 + 5 x3 )I1 (x) 35 Z  xex  x3 ex K1 (x) dx = (5 x3 − 8 x2 + 8 x) K0 (x) + (5 x3 + 12 x2 − 16 x + 16) K1 (x) 35 Z x   xe x4 ex I0 (x) dx = (96 x − 96 x2 + 60 x3 + 35 x4 )I0 (x) + (−192 + 192 x − 144 x2 + 80 x3 − 35 x4 )I1 (x) 315 Z  xex  x4 ex K0 (x) dx = (35 x4 + 60 x3 − 96 x2 + 96 x) K0 (x) + (35 x4 − 80 x3 + 144 x2 − 192 x + 192) K1 (x) 315 Z  xex  x4 ex I1 (x) dx = (24 x − 24 x2 + 15 x3 − 7 x4 )I0 (x) + (−48 + 48 x − 36 x2 + 20 x3 + 7 x4 )I1 (x) 63 Z x   xe x4 ex K1 (x) dx = (7 x4 − 15 x3 + 24 x2 − 24 x) K0 (x) + (7 x4 + 20 x3 − 36 x2 + 48 x − 48) K1 (x) 63 Z xex  (−480 x + 480 x2 − 300 x3 + 140 x4 + 63 x5 )I0 (x)+ x5 ex I0 (x) dx = 693  +(960 − 960 x + 720 x2 − 400 x3 + 175 x4 − 63 x5 )I1 (x) Z

x2 ex I0 (x) dx =

69

Z

Z

Z

xex  (77 x6 + 210 x5 − 560 x4 + 1200 x3 − 1920 x2 + 1920 x) K0 (x)+ 1001  + (77 x6 − 252 x5 + 700 x4 − 1600 x3 + 2880 x2 − 3840 x + 3840) K1 (x)

x6 ex K0 (x) dx =

Z

Z

Z

Z

xex  (21 x5 − 56 x4 + 120 x3 − 192 x2 + 192 x) K0 (x)+ 231  +(21 x5 + 70 x4 − 160 x3 + 288 x2 − 384 x + 384) K1 (x)

x5 ex K1 (x) dx =

x6 ex I0 (x) dx =

Z

Z

xex  (−192 x + 192 x2 − 120 x3 + 56 x4 − 21 x5 )I0 (x)+ 231  +(384 − 384 x + 288 x2 − 160 x3 + 70 x4 + 21 x5 )I1 (x)

x5 ex I1 (x) dx =

xex  (1920 x − 1920 x2 + 1200 x3 − 560 x4 + 210x5 + 77x6 )I0 (x)+ 1001  + (−3840 + 3840 x − 2880 x2 + 1600 x3 − 700 x4 + 252x5 − 77x6 )I1 (x)

Z

Z

xex  (63 x5 + 140 x4 − 300 x3 + 480 x2 − 480 x) K0 (x)+ 693  + (63 x5 − 175 x4 + 400 x3 − 720 x2 + 960 x − 960) K1 (x)

x5 ex K0 (x) dx =

xex  (960 x − 960 x2 + 600 x3 − 280 x4 + 105 x5 − 33 x6 )I0 (x)+ 429  +(−1920 + 1920 x − 1440 x2 + 800 x3 − 350 x4 + 126 x5 + 33 x6 )I1 (x)

x6 ex I1 (x) dx =

xex  (33 x6 − 105 x5 + 280 x4 − 600 x3 + 960 x2 − 960 x) K0 (x)+ 429  +(33 x6 + 126 x5 − 350 x4 + 800 x3 − 1440 x2 + 1920 x − 1920) K1 (x)

x6 ex K1 (x) dx =

xex  (−13440 x + 13440 x2 − 8400 x3 + 3920 x4 − 1470 x5 + 462 x6 + 143 x7 )I0 (x)+ 2145  +(26880 − 26880 x + 20160 x2 − 11200 x3 + 4900 x4 − 1764 x5 + 539 x6 − 143 x7 )I1 (x)

x7 ex I0 (x) dx =

xex  (143 x7 + 462 x6 − 1470 x5 + 3920 x4 − 8400 x3 + 13440 x2 − 13440 x) K0 (x)+ 2145  +(143 x7 − 539 x6 + 1764 x5 − 4900 x4 + 11200 x3 − 20160 x2 + 26880 x − 26880) K1 (x)

x7 ex K0 (x) dx =

xex  (−15360 x + 15360 x2 − 9600 x3 + 4480 x4 − 1680 x5 + 528 x6 − 143 x7 )I0 (x)+ 2145  +(30720 − 30720 x + 23040 x2 − 12800 x3 + 5600 x4 − 2016 x5 + 616 x6 + 143 x7 )I1 (x)

x7 ex I1 (x) dx =

xex  (143 x7 − 528 x6 + 1680 x5 − 4480 x4 + 9600 x3 − 15360 x2 + 15360 x) K0 (x)+ 2145  +(143 x7 + 616 x6 − 2016 x5 + 5600 x4 − 12800 x3 + 23040 x2 − 30720 x + 30720) K1 (x)

x7 ex K1 (x) dx =

Recurrence formulas: Z Z xn ex n2 xn ex I0 (x) dx = [(n + x)I0 (x) − xI1 (x)] − xn−1 ex I0 (x) dx (∗) 2n + 1 2n + 1 Z Z xn ex n(n + 1) n x x e I1 (x) dx = [(n + 1 − x)I0 (x) + xI1 (x)] − xn−1 ex I0 (x) dx (∗) 2n + 1 2n + 1 The last formula refers to I0 (x) instead of I1 (x). Z Z xn ex n2 xn ex K0 (x) dx = [(n + x)K0 (x) + xK1 (x)] − xn−1 ex K0 (x) dx 2n + 1 2n + 1 Z Z xn ex n(n + 1) xn ex K1 (x) dx = [(x − n − 1)K0 (x) + xK1 (x)] + xn−1 ex K0 (x) dx 2n + 1 2n + 1 70

The last formula refers to K0 (x) instead of K1 (x). Otherwise: Z

n(n + 1) 2n + 1

xn ex I1 (x) dx =

Z

xn−1 ex I1 (x) dx + (n − 2)

Z

 xn−2 ex I1 (x) dx +

 xn−1 ex  x (n + 1 − x) I0 (x) + (x2 − n2 − n) I1 (x) 2n + 1 Z  Z Z n(n + 1) xn ex K1 (x) dx = xn−1 ex K1 (x) dx + (n − 2) xn−2 ex K1 (x) dx + 2n + 1 +

+

 xn−1 ex  x (x − n − 1) K0 (x) + (x2 − n2 − n) K1 (x) 2n + 1

b) Integrals with e−x : Z

−x

e Z

I0 (x) dx = xe

Z

e−x · I1 (x) dx = e−x [I0 (x) + I1 (x)] x

Z

e−x K1 (x) dx = e−x [K0 (x) − K1 (x)] x

[I0 (x) + I1 (x)] ,

e−x K0 (x) dx = xe−x [K0 (x) − K1 (x)] , Z

e−x I1 (x) dx = e−x [(1 + x)I0 (x) + xI1 (x)]

Z

e−x K1 (x) dx = −e−x [(1 + x) K0 (x) − x K1 (x)]

Z

xe−x I0 (x) dx =

xe−x [xI0 (x) + (1 + x)I1 (x)] 3

Z

x e−x K0 (x) dx =

xe−x [x K0 (x) − (x + 1) K1 (x)] 3

Z

xe−x I1 (x) dx =

xe−x [xI0 (x) + (−2 + x)I1 (x)] 3

Z

x e−x K1 (x) dx =

xe−x [−x K0 (x) + (x − 2) K1 (x)] 3

Z

x2 e−x I0 (x) dx =

 xe−x  (−2 x + 3 x2 )I0 (x) + (4 + 4 x + 3 x2 )I1 (x) 15

Z

x2 e−x K0 (x) dx =

 xe−x  (3 x2 − 2 x) K0 (x) − (3 x2 + 4 x + 4) K1 (x) 15

Z Z

Z

−x

x2 e−x I1 (x) dx =

x2 e−x K1 (x) dx =

 xe−x  (x + x2 )I0 (x) + (−2 − 2x + x2 )I1 (x) 5

 xe−x  −(x2 + x) K0 (x) + (x2 − 2 x − 2) K1 (x) 5

Z

x3 e−x I0 (x) dx =

 xe−x  (−6 x − 6 x2 + 5 x3 )I0 (x) + (12 + 12 x + 9 x2 + 5 x3 )I1 (x) 35

Z

x3 e−x K0 (x) dx =

 xe−x  (5 x3 − 6 x2 − 6 x) K0 (x) − (5 x3 + 9 x2 + 12 x + 12) K1 (x) 35

Z

x3 e−x I1 (x) dx =

 xe−x  (8 x + 8 x2 + 5 x3 )I0 (x) + (−16 − 16 x − 12 x2 + 5 x3 )I1 (x) 35

x3 e−x K1 (x) dx =

 xe−x  −(5 x3 + 8 x2 + 8 x) K0 (x) + (5 x3 − 12 x2 − 16 x − 16) K1 (x) 35

71

Z

x4 e−x I0 (x) dx =

 xe−x  (−96 x − 96 x2 − 60 x3 + 35 x4 )I0 (x) + (192 + 192 x + 144 x2 + 80 x3 + 35 x4 )I1 (x) 315 Z x4 e−x K0 (x) dx =

 xe−x  (35 x4 − 60 x3 − 96 x2 − 96 x) K0 (x) − (35 x4 + 80 x3 + 144 x2 + 192 x + 192) K1 (x) 315 Z  xe−x  x4 e−x I1 (x) dx = (24 x + 24 x2 + 15 x3 + 7 x4 )I0 (x) + (−48 − 48 x − 36 x2 − 20 x3 + 7 x4 )I1 (x) 63 Z x4 e−x K1 (x) dx = =

=

 xe−x  −(7 x4 + 15 x3 + 24 x2 + 24 x) K0 (x) + (7 x4 − 20 x3 − 36 x2 − 48 x − 48) K1 (x) 63 Z xe−x  x5 e−x I0 (x) dx = (−480 x − 480 x2 − 300 x3 − 140 x4 + 63 x5 )I0 (x)+ 693  +(960 + 960 x + 720 x2 + 400 x3 + 175 x4 + 63 x5 )I1 (x) Z xe−x  x5 e−x K0 (x) dx = (63 x5 − 140 x4 − 300 x3 − 480 x2 − 480 x) K0 (x)− 693  −(63 x5 + 175 x4 + 400 x3 + 720 x2 + 960 x + 960) K1 (x) Z xe−x  (192 x + 192 x2 + 120 x3 + 56 x4 + 21 x5 )I0 (x)+ x5 e−x I1 (x) dx = 231  +(−384 − 384 x − 288 x2 − 160 x3 − 70 x4 + 21 x5 )I1 (x) Z xe−x  x5 e−x K1 (x) dx = −(21 x5 + 56 x4 + 120 x3 + 192 x2 + 192 x) K0 (x)+ 231  +(21 x5 − 70 x4 − 160 x3 − 288 x2 − 384 x − 384) K1 (x) xe−x  (−1920 x − 1920 x2 − 1200 x3 − 560 x4 − 210x5 + 77x6 )I0 (x)+ 1001  + (3840 + 3840 x + 2880 x2 + 1600 x3 + 700 x4 + 252x5 + 77x6 )I1 (x)

Z

x6 e−x I0 (x) dx =

Z

x6 e−x K0 (x) dx =

xe−x  (77 x6 − 210 x5 − 560 x4 − 1200 x3 − 1920 x2 − 1920 x) K0 (x)− 1001  −(77 x6 + 252 x5 + 700 x4 + 1600 x3 + 2880 x2 + 3840 x + 3840) K1 (x)

Z

Z

Z

xe−x  (960 x + 960 x2 + 600 x3 + 280 x4 + 105 x5 + 33 x6 )I0 (x)+ 429  +(−1920 − 1920 x − 1440 x2 − 800 x3 − 350 x4 − 126 x5 + 33 x6 )I1 (x)

x6 e−x I1 (x) dx =

xe−x  −(33 x6 + 105 x5 + 280 x4 + 600 x3 + 960 x2 + 960 x) K0 (x)+ 429  +(33 x6 − 126 x5 − 350 x4 − 800 x3 − 1440 x2 − 1920 x − 1920) K1 (x)

x6 e−x K1 (x) dx =

xe−x  (−13440 x − 13440 x2 − 8400 x3 − 3920 x4 − 1470 x5 − 462 x6 + 143 x7 )I0 (x)+ 2145  +(26880 + 26880 x + 20160 x2 + 11200 x3 + 4900 x4 + 1764 x5 + 539 x6 + 143 x7 )I1 (x) Z x7 e−x K0 (x) dx =

x7 e−x I0 (x) dx =

xe−x  (143 x7 − 462 x6 − 1470 x5 − 3920 x4 − 8400 x3 − 13440 x2 − 13440 x) K0 (x)− 2145  −(143 x7 + 539 x6 + 1764 x5 + 4900 x4 + 11200 x3 + 20160 x2 + 26880 x + 26880) K1 (x) =

72

Z

xe−x  (15360 x + 15360 x2 + 9600 x3 + 4480 x4 + 1680 x5 + 528 x6 + 143 x7 )I0 (x)+ 2145  +(−30720 − 30720 x − 23040 x2 − 12800 x3 − 5600 x4 − 2016 x5 − 616 x6 + 143 x7 )I1 (x) Z x7 e−x K1 (x) dx =

x7 e−x I1 (x) dx =

xe−x  −(143 x7 + 528 x6 + 1680 x5 + 4480 x4 + 9600 x3 + 15360 x2 + 15360 x) K0 (x)+ 2145  +(143 x7 − 616 x6 − 2016 x5 − 5600 x4 − 12800 x3 − 23040 x2 − 30720 x − 30720) K1 (x)

=

73

Recurrence formulas: Z Z n2 xn e−x n −x xn−1 e−x I0 (x) dx (∗) x e I0 (x) dx = [(x − n)I0 (x) + xI1 (x)] + 2n + 1 2n + 1 Z Z xn e−x n(n + 1) xn e−x I1 (x) dx = [(n + 1 + x)I0 (x) + xI1 (x)] − xn−1 e−x I0 (x) dx (∗) 2n + 1 2n + 1 The last formula refers to I0 (x) instead of I1 (x). Z Z xn e−x n2 xn e−x K0 (x) dx = xn−1 e−x K0 (x) dx [(x − n)K0 (x) − xK1 (x)] + 2n + 1 2n + 1 Z Z xn e−x n(n + 1) n −x x e K1 (x) dx = [−(x + n + 1)K0 (x) + xK1 (x)] + xn−1 e−x K0 (x) dx 2n + 1 2n + 1 The last formula refers to K0 (x) instead of K1 (x).

74

1.2.3. Integrals of the type

R

n



x ·

sinh cosh



 x·

Iν (x) Kν (x)

 dx

In the case of a double sign ( ’±’ or ’∓’) the upper sign refers to Iν (x) and the lower one to Kν (x). Z

sinh x Z1 (x) dx = ± cosh x Z0 (x) − sinh x Z1 (x) x

Z

cosh x Z1 (x) dx = ± sinh x Z0 (x) − cosh x Z1 (x) x

Z sinh x Z0 (x) dx = x sinh x Z0 (x) ∓ x cosh x Z1 (x) Z cosh x Z0 (x) dx = x cosh x Z0 (x) ∓ x sinh x Z1 (x) Z sinh x Z1 (x) dx = ± sinh x Z0 (x) ∓ x cosh x Z0 (x) + x sinh x Z1 (x) Z cosh x Z1 (x) dx = ∓ x sinh x Z0 (x) ± cosh x Z0 (x) + x cosh x Z1 (x) x sinh x Z0 (x) dx =

x2 x x2 sinh x Z0 (x) + sinh x Z1 (x) − cosh x Z1 (x) 3 3 3

x cosh x Z0 (x) dx =

x2 x2 x cosh x Z0 (x) − sinh x Z1 (x) + cosh x Z1 (x) 3 3 3

Z Z

x sinh x Z1 (x) dx = −

x2 x2 2x cosh x Z0 (x) + sinh x Z1 (x) + cosh x Z1 (x) 3 3 3

x cosh x Z1 (x) dx = −

x2 2x x2 sinh x Z0 (x) + sinh x Z1 (x) + cosh x Z1 (x) 3 3 3

Z Z

Z

Z Z Z

x2 sinh x Z0 (x) dx =

x3 2x2 4x2 3x3 + 4x sinh x Z0 (x) + cosh x Z0 (x) ± sinh x Z1 (x) ∓ cosh x Z1 (x) 5 15 15 15

x2 cosh x Z0 (x) dx =

x3 3 x3 + 4 x 4x2 2x2 sinh x Z0 (x) + cosh x Z0 (x) ∓ sinh x Z1 (x) ± cosh x Z1 (x) 15 5 15 15

x2 sinh x Z1 (x) dx = ± x2 cosh x Z1 (x) dx = ∓

=

=

x2 x3 x3 − 2 x 2x2 sinh x Z0 (x) ∓ cosh x Z0 (x) + sinh x Z1 (x) + cosh x Z1 (x) 5 5 5 5 x3 x2 2x2 x3 − 2 x sinh x Z0 (x) ± cosh x Z0 (x) + sinh x Z1 (x) + cosh x Z1 (x) 5 5 5 5 Z x3 sinh x Z0 (x) dx =

5 x4 − 6 x2 6x3 9 x3 + 12 x 5 x4 + 12 x2 sinh x Z0 (x) + cosh x Z0 (x) ± sinh x Z1 (x) ∓ cosh x Z1 (x) 35 35 35 35 Z x3 cosh x Z0 (x) dx = 6x3 5 x4 − 6 x2 5 x4 + 12 x2 9 x3 + 12 x sinh x Z0 (x) + cosh x Z0 (x) ∓ sinh x Z1 (x) ± cosh x Z1 (x) 35 35 35 35 Z x3 sinh x Z1 (x) dx =

= ±

8x3 5 x4 + 8 x2 5 x4 − 16 x2 12 x3 + 16 x sinh x Z0 (x) ∓ cosh x Z0 (x) + sinh x Z1 (x) + cosh x Z1 (x) 35 35 35 35 Z x3 cosh x Z1 (x) dx = 75

= ∓

5 x4 + 8 x2 8x3 12 x3 + 16 x 5 x4 − 16 x2 sinh x Z0 (x) ± cosh x Z0 (x) + sinh x Z1 (x) + cosh x Z1 (x) 35 35 35 35 Z 35 x5 − 96 x3 20 x4 + 32 x2 x4 sinh x Z0 (x) dx = sinh x Z0 (x) + cosh x Z0 (x)± 315 105 ± Z

80 x4 + 192 x2 35x5 + 144x3 + 192x sinh x Z1 (x) ∓ cosh x Z1 (x) 315 315

x4 cosh x Z0 (x) dx = ∓

Z

35 x5 + 144 x3 + 192 x 80 x4 + 192 x2 sinh x Z1 (x) ± cosh x Z1 (x) 315 315

x4 sinh x Z1 (x) dx = ± +

Z

Z

Z

x5 sinh x Z1 (x) dx = ±

Z

Z

77 x7 − 560 x5 − 1920 x3 210 x6 + 1200 x4 + 1920 x2 sinh x Z0 (x) + cosh x Z0 (x)± 1001 1001

252 x6 + 1600 x4 + 3840 x2 77 x7 + 700 x5 + 2880 x3 + 3840 x sinh x Z1 (x) ∓ cosh x Z1 (x) 1001 1001

x6 cosh x Z0 (x) dx = ∓

7 x6 + 40 x4 + 64 x2 56 x5 + 192 x3 sinh x Z0 (x) ± cosh x Z0 (x)+ 77 231

21 x6 − 160 x4 − 384 x2 70 x5 + 288 x3 + 384 x sinh x Z1 (x) + cosh x Z1 (x) 231 231

x6 sinh x Z0 (x) dx = ±

56 x5 + 192 x3 7 x6 + 40 x4 + 64 x2 sinh x Z0 (x) ∓ cosh x Z0 (x)+ 231 77

21 x6 − 160 x4 − 384 x2 70 x5 + 288 x3 + 384 x sinh x Z1 (x) + cosh x Z1 (x) 231 231

x5 cosh x Z1 (x) dx = ∓ +

Z

140 x5 + 480 x3 21 x6 − 100 x4 − 160 x2 sinh x Z0 (x) + cosh x Z0 (x)∓ 693 231

63 x6 + 400 x4 + 960 x2 175 x5 + 720 x3 + 960 x sinh x Z1 (x) ± cosh x Z1 (x) 693 693

+ Z

140 x5 + 480 x3 21 x6 − 100 x4 − 160 x2 sinh x Z0 (x) + cosh x Z0 (x)± 231 693

175 x5 + 720 x3 + 960 x 63 x6 + 400 x4 + 960 x2 sinh x Z1 (x) ∓ cosh x Z1 (x) 693 693

x5 cosh x Z0 (x) dx = ∓

5 x4 + 8 x2 7 x5 + 24 x3 sinh x Z0 (x) ± cosh x Z0 (x)+ 63 21

20 x4 + 48 x2 7 x5 − 36 x3 − 48 x sinh x Z1 (x) + cosh x Z1 (x) 63 63

x5 sinh x Z0 (x) dx = ±

7 x5 + 24 x3 5 x4 + 8 x2 sinh x Z0 (x) ∓ cosh x Z0 (x)+ 21 63

7 x5 − 36 x3 − 48 x 20 x4 + 48 x2 sinh x Z1 (x) + cosh x Z1 (x) 63 63

x4 cosh x Z1 (x) dx = ∓ +

Z

20 x4 + 32 x2 35 x5 − 96 x3 sinh x Z0 (x) + cosh x Z0 (x)∓ 105 315

210 x6 + 1200 x4 + 1920 x2 77 x7 − 560 x5 − 1920 x3 sinh x Z0 (x) + cosh x Z0 (x)∓ 1001 1001

77 x7 + 700 x5 + 2880 x3 + 3840 x 252 x6 + 1600 x4 + 3840 x2 sinh x Z1 (x) ± cosh x Z1 (x) 1001 1001

x6 sinh x Z1 (x) dx = ±

35 x6 + 200 x4 + 320 x2 33 x7 + 280 x5 + 960 x3 sinh x Z0 (x) ∓ cosh x Z0 (x)+ 143 429 76

33 x7 − 350 x5 − 1440 x3 − 1920 x 126 x6 + 800 x4 + 1920 x2 sinh x Z1 (x) + cosh x Z1 (x) 429 429 Z 33 x7 + 280 x5 + 960 x3 35 x6 + 200 x4 + 320 x2 x6 cosh x Z1 (x) dx = ∓ sinh x Z0 (x) ± cosh x Z0 (x)+ 429 143 126 x6 + 800 x4 + 1920 x2 33 x7 − 350 x5 − 1440 x3 − 1920 x + sinh x Z1 (x) + cosh x Z1 (x) 429 429 +

Recurrence formulas: Z

xn+1 sinh x · Z0 (x) dx =

xn+1 (n + 1)2 [x sinh x · Z0 (x) + (n + 1) cosh x · Z0 (x) ∓ x cosh x · Z1 (x)] − 2n + 3 2n + 3 Z xn+1 cosh x · Z0 (x) dx =

Z

xn+1 (n + 1)2 = [(n + 1) sinh x · Z0 (x) + x cosh x · Z0 (x) ∓ x sinh x · Z1 (x)] − 2n + 3 2n + 3 Z xn+1 sinh x · Z1 (x) dx =

Z

=

xn cosh x · Z0 (x) dx

xn sinh x · Z0 (x) dx

xn+1 (n + 1)(n + 2) = [ ±(n + 2) sinh x · Z0 (x) ∓ x cosh x · Z0 (x) + x sinh x · Z1 (x)]∓ 2n + 3 2n + 3 Z xn+1 cosh x · Z1 (x) dx =

Z

xn+1 (n + 1)(n + 2) [ ∓x sinh x · Z0 (x) ± (n + 2) sinh x · Z1 (x) + x cosh x · Z1 (x)]∓ 2n + 3 2n + 3

Z

=

xn cosh x·Z0 (x) dx

xn sinh x·Z0 (x) dx

Otherwise: Z

Z

xn sinh x Z0 (x) dx =

1 (2n + 1)(2n − 1)



Z

xn−2 sinh x Z0 (x) dx +  +xn−1 [(1 − n)n2 + (2n − 1)x2 ] Z0 (x) ± n2 x I1 (x) sinh x+  n +x [n(n − 1) Z0 (x) ∓ (2n − 1)x Z1 (x)] cosh x

xn sinh x Z1 (x) dx =

1 (2n + 1)(2n − 1)

n2 (n − 1)2



Z (n + 1)n(n − 1)(n − 2)

xn−2 sinh x Z1 (x) dx +

  +xn−1 ±(n + 1)(n − 1)x Z0 (x) + [(2n − 1)x2 − (n + 1)n(n − 1)] Z1 (x) sinh x+  n +x [∓(2n − 1)x Z0 (x) + n(n + 1) Z1 (x)] cosh x Z

xn cosh x Z0 (x) dx =

1 (2n + 1)(2n − 1)



n2 (n − 1)2

Z

xn−2 cosh x Z0 (x) dx +

+xn [n(n − 1) Z0 (x) ∓ (2n − 1)x Z1 (x)] sinh x+    +xn−1 [n2 (1 − n) + (2n − 1)x2 ] Z0 (x) ± n2 x Z1 (x) cosh x Z

1 x cosh x Z1 (x) dx = (2n + 1)(2n − 1) n



Z (n + 1)n(n − 1)(n − 2)

xn−2 cosh x Z1 (x) dx +

+xn [∓(2n − 1)x Z0 (x) + (n + 1)n Z1 (x)] sinh x+    +xn−1 ±(n − 1)(n + 1)x Z0 (x) + [(2n − 1)x2 − (n − 1)n(n + 1)] Z1 (x) cosh x

77

1.2.4. Integrals of the type

R

n

x ·





sin cos

x · Jν (x) dx

See also [1], 11.3. Z ∗E ∗ Z ∗E ∗

sin x · J1 (x) dx = − sin x J1 (x) − cos x J0 (x) x cos x · J1 (x) dx = sin x J0 (x) − cos x J1 (x) x

Z sin x · J0 (x) dx = x[sin x · J0 (x) − cos x · J1 (x)] Z cos x · J0 (x) dx = x[cos x · J0 (x) + sin x · J1 (x)] Z sin x · J1 (x) dx = (x cos x − sin x)J0 (x) + x sin x · J1 (x) Z cos x · J1 (x) dx = −(x sin x + cos x)J0 (x) + x cos x · J1 (x) x sin x · J0 (x) dx =

x2 x sin x − x2 cos x sin x · J0 (x) + · J1 (x) 3 3

x cos x · J0 (x) dx =

x2 x2 sin x − x cos x cos x · J0 (x) + · J1 (x) 3 3

Z Z Z x sin x · J1 (x) dx =

x2 x2 sin x − 2x cos x · cos x · J0 (x) + · J1 (x) 3 3

x2 2x sin x + x2 cos x sin x · J0 (x) + · J1 (x) 3 3 Z    1  3 x2 sin x · J0 (x) dx = 3 x sin x − 2 x2 cos x · J0 (x) + 4 x2 sin x + (4 x − 3 x3 ) cos x · J1 (x) 15 Z    1  2 x2 cos x · J0 (x) dx = 2 x sin x + 3 x3 cos x · J0 (x) + (−4 x + 3 x3 ) sin x + 4 x2 cos x · J1 (x) 15 Z    1  2 x2 sin x · J1 (x) dx = −x sin x + x3 cos x · J0 (x) + (2 x + x3 ) sin x − 2 x2 cos x · J1 (x) 5 Z    1  3 x2 cos x · J1 (x) dx = −x sin x − x2 cos x · J0 (x) + 2 x2 sin x + (2 x + x3 ) cos x · J1 (x) 5 Z  1  x3 sin x · J0 (x) dx = (6 x2 + 5 x4 ) sin x − 6 x3 cos x · J0 (x)+ 35   3 + (−12 x + 9 x ) sin x + (12 x2 − 5 x4 ) cos x · J1 (x) Z  1  3 6 x sin x + (6 x2 + 5 x4 ) cos x · J0 (x)+ x3 cos x · J0 (x) dx = 35   2 4 + (−12 x + 5 x ) sin x + (−12 x + 9 x3 ) cos x · J1 (x) Z  1  x3 sin x · J1 (x) dx = −8x3 sin x + (−8 x2 + 5 x4 ) cos x · J0 (x)+ 35   2 + (16 x + 5 x4 ) sin x + (16 x − 12 x3 ) cos x · J1 (x) Z  1  x3 cos x · J1 (x) dx = (8 x2 − 5 x4 ) sin x − 8 x3 cos x · J0 (x)+ 35   3 + (−16 x + 12 x ) sin x + (16 x2 + 5 x4 ) cos x · J1 (x) Z  1  x4 sin x · J0 (x) dx = (96 x3 + 35 x5 ) sin x + (96 x2 − 60 x4 ) cos x · J0 (x)+ 315   2 + (−192 x + 80 x4 ) sin x + (−192 x + 144 x3 − 35 x5 ) cos x · J1 (x) Z

x cos x · J1 (x) dx = −

78

Z

Z

Z

Z

Z

 1  (−96 x2 + 60 x4 ) sin x + (96 x3 + 35 x5 ) cos x · J0 (x)+ 315   + (192 x − 144 x3 + 35 x5 ) sin x + (−192 x2 + 80 x4 ) cos x · J1 (x)

x4 cos x · J0 (x) dx =

 1  (120x2 − 75x4 ) sin x + (−120 x3 + 35 x5 ) cos x · J0 (x)+ 315   + (−240 x + 180 x3 + 35 x5 ) sin x + (240 x2 − 100 x4 ) cos x · J1 (x)

x4 sin x · J1 (x) dx =

 1  (120 x3 − 35 x5 ) sin x + (120 x2 − 75 x4 ) cos x · J0 (x)+ 315   2 + (−240 x + 100 x4 ) sin x + (−240 x + 180 x3 + 35 x5 ) cos x · J1 (x)

x4 cos x · J1 (x) dx =

 1  (−480 x2 + 300 x4 + 63 x6 ) sin x + (480 x3 − 140 x5 ) cos x · J0 (x)+ 693   + (960 x − 720 x3 + 175 x5 ) sin x + (−960 x2 + 400 x4 − 63 x6 ) cos x · J1 (x)

x5 sin x · J0 (x) dx =

 1  (−480 x3 + 140 x5 ) sin x + (−480 x2 + 300 x4 + 63 x6 ) cos x · J0 (x)+ 693   + (960 x2 − 400 x4 + 63 x6 ) sin x + (960 x − 720 x3 + 175 x5 ) cos x · J1 (x)

x5 cos x · J0 (x) dx =

Z

Z

 1  (192x3 − 56x5 ) sin x + (192 x2 − 120 x4 + 21 x6 ) cos x · J0 (x)+ 231   2 + (−384 x + 160 x4 + 21 x6 ) sin x + (−384 x + 288 x3 − 70 x5 ) cos x · J1 (x)

x5 sin x · J1 (x) dx =

 1  (−192 x2 + 120 x4 − 21 x6 ) sin x + (192 x3 − 56 x5 ) cos x · J0 (x)+ 231   + (384 x − 288 x3 + 70 x5 ) sin x + (−384 x2 + 160 x4 + 21 x6 ) cos x · J1 (x) Z x6 sin x · J0 (x) dx =

x5 cos x · J1 (x) dx =

 1  (−1920 x3 + 560 x5 + 77 x7 ) sin x + (−1920 x2 + 1200 x4 − 210 x6 ) cos x · J0 (x)+ 1001   + (3840 x2 − 1600 x4 + 252 x6 ) sin x + (3840 x − 2880 x3 + 700 x5 − 77 x7 ) cos x · J1 (x) Z x6 cos x · J0 (x) dx =

=

 1  (1920 x2 − 1200 x4 + 210 x6 ) sin x + (−1920 x3 + 560 x5 + 77 x7 ) cos x · J0 (x)+ 1001   + (−3840 x + 2880 x3 − 700 x5 + 77 x7 ) sin x + (3840 x2 − 1600 x4 + 252 x6 ) cos x · J1 (x) Z x6 sin x · J1 (x) dx = =

 1  = (−960x2 + 600x4 − 105x6 ) sin x + (960 x3 − 280 x5 + 33 x7 ) cos x · J0 (x)+ 429   + (1920 x − 1440 x3 + 350 x5 + 33 x7 ) sin x + (−1920 x2 + 800 x4 − 126 x6 ) cos x · J1 (x) Z x6 cos x · J1 (x) dx =  1  (−960 x3 + 280 x5 − 33 x7 ) sin x + (−960 x2 + 600 x4 − 105 x6 ) cos x · J0 (x)+ 429   + (1920 x2 − 800 x4 + 126 x6 ) sin x + (1920 x − 1440 x3 + 350 x5 + 33 x7 ) cos x · J1 (x) Z x7 sin x · J0 (x) dx = =

 1  = (13440 x2 − 8400 x4 + 1470 x6 + 143 x8 ) sin x + (−13440 x3 + 3920 x5 − 462 x7 ) cos x · J0 (x)+ 2145   + (−26880 x + 20160 x3 − 4900 x5 + 539 x7 ) sin x + (26880 x2 − 11200 x4 + 1764 x6 − 143 x8 ) cos x · J1 (x) 79

Z

x7 cos x · J0 (x) dx =

 1  (13440 x3 − 3920 x5 + 462 x7 ) sin x + (13440 x2 − 8400 x4 + 1470 x6 + 143 x8 ) cos x · J0 (x)+ = 2145   + (−26880 x2 + 11200 x4 − 1764 x6 + 143 x8 ) sin x + (−26880 x + 20160 x3 − 4900 x5 + 539 x7 ) cos x · J1 (x) Z x7 sin x · J1 (x) dx =  1  = (−15360x3 + 4480x5 − 528x7 ) sin x + (−15360 x2 + 9600 x4 − 1680 x6 + 143 x8 ) cos x · J0 (x)+ 2145   + (30720 x2 − 12800 x4 + 2016 x6 + 143 x8 ) sin x + (30720 x − 23040 x3 + 5600 x5 − 616 x7 ) cos x · J1 (x) Z x7 cos x · J1 (x) dx =  1  (15360 x2 − 9600 x4 + 1680 x6 − 143 x8 ) sin x + (−15360 x3 + 4480 x5 − 528 x7 ) cos x · J0 (x)+ = 2145   + (−30720 x + 23040 x3 − 5600 x5 + 616 x7 ) sin x + (30720 x2 − 12800 x4 + 2016 x6 + 143 x8 ) cos x · J1 (x) Recurrence formulas: Let Z Sn(ν) = xn sin x · Jν (x) dx

Cn(ν) =

,

Z

xn cos x · Jν (x) dx

and σn(ν) = xn sin x · Jν (x) ,

γn(ν) = xn cos x · Jν (x) ,

then holds (0)

(0)

(0)

(1)

Sn(0) =

n2 Cn−1 − nγn + σn+1 − γn+1 , 2n + 1

Cn(0) =

nσn − n2 Sn−1 + γn+1 + σn+1 , 2n + 1

(0)

(0)

(0)

(0)

(0)

(0)

(1)

(0)

(0)

(0)

(1)

Sn(1) =

n(n + 1)Sn−1 − (n + 1)σn + γn+1 + σn+1 , 2n + 1

Cn(1) =

n(n + 1)Cn−1 − (n + 1)γn − σn+1 + γn+1 . 2n + 1

(1)

80

R 1.2.5. Integrals of the type xn · eax · Zν (x) dx a) General facts: Holds Z Z eax J0 (x) dx = e−a·(−x) J0 (−x) dx , therefore the integral on the left hand side is discussed, assuming x ≥ 0 and treating the cases a > 0 and a < 0 separately. Let Hν (x, a) denote the following functions: H1 (x, a) =

∞ X

bk (a) xk

,

H0 (x, a) =

k=1

b2 (a) = 0 ,

ck (a) xk

k=1

with b1 (a) = 1 ,

∞ X

bk+2 (a) = −

a(1 + 2k)bk+1 (a) + (1 + a2 )bk (a) , k(k + 2)

k≥1

and ck (a) = −(k + 1)bk+1 (a) − a bk (a) . Then holds with a ∈ IR Z

x

eat J0 (t) dt = eax [ H1 (x, a) J0 (x) + H0 (x, a) J1 (x)] .

0

In the case a = 0 one has with the Struve functions H1 (x, 0) = x −

πx H1 (x) , 2

H0 (x, 0) =

πx H0 (x) . 2

First terms of the power series: "  5a 4 27 a2 − 8 5 7a 8 a2 − 7 6 400 a4 − 691 a2 + 64 7 x3 2 − x + x − x + x − H1 (x, a) = x − (a + 1) 3 24 360 2 880 100 800  a 1 080 a4 − 3076 a2 + 849 8 9 800 a6 − 41 484 a4 + 22 767 a2 − 1024 9 − x + x − 1 612 800 101 606 400  11a 1 792 a6 − 10 536 a4 + 9 588 a2 − 1 289 10 x + − 1 625 702 400 217 728 a8 − 1 695 080 a6 + 2 303 364 a4 − 617 289 a2 + 16 384 11 x − 160 944 537 600 #  13 67 200 a8 − 668 576 a6 + 1 266 744 a4 − 564 120 a2 + 44 815 a 12 − x + ... 6 437 781 504 000 +

and "

 a 3 3 a2 − 2 4 a 12 a2 − 23 5 60 a4 − 223 a2 + 32 6 H0 (x, a) = −ax + (a + 1) x − x + x − x + x − 2 18 288 7 200 2

2

 a 40 a4 − 242 a2 + 103 7 280 a6 − 2 494 a4 + 2 103 a2 − 128 8 x + x − 28 800 1 411 200  a 2240 a6 − 27512 a4 + 38356 a2 − 6967 9 20160 a8 − 326008 a6 + 677076 a4 − 244839 a2 + 8192 10 − x + x − 90 316 800 7 315 660 800  40 320 a8 − 829 424 a6 + 2 397 216 a4 − 1438 890 a2 + 143 995 11 − x + 146 313 216 000  443 520 a10 − 11 300 944 a8 + 43 320 176 a6 − 38 861 430 a4 + 7 756 835 a2 − 163 840 12 + x − ... . 17 703 899 136 000 −

81

b) The case a > 0 : .. ...................... ........... H1 (x, a) .... .... 3 ... . . ... .. ... . ... . .. .... ... . . .... .. ... ... ... .. ... ..... . . . ... 2 .. ... .. . .... .. . . . . . . .... . .. . . . . . . . ..... .... ... ... . . . ..... ... ... .... ... ..... .. . . .. 1 .... . .... . . . . . . . . . . . . . . .......... ........... ..... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . ........ .............. .... ..... ..... ...... ...... ..... ..... ..... ..... ..... ..... ..... ............. ..... ..... ..... ..... ..... .... ..... ....... ......... ..... ..... ..... .. . .... .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... .... ........ ........ ........ ........ ........ ................ ........ ........ ........ ... .... ...... ......... .. ........ ...... .......... ........ . . 4 . ..... . . . . . . . . . ................................................................................................................................................................................................................................................................................................................................................................................................................................................. ... ....... . ... . .. .... ............ x 2...... 6 8 ..... ... .... ... .. ..... .... . . . . . . ... .... .... ... .... .... ... . ... .... ... . .... . .. .... . . . . . . ... . ... ...... ..... . . . . . . . .. ... ... .... ... .. . . -1 ... . . ..... . ............ ... ... ....... .. .. .... . . . .... ... ... ..... .... . . . . . . ..... ... ... .... . . . . . . . . . ... ... .... .. ............. ... ... .. ...................................................... a = 0 ... . ... -2 ........ . .... . . ... ... .... .. . . .... ... ................... ................ a = 0.1 ..... ... . . ... ...... . .... ..................... ... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... a = 0.2 ..... . ... -3 ... ... ........ ........ ........ ........ a = 0.5 ... ... .... ... .... ..... ..... ..... ..... ..... ..... a = 1 ... .... .... .... ..... . -4 .. . ....... .... H0 (x, a) ....... ...... .......... .... ... .... . . .... ... . ... .. . .... ... . . . . . . . 4 .. ... . .... . ... . .. .... ... ... .... .. ... .... .. ... . . 3 ........ . ... . ....................... . . . . ... .... . . ..... . ... . ... . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ... .... . .. ........... . . . . . . ... . .... .. . .... ...... ............... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . .. ..... .... 2 ... . .. ... ....... .. . . . . . ... . . ... . ... ... . ........ .. .... ............ .......... ........... . . . . . . . . . . . . . . . . . . . .... . . ........ ........ ... ... . ........ ... .... .. ....... .... .. ..... ... ........ .......... . . ... . ... ..... . . ..... . . . . . . . . . . . . . . . . . . ..... ........ . .. 1 ... ........ ... ... . .. ........ ......... ........ ........ ........ ........ ........ ........ ....... ............ ...... . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ..... ...... ..... ....... ..... ..... ..... . . .... .... ..... ..... ..... ................. ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .... ..... ... ... ..... ..... .... ........... .. ..... ..... . . . ... .... . . . . ... .... .......... ....... ........ .... ........... .. .... ..... . 4 .......................................................................................................................................................................................................................................................................................................................................................................................................................... ... .... ..... . x 2 6 . ... 8 ... ..... .... . . . . . . . ...... ...................................................... a = 0 ... ... .... . ... ....... ... .... .. . . ... ................... ................ a = 0.1 . .. ... -1 ....... .. ... . ... ............ ............ ...... a = 0.2 ... .. .... ... ... . .... . .... ........ ........ ........ ........ a = 0.5 ..... ... .... ......... ........... ..... . . . . . -2 ... ..... ..... ..... ..... ..... ..... a = 1

82

The special case a = 1:   Z x 2x3 5 4 19 4 7 x6 4 227 x7 1147 x8 9941 x9 et J0 (t) dt = ex x− + x − x + x + − + + . . . J0 (x)+ 3 12 180 1440 50400 806400 50803200 0    11 5 131 x6 11 x7 239 x8 2039 x9 x4 + x − + − − + . . . J1 (x) + −x + 2x2 − x3 + 9 144 3600 1600 705600 15052800 k 1

bk (1) 1

bk (1) 1.000000000000000

ck (1) -1

ck (1) -1.000000000000000

2

0

0.000000000000000

2

2.000000000000000

3 4

−2/3

-0.666666666666667 0.416666666666667

−1 1/9

-1.000000000000000 0.111111111111111

-0.105555555555556

11 144 131 − 3600 11 1600 239 − 705600 2039 − 15052800 134581 3657830400 313217 − 73156608000 1194317 8851949568000 16109741 424893579264000 517397957 − 71807014895616000 1217807483 2010596417077248000 422808761 − 30158946256158720000 23427152899 − 7720690241576632320000 76121087023 171636883062742056960000 781266674809 − 26775353757787760885760000 5157087816757 9665902706561381679759360000

0.076388888888889

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 12 19 − 180 7 1440 227 50400 1147 − 806400 9941 50803200 979 − 162570240 225107 − 80472268800 1898819 3218890752000 8554759 − 153433792512000 14077813 11047233060864000 18928541 47871343263744000 402561241 − 6433908534647193600 36957033251 8203233381675171840000 21450103637 − 262503468213605498880000 1614496500769 − 84788620232994576138240000 4906209165197 2034926885591869827317760000

0.004861111111111 0.004503968253968 -0.001422371031746 0.000195676650290 -0.000006022012393 -0.000002797323890 0.000000589898554 -0.000000055755377 0.000000001274329 0.000000000395404 -0.000000000062569 0.000000000004505 -0.000000000000082 -0.000000000000019 0.000000000000002

-0.036388888888889 0.006875000000000 -0.000338718820862 -0.000135456526361 0.000036792575183 -0.000004281458758 0.000000134921352 0.000000037914767 -0.000000007205396 0.000000000605695 -0.000000000014019 -0.000000000003034 0.000000000000444 -0.000000000000029 0.000000000000001

... ........ .... .. .... ..... . 0.7 .... . . . . . . . . . .......... . . . . . ...... .. . . . . ..... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . ... . . .. ....... ... .... H0 (x, 1) .... ..... . ... . ..... . ..... .... . ..... . ..... .. .. ........ .... ... ..... .. .. ..... .... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .... ..... ..... ..... ..... ..... ..... . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................... . 0.5 ... . . .... . ... .......................................................................... ..... ... .............................................................. . . . .. . . .... . ..... . . . . . . . . . . . . . . . . . . . . .... ..... . .... ................. ....... ............... .. . ............. .... ... . . . . . . . . . . . . . . ....................... . .... .. H1 (x, 1) .. .... .. . . .. . . .. . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 ... .. .. .... .. . . .... .. . .... .. . .... .. ... .... .. .... .. .. 0.1 .... .. . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... .. ...... . . . . ............................................................................................................................................................................................................................................................................................................................................................................................................ .... .. x 2 4 6 8 ...... . . .... .. - 0.1 .... .... . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . .... 83

Asymptotic formulas for x → +∞ in the case a > 0:  15a 4 a2 − 3 3a 3 (4 a2 − 1) a 1 − − − H1 (x, a) ∼ − − 2 3 5 1 + a2 (1 + a2 )4 x3 (1 + a2 ) x (1 + a2 ) x2 (1 + a2 ) x4  360 a4 − 540 a2 + 45 315a 8 a4 − 20 a2 + 5 20160 a6 − 75600 a4 + 37800 a2 − 1575 − − − − ... 6 7 8 (1 + a2 ) x5 (1 + a2 ) x6 (1 + a2 ) x7  3 a 2 a2 − 3 1 2 a2 − 1 24 a4 − 72 a2 + 9 a H0 (x, a) ∼ + + + + + 2 3 4 5 1 + a2 (1 + a2 ) x (1 + a2 ) x2 (1 + a2 ) x3 (1 + a2 ) x4   15 a 8 a4 − 40 a2 + 15 720 a6 − 5400 a4 + 4050 a2 − 225 315 a 16 a6 − 168 a4 + 210 a2 − 35 + + + + ... 6 7 8 (1 + a2 ) x5 (1 + a2 ) x6 (1 + a2 ) x7 The greater a the better these formulas. They cannot be used with a = 0. The following tables show some relative errors. xk denotes consecutive maxima or minima of this difference. aJ0 (x) + J1 (x) − D0 (x) = 1 + a2 a = 0.1 xk D0 (xk ) 60.226 -4.072E-3 63.622 -1.710E-4 66.565 -2.720E-3 69.863 4.271E-4 72.883 -1.942E-3 76.120 6.932E-4 79.188 -1.478E-3 82.387 7.898E-4 85.485 -1.188E-3 88.661 8.025E-4 91.776 -9.978E-4 91.776 -9.978E-4  D1 (x) =

ea(t−x) J0 (t) dt

a=1 xk D0 (xk ) 2.399 -1.085E-1 6.200 1.879E-2 9.308 -1.068E-2 12.481 6.748E-3 15.639 -4.767E-3 18.791 3.595E-3 21.941 -2.835E-3 25.089 2.310E-3 28.235 -1.929E-3 31.381 1.642E-3 34.525 -1.420E-3 37.670 1.244E-3



1 a + 2 1+a (1 + a2 )2 x

 J0 (x) +

a = 0.3 xk D1 (xk ) 29.538 -2.864E-4 33.053 7.320E-5 36.018 -1.159E-4 39.248 7.100E-5 42.348 -6.756E-5 45.509 5.293E-5 48.642 -4.618E-5 51.788 3.894E-5 54.928 -3.381E-5 58.070 2.933E-5

xk 2.061 6.836 9.729 12.930 16.086 19.240 22.391 25.540 28.687 31.833

84

:

0

a = 0.3 xk D0 (xk ) 13.386 -3.089E-3 15.961 -1.866E-2 19.421 5.504E-3 22.413 -7.812E-3 25.632 5.035E-3 28.741 -4.770E-3 31.900 3.866E-3 35.036 -3.439E-3 38.182 2.988E-3 41.323 -2.666E-3 44.466 2.382E-3 47.608 -2.151E-3

a 1 − 2 1+a (1 + a2 )2 x

a = 0.1 xk D1 (xk ) 111.782 -1.972E-5 115.333 -4.255E-6 118.158 -1.252E-5 121.548 -3.783E-7 124.497 -8.467E-6 127.789 1.493E-6 130.814 -6.122E-6 134.046 2.317E-6 137.118 -4.708E-6 140.313 2.604E-6

x

Z

a=3 xk D0 (xk ) 1.757 -1.101E-2 5.495 2.073E-3 8.759 -1.015E-3 11.956 6.306E-4 15.129 -4.404E-4 18.290 3.299E-4 21.446 -2.590E-4 24.598 2.104E-4 27.748 -1.753E-4 30.896 1.490E-4 34.043 -1.286E-4 37.189 1.126E-4 

a=1 D1 (xk ) -5.622E-2 2.161E-3 -1.174E-3 5.554E-4 -3.201E-4 2.033E-4 -1.384E-4 9.919E-5 -7.393E-5 5.683E-5

Z J1 (x) −

x

ea(t−x) J0 (t) dt

0

xk 1.816 5.526 8.831 12.050 15.237 18.408 21.571 24.728 27.882 31.033

a=3 D1 (xk ) -3.195E-3 2.229E-4 -6.917E-5 3.163E-5 -1.750E-5 1.087E-5 -7.286E-6 5.164E-6 -3.817E-6 2.915E-6

:

If x → +∞, then the follwing direct asymptotic formula holds in the case a > 0: # "∞ Z x ∞ X µk eax X λk at sin x + cos x e · J0 (t) dt ∼ √ xk xk πx 0 k=0

k=0

with λ0 =

λ1 =

a3 + 3 a2 + 9 a − 5

λ2 = µ2 =

λ3 =

a+1 , a2 + 1

8

(a2

2

+ 1)

,

µ0 =

µ1 =

a−1 a2 + 1 −a3 + 3 a2 − 9 a − 5 2

8 (a2 + 1)

−9 a5 + 15 a4 + 30 a3 + 270 a2 − 345 a − 129 3

128 (a2 + 1)

−9 a5 − 15 a4 + 30 a3 − 270 a2 − 345 a + 129 3

128 (a2 + 1)

−75 a7 − 105 a6 − 105 a5 + 525 a4 + 5775 a3 − 12075 a2 − 9555 a + 2655

µ3 =

4

1024 (a2 + 1)

75 a7 − 105 a6 + 105 a5 + 525 a4 − 5775 a3 − 12075 a2 + 9555 a + 2655 4

1024 (a2 + 1)

h 5 i−1 λ4 = 32768 a2 + 1 · [3675 a9 − 4725 a8 + 11340 a7 − 8820 a6 + 92610 a5 + 727650 a4 − −1984500 a3 − 2407860 a2 + 1371195 a + 301035 ] h 5 i−1 µ4 = 32768 a2 + 1 · [3675 a9 + 4725 a8 + 11340 a7 + 8820 a6 + 92610 a5 − 727650 a4 − −1984500 a3 + 2407860 a2 + 1371195 a − 301035 ]

h 6 i−1 λ5 = 262144 a2 + 1 · [59535 a11 + 72765 a10 + 259875 a9 + 280665 a8 + 686070 a7 + 3056130 a6 + +30124710 a5 − 98232750 a4 − 157827285 a3 + 135748305 a2 + 60259815 a − 10896795 ] h 6 i−1 µ5 = 262144 a2 + 1 · [−59535 a11 + 72765 a10 − 259875 a9 + 280665 a8 − 686070 a7 + 3056130 a6 − −30124710 a5 − 98232750 a4 + 157827285 a3 + 135748305 a2 − 60259815 a − 10896795 ]

h 7 i−1 λ6 = 4194304 a2 + 1 · [−2401245 a13 + 2837835 a12 − 13243230 a11 + 14864850 a10 − 34189155 a9 + +49054005 a8 + 160540380 a7 + 2871889020 a6 − 11331475155 a5 − 22569301755 a4 + 25820244450 a3 + −17234307090 a2 − 6264182925 a − 961319205 ] h 7 i−1 µ6 = 4194304 a2 + 1 · [−2401245 a13 − 2837835 a12 − 13243230 a11 − 14864850 a10 − 34189155 a9 − −49054005 a8 + 160540380 a7 − 2871889020 a6 − 11331475155 a5 + 22569301755 a4 + 25820244450 a3 − −17234307090 a2 − 6264182925 a + 961319205 ] Let

" n # Z x n X X λk µk 1 −ax sin x + cos x − e eat · J0 (t) dt Dn (x, a) = √ xk xk πx 0 k=0

k=0

85

describe the ’relative difference’ between the asymptotic approximation and the true function. With a = 0.3, a = 1 and a = 3 one has the following behaviour at 10 ≤ x ≤ 40: ... D (x, a) .................... n ..................... ............ .. ........................ ... .... . .... ... ..... ..... . . 0.001 ...... ... ..... . . . . . ... ... . . . .x ... . . . . .........................................................................................................................................................................................................................................30 ...................................................................................................................................................................................... . .. ...... ....... ... . ............... ..... ..... .... . ...10 . . .. 20 .... .... .... . .. ....... .......... .... ...... ..... ...... ............... .... . . -0.001....... . . . . . . . . . . . . .......... .................... . ... . ..... ..... ...... ....... . . . . . .................. -0.005....... . ....... . ..... .......... .... . . . . . . . . . . . . . . . . . . . . . . . . . -0.01... .. ............... .................... ... .................................. n = 0 ... ... ......... ..... . . a = 0.3 -0.02... .. .... ..... ..... ..... ..... . n = 1 .... ..... .... . ..... ......... n=2 -0.04.......... ...... .. ... ...... -0.06... Note that there is a quadratic scale on the Dn -axis. The first zero of D2 (x, 0.3) is near x = 48. ..D (x, a) .... n .. 0.02 ....... ..... ... ... ... ...... .... .. .. 0.01 ....... .... ... ... ... ....... ............ ... 0.005.... ... ..... . ... ... . .... .................. ... .. .... .... ...... ... ............. ... . . . ... . .... ....... ... . ..................... . . .................. 0.001........ .. ..... ... . . . ... ... ... ... .... ... .. . .. .. ..... ........ .. .. ... .. .. .. . . . . . ... x ... . 30 .... .. ... . ..... . 10. .. .. . . ... ..... . . . ..... .... ....... .... . .... ...... ......... ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................................................................................................................................................................................................................................................................................................................................................................................................................ . ... . .... .. . . .... .... . . . . . . .... ... ... ... ... ... .. ..... ............. ...20 ..... ..... ..... . ... .... .. ... .... ... . .... ... ... ... .. .. .. .. . ....... . . . ..... . .. ... . ..... ....... ... . . ... . . . . . . . . . . . . . . . . . . . . . . . . . -0.001... .. . .. . . . .. . . . . . .. .............. .... ... . . . ... . . . . .... . .. . . ... ........... ... . .... ..... .... .... ............................... n = 0 ... .. ......... ..... . . ... -0.005.... . . ... a=1 .. ..... ..... ..... ..... n = 1 ... .... ... . . . . . . . . . . . . . -0.01.. ........ n=2 ... .. (x, a) n ....D 0.005 ......... ... ... . . 0.003 ........ .... . . 0.002 ...... .... ... ... .............. ... ..... 0.001 ....... .... . ... ................... ... .. ... ................... 0.0005 .......... ..... .... ... . .................... . . ... .... ... ... ....... ...... . . ........................ . . ... .... ... . . . . . . .... 0.0001 ... .. ... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 20 30 . . . . . . . . . . . . ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................x .. . . . . . ... ..... .... ... .... ... ... ... ... .... ..... ...... ..... . . . . . . . . . . . . . . . . . . . . . . . . . -0.0001.. ............. ......... ......... ..... . ... ... ... . . .... ................... ..... ...... .. ... ... .. .. . . . . . . . . . . -0.0005....... . . . . . . . ..... ..... ... . ............................... n = 0 ........ .. ... -0.001 ....... ... .. . ... ..... ..... ..... ..... n = 1 .... .... -0.002 ....... a=3 . ........ n=2 . . . . . -0.003 .......

86

Furthermore, let H∗ν (x, a) denote the following functions: H∗1 (x, a) =

∞ X

b∗k (a) xk

,

H∗0 (x, a) =

k=1

b∗2 (a) = 0 ,

c∗k (a) xk

k=1

with b∗1 (a) = 1 ,

∞ X

b∗k+2 (a) = −

a(1 + 2k)b∗k+1 (a) + (1 − a2 )b∗k (a) , k(k + 2)

k≥1

and c∗k (a) = −(k + 1)b∗k+1 (a) − a b∗k (a) . Then holds with a ∈ IR Z

x

eat I0 (t) dt = eax [ H∗1 (x, a) I0 (x) + H∗0 (x, a) I1 (x)] .

0

In the case a = 0 one has with the Struve functions H∗1 (x, 0) = x −

πx L1 (x) , 2

H∗0 (x, 0) =

πx L0 (x) . 2

With a = 1 holds H∗1 (x, 1) = − H∗0 (x, 1) = x (see page 69). First terms of the power series: H∗1 (x, a) = x − −

a2 − 1 3 5 a3 − 5 a 4 27 a4 − 19 a2 − 8 5 56 a5 − 7 a3 − 49 a 6 x + x − x + x − 3 24 360 2880

400 a6 + 291 a4 − 627 a2 − 64 7 1080 a7 + 1996 a5 − 2227 a3 − 849 a 8 x + x − 100800 1612800 − +

− +

9800 a8 + 31684 a6 − 18717 a4 − 21743 a2 − 1024 9 x + 101606400

19712 a9 + 96184 a7 − 10428 a5 − 91289 a3 − 14179 a 10 x − 1625702400

217728 a10 + 1477352 a8 + 608284 a6 − 1686075 a4 − 600905 a2 − 16384 11 x + 160944537600

873600 a11 + 7817888 a9 + 7776184 a7 − 9134112 a5 − 6750965 a3 − 582595 a 12 x − ... 6437781504000

H∗0 (x, a) = −ax + (a2 − 1)x2 − +

60 a6 + 163 a4 − 191 a2 − 32 6 40 a7 + 202 a5 − 139 a3 − 103 a 7 x − x + 7200 28800 + −

+ − +

a3 − a 3 3 a4 − a2 − 2 4 12 a5 + 11 a3 − 23 a 5 x + x − x + 2 18 288

280 a8 + 2214 a6 − 391 a4 − 1975 a2 − 128 8 x − 1411200

2240 a9 + 25272 a7 + 10844 a5 − 31389 a3 − 6967 a 9 x + 90316800

20160 a10 + 305848 a8 + 351068 a6 − 432237 a4 − 236647 a2 − 8192 10 x − 7315660800

40320 a11 + 789104 a9 + 1567792 a7 − 958326 a5 − 1294895 a3 − 143995 a 11 x + 146313216000

443520 a12 + 10857424 a10 + 32019232 a8 − 4458746 a6 − 31104595 a4 − 7592995 a2 − 163840 12 x − ... 17703899136000

87

. ... ........ .. . .... H∗1 (x, a) ..a = 0.5 . 3 ........ ..a = 1 ... .. .... . . . .... . . .... .. . ... .. ... . . ... . .. .. .. .. .. . . . . ... .. ... ... ... ... .. . 2 ....... ... .. . ... .. . ... ... ... .. ... a = 1.5 . . .. .. ... ... . . . . .... ... ............ ............ ............ ............ ............ ............ ............ .. . ............ .. ............ ............ . . . . . . .... ... . ..... .... .. .. ... .... ....... ..... . . . . . 1 ... .. ... .. . ...... .... .. . . ... ........ ........ ........ ........ ........ ..... =2 ... ........ ........ ........ ........ ...a .... ..... ........ ........ ........ ........ ........ ........ ........ ........ ........ ........ .. .. ... .... .... ............. .... .... .. ... .... .......... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... .....a....= . ...3.. ..... ..... ..... ..... ..... ..... . .... ......... .... ...... .... ... .. .......................................................................................................................................................................................................................................................................................................................................................................................................... .... x .. 2 4 6 8 . ... .. .......... ... ... −H∗ (x, a) a = 0.5 0 .. .. 3 ....... a=1 .. ... ... .. .... .. . . .... . .. .... .. . . .... . .... .. . .... . .. .... . . . .... .. ..... ... ....... y = −H∗0 (x, a) ! 2 .. .. .. ... . . . .... .. .... . .... . .. .. .... . .... . .. .... .. .... . . . .... a = 1.5 .. .... ....... ............ ............ ............ ............ ............ ............ . . . . . . .... .. . ............ ............ ............ ............ ............ ............ 1 ....... . .. .... ....... ........... .... .. ..... .... . . .... ........ ........ ........ ........ ........ .. ...... ........ ...... .... ............ .. ........ ........ ........ .... .... ........ ....a.... =.....2... ........ ........ ........ ........ ........ ........ ........ ........ ........ .... ............ ..... .. ... .... .... ... ... ... . ..... . .... ..... ..... ..... . ............. .... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... ..... a.....=....3. ..... ..... ..... ..... ..... ..... .. ............. . . . . . . ...................................................................................................................................................................................................................................................................................................................................................................................................... ... ... x 2 4 6 8 If 0 < a < 1, then H∗1 (x, a) and −H∗0 (x, a) are growing rapidly with x → +∞.

88

Asymptotic behaviour for x → +∞ and a > 1: H∗1 (x, a)

 15a 4 a2 + 3 a 12 a2 + 3 360 a4 + 540 a2 + 45 1 3a ∼ 2 + + + + + 2 + a − 1 (a − 1)2 x (a2 − 1)3 x2 (a2 − 1)4 x3 (a2 − 1)5 x4 (a2 − 1)6 x5  315a 8 a4 + 20 a2 + 5 20160 a6 + 75600 a4 + 37800 a2 + 1575 + + ... + (a2 − 1)7 x6 (a2 − 1)8 x7  3 a 2 a2 + 3 1 24 a4 + 72 a2 + 9 a 2 a2 + 1 ∗ H0 (x, a) ∼ − 2 − − − − 2 − a − 1 (a − 1)2 x (a2 − 1)3 x2 (a2 − 1)4 x3 (a2 − 1)5 x4  15a 8 a4 + 40 a2 + 15 720 a6 + 5400 a4 + 4050 a2 + 225 − − − (a2 − 1)6 x5 (a2 − 1)7 x6  315 16 a6 + 168 a4 + 210 a2 + 35 a − − ... (a2 − 1)8 x7

Direct asymptotic formula for the case x → +∞, a > 0 : Z

x

eat · I0 (t) dt ∼ √

0

+ + + +

 ∞ X e(1+a)x e(1+a)x a+5 βk (a) √ = 1+ + k 8(1 + a) x 2πx (1 + a) k=0 x 2πx (1 + a)

9 a2 + 42 a + 129 2

128 (1 + a) x2

+

75 a3 + 405 a2 + 1065 a + 2655 3

1024 (1 + a) x3

3675 a4 + 23100 a3 + 67410 a2 + 133980 a + 301035 4

32768 (1 + a) x4

+ +

59535 a5 + 429975 a4 + 1426950 a3 + 3022110 a2 + 5120955 a + 10896795 5

262144 (1 + a) x5

+

2401245 a6 + 19646550 a5 + 73856475 a4 + 173596500 a3 + 301964355 a2 + 465051510 a + 961319205

+

6

4194304 (1 + a) x6 135135 (370345 + 181955 a + 125205 a2 + 81815 a3 + 43435 a4 + 16569 a5 + 3927 a6 + 429 a7 ) 7

33554432 (1 + a) x7

+

# + ...

Some coefficients: k 1 2 3 4 5 6 7

βk (0.1) 0.579545 0.860602 2.029155 6.568555 27.098470 136.064853 805.747313

βk (0.3) 0.509615 0.658330 1.339262 3.717857 13.096614 55.981252 281.633987

βk (1) 0.375000 0.351563 0.512695 1.009369 2.498188 7.442518 25.915913

βk (3) 0.250000 0.164063 0.175781 0.265961 0.526314 1.296183 3.834025

βk (10) 0.170455 0.093556 0.094505 0.142222 0.285290 0.715146 2.150314

With fixed x > 0 and a → +∞ holds  Z x 1 1 1 x2 − 3 2 x2 − 12 x4 − 9 x2 + 60 3 x4 − 51 x2 + 360 at ax e J0 (t) dt ∼ e − 3− 4 + 5 2 + − − + a a a x a x a6 x3 a7 x4 a8 x5 0  x6 − 18 x4 + 345 x2 − 2520 4 x6 − 132 x4 + 2700 x2 − 20160 + + . . . J0 (x)+ a9 x6 a10 x7  x2 − 2 2 x2 − 6 x4 − 7 x2 + 24 3 x4 − 33 x2 + 120 x6 − 15 x4 + 192 x2 − 720 1 1 + + 3 − 4 2 − + + − − 2 a a x a x a5 x3 a6 x4 a7 x5 a8 x6   4 x6 − 96 x4 + 1320 x2 − 5040 x8 − 26 x6 + 729 x4 − 10440 x2 + 40320 − + + . . . J (x) 1 a9 x7 a10 x8 89

and Z x

at

e 0

 −

1 1 x2 + 3 2 x2 + 12 x4 + 9 x2 + 60 3 x4 + 51 x2 + 360 1 + + + + 3+ 4 + 5 2 + a a a x a x a6 x3 a7 x4 a8 x5  x6 + 18 x4 + 345 x2 + 2520 4 x6 + 132 x4 + 2700 x2 + 20160 + + . . . I0 (x)− a9 x6 a10 x7 ax



I0 (t) dt ∼ e

1 1 x2 + 2 2 x2 + 6 x4 + 7 x2 + 24 3 x4 + 33 x2 + 120 x6 + 15 x4 + 192 x2 + 720 + 3 + 4 2 + + + + + 2 a a x a x a5 x3 a6 x4 a7 x5 a8 x6   4 x6 + 96 x4 + 1320 x2 + 5040 x8 + 26 x6 + 729 x4 + 10440 x2 + 40320 + I (x) . 1 a9 x7 a10 x8

c) The case a < 0 : To express this fact clearly it is written a = −α with α > 0. One has the Lipschitz integral (see [11], part I, §21, or the tables of Laplace transforms) Z ∞ Z ∞ 1 1 =√ . ea x J0 (x) dx = e−α x J0 (x) dx = √ 2 1+α 1 + a2 0 0 The representation Z

x

ea t J0 (t) dt = eax [ H1 (x, a) J0 (x) + H0 (x, a) J1 (x)]

0

keeps being true, but H0 (x, a) and H1 (x, a) are rapidly growing with x. For that reason other formulas are more applicable. " # Z x ∞  X 1 1 α x −α x 2k−1 −α t √ −e − ϕk (α) · x · 1+ e J0 (t) dt = √ 2k 1 + α2 1 + α2 k=1 0 with ϕk (α) =

∞ X (−1)i · (2i + 2k)! (−1)k−1 2 2i+2k (2k − 1)! · a i=0 2 · [(i + k)!]2 · a2i

Some first functions:



1 + α2 − α √ 1 + α2 √ 1 (2 α2 − 1) 1 + α2 − 2 α3 √ ϕ2 (α) = · 6 2 1 + α2 √ 1 (8 α4 − 4 α2 + 3) 1 + α2 − 8 α5 √ ϕ3 (α) = · 120 8 1 + α2 √ 1 (16 α6 − 8 α4 + 6 α2 − 5) 1 + α2 − 16 α7 √ ϕ4 (α) = · 5040 16 1 + α2 √ (128 α8 − 64 α6 + 48 α4 − 40 α2 + 35) 1 + α2 − 128 α9 1 √ ϕ5 (α) = · 362 880 128 1 + α2 √ (256 α10 − 128 α8 + 96 α6 − 80 α4 + 70 α2 − 63) 1 + α2 − 256 α11 1 √ ϕ6 (α) = · 29 916 800 256 1 + α2 1 ϕ7 (α) = · 1 307 674 368 000 √ +(1024 α12 − 512 α10 + 384 α8 − 320 α6 + 280 α4 − 252 α2 + 231) 1 + α2 − 1024 α13 √ · 1024 1 + α2 Special values for the case α = 1: √ √ 2 1− 2 √ = 0.292893218813452 , ϕ2 (1) = ϕ1 (1) = = −0.034517796864425 , 12 2+2 2 ϕ1 (α) =

90

1 √ 7 1 1 √ 2+ 2+ = 0.001399110156779 , ϕ4 (1) = − = −0.000028691821664 , 240 960 10080 8960 √ 1 107 ϕ5 (1) = − 2+ = 0.000000355022924 , 725760 46448640 √ 151 1 2+ ϕ6 (1) = − = −0.000000002937686 , 79833600 10218700800 √ 1 167 ϕ7 (1) = − 2+ = 0.000000000017396 , 12454041600 1275293859840 √ 1 1241 ϕ8 (1) = − 2+ = −0.000000000000077 , 2615348736000 2678117105664000 Asymptotic behaviour of ϕk (α) for α → +∞: ϕ3 (1) = −



1 1 3 5 −7 35 −9 ∼ α−1 − α−3 + α−5 − α + α + ... 2 8 16 128 1 + α2

1 −2 3 −4 5 −6 35 −8 α − α + α − α + ... 2 8 16 128 5 −4 35 −6 63 −8 3 α − α + α + ... 3! ϕ2 (α) ∼ − α−2 + 8 16 128 256 5 −2 35 −4 63 −6 231 −8 5! ϕ3 (α) ∼ α − α + α − α ... 16 128 256 1024 63 −4 231 −6 429 −8 35 −2 α + α − α + α + ... 7! ϕ4 (α) ∼ − 128 256 1024 2048 63 −2 231 −4 429 −6 6435 −8 9! ϕ5 (α) ∼ α − α + α − α + ... 256 1024 2048 32768 231 −2 429 −4 6435 −6 12155 −8 11! ϕ6 (α) ∼ − α + α − α + α + ... 1024 2048 32768 65536 6435 −4 12155 −6 46189 −8 429 −2 α − α + α − α + ... 13! ϕ7 (α) ∼ 2048 32768 65536 262144 ϕ1 (α) ∼

Direct asymptotic formula for x → ∞:  Z x 1 e−α x α3 − 3 α2 + 9 α + 5 α−1 −α t e J0 (t) dt ∼ √ + √ − + − 1 + α2 8 (1 + α2 )2 x πx 1 + α2 0 + + − −

3 (3 α5 + 5 α4 − 10 α3 + 90 α2 + 115 α − 43) + 128 (1 + α2 )3 x2

15 (5 α7 − 7 α6 + 7 α5 + 35 α4 − 385 α3 − 805 α2 + 637 α + 177) − 1024 (1 + α2 )4 x3

105 (35 α9 + 45 α8 + 108 α7 + 84 α6 + 882 α5 − 6930 α4 − 18900 α3 + 22932 α2 + 13059 α − 2867) + 32768 (1 + α2 )5 x4

945 s5 34459425 s6 135135 s7 2027025 s8 − − − − 262144 (1 + α2 )6 x5 17179869184 (1 + α2 )7 x6 33554432 (1 + α2 )8 x7 2147483648 (1 + α2 )9 x8  654729075 s10 34459425 s9 + + . . . sin x+ − 17179869184 (1 + α2 )10 x9 274877906944 (1 + α2 )11 x10  1+α α3 + 3 α2 + 9 α − 5 3 (3 α5 − 5 α4 − 10 α3 − 90 α2 + 115 α + 43) + − + + − 1 + α2 8 (1 + α2 )2 x 128 (1 + α2 )3 x2 − −

15 (5 α7 + 7 α6 + 7 α5 − 35 α4 − 385 α3 + 805 α2 + 637 α − 177) − (1 + α2 )4 x3

105 (35 α9 − 45 α8 + 108 α7 − 84 α6 + 882 α5 + 6930 α4 − 18900 α3 − 22932 α2 + 13059 α + 2867) + 32768 (1 + α2 )5 x4 91

+

945 c5 10395 c6 135135 c7 2027025 c8 + − − + 262144 (1 + α2 )6 x5 4194304 (1 + α2 )7 x6 33554432 (1 + α2 )8 x7 2147483648 (1 + α2 )9 x8  34459425 c9 654729075 274877906944c10 + + + . . . ] cos x 17179869184 (1 + α2 )10 x9 274877906944 (1 + α2 )11 x10

s5 = 63 α11 − 77 α10 + 275 α9 − 297 α8 + 726 α7 − 3234 α6 + 31878 α5 + 103950 α4 − 167013 α3 − −143649 α2 + 63767 α + 11531 c5 = 63 α11 + 77 α10 + 275 α9 + 297 α8 + 726 α7 + 3234 α6 + 31878 α5 − 103950 α4 − −167013 α3 + 143649 α2 + 63767 α − 11531

s6 = 231 α13 + 273 α12 + 1274 α11 + 1430 α10 + 3289 α9 + 4719 α8 − 15444 α7 + 276276 α6 + 1090089 α5 − −2171169 α4 − 2483910 α3 + 1657942 α2 + 602615 α − 92479

c6 = 231 α13 − 273 α12 + 1274 α11 − 1430 α10 + 3289 α9 − 4719 α8 − 15444 α7 − 276276 α6 + 1090089 α5 + +2171169 α4 − 2483910 α3 − 1657942 α2 + 602615 α + 92479

s7 = 429 α15 − 495 α14 + 2835 α13 − 3185 α12 + 8385 α11 − 9867 α10 + 9295 α9 + 57915 α8 − 1151865 α7 − −5450445 α6 + 13054041 α5 + 18629325 α4 − 16564405 α3 − 9039225 α2 + 2780805 α + 370345

c7 = 429 α15 + 495 α14 + 2835 α13 + 3185 α12 + 8385 α11 + 9867 α10 + 9295 α9 − 57915 α8 − 1151865 α7 + +5450445 α6 + 13054041 α5 − 18629325 α4 − 16564405 α3 + 9039225 α2 + 2780805 α − 370345

s8 = 6435 α17 + 7293 α16 + 49368 α15 + 55080 α14 + 168980 α13 + 190060 α12 + 312936 α11 + 252824 α10 + +2601170 α9 − 39163410 α8 − 210913560 α7 + 591783192 α6 + 1014047892 α5 − 1126379540 α4 − −819264680 α3 + 378189480 α2 + 100843235 α − 11857475

c8 = 6435 α17 − 7293 α16 + 49368 α15 − 55080 α14 + 168980 α13 − 190060 α12 + 312936 α11 − 252824 α10 + +2601170 α9 + 39163410 α8 − 210913560 α7 − 591783192 α6 + 1014047892 α5 + 1126379540 α4 − −819264680 α3 − 378189480 α2 + 100843235 α + 11857475

s9 = 12155 α19 −13585 α18 +105963 α17 −117249 α16 +414732 α15 −458660 α14 +936700 α13 −990964 α12 + +1771978 α11 − 9884446 α10 + 168589850 α9 + 1001839410 α8 − 3209765988 α7 − 6422303316 α6 + +8562147308 α5 + 7783014460 α4 − 4789707245 α3 − 1916021465 α2 + 450814995 α + 47442055

c9 = 12155 α19 +13585 α18 +105963 α17 +117249 α16 + 414732 α15 + 458660 α14 + 936700 α13 + 990964 α12 + +1771978 α11 + 9884446 α10 + 168589850 α9 − 1001839410 α8 − 3209765988 α7 + 6422303316 α6 + 92

+8562147308 α5 − 7783014460 α4 − 4789707245 α3 + 1916021465 α2 + 450814995 α − 47442055

s10 = 46189 α21 + 51051 α20 + 450450 α19 + 494494 α18 + 1988217 α17 + 2177343 α16 + 5191256 α15 + +5620200 α14 + 9265578 α13 + 12403846 α12 − 53260116 α11 + 1416154740 α10 + 9373133770 α9 − −33702542874 α8 − 77051011752 α7 + 119870062312 α6 + 130763372649 α5 − 100583852145 α4 − −53645367790 α3 + 18934229790 α2 + 3986102589 α − 379582629

c10 = 46189 α21 − 51051 α20 + 450450 α19 − 494494 α18 + 1988217 α17 − 2177343 α16 + 5191256 α15 − −5620200 α14 + 9265578 α13 − 12403846 α12 − 53260116 α11 − 1416154740 α10 + 9373133770 α9 + +33702542874 α8 − 77051011752 α7 − 119870062312 α6 + 130763372649 α5 + 100583852145 α4 − −53645367790 α3 − 18934229790 α2 + 3986102589 α + 379582629 In the special case α = 1 holds x

Z

−t

e 0

e−x 1 J0 (t) dt ∼ √ + √ πx 2

∞ X s∗k xk

"

! sin x +

k=0

∞ X c∗k xk

!

# cos x

k=0

with k

s∗k

s∗k

c∗k

c∗k

0 1

0 − 38

0 -0.375000000000000

-1

-1 0.250000000000000

2

15 32 315 − 1024 3465 − 4096 1507275 262144 22837815 − 1048576 1422025605 33554432 29462808375 134217728 − 56125340496225 17179869184 1515749532221925 68719476736

0.468750000000000

3 4 5 6 7 8 9 10

1 4 21 128 − 405 512 59325 32768 − 284445 131072 38887695 − 4194304 1693106415 16777216 1167021130275 − 2147483648 11825475336675 8589934592 2498294907783675 274877906944

-0.307617187500000 -0.845947265625000 5.749797821044922 -21.77983760833740 42.37966552376747 219.5150284096599 -3266.924788257165 22057.05870033016

0.164062500000000 -0.791015625000000 1.810455322265625 -2.170143127441406 -9.271548986434937 100.9170064330101 -543.4365618391894 1376.666517075500 9088.743928382155

The Laplace transform of I0 (x) exists only in the case α > 1: Z ∞ Z ∞ 1 1 ax ∗E ∗ =√ . e I0 (x) dx = e−α x I0 (x) dx = √ 2 2 α −1 a −1 0 0 If α > 1 one has Z

x −α t

e

I0 (t) dt = √

0

with ϕ∗k (α)

1 α2 − 1

" −α x

−e



1 α2 − 1

+

∞ X

ϕ∗k (α)

2k−1

·x

k=1

∞ X 1 (2i + 2k)! = (2k − 1)! · a2 i=0 22i+2k · [(i + k)!]2 · a2i

This series fails to converge in the case 0 < α ≤ 1. If α = 1, then see page 69 for solutions with elementary functions.

93

α x · 1+ 2k 

#

Some first functions ϕ∗k (α) :

√ α − α2 − 1 = √ 2 α −1 √ 3 1 2α − (2 α2 + 1) α2 − 1 ∗ √ ϕ2 (α) = · 6 2 α2 − 1 √ 1 8α5 − (8 α4 + 4 α2 + 3) α2 − 1 ∗ √ ϕ3 (α) = · 120 8 α2 − 1 √ 16α7 − (16 α6 + 8 α4 + 6 α2 + 5) α2 − 1 1 ∗ √ ϕ4 (α) = · 5 040 16 α2 − 1 √ 1 128α9 − (128 α8 + 64 α6 + 48 α4 + 40 α2 + 35) α2 − 1 ∗ √ ϕ5 (α) = · 362 880 128 α2 − 1 √ 1 (256 α10 + 128 α8 + 96 α6 + 80 α4 + 70 α2 + 63) α2 − 1 ∗ √ ϕ6 (α) = · 39 916 800 256 α2 − 1 ϕ∗1 (α)

Asymptotic behaviour of ϕ∗k (α) for α → +∞: √

1 α2

−1

∼ α−1 +

1 −3 3 −5 5 −7 35 −9 α + α + α + α + ... 2 8 16 128

1 −2 3 −4 5 −6 35 −8 α + α + α + α + ... 2 8 16 128 5 −4 35 −6 63 −8 3 α + α + α + ... 6 ϕ∗2 (α) ∼ α−2 + 8 16 128 256 5 −2 35 −4 63 −6 231 −8 120 ϕ∗3 (α) ∼ α + α + α + α + ... 16 128 256 1024 35 −2 63 −4 231 −6 429 −8 5 040 ϕ∗4 (α) ∼ α + α + α + α + ... 128 256 1024 2048 63 −2 231 −4 429 −6 6435 −8 362 880 ϕ∗5 (α) ∼ α + α + α + α + ... 256 1024 2048 32768 231 −2 429 −4 6435 −6 12155 −8 39 916 800 ϕ∗6 (α) ∼ α + α + α + α + ... 1024 2048 32768 65536 6435 −4 12155 −6 46189 −8 429 −2 α + α + α + α + ... 6 227 020 800 ϕ∗7 (α) ∼ 2048 32768 65536 262144 If 0 < α ≤ 1 ⇐⇒ −1 ≤ a < 0 and x is not very large, then H∗ν (x, a) may be used. With 0 < α < 1, x >> 1 one has the direct asymptotic formula ϕ∗1 (α) ∼

Z

x −α t

e 0



 ∞ e(1−α)x X wk (α) e(1−α )x 1 α−5 9 α2 − 42 α + 129 √ I0 (t) dt ∼ √ = − − − 1 − α 8 (1 − α)2 x 128 (1 − α)3 x2 2πx k=0 xk 2πx

75 α3 − 405 α2 + 1065 α − 2655 3675 α4 − 23100 α3 + 67410 α2 − 133980 α + 301035 − − 1024 (1 − α)4 x3 32768 (1 − α)5 x4 − −

59535 α5 − 429975 α4 + 1426950 α3 − 3022110 α2 + 5120955 α − 10896795 − 262144 (1 − α)6 x5

10395 z6 135135 z7 2027025 z8 · − · − · − 4194304 (1 − α)7 x6 33554432 (1 − α)8 x7 2147483648 (1 − α)9 x8  34459425 z9 654729075 z10 − · − · + . . . 17179869184 (1 − α)10 x9 274877906944 (1 − α)11 x10 z6 = 231 α6 − 1890 α5 + 7105 α4 − 16700 α3 + 29049 α2 − 44738 α + 92479

z7 = 429 α7 − 3927 α6 + 16569 α5 − 43435 α4 + 81815 α3 − 125205 α2 + 181955 α − 370345 z8 = 6435 α8 −65208 α7 +305844 α6 −890568 α5 +1840370 α4 −2978440 α3 +4186740 α2 −5874040 α+11857475 94

z9 = 12155 α9 −135135 α8 +698412 α7 −2244396 α6 +5093802 α5 −8893010 α4 +12934780 α3 −17184540 α2 + +23605555 α − 47442055 z10 = 46189 α

10

9

− 559130 α + 3159585 α8 − 11129976 α7 + 27654858 α6 − 52390044 α5 + 80843770 α4 − −109020920 α3 + 139554825 α2 − 189306330 α + 379582629

The first functions wk (α): x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

w0 (α) 1.1111E+00 1.2500E+00 1.4286E+00 1.6667E+00 2.0000E+00 2.5000E+00 3.3333E+00 5.0000E+00 1.0000E+01

w1 (α) 7.5617E-01 9.3750E-01 1.1990E+00 1.5972E+00 2.2500E+00 3.4375E+00 5.9722E+00 1.3125E+01 5.1250E+01

w2 (α) 1.3384E+00 1.8457E+00 2.6697E+00 4.1102E+00 6.8906E+00 1.3066E+01 3.0095E+01 9.8789E+01 7.6945E+02

w3 (α) 3.7992E+00 5.8594E+00 9.6392E+00 1.7248E+01 3.4600E+01 8.1848E+01 2.5104E+02 1.2352E+03 1.9237E+04

w4 (α) 1.4899E+01 2.5775E+01 4.8356E+01 1.0080E+02 2.4242E+02 7.1645E+02 2.9292E+03 2.1617E+04 6.7330E+05

w5 (α) 7.4749E+01 1.4527E+02 3.1119E+02 7.5638E+02 2.1822E+03 8.0606E+03 4.3938E+04 4.8639E+05 3.0298E+07

w6 (α) 4.5743E+02 9.9943E+02 2.4459E+03 6.9345E+03 2.4006E+04 1.1084E+05 8.0554E+05 1.3376E+07 1.6664E+09

w7 (α) 3.3056E+03 8.1226E+03 2.2714E+04 7.5126E+04 3.1208E+05 1.8011E+06 1.7453E+07 4.3471E+08 1.0832E+11

With fixed x > and a = −α → −∞ holds Z x 3 5 35 63 1 1 e−α t J0 (t) dt ∼ + − + ... = − 3+ 5− 7 9 a 2a 8a 16a 128a 256a11 0 = and

Z

1 0.5 0.375 0.3125 0.2734375 0.24609375 − + − + ... − 3 + a a a5 a7 a9 a11

x

e−α t I0 (t) dt ∼

0

1 1 3 5 35 63 + 3+ 5+ + + + ... . 7 9 a 2a 8a 16a 128a 256a11

d) Integrals: Concerning the case ’a = ±1 and modified Bessel function’ see page 69. Z Z ax ax e J1 (x) dx = −e J0 (x) + a eax J0 (x) dx Z

eax I1 (x) dx = eax I0 (x) − a

Z

eax I0 (x) dx

 Z ax x a J (x) + J (x) − eax J0 (x) dx 0 1 a2 + 1 a2 + 1 a2 + 1   Z Z ax x a ax ax xe I0 (x) dx = e I (x) − I (x) − eax I0 (x) dx 0 1 a2 − 1 a2 − 1 a2 − 1   Z Z x ax 1 ax ax xe J1 (x) dx = e − 2 J0 (x) + J1 (x) + 2 eax J0 (x) dx a +1 1 + a2 a +1   Z Z x ax 1 xeax I1 (x) dx = eax − 2 I0 (x) + 2 I1 (x) + 2 eax I0 (x) dx a −1 a −1 a −1 Z

xeax J0 (x) dx = eax



 Z a(a2 + 1)x2 + (−2a2 + 1)x (a2 + 1)x2 − 3ax 2a2 − 1 x e J0 (x) dx = e J (x) + J (x) + eax J0 (x) dx 0 1 (a2 + 1)2 (a2 + 1)2 (a2 + 1)2   Z Z 2 2 2 −(a2 − 1)x2 + 3ax 2 a2 + 1 2 ax ax a(a − 1)x − (2a + 1)x x e I0 (x) dx = e I0 (x) + I1 (x) + 2 eax I0 (x) dx (a2 − 1)2 (a2 − 1)2 (a − 1)2   Z Z −(a2 + 1)x2 + 3 ax a(a2 + 1)x2 + (2 − a2 )x 3a x2 eax J1 (x) dx = eax J (x) + J (x) − eax J0 (x) dx 0 1 (a2 + 1)2 (a2 + 1)2 (a2 + 1)2   Z Z −(a2 − 1)x2 + 3 ax a(a2 − 1)x2 − (a2 + 2)x 3a x2 eax I1 (x) dx = eax I (x) + I (x) − eax I0 (x) dx 0 1 (a2 − 1)2 (a2 − 1)2 (a2 − 1)2 Z

2 ax

ax



95

"

2

   x3 − 3 a2 − 2 1 + a2 x2 + 3 a 2 a2 − 3 x J0 (x)+ x e J0 (x) dx = e (a2 + 1)3 # 2  Z 1 + a2 x3 − 5 a 1 + a2 x2 + (11 a2 − 4)x 3a(2a2 − 3) + J1 (x) − eax J0 (x) dx (a2 + 1)3 (a2 + 1)3 " 2    Z a a2 − 1 x3 + − 3 a2 + 2 a2 − 1 x2 + 3 a 2 a2 + 3 x 3 ax ax x e I0 (x) dx = e I0 (x)+ (a2 − 1)3 # 2  Z − a2 − 1 x3 + 5 a a2 − 1 x2 − (11 a2 + 4)x 3a (2a2 + 3) + I (x) − eax I0 (x) dx 1 (a2 − 1)3 (a2 − 1)3 " 2   Z − 1 + a2 x3 + 5 a 1 + a2 x2 − 3 4 a2 − 1 x 3 ax ax J0 (x)+ x e J1 (x) dx = e (a2 + 1)3 #  2   Z a 1 + a2 x3 − 2 a2 − 3 1 + a2 x2 + a 2 a2 − 13 x 12a2 − 3 + J (x) + eax J0 (x) dx 1 (a2 + 1)3 (a2 + 1)3 "  2 Z − a2 − 1 x3 + 5 a a2 − 1 x2 − 3(4a2 + 1)x 3 ax ax x e I1 (x) dx = e I0 (x)+ (a2 − 1)3 # 2 Z a a2 − 1 x3 − (2a2 + 3)(a2 − 1)x2 + a(2a2 + 13)x 3(4a2 + 1) + I1 (x) − eax I0 (x) dx (a2 − 1)3 (a2 − 1)3 Z

3 ax

ax

Let Z

a 1 + a2

" n ax

ax

n ax

ax

x e Jν (x) dx = e and Z

" x e Iν (x) dx = e

# Z (ν) (ν) (ν) Pn Qn Rn J (x) + J (x) + eax J0 (x) dx 0 1 (a2 + 1)n (a2 + 1)n (a2 + 1)n

# Z P(ν) Q(ν) R(ν) n n n eax I0 (x) dx , I (x) + I (x) + 0 1 (a2 − 1)n (a2 − 1)n (a2 − 1)n

then holds (0)

P4

= a 1 + a2 (0)

3

 2   x4 − 4 a2 − 3 1 + a2 x3 + a 12 a2 − 23 1 + a2 x2 + (−24 a4 + 72 a2 − 9)x

Q4 = 1 + a2

3

x4 − 7 a 1 + a2

2

   x3 + 26 a2 − 9 1 + a2 x2 − 5 a 10 a2 − 11 x

(0)

R4 = 24 a4 − 72 a2 + 9 3  2   (0) P4 = a a2 − 1 x4 − 4 a2 + 3 a2 − 1 x3 + a 12 a2 + 23 a2 − 1 x2 − (24 a4 + 72 a2 + 9)x 3 2    (0) Q4 = − a2 − 1 x4 + 7a a2 − 1 x3 − 26 a2 + 9 a2 − 1 x2 + 5 a 10 a2 + 11 x (0)

R4 = 24 a4 + 72 a2 + 9 3 2    = − 1 + a2 x4 + 7 a 1 + a2 x3 − 27 a2 − 8 1 + a2 x2 + 15 a 4 a2 − 3 x 3  2   = a 1 + a2 x4 − 3 a2 − 4 1 + a2 x3 + a 6 a2 − 29 1 + a2 x2 + (−6 a4 + 83 a2 − 16)x  (1) R4 = −15a 4 a2 − 3 (1)

P4

(1)

Q4

(1)

Q4

3 2    (1) P4 = − a2 − 1 x4 + 7 a a2 − 1 x3 − 27 a2 + 8 a2 − 1 x2 + 15 a 4 a2 + 3 x  3 2   = a a2 − 1 x4 − 4 + 3 a2 a2 − 1 x3 + a 6 a2 + 29 a2 − 1 x2 − (6 a4 + 83 a2 + 16)x 96

 (1) R4 = −15a 4 a2 + 3 (0)

P5

 2  3 x5 − 5 a2 − 4 a2 + 1 x4 + a 20 a2 − 43 a2 + 1 x3 −    − a2 + 1 60 a4 − 223 a2 + 32 x2 + 15 8 a4 − 40 a2 + 15 ax  2 3 4 (0) Q5 = a2 + 1 x5 − 9 a a2 + 1 x4 + 47 a2 − 16 a2 + 1 x3 −   −7 a 22 a2 − 23 a2 + 1 x2 + (274 a4 − 607 a2 + 64)x  (0) R5 = −15a 8 a4 − 40 a2 + 15

= a 1 + a2

 3  2 x5 − 4 + 5 a2 a2 − 1 x4 + a 20 a2 + 43 a2 − 1 x3 −    − 60 a4 + 223 a2 + 32 a2 − 1 x2 + 15 a 8 a4 + 40 a2 + 15 x 4 3  2   = − a2 − 1 x5 + 9 a a2 − 1 x4 − 16 + 47 a2 a2 − 1 x3 + 7 a 22 a2 + 23 a2 − 1 x2 − (0)

P5 = a a2 − 1

(0)

Q5

4

4

−(274 a4 + 607 a2 + 64)x  (0) R5 = −15a 8 a4 + 40 a2 + 15

(1)

P5

4 3  2   = − a2 + 1 x5 + 9 a2 + 1 ax4 − 3 16 a2 − 5 a2 + 1 x3 + 21 a 8 a2 − 7 a2 + 1 x2 +

(1)

Q5

+(−360 a4 + 540 a2 − 45)x 4  3  2 = a a2 + 1 x5 − −5 + 4 a2 a2 + 1 x4 + 3 a 4 a2 − 17 a2 + 1 x3 −    −3 a2 + 1 8 a4 − 82 a2 + 15 x2 + 3 a 8 a4 − 194 a2 + 113 x (1)

R5 = 360 a4 − 540 a2 + 45 4 3  2   (1) P5 = − a2 − 1 x5 + 9 a a2 − 1 x4 − 3 16 a2 + 5 a2 − 1 x3 + 21 a 8 a2 + 7 a2 − 1 x2 −

(1)

Q5

−(360 a4 + 540 a2 + 45)x 4  3  2 = a a2 − 1 x5 − 4 a2 + 5 a2 − 1 x4 + 3a 4 a2 + 17 a2 − 1 x3 −    −3 a2 − 1 8 a4 + 82 a2 + 15 x2 + 3 a 8 a4 + 194 a2 + 113 x (1)

R5 = 360 a4 + 540 a2 + 45 5  4  3 = a a2 + 1 x6 − 6 a2 − 5 a2 + 1 x5 + 3 a 10 a2 − 23 a2 + 1 x4 −  2   −3 40 a4 − 166 a2 + 25 a2 + 1 x3 + 9 a a2 + 1 40 a4 − 242 a2 + 103 x2 + (0)

P6

(0)

Q6

+(−720 a6 + 5400 a4 − 4050 a2 + 225)x 5 4  3  2 = a2 + 1 x6 − 11 a a2 + 1 x5 + 74 a2 − 25 a2 + 1 x4 − 9 a 38 a2 − 39 a2 + 1 x3 +    +9 a2 + 1 116 a4 − 244 a2 + 25 x2 − 63 28 a4 − 104 a2 + 33 ax (0)

R6 = 720 a6 − 5400 a4 + 4050 a2 − 225 5  4  3 (0) P6 = a a2 − 1 x6 − 6 a2 + 5 a2 − 1 x5 + 3 a 10 a2 + 23 a2 − 1 x4 −  2   −3 40 a4 + 166 a2 + 25 a2 − 1 x3 +9 a 40 a4 + 242 a2 + 103 a2 − 1 x2 −(720 a6 +5400 a4 +4050 a2 +225)x 5 4  3  2 (0) Q6 = − a2 − 1 x6 + 11a a2 − 1 x5 − 74 a2 + 25 a2 − 1 x4 + 9 a 38 a2 + 39 a2 − 1 x3 −    −9 116 a4 + 244 a2 + 25 a2 − 1 x2 + 63 a 28 a4 + 104 a2 + 33 x 97

(0)

R6 = 720 a6 + 5400 a4 + 4050 a2 + 225  2  3 4 5 = − a2 + 1 x6 + 11 a a2 + 1 x5 − 3 25 a2 − 8 a2 + 1 x4 + 9 a 40 a2 − 37 a2 + 1 x3 −    −3 a2 + 1 400 a4 − 691 a2 + 64 x2 + 315 8 a4 − 20 a2 + 5 ax 5  4  3 (1) Q6 = a a2 + 1 x6 − 5 a2 − 6 a2 + 1 x5 + a 20 a2 − 79 a2 + 1 x4 −    2 −3 20 a4 − 179 a2 + 32 a2 + 1 x3 + 3 a a2 + 1 40 a4 − 718 a2 + 397 x2 +

(1)

P6

+(−120 a6 + 4554 a4 − 5337 a2 + 384)x  (1) R6 = −315 8 a4 − 20 a2 + 5 a  2  3 x5 − 3 25 a2 + 8 a2 − 1 x4 + 9 a 40 a2 + 37 a2 − 1 x3 −    −3 400 a4 + 691 a2 + 64 a2 − 1 x2 + 315 a 8 a4 + 20 a2 + 5 x 5  4  3 (1) Q6 = a a2 − 1 x6 − 5 a2 + 6 a2 − 1 x5 + a 20 a2 + 79 a2 − 1 x4 −    2 −3 20 a4 + 179 a2 + 32 a2 − 1 x3 + 3 a a2 − 1 40 a4 + 718 a2 + 397 x2 −

(1)

P6 = − a2 − 1

5

x6 + 11 a a2 − 1

4

−(120 a6 + 4554 a4 + 5337 a2 + 384)x  (1) R6 = −315 8 a4 + 20 a2 + 5 a  5  4 x7 − 7 a2 − 6 a2 + 1 x6 + a 42 a2 − 101 a2 + 1 x5 −  3  2 −3 70 a4 − 311 a2 + 48 a2 + 1 x4 + 3 a 280 a4 − 1882 a2 + 841 a2 + 1 x3 +    −9 a2 + 1 280 a6 − 2494 a4 + 2103 a2 − 128 x2 + 315 16 a6 − 168 a4 + 210 a2 − 35 ax 6 5  4  3 = a2 + 1 x7 − 13 a a2 + 1 x6 + 107 a2 − 36 a2 + 1 x5 − 11 58 a2 − 59 a2 + 1 ax4 +  2   +9 306 a4 − 631 a2 + 64 a2 + 1 x3 − 9 a2 + 1 892 a4 − 3144 a2 + 969 ax2 + (0)

P7

(0)

Q7

= a 1 + a2

6

+(13068 a6 − 73188 a4 + 46575 a2 − 2304)x  (0) R7 = −315 16 a6 − 168 a4 + 210 a2 − 35 a

(0)

Q7

6  5  4 (0) P7 = a a2 − 1 x7 − 7 a2 + 6 a2 − 1 x6 + a 101 + 42 a2 a2 − 1 x5 −  3  2 −3 70 a4 + 311 a2 + 48 a2 − 1 x4 + 3 a 280 a4 + 1882 a2 + 841 a2 − 1 x3 −    −9 280 a6 + 2494 a4 + 2103 a2 + 128 a2 − 1 x2 + 315 a 16 a6 + 168 a4 + 210 a2 + 35 x 6 5  4  3 = − a2 − 1 x7 + 13 a a2 − 1 x6 − 107 a2 + 36 a2 − 1 x5 + 11 a 59 + 58 a2 a2 − 1 x4 −  2   −9 306 a4 + 631 a2 + 64 a2 − 1 x3 + 9 a 892 a4 + 3144 a2 + 969 a2 − 1 x2 − −(13068 a6 + 73188 a4 + 46575 a2 + 2304)x  (0) R7 = −315a 16 a6 + 168 a4 + 210 a2 + 35

(1)

P7

= − 1 + a2

6

5  4  3 x7 + 13 a a2 + 1 x6 − 108 a2 − 35 a2 + 1 x5 + 33 a 20 a2 − 19 a2 + 1 x4 −

 2   −3 1000 a4 − 1828 a2 + 175 a2 + 1 x3 + 9 a a2 + 1 1080 a4 − 3076 a2 + 849 x2 +

(1)

Q7

+(−20160 a6 + 75600 a4 − 37800 a2 + 1575)x 6  5  4 = a a2 + 1 x7 − 6 a2 − 7 a2 + 1 x6 + a 30 a2 − 113 a2 + 1 x5 − 98

 2  3 − 120 a4 − 992 a2 + 175 a2 + 1 x4 + 9 a 40 a4 − 624 a2 + 337 a2 + 1 x3 −    −9 a2 + 1 80 a6 − 2248 a4 + 2502 a2 − 175 x2 + 9 a 80 a6 − 4408 a4 + 8654 a2 − 1873 x (1)

R7 = 20160 a6 − 75600 a4 + 37800 a2 − 1575  4 5 6 (1) P7 = − a2 − 1 x7 + 13 a a2 − 1 x6 − 108 a2 + 35 a2 − 1 x5 +  2  3 +33 a 20 a2 + 19 a2 − 1 x4 − 3 1000 a4 + 1828 a2 + 175 a2 − 1 x3 +   +9 a 1080 a4 + 3076 a2 + 849 a2 − 1 − (20160 a6 + 75600 a4 + 37800 a2 + 1575)x 6  5  4 (1) Q7 = a a2 − 1 x7 − 6 a2 + 7 a2 − 1 x6 + a 30 a2 + 113 a2 − 1 x5 −  3  2 − 120 a4 + 992 a2 + 175 a2 − 1 x4 + 9 a 40 a4 + 624 a2 + 337 a2 − 1 x3 −    −9 80 a6 + 2248 a4 + 2502 a2 + 175 a2 − 1 x2 + 9 a 80 a6 + 4408 a4 + 8654 a2 + 1873 x (1)

R7 = 20160 a6 + 75600 a4 + 37800 a2 + 1575  5  6 7 = a a2 + 1 x8 − 8 a2 − 7 a2 + 1 x7 + a 56 a2 − 139 a2 + 1 x6 −  3  4 − 336 a4 − 1564 a2 + 245 a2 + 1 x5 + 3 a 560 a4 − 4028 a2 + 1847 a2 + 1 x4 −  2 −3 2240 a6 − 22056 a4 + 19524 a2 − 1225 a2 + 1 x3 +   +9 a a2 + 1 2240 a6 − 27512 a4 + 38356 a2 − 6967 x2 + (0)

P8

+(−40320 a8 + 564480 a6 − 1058400 a4 + 352800 a2 − 11025)x 7 6  5  4 (0) Q8 = a2 + 1 x8 − 15 a a2 + 1 x7 + 146 a2 − 49 a2 + 1 x6 − 13 a 82 a2 − 83 a2 + 1 x5 +  3  2 + 5944 a4 − 12136 a2 + 1225 a2 + 1 x4 − 99 a 248 a4 − 856 a2 + 261 a2 + 1 x3 +    +9 a2 + 1 7696 a6 − 40888 a4 + 25266 a2 − 1225 x2 − 9 a 12176 a6 − 95912 a4 + 101978 a2 − 15159 x (0)

R8 = 40320 a8 − 564480 a6 + 1058400 a4 − 352800 a2 + 11025 7  6  5 (0) P8 = a a2 − 1 x8 − 8 a2 + 7 a2 − 1 x7 + a 56 a2 + 139 a2 − 1 x6 −  4  3 − 336 a4 + 1564 a2 + 245 a2 − 1 x5 + 3 a 560 a4 + 4028 a2 + 1847 a2 − 1 x4 −  2 −3 2240 a6 + 22056 a4 + 19524 a2 + 1225 a2 − 1 x3 +   +9 a 2240 a6 + 27512 a4 + 38356 a2 + 6967 a2 − 1 x2 −

(0)

Q8

−(40320 a8 + 564480 a6 + 1058400 a4 + 352800 a2 + 11025)x 7 6  5  4 = − a2 − 1 x8 + 15 a a2 − 1 x7 − 146 a2 + 49 a2 − 1 x6 + 13 a 82 a2 + 83 a2 − 1 x5 −  3  2 − 5944 a4 + 12136 a2 + 1225 a2 − 1 x4 + 99 a 248 a4 + 856 a2 + 261 a2 − 1 x3 −   −9 7696 a6 + 40888 a4 + 25266 a2 + 1225 a2 − 1 x2 +  +9a 12176 a6 + 95912 a4 + 101978 a2 + 15159 x (0)

R8 = 40320 a8 + 564480 a6 + 1058400 a4 + 352800 a2 + 11025

(1)

P8

7 6  5  4 = − a2 + 1 x8 + 15 a a2 + 1 x7 − 3 49 a2 − 16 a2 + 1 x6 + 39 a 28 a2 − 27 a2 + 1 x5 −

 3  2 −9 700 a4 − 1317 a2 + 128 a2 + 1 x4 + 99 a 280 a4 − 844 a2 + 241 a2 + 1 x3 −    −9 a2 + 1 9800 a6 − 41484 a4 + 22767 a2 − 1024 x2 + 2835 a 64 a6 − 336 a4 + 280 a2 − 35 x 99

 5  6 7 (1) Q8 = a a2 + 1 x8 − 7 a2 − 8 a2 + 1 x7 + 3 a 14 a2 − 51 a2 + 1 x6 −  3  4 −3 70 a4 − 549 a2 + 96 a2 + 1 x5 + 3 a 280 a4 − 4016 a2 + 2139 a2 + 1 x4 −    2 −9 280 a6 − 6816 a4 + 7407 a2 − 512 a2 + 1 x3 +9 a a2 + 1 560 a6 − 22872 a4 + 42666 a2 − 8977 x2 + +(−5040 a8 + 382248 a6 − 1130706 a4 + 490599 a2 − 18432)x  (1) R8 = −2835a 64 a6 − 336 a4 + 280 a2 − 35

(1)

P8 = − a2 − 1

7

x8 + 15 a a2 − 1

6

x7 − 3 49 a2 + 16



a2 − 1

5

 4 x6 + 39 a 28 a2 + 27 a2 − 1 x5 −

 2  3 −9 700 a4 + 1317 a2 + 128 a2 − 1 x4 + 99 a 280 a4 + 844 a2 + 241 a2 − 1 x3 −    −9 9800 a6 + 41484 a4 + 22767 a2 + 1024 a2 − 1 x2 + 2835 a 64 a6 + 336 a4 + 280 a2 + 35 x 7  6  5 (1) Q8 = a a2 − 1 x8 − 7 a2 + 8 a2 − 1 x7 + 3 a 14 a2 + 51 a2 − 1 x6 −  4  3 −3 70 a4 + 549 a2 + 96 a2 − 1 x5 + 3 a 280 a4 + 4016 a2 + 2139 a2 − 1 x4 −    2 −9 280 a6 + 6816 a4 + 7407 a2 + 512 a2 − 1 x3 +9 a 560 a6 + 22872 a4 + 42666 a2 + 8977 a2 − 1 x2 − −(5040 a8 + 382248 a6 + 1130706 a4 + 490599 a2 + 18432)x  (1) R8 = −2835a 64 a6 + 336 a4 + 280 a2 + 35 Recurrence formulas: Let J(ν) n = then holds

Z

I(ν) n =

xn eax Jν (x) dx ,

Z

xn eax Iν (x) dx ,

(0)

(1) xn+1 eax [aJ0 (x) + J1 (x)] − (n + 1) a J(0) n − nJn , a2 + 1

(1)

(1) xn+1 eax [aJ1 (x) − J0 (x)] + (n + 1) J(0) n − a n Jn a2 + 1

(0)

(1) xn+1 eax [aI0 (x) − I1 (x)] − (n + 1) a I(0) n + nIn , a2 − 1

(1)

(1) xn+1 eax [aI1 (x) − I0 (x)] + (n + 1) I(0) n − a n In . 2 a −1

Jn+1 = Jn+1 = and In+1 = In+1 = e) Special Cases:

   i √ x h√ x x J0 (x) dx = 2x J0 (x) + 2(x − 2) J1 (x) exp √ x exp √ 3 2 2     Z h i √ √ x x x 2 √ √ x exp − J0 (x) dx = − 2x J0 (x) + 2(x + 2) J1 (x) exp − 3 2 2 r ! r ! Z h i √ 3 x √ 2 3 3 2 x exp x J0 (x) dx = ( 6x − 2 x) J0 (x) + (x − 6x + 2) J1 (x) exp x 2 5 2 r ! r ! Z i √ 3 xh √ 2 3 3 2 x exp − x J0 (x) dx = −( 6x + 2 x) J0 (x) + (x + 6x + 2) J1 (x) exp x 2 5 2 Z x x  2x  x3 exp J0 (x) dx = −(2x2 − 4x) J0 (x) + (x2 + 4x − 8) J1 (x) exp 2 5 2 Z

2



100

Z

 x  x  2x  2 x3 exp − J0 (x) dx = − (2x + 4x) J0 (x) + (x2 − 4x − 8) J1 (x) exp − 2 5 2

w Z

=

p √ 6 ± 30 ± 2

± {0.361 516; 1.693 903}

=

  x (12 w2 − 3)x3 − 24wx2 + 24x J0 (x) + 2 5w(4w − 3)   3 + (8 w − 12 w)x3 + (−24 w2 + 12)x2 + 48wx − 48 J1 (x) ewx

x4 ewx J0 (x) dx =

√ w Z

3 2

=

± 0.866 025

=

8 w4

p √ 10 ± 70 ± 2

=

± {0.639 023; 2.142 814}

  x (16 w3 − 12 w)x4 + (−48 w2 + 12)x3 + 96wx − 96x J0 (x) + 2 − 12 w + 1)   + (8 w4 − 24 w2 + 3)x4 + (−32 w3 + 48 w)x3 + (96 w2 − 48)x2 − 192wx + 192 J1 (x) ewx

x5 ewx J0 (x) dx =

3(8 w4

p w Z

±

  x (12 w2 − 3)x3 − 24wx2 + 24x J0 (x) + 2 − 24 w + 3   3 3 + (8 w − 12 w)x + (−24 w2 + 12)x2 + 48wx − 48 J1 (x) ewx

x4 ewx J1 (x) dx =

w Z

=

=

±

3± 2



7

=

± {0.297 594; 1.188 039}

  x (16 w3 − 12 w)x4 + (−48 w2 + 12)x3 + 96wx2 − 96x J0 (x) + 2 − 40 w + 15)   4 2 + (8 w − 24 w + 3)x4 + (−32 w3 + 48 w)x3 + (96 w2 − 48)x2 − 192wx + 192 J1 (x) ewx

x5 ewx J1 (x) dx =

w(8 w4

16w6 − 120w4 + 90w2 − 5 = 0 =⇒ w ∈ {± 0.245 717 164, ± 0.881 375 831, ± 2.581 239 958} Z x x6 ewx J0 (x) dx = · 7w(8w4 − 20w2 + 5)   · (40 w4 − 60 w2 + 5)x5 + (−160 w3 + 120 w)x4 + (480 w2 − 120)x3 − 960wx2 + 960x J0 (x) +  + (16 w5 − 80 w3 + 30 w)x5 + (−80 w4 + 240 w2 − 30)x4 + (320 w3 − 480 w)x3 +  +(−960 w2 + 480)x2 + 1920wx − 1920 J1 (x) ewx

w Z

x6 ewx J1 (x) dx =

=

p √ 5 ± 15 ± 2

=

± {0.530 805, 1.489 378}

 x (40 w4 − 60 w2 + 5)x5 + (−160 w3 + 120 w)x4 + 4 2 − 120w + 90w − 5  + (480 w2 − 120)x3 − 960wx2 + 960w J0 (x) +

16w6

 (16 w5 − 80 w3 + 30 w)x5 + (−80 w4 + 240 w2 − 30)x4 + (320 w3 − 480 w)x3  + (−960 w2 + 480)x2 + 1920x − 1920 J1 (x) ewx 101

16w6 − 168w4 + 210w2 − 35 = 0 Z



w ∈ {± 0.444 060 144, ± 1.105 247 947, ± 3.013 509 178}

 x (48 w5 − 120 w3 + 30 w)x6 + (−240 w4 + 360 w2 − 30)x5 + 4 2 − 240w + 120w − 5  +(960 w3 − 720 w)x4 + (−2880 w2 + 720)x3 + 5760wx2 − 5760x J0 (x)+

x7 ewx J0 (x) dx =

64w6

 + (16 w6 − 120 w4 + 90 w2 − 5)x6 + (−96 w5 + 480 w3 − 180 w)x5 + (480 w4 − 1440 w2 + 180)x4 +  + (−1920 w3 + 2880 w)x3 + (5760 w2 − 2880)x2 − 11520wx + 11520 J1 (x) ewx

64w6 − 240w4 + 120w2 − 5 = 0 ⇒ w ∈ {± 0.214 039 849, ± 0.733 975 352, ± 1.779 175 968} Z x · x7 ewx J1 (x) dx = 6 w(16w − 168w4 + 210w2 − 35)  · (48 w5 − 120 w3 + 30 w)x6 + (−240 w4 + 360 w2 − 30)x5 + (960 w3 − 720 w)x4  + (−2880 w2 + 720)x3 + 5760wx2 − 5760 J0 (x)+  + (16 w6 − 120 w4 + 90 w2 − 5)x6 + (−96 w5 + 480 w3 − 180 w)x5 + (480 w4 − 1440 w2 + 180)x4 +  + (−1920 w3 + 2880 w)x3 + (5760 w2 − 2880)x2 − 11520wx + 11520 J1 (x) ewx

102

1.2.6. Integrals of the type

R

x−n−1/2 sin x Jν (x) dx and

R

x−n−1/2 cos x Jν (x) dx (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν (x), p = 1, 2. The next four integrals are special cases of the general integral 1.8.2.7 from [4]. Z (4x cos x − 2 sin x)J0 (x) + 4x sin x J1 (x) sin x J0 (x) dx √ = x x3/2 Z (−4x sin x − 2 cos x)J0 (x) + 4x cos x J1 (x) cos x J0 (x) dx √ = 3/2 x x Z sin x J1 (x) dx 4x sin x J0 (x) − (4x cos x + 2 sin x) J1 (x) √ = 3/2 3 x x Z 4x cos xJ0 (x) + (4x sin x − 2 cos x)J1 (x) cos x J1 (x) dx √ = 3 x x3/2

=

=

=

= Let Z

and Z

Z

[(−32 x2 − 6) sin x − 12 x cos x] J0 (x) + [4 x sin x + 32 x2 cos x] J1 (x) sin x J0 (x) dx = 5/2 x 9 x3/2

Z

cos x J0 (x) dx [12 x sin x − (32 x2 + 6) cos x] J0 (x) + [−32 x2 sin x + 4 x cos x] J1 (x) = x5/2 9 x3/2

Z

sin x J1 (x) dx [−12 x sin x + 32 x2 cos x] J0 (x) + [(32 x2 − 6) sin x − 4 x cos x] J1 (x) = x5/2 15 x3/2

Z

[−32 x2 sin x − 12 x cos x] J0 (x) + [4 x sin x + (32 x2 − 6) cos x] J1 (x) cos x J1 (x) dx = 5/2 x 15 x3/2 Z sin x J0 (x) dx = x7/2

[(192 x2 − 90) sin x + (−512 x3 − 60 x) cos x] J0 (x) + [(−512 x3 + 36 x) sin x + 64 x2 cos x] J1 (x) 225 x5/2 Z cos x J0 (x) dx = x7/2 [(512 x3 + 60 x) sin x + (192 x2 − 90) cos x] J0 (x) + [−64 x2 sin x + (−512 x3 + 36 x) cos x] J1 (x) 225 x5/2 Z sin x J1 (x) dx = x7/2 [(−512 x3 − 60 x) sin x − 192 x2 cos x] J0 (x) + [(64 x2 − 90) sin x + (512 x3 − 36 x) cos x] J1 (x) 315 x5/2 Z cos x J1 (x) dx = x7/2 [192 x2 sin x + (−512 x3 − 60 x) cos x] J0 (x) + [(−512 x3 + 36 x) sin x + (64 x2 − 90) cos x] J1 (x) 315 x5/2 (s,ν)

sin x Jν (x) dx [Pn = n+1/2 x

(c,ν)

cos x Jν (x) dx [Pn = xn+1/2

(s,ν)

(x) sin x + Qn

(s,ν)

(x) cos x] J0 (x) + [Rn (s,ν) Nn

(c,ν)

(x) sin x + Qn

(c,ν)

103

(x) cos x] J1 (x)

xn−1/2

(x) cos x] J0 (x) + [Rn (c,ν) Nn

(s,ν)

(x) sin x + Sn

xn−1/2

(c,ν)

(x) sin x + Sn

(x) cos x] J1 (x)

,

then holds (s,0)

P4

(s,0)

S4 (c,0)

P4

(c,0)

(x) = −1536 x3 + 420 x ,

Q4

(c,0)

(s,1)

(x) = 1536 x3 − 420 x ,

(s,1)

Q4

(s,1)

(c,1)

(c,1)

S4

(s,0)

P5 (s,0)

R5

(c,0)

(c,0)

R5

(s,1)

(c,0)

S5

(s,0)

Q5

(c,1)

(s,0)

S5

(c,0)

Q5

(s,1)

S5

(c,1)

(x) = −49152 x4 + 13440 x2 ,

Q5 (c,1)

(c,0)

(x) = 393216 x5 −107520 x3 +291060 x ,

S5

(s,0)

(s,1)

(c,0)

(c,1)

(c,0)

(x) = −1048576 x6 + 73728 x4 − 117600 x2 ,

S6

(s,1)

Q6

(c,1)

S6

(c,1)

N6 (s,0)

(s,1)

S6

= 7203735

(x) = −131072 x5 + 76800 x3 − 238140 x ,

(c,1)

Q6

(x) = −393216 x5 + 107520 x3 − 291060 x ,

(x) = 1048576 x6 − 73728 x4 + 117600 x2 − 1309770 ,

= 8513505

(x) = −16777216 x7 − 1966080 x5 + 2419200 x3 − 11351340 x ,

(s,0)

S7

= 363825

(x) = 1048576 x6 + 122880 x4 − 151200 x2 ,

(s,0)

(s,0)

(c,1)

N5

(x) = 131072 x5 − 76800 x3 + 238140 x ,

(x) = 6291456 x6 − 1720320 x4 + 4656960 x2 − 62432370 ,

R7

= 363825

(x) = −393216 x5 +107520 x3 −291060 x ,

P7 Q7

(s,1)

N5

= 8513505

(x) = −1048576 x6 − 122880 x4 + 151200 x2 ,

(x) = 131072 x5 − 76800 x3 + 238140 x ,

(x) = 49152 x4 − 13440 x2 ,

= 7203735

(x) = −393216 x5 + 107520 x3 − 291060 x ,

(s,1)

R6

= 297675

(x) = −1048576 x6 −122880 x4 +151200 x2 −1309770 ,

(x) = 1048576 x6 − 73728 x4 + 117600 x2 − 1309770 ,

(c,1)

(c,0)

N5

(x) = −16384 x4 + 9600 x2 − 66150 ,

Q6

N6 P6

= 297675

(s,0)

(c,0)

R6

(s,0)

N5

(x) = 1048576 x6 −73728 x4 +117600 x2 , N6

N6 (s,1)

= 4725

(x) = 131072 x5 + 15360 x3 − 18900 x ,

(x) = 131072 x5 −76800 x3 +238140 x , S6

P6

(x) = −512 x3 + 300 x ,

(x) = −131072 x5 + 9216 x3 − 14700 x ,

(s,0)

(c,0)

(c,1)

(s,1)

(s,0)

R6

(c,1)

R4

N4

Q5

(x) = −1048576 x6 −122880 x4 +151200 x2 −1309770 , Q6

P6

= 4725

(x) = 131072 x5 − 9216 x3 + 14700 x ,

(s,0)

R6

(x) = −4096 x4 + 288 x2 − 1050 ,

(x) = −49152 x4 + 13440 x2 − 66150 ,

(x) = 131072 x5 − 9216 x3 + 14700 x ,

P6

(x) = 4096 x4 − 288 x2 ,

(x) = −16384 x4 + 9600 x2 ,

(c,1)

R5

(c,0)

R4

(x) = 131072 x5 + 15360 x3 − 18900 x ,

(x) = 131072 x5 + 15360 x3 − 18900 x ,

(x) = −16384 x4 + 9600 x2 − 66150 , P5

(s,1)

(x) = −4096 x4 + 288 x2 − 1050 ,

(x) = 16384 x4 − 9600 x2 ,

= 3675

(s,1)

R4

N4

(x) = −512 x3 + 300 x ,

= 3675

(x) = 1536 x3 − 420 x ,

(x) = −131072 x5 − 15360 x3 + 18900 x ,

(s,1)

R5

(c,1)

Q4

(x) = −49152 x4 + 13440 x2 − 66150 ,

P5

(c,0)

N4

(x) = −4096 x4 − 480 x2 ,

(x) = 131072 x5 − 9216 x3 + 14700 x ,

P5

(s,0)

N4

R4

(x) = 4096 x4 + 480 x2 − 1050 ,

(x) = 512 x3 − 300 x ,

(x) = 4096 x4 + 480 x2 ,

(s,0)

(x) = 1536 x3 − 420 x ,

(x) = −512 x3 + 300 x ,

S4 P4

Q4

(x) = −4096 x4 + 288 x2 ,

S4 P4

(s,0)

(x) = 4096 x4 + 480 x2 − 1050 ,

(x) = −16777216 x7 + 1179648 x5 − 1881600 x3 + 9604980 x ,

(x) = 2097152 x6 − 1228800 x4 + 3810240 x2 , 104

(s,0)

N7

= 405810405

(c,0)

P7

(x) = 16777216 x7 + 1966080 x5 − 2419200 x3 + 11351340 x ,

(c,0)

Q7

(x) = 6291456 x6 − 1720320 x4 + 4656960 x2 − 62432370 , (c,0)

R7 (c,0)

S7

(s,1)

(s,1)

(s,1)

R7 (s,1)

(x) = 2097152 x6 − 1228800 x4 + 3810240 x2 − 62432370 ,

(c,1)

(c,1)

(c,1)

S7

(s,0)

(x) = −16777216 x7 + 1179648 x5 − 1881600 x3 + 9604980 x ,

(s,0)

(s,0)

R8

(c,0)

P8

(x) = −16777216 x7 + 9830400 x5 − 30481920 x3 + 231891660 x ,

(x) = 134217728 x8 − 9437184 x6 + 15052800 x4 − 76839840 x2 ,

(x) = −16777216 x7 + 9830400 x5 − 30481920 x3 + 231891660 x , (s,1) P8 (x) (s,1)

Q8 (s,1)

(s,1)

S8

= 13043905875

(x) = −134217728 x8 − 15728640 x6 + 19353600 x4 − 90810720 x2 ,

(x) = −134217728 x8 + 9437184 x6 − 15052800 x4 + 76839840 x2 − 1739187450 ,

(c,1) P8 (x) (c,1)

Q8

(c,1)

R8 (c,1)

(c,0)

N8

= 50331648 x7 − 13762560 x5 + 37255680 x3 − 267567300 x ,

(x) = 16777216 x7 − 9830400 x5 + 30481920 x3 − 231891660 x ,

S8

= 13043905875

(x) = 134217728 x8 + 15728640 x6 − 19353600 x4 + 90810720 x2 − 1739187450 , (c,0)

R8

(s,0)

N8

(x) = −50331648 x7 + 13762560 x5 − 37255680 x3 + 267567300 x ,

R8 (c,0)

= 468242775

(x) = 50331648 x7 − 13762560 x5 + 37255680 x3 − 267567300 x ,

(x) = −134217728 x8 + 9437184 x6 − 15052800 x4 + 76839840 x2 ,

(c,0)

(c,1)

N7

(x) = 134217728 x8 + 15728640 x6 − 19353600 x4 + 90810720 x2 − 1739187450 , Q8

Q8

= 468242775

= 6291456 x6 − 1720320 x4 + 4656960 x2 ,

(x) = 2097152 x6 − 1228800 x4 + 3810240 x2 − 62432370 ,

P8

N7

(x) = −16777216 x7 − 1966080 x5 + 2419200 x3 − 11351340 x ,

R7

S8

(s,1)

(x) = 16777216 x7 − 1179648 x5 + 1881600 x3 − 9604980 x ,

Q7

= 405810405

(x) = −6291456 x6 + 1720320 x4 − 4656960 x2 ,

(c,1) P7 (x)

(s,0)

N7

(x) = −16777216 x7 − 1966080 x5 + 2419200 x3 − 11351340 x , Q7

S8

(c,0)

(x) = −16777216 x7 + 1179648 x5 − 1881600 x3 + 9604980 x , P7

S7

(x) = −2097152 x6 + 1228800 x4 − 3810240 x2 ,

8

6

(s,1)

N8

= 14783093325

4

= 134217728 x + 15728640 x − 19353600 x + 90810720 x2 ,

(x) = 50331648 x7 − 13762560 x5 + 37255680 x3 − 267567300 x ,

(x) = −16777216 x7 + 9830400 x5 − 30481920 x3 + 231891660 x ,

(x) = −134217728 x8 + 9437184 x6 − 15052800 x4 + 76839840 x2 − 1739187450 , (c,1)

N8

= 14783093325

Recurrence relations: Let

In(s,ν) =

Z

sin xJν (x) dx xn+1/2

  2 sin x · J0 (x) (c,0) (s,1) = I − In − , 2n + 1 n xn+1/2   2 cos x · J0 (x) = −In(s,0) − In(c,1) − , 2n + 1 xn+1/2

(s,0) In+1 (c,0)

In+1

105

Z

cos xJν (x) dx , then holds xn+1/2   2 sin x · J1 (x) (s,1) (s,0) (c,1) In+1 = I + In − 2n + 3 n xn+1/2   2 cos x · J1 (x) (c,1) In+1 = In(c,0) − In(s,1) − 2n + 3 xn+1/2

In(c,ν) =

and

1.2.7. Integrals of the Type a) Integrals

R

R

−n−1/2

x

e



Iν (x) Kν (x)

 dx

x−n−1/2 e x Zν (x) dx:

See also [4], 1.11.2. and 1.12.2. . Z

Z

4x I0 (x) − (2 + 4x) I1 (x) x ex I1 (x) dx √ = e 3/2 3 x x

ex K1 (x) dx −4x I0 (x) − (2 + 4x) K1 (x) x √ = e 3 x x3/2

Z

Z

ex I0 (x) dx (4x − 2) I0 (x) − 4x I1 (x) x √ = e 3/2 x x

(4x − 2) K0 (x) + 4x K1 (x) x ex K0 (x) dx √ = e x x3/2

Z

(−6 − 12x + 32x2 ) I0 (x) − (4x + 32x2 ) I1 (x) x ex I0 (x) dx = e 5/2 x 9 x3/2 ex K0 (x) dx (−6 − 12x + 32x2 ) K0 (x) + (4x + 32x2 ) K1 (x) x = e x5/2 9 x3/2

Z Z

ex I1 (x) dx (−12x + 32x2 ) I0 (x) − (6 + 4x + 32x2 ) I1 (x) x = e 5/2 x 15 x3/2

Z

(12x − 32x2 ) K0 (x) − (6 + 4x + 32x2 ) K1 (x) x ex K1 (x) dx = e x5/2 15 x3/2

Z

ex I0 (x) dx (512 x3 − 192 x2 − 60 x − 90) I0 (x) + (512 x3 + 64 x2 + 36 x) I1 (x) x = e 7/2 x 225 x5/2

Z

ex I1 (x) dx (512 x3 − 192 x2 − 60 x) I0 (x) − (512 x3 + 64 x2 + 36 x + 90) I1 (x) x = e x7/2 315 x5/2

Z Z

(512 x3 − 192 x2 − 60 x − 90) K0 (x) + (512 x3 + 64 x2 + 36 x) K1 (x) x ex K0 (x) dx = e 7/2 x 225 x5/2 ex K1 (x) dx −(512 x3 − 192 x2 − 60 x) K0 (x) + (512 x3 + 64 x2 + 36 x + 90) K1 (x) x = e x7/2 315 x5/2

Let1

(0,+)

ex I0 (x) dx Pn = xn+1/2

Z

then holds

(0,+)

ex K0 (x) dx Pn = xn+1/2

Z

Z

(0,+)

ex ,

(x) I1 (x)

ex ,

xn−1/2 (0,+)

(x) K0 (x) + Qn

(1,+)

(0,+)

(1,+)

(1,+) Nn

(x) I1 (x)

xn−1/2

(x) I0 (x) − Qn

(0,+) Nn

ex K1 (x) dx −Pn = n+1/2 x P4

Q4

(0,+)

(x) I0 (x) − Qn (0,+) Nn

(1,+)

ex I1 (x) dx Pn = n+1/2 x

Z

(x) K1 (x)

xn−1/2 (1,+)

(x) K0 (x) − Qn (1,+) Nn

ex ,

(x) K1 (x)

xn−1/2

ex .

(x) = 4096 x4 − 1536 x3 − 480 x2 − 420 x − 1050 ,

(x) = 4096 x4 + 512 x3 + 288 x2 + 300 x , (1,+)

P4 1 Note

±x

(0,+)

N4

(x) = 4096 x4 − 1536 x3 − 480 x2 − 420 x ,

that there are signs ’-’ in the numerators !

106

= 3675

(1,+)

Q4

(0,+)

P5 (0,+)

Q5

(x) = 4096 x4 + 512 x3 + 288 x2 + 300 x + 1050 ,

(x) = 131072 x5 + 16384 x4 + 9216 x3 + 9600 x2 + 14700 x , (1,+)

(1,+)

(0,+)

P6

= 4725

(x) = 131072 x5 − 49152 x4 − 15360 x3 − 13440 x2 − 18900 x − 66150 ,

P5 Q5

(1,+)

N4

(0,+)

N5

= 297675

(x) = 131072 x5 − 49152 x4 − 15360 x3 − 13440 x2 − 18900 x ,

(x) = 131072 x5 + 16384 x4 + 9216 x3 + 9600 x2 + 14700 x + 66150 ,

(1,+)

N5

= 363825

(x) = 1048576 x6 − 393216 x5 − 122880 x4 − 107520 x3 − 151200 x2 − 291060 x − 1309770 (0,+)

Q6

(x) = 1048576 x6 + 131072 x5 + 73728 x4 + 76800 x3 + 117600 x2 + 238140 x , (0,+)

N6 (1,+)

P6 (1,+)

Q6

= 7203735

(x) = 1048576 x6 − 393216 x5 − 122880 x4 − 107520 x3 − 151200 x2 − 291060 x ,

(x) = 1048576 x6 + 131072 x5 + 73728 x4 + 76800 x3 + 117600 x2 + 238140 x + 1309770 , (1,+)

N6

= 8513505

(0,+)

P7 7

6

5

(x) =

4

= 16777216 x − 6291456 x − 1966080 x − 1720320 x − 2419200 x3 − 4656960 x2 − 11351340 x − 62432370 , (0,+)

Q7 7

6

(x) =

5

= 16777216 x + 2097152 x + 1179648 x + 1228800 x4 + 1881600 x3 + 3810240 x2 + 9604980 x , (0,+)

N7

= 405810405

(1,+)

P7

(x) =

= 16777216 x7 − 6291456 x6 − 1966080 x5 − 1720320 x4 − 2419200 x3 − 4656960 x2 − 11351340 x , (1,+)

Q7 7

6

5

(x) =

4

= 16777216 x + 2097152 x + 1179648 x + 1228800 x + 1881600 x3 + 3810240 x2 + 9604980 x + 62432370 , (1,+)

N7

= 468242775

Recurrence relations: With

I(ν,+) = n

Z

ex Iν (x) dx xn+1/2

and

  ex I0 (x) 2 (0,+) (1,+) I + In−1 − n−1/2 , = 2n − 1 n−1 x   2 ex K0 (x) (0,+) (1,+) = Kn−1 − Kn−1 − n−1/2 , 2n − 1 x

I(0,+) n K(0,+) n

b) Integrals

R

ex Kν (x) dx holds xn+1/2   2 ex I1 (x) (0,+) (1,+) = I + In−1 − n−1/2 2n + 1 n−1 x   2 ex K1 (x) (0,+) (1,+) = − Kn−1 + Kn−1 − n−1/2 2n + 1 x

K(ν,+) = n In(1,+) K(1,+) n

Z

x−n−1/2 e−x Zν (x) dx:

The next two integrals are special cases of the formula 1.11.2.1 from [4]. Z −x e I0 (x) dx (4x + 2) I0 (x) + 4x I1 (x) −x √ e =− x x3/2 Z −x e K1 (x) dx 4x K0 (x) + (4x − 2) K1 (x) −x √ = e 3/2 3 x x 107

Z

−4x K0 (x) + (4x − 2) K1 (x) −x e−x K1 (x) dx √ = e 3 x x3/2

Z

(−32 x2 − 12 x) I0 (x) + (−32 x2 + 4 x − 6) I1 (x) −x e−x I1 (x) dx = e 5/2 x 15 x3/2

Z

e−x K0 (x) dx (32 x2 + 12 x − 6) K0 (x) − (32 x2 − 4 x) K1 (x) −x = e x5/2 9 x3/2

Z

Z

−(4x + 2) K0 (x) + 4x K1 (x) −x e−x K0 (x) dx √ = e x x3/2

e−x I0 (x) dx (32 x2 + 12 x − 6) I0 (x) + (32 x2 − 4 x) I1 (x) −x = e x5/2 9 x3/2

Z

Z

Z

(32 x2 + 12 x) K0 (x) + (−32 x2 + 4 x − 6) K1 (x) −x e−x K1 (x) dx = e x5/2 15 x3/2

(−512 x3 − 192 x2 + 60 x − 90) I0 (x) + (−512 x3 + 64 x2 − 36 x) I1 (x) −x e−x I0 (x) dx = e 7/2 x 225 x5/2 Z −x e I1 (x) dx (512 x3 + 192 x2 − 60 x) I0 (x) + (512 x3 − 64 x2 + 36 x − 90) I1 (x) −x = e x7/2 315 x5/2 e−x K0 (x) dx (−512 x3 − 192 x2 + 60 x − 90) K0 (x) − (−512 x3 + 64 x2 − 36 x) K1 (x) −x = e x7/2 225 x5/2 e−x K1 (x) dx −(512 x3 + 192 x2 − 60 x) K0 (x) + (512 x3 − 64 x2 + 36 x − 90) K1 (x) −x = e 7/2 x 315 x5/2

Z Let

(0,−)

Pn e−x I0 (x) dx = xn+1/2

Z

then holds

(0,−)

e−x K0 (x) dx Pn = xn+1/2

Z

(0,−)

(0,−)

Q4

(0,−)

P5 (0,−)

Q5

(0,−)

(x) K1 (x)

xn−1/2 (1,−)

(x) K0 (x) + Qn (1,−) Nn

ex ,

(x) K1 (x)

xn−1/2

(x) = 4096 x4 − 512 x3 + 288 x2 − 300 x ,

(0,−)

N4

ex .

= 3675

= −4096 x4 − 1536 x3 + 480 x2 − 420 x ,

(x) = −4096 x4 + 512 x3 − 288 x2 + 300 x − 1050 ,

(1,−)

N4

(x) = −131072 x5 + 16384 x4 − 9216 x3 + 9600 x2 − 14700 x , (1,−)

(1,−)

ex ,

xn−1/2

= 4725

(x) = −131072 x5 − 49152 x4 + 15360 x3 − 13440 x2 + 18900 x − 66150 ,

P5 Q5

(x) I1 (x)

(x) = 4096 x4 + 1536 x3 − 480 x2 + 420 x − 1050 ,

(1,−) P4 (x) (1,−)

ex ,

(x) K0 (x) − Qn

(1,−)

P4

(1,−)

(1,−) Nn

(x) I1 (x)

xn−1/2

(x) I0 (x) + Qn

(0,−) Nn

e−x K1 (x) dx − Pn = xn+1/2

Z

Q4

(0,−) Nn

(1,−)

e−x I1 (x) dx Pn = n+1/2 x

Z

(0,−)

(x) I0 (x) + Qn

(0,−)

N5

= 297675

(x) = 131072 x5 + 49152 x4 − 15360 x3 + 13440 x2 − 18900 x ,

(x) = 131072 x5 − 16384 x4 + 9216 x3 − 9600 x2 + 14700 x − 66150 ,

108

(1,−)

N5

= 363825

(0,−)

P6

(x) = 1048576 x6 + 393216 x5 − 122880 x4 + 107520 x3 − 151200 x2 + 291060 x − 1309770 , (0,−)

Q6

(x) = 1048576 x6 − 131072 x5 + 73728 x4 − 76800 x3 + 117600 x2 − 238140 x , (0,−)

N6 (1,−)

P6 (1,−)

Q6

= 7203735

(x) = −1048576 x6 − 393216 x5 + 122880 x4 − 107520 x3 + 151200 x2 − 291060 x ,

(x) = −1048576 x6 + 131072 x5 − 73728 x4 + 76800 x3 − 117600 x2 + 238140 x − 1309770 , (1,−)

N6

= 8513505

(0,−)

P7 7

(x) =

= −16777216 x −6291456 x +1966080 x −1720320 x4 +2419200 x3 −4656960 x2 +11351340 x−62432370 , (0,−)

Q7

6

5

(x) = −16777216 x7 + 2097152 x6 − 1179648 x5 + 1228800 x4 − 1881600 x3 + 3810240 x2 − 9604980 x , (0,−)

N7 (1,−)

P7

= 405810405

(x) = 16777216 x7 + 6291456 x6 − 1966080 x5 + 1720320 x4 − 2419200 x3 + 4656960 x2 − 11351340 x , (1,−)

Q7 7

6

5

(x) =

4

= 16777216 x − 2097152 x + 1179648 x − 1228800 x + 1881600 x3 − 3810240 x2 + 9604980 x − 62432370 , (1,−)

N7

= 468242775

Recurrence relations: I(ν,−) n

With

Z =

e−x Iν (x) dx xn+1/2

and

  2 e−x I0 (x) (0,−) (1,−) −In−1 + In−1 − n−1/2 , 2n − 1 x   e−x K0 (x) 2 (0,−) (1,−) Kn−1 + Kn−1 + = − , 2n − 1 xn−1/2

I(0,−) = n Kn(0,−)

e−x Kν (x) dx holds xn+1/2   e−x I1 (x) 2 (0,−) (1,−) In−1 − In−1 − n−1/2 In(1,−) = 2n + 1 x   e−x K1 (x) 2 (0,−) (1,−) (1,−) Kn−1 + Kn−1 + Kn = − 2n + 1 xn−1/2

K(ν,−) n

Z

=

c) General formulas Let Pn(ν,±) (x) =

n X

(n,ν,±)

ϑk

xk

and

Q(ν,±) (x) = n

k=0

then holds

(n,ν,±)

ηk

xk ,

k=0 (ν,±)

e±x Iν (x) dx Pn = n+1/2 x

Z

n X

(ν,±)

(x) I0 (x) + Qn xn−1/2

(x) I1 (x)

.

I. ν = 0, ex : (n,0,+)

ϑ0 (n,0,+)

ϑ2

(n,0,+)

ϑ3 (n,0,+)

ϑ4

=−

=−

=−

=−

2 , 2n − 1

(n,0,+)

ϑ1

=−

22 , (2n − 1)(2n − 3)

25 (n − 1) 23 (n − 1) (n,0,+) = ϑ , (2n − 1)2 (2n − 3)(2n − 5) (2n − 1)(2n − 5) 1

28 (n − 1)(n − 2) 23 (n − 2) (n,0,+) = ϑ , (2n − 1)2 (2n − 3)2 (2n − 5)(2n − 7) (2n − 3)(2n − 7) 2

211 (n − 1)(n − 2)(n − 3) 23 (n − 3) (n,0,+) = ϑ , (2n − 1)2 (2n − 3)2 (2n − 5)2 (2n − 7)(2n − 9) (2n − 5)(2n − 9) 3

109

... ,

(n,0,+)

= − 2/(2n − 1) and

which gives ϑ0

(n,0,+)

=−

ϑk

2k−1 · Γ(n − k − 21 ) · Γ(n − k + 23 ) · (n − 1)! , k>0. Γ2 (n + 12 ) · (n − k)!

Furthermore (n,0,+)

η1

=−

22 , (2n − 1)2

(n,0,+)

η3 (n,0,+)

which gives η0

=−

(n,0,+)

η2

=−

23 (n − 1) (n,0,+) 25 (n − 1) = η , (2n − 1)2 (2n − 3)2 (2n − 3)2 1

23 (n − 2) (n,0,+) 28 (n − 1)(n − 2) = η , ... , 2 2 2 (2n − 1) (2n − 3) (2n − 5) (2n − 5)2 2

= 0 and (n,0,+)

ηk

=−

2k−1 · Γ2 (n − k + 21 ) · (n − 1)! , Γ2 (n + 21 ) · (n − k)!

k>0.

II. ν = 1, ex : (n,1,+)

ϑ0 (n,1,+)

ϑ2

(n,1,+)

ϑ3 (n,1,+)

ϑ4

=−

=−

=−

=0,

(n,1,+)

ϑ1

=−

22 , (2n + 1)(2n − 3)

23 (n − 1) 25 (n − 1) (n,1,+) = ϑ , (2n + 1)(2n − 1)(2n − 3)(2n − 5) (2n − 1)(2n − 5) 1

23 (n − 2) 28 (n − 1)(n − 2) (n,1,+) = ϑ , (2n + 1)(2n − 1)(2n − 3)2 (2n − 5)(2n − 7) (2n − 3)(2n − 7) 2

23 (n − 3) 211 (n − 1)(n − 2)(n − 3) (n,1,+) = ϑ , 2 2 (2n + 1)(2n − 1)(2n − 3) (2n − 5) (2n − 7)(2n − 9) (2n − 5)(2n − 9) 3

(n,1,+)

which gives ϑ0

= 0 and (n,1,+)

=−

ϑk

2k−1 · Γ(n − k − 21 ) · Γ(n − k + 23 ) · (n − 1)! , k>0. Γ(n + 32 ) · Γ(n − 21 ) · (n − k)!

Furthermore (n,1,+)

η0

(n,1,+)

η2 (n,1,+)

η3

(n,1,+)

which gives η0

... ,

=−

=−

=−

2 , 2n + 1

(n,1,+)

η1

=−

22 , (2n + 1)(2n − 1)

25 (n − 1) 23 (n − 1) (n,1,+) = η , 2 (2n + 1)(2n − 1)(2n − 3) (2n − 3)2 1

23 (n − 2) (n,2,+) 28 (n − 1)(n − 2) = η , ... , (2n + 1)(2n − 1)(2n − 3)2 (2n − 5)2 (2n − 5)2 1

= −2/(2n + 1) and (n,0,+)

ηk

=−

2k−1 · Γ2 (n − k + 21 ) · (n − 1)! , Γ(n + 32 ) · Γ(n − 12 ) · (n − k)!

k>1.

III. ν = 0, e−x : (n,0,−)

ϑ0 (n,0,−)

ϑ2

(n,0,−)

ϑ3 (n,0,−)

ϑ4

=−

=

(2n −

=−

= −2/(2n − 1) ,

(n,0,−)

ϑ1

=

22 , (2n − 1)(2n − 3)

25 (n − 1) 23 (n − 1) (n,0,−) = − ϑ , (2n − 1)2 (2n − 3)(2n − 5) (2n − 1)(2n − 5) 1

(2n −

28 (n − 1)(n − 2) 23 (n − 2) (n,0,−) = ϑ , 2 − 3) (2n − 5)(2n − 7) (2n − 3)(2n − 7) 2

1)2 (2n

211 (n − 1)(n − 2)(n − 3) 23 (n − 3) (n,0,−) = ϑ , 2 2 − 3) (2n − 5) (2n − 7)(2n − 9) (2n − 5)(2n − 9) 3

1)2 (2n

110

... ,

(n,0,−)

= −2/(2n − 1) and

which gives ϑ0

(n,0,−)

ϑk

(−2)k−1 · Γ(n − k − 12 ) · Γ(n − k + 23 ) · (n − 1)! , k>0. Γ2 (n + 12 ) · (n − k)!

=

Furthermore (n,0,−)

=−

η1

22 , (2n − 1)2

(n,0,−)

(n,0,−)

which gives η0

=

25 (n − 1) 23 (n − 1) (n,0,−) = − η , (2n − 1)2 (2n − 3)2 (2n − 3)2 1

23 (n − 2) (n,0,−) 28 (n − 1)(n − 2) =− η , ... , 2 2 2 (2n − 1) (2n − 3) (2n − 5) (2n − 5)2 2

=−

η3

(n,0,−)

η2

= 0 and (n,0,−)

ηk

=−

(−2)k−1 · Γ2 (n − k + 21 ) · (n − 1)! , Γ2 (n + 12 ) · (n − k)!

k>0.

IV. ν = 1, e−x : (n,1,−)

ϑ0 (n,1,−)

ϑ2

(n,1,−)

ϑ3 (n,1,−)

ϑ4

=−

=

=

=0,

(n,1,−)

ϑ1

=−

22 , (2n + 1)(2n − 3)

25 (n − 1) 23 (n − 1) (n,1,−) =− ϑ , (2n + 1)(2n − 1)(2n − 3)(2n − 5) (2n − 1)(2n − 5) 1

23 (n − 2) 28 (n − 1)(n − 2) (n,1,−) = − ϑ , (2n + 1)(2n − 1)(2n − 3)2 (2n − 5)(2n − 7) (2n − 3)(2n − 7) 2

23 (n − 3) 211 (n − 1)(n − 2)(n − 3) (n,1,−) = − ϑ , (2n + 1)(2n − 1)(2n − 3)2 (2n − 5)2 (2n − 7)(2n − 9) (2n − 5)(2n − 9) 3

(n,1,−)

which gives ϑ0

= 0 and (n,1,−)

ϑk

=−

(−2)k−1 · Γ(n − k − 12 ) · Γ(n − k + 23 ) · (n − 1)! , k>0. Γ(n + 23 ) · Γ(n − 12 ) · (n − k)!

Furthermore (n,1,−)

η0

(n,1,−)

qη2 (n,1,−)

η3

(n,1,−)

which gives η0

=

=−

=−

2 , 2n + 1

(n,1,−)

η1

=

22 , (2n + 1)(2n − 1)

25 (n − 1) 23 (n − 1) (n,1,−) = η , (2n + 1)(2n − 1)(2n − 3)2 (2n − 3)2 1

28 (n − 1)(n − 2) 23 (n − 2) (n,1,−) = η , ... , 2 2 (2n + 1)(2n − 1)(2n − 3) (2n − 5) (2n − 5)2 2

= −2/(2n + 1) and (n,1,−)

ηk

=

(−2)k−1 · Γ2 (n − k + 12 ) · (n − 1)! . Γ(n + 23 ) · Γ(n − 12 ) · (n − k)!

111

... ,

(ν,±)

(ν,±)

When n > 0, then the functions Pn (x) and Qn (x) are polynomials. In the case n ≤ 0 they are power series with the radius of convergence R = +∞. Their coefficients may be found by the given recurrence relations. (0,+)

P0

= 2−

32 2 512 3 4096 4 131072 5 1048576 6 16777216 7 134217728 8 4 x+ x − x + x − x + x − x + x − 3 15 315 4725 363825 8513505 468242775 14783093325

8589934592 68719476736 x9 + x10 + . . . 4213181597625 167122870039125 16777216 7 134217728 8 32 2 512 3 4096 4 131072 5 1048576 6 (0,+) Q0 x − x + x − x + x − x + x − = −4 x + 9 225 3675 297675 7203735 405810405 13043905875 8589934592 68719476736 − x9 + x10 + . . . 3769688797875 151206406225875 2 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 (0,+) P−1 = − x+ x − x + x − x + x − x7 + 3 15 315 4725 363825 8513505 468242775 14783093325 1073741824 8589934592 137438953472 + x8 − x9 + x10 + . . . 4213181597625 167122870039125 14606538841419525 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 (0,+) Q−1 = − x + x − x + x − x + x − x7 + 9 225 3675 297675 7203735 405810405 13043905875 1073741824 8589934592 137438953472 + x8 − x9 + x10 + . . . 3769688797875 151206406225875 13336405029122175 4 32 2 1024 3 8192 4 131072 5 1048576 67108864 2 (0,+) x+ x − x + x − x + x6 − x7 + P−2 = − 5 35 525 40425 945945 52026975 1642565925 468131288625 536870912 8589934592 68719476736 + x8 − x9 + x10 + . . . 18569207782125 1622948760157725 77458918098436875 96 2 1024 3 8192 4 131072 5 1048576 67108864 4 (0,+) x − x + x − x + x6 − x7 + Q−2 = − x + 25 1225 33075 800415 45090045 1449322875 418854310875 536870912 8589934592 68719476736 + x8 − x9 + x10 + . . . 16800711802875 1481822781013575 71262204650561925 −

4 32 2 512 3 4096 4 131072 5 1048576 6 16777216 7 134217728 8 x− x + x − x + x − x + x − x + 3 15 315 4725 363825 8513505 468242775 14783093325 8589934592 68719476736 + x9 − x10 + . . . 4213181597625 167122870039125 2 4 32 2 1024 3 8192 4 131072 5 1048576 6 67108864 (1,+) Q0 = − x+ x − x + x − x + x − x7 + 3 15 245 19845 480249 27054027 869593725 251312586525 8589934592 68719476736 536870912 x8 − − x9 + x10 + . . . + 10080427081725 889093668608145 42757322790337155 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 7 (1,+) P−1 = − x + x − x + x − x + x − x + 5 105 1575 121275 2837835 156080925 4927697775 1073741824 8589934592 137438953472 x8 − x9 + x10 + . . . + 1404393865875 55707623346375 4868846280473175 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 7 (1,+) Q−1 = 2 − x + x − x + x − x + x − x + 3 75 1225 99225 2401245 135270135 4347968625 1073741824 8589934592 137438953472 + x8 − x9 + x10 + . . . 1256562932625 50402135408625 4445468343040725 4 32 2 1024 3 8192 4 131072 5 1048576 6 67108864 (1,+) P−2 = − x + x − x + x − x + x − x7 + 21 315 24255 567567 31216185 985539555 280878773175 536870912 8589934592 68719476736 + x8 − x9 + x10 + . . . 11141524669275 973769256094635 46475350859062125 2 4 32 2 1024 3 8192 4 131072 5 1048576 6 67108864 (1,+) Q−2 = − x+ x − x + x − x + x − x7 + 3 15 245 19845 480249 27054027 869593725 251312586525 (1,+)

P0

=

112

+

536870912 8589934592 68719476736 x8 − x9 + x10 + . . . 10080427081725 889093668608145 42757322790337155

32 2 512 3 4096 4 131072 5 1048576 6 16777216 7 134217728 8 4 x+ x + x + x + x + x + x + x + 3 15 315 4725 363825 8513505 468242775 14783093325 8589934592 68719476736 + x9 + x10 + . . . 4213181597625 167122870039125 16777216 7 134217728 8 32 2 512 3 4096 4 131072 5 1048576 6 (0,−) x − x − x − x − x − x − x − Q0 = −4 x − 9 225 3675 297675 7203735 405810405 13043905875 8589934592 68719476736 − x9 − x10 + . . . 3769688797875 151206406225875 2 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 (0,−) P−1 = + x+ x + x + x + x + x + x7 + 3 15 315 4725 363825 8513505 468242775 14783093325 8589934592 137438953472 1073741824 x8 + x9 + x10 + . . . + 4213181597625 167122870039125 14606538841419525 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 (0,−) x − x − x − x − x − x7 − Q−1 = − x − 9 225 3675 297675 7203735 405810405 13043905875 1073741824 8589934592 137438953472 − x8 − x9 − x10 + . . . 3769688797875 151206406225875 13336405029122175 4 32 2 1024 3 8192 4 131072 5 1048576 67108864 2 (0,−) P−2 = + x+ x + x + x + x + x6 + x7 + 5 35 525 40425 945945 52026975 1642565925 468131288625 536870912 8589934592 68719476736 x8 + x9 + x10 + . . . + 18569207782125 1622948760157725 77458918098436875 96 2 1024 3 8192 4 131072 5 1048576 67108864 4 (0,−) x − x − x − x − x6 − x7 − Q−2 = − x − 25 1225 33075 800415 45090045 1449322875 418854310875 536870912 8589934592 68719476736 − x8 − x9 − x10 + . . . 16800711802875 1481822781013575 71262204650561925 (0,−)

P0

= 2+

4 32 2 512 3 4096 4 131072 5 1048576 6 16777216 7 134217728 8 x+ x + x + x + x + x + x + x + 3 15 315 4725 363825 8513505 468242775 14783093325 8589934592 68719476736 + x9 + x10 + . . . 4213181597625 167122870039125 32 512 3 4096 4 131072 5 1048576 6 16777216 7 134217728 8 (1,−) Q0 = −2−4 x− x2 − x − x − x − x − x − x − 9 225 3675 297675 7203735 405810405 13043905875 68719476736 8589934592 x9 − x10 + . . . − 3769688797875 151206406225875 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 7 (1,−) P−1 = − x − x − x − x − x − x − x − 5 105 1575 121275 2837835 156080925 4927697775 1073741824 8589934592 137438953472 − x8 − x9 − x10 + . . . 1404393865875 55707623346375 4868846280473175 4 64 2 512 3 16384 4 131072 5 2097152 6 16777216 7 (1,−) Q−1 = 2 + x + x + x + x + x + x + x + 3 75 1225 99225 2401245 135270135 4347968625 1073741824 8589934592 137438953472 − x8 + x9 + x10 + . . . 1256562932625 50402135408625 4445468343040725 4 32 2 1024 3 8192 4 131072 5 1048576 6 67108864 (1,−) P−2 = − x − x − x − x − x − x − x7 − 21 315 24255 567567 31216185 985539555 280878773175 536870912 8589934592 68719476736 − x8 − x9 − x10 + . . . 11141524669275 973769256094635 46475350859062125 2 4 32 2 1024 3 8192 4 131072 5 1048576 6 67108864 (1,−) Q−2 = + x+ x + x + x + x + x + x7 + 3 15 245 19845 480249 27054027 869593725 251312586525 536870912 8589934592 68719476736 + x8 + x9 + x10 + . . . 10080427081725 889093668608145 42757322790337155 (1,−)

P0

=

113

1.2.8. Integrals of the Type

Z

R

−n−1/2

x



Iν (x) Kν (x)

 dx

2 x−3/2 sinh x · I0 (x) dx = √ [−sinh x I0 (x) + 2x cosh x I0 (x) − 2x sinh x I1 (x)] x

Z

2 x−3/2 sinh x · I1 (x) dx = √ [2x sinh x I0 (x) − sinh x I1 (x) − 2x cosh x I1 (x)] 3 x

2 x−3/2 sinh x · K0 (x) dx = √ [−sinh x K0 (x) + 2x cosh x K0 (x) + 2x sinh x K1 (x)] x

Z

2 x−3/2 sinh x · K1 (x) dx = − √ [2x sinh x K0 (x) + sinh x K1 (x) + 2x cosh x K1 (x)] 3 x Z 2 x−3/2 cosh x · I0 (x) dx = √ [2x sinh x I0 (x) − cosh x I0 (x) − 2x cosh x I1 (x)] x Z 2 x−3/2 cosh x · I1 (x) dx = √ [2x cosh x I0 (x) − 2x sinh x I1 (x) − cosh x I1 (x)] 3 x Z 2 x−3/2 cosh x · K0 (x) dx = √ [2x sinh x K0 (x) − cosh x K0 (x) + 2x cosh x K1 (x)] x

Z

2 x−3/2 cosh x · K1 (x) dx = − √ [2x cosh x K0 (x) + 2x sinh x K1 (x) + cosh x K1 (x)] 3 x

=

x−5/2 sinh x I0 (x) dx =

 2  (16x2 − 3) sinh x I0 (x) − 6x cosh x I0 (x) − 2x sinh x I1 (x) − 16x2 cosh x I1 (x) 9x3/2 Z x−5/2 sinh x · I1 (x) dx =

 2  −6x sinh x I0 (x) + 16x2 cosh x I0 (x) − (16x2 + 3) sinh x I1 (x) − 2x cosh x I1 (x) /2 15x Z x−5/2 sinh x · K0 (x) dx =

=

=

sinh x cosh x

Z

Z

=



 2  (16x2 − 3) sinh x K0 (x) − 6x cosh x K0 (x) + 2x sinh x K1 (x) + 16x2 cosh x K1 (x) 3/2 9x Z x−5/2 sinh x · K1 (x) dx =   2 6x sinh x K0 (x) − 16x2 cosh x K0 (x) − (16x2 + 3) sinh x K1 (x) − 2x cosh x K1 (x) 15x3/2 Z x−5/2 cosh x · I0 (x) dx =

=

=

 2  −6x sinh x I0 (x) + (16x2 − 3) cosh x I0 (x) − 16x2 sinh x I1 (x) − 2x cosh x I1 (x) 3/2 9x Z x−5/2 cosh x · I1 (x) dx =   2 16x2 sinh x I0 (x) − 6x cosh x I0 (x) − 2x sinh x I1 (x) − (16x2 + 3) cosh x I1 (x) 3/2 15x 114

Z

 2  −6x sinh x K0 (x) + (16x2 − 3) cosh x K0 (x) + 16x2 sinh x K1 (x) + 2x cosh x K1 (x) 3/2 9x Z x−5/2 cosh x · K1 (x) dx =

=

=

   2 −16 x2 sinh x K0 (x) + 6 x cosh x K0 (x) − 2 x sinh x K1 (x) − 3 + 16 x2 cosh x K1 (x) 3/2 15x

Let

=

Z 1

Mn

h

x(2n−1)/2

x−(2n+1)/2 sinh x · I0 (x) dx =

i (s0) (s0) Pn(s0) (x) sinh x I0 (x) + Q(s0) n (x) cosh x I0 (x) + Rn (x) sinh x I1 (x) + Sn (x) cosh x I1 (x) , Z

=

1

h

Nn x(2n−1)/2

x−(2n+1)/2 sinh x · I1 (x) dx =

i (s1) (s1) Pn(s1) (x) sinh x I0 (x) + Q(s1) n (x) cosh x I0 (x) + Rn (x) sinh x I1 (x) + Sn (x) cosh x I1 (x) , Z

=

1

h

Mn x(2n−1)/2

x−(2n+1)/2 cosh x · I0 (x) dx =

i (c0) (c0) Pn(c0) (x) sinh x I0 (x) + Q(c0) n (x) cosh x I0 (x) + Rn (x) sinh x I1 (x) + Sn (x) cosh x I1 (x) , Z

1

=

h

Nn x(2n−1)/2 then holds

=

1

Z h

Mn x(2n−1)/2

1

h

Nn x(2n−1)/2

1 Mn

1

h

Nn x(2n−1)/2 (s0)

M3 = 225 , P3 (c0)

P3

(s0)

(x) = −192 x2 −90 , Q3 (c0)

(s1)

x−(2n+1)/2 cosh x · K1 (x) dx =

i (c1) (c1) − Pn(c1) (x) sinh x K0 (x) − Q(c1) n (x) cosh x K0 (x) + Rn (x) sinh x K1 (x) + Sn (x) cosh x K1 (x) .

(x) = 512 x3 − 60 x , Q3

N3 = 315 , P3

x−(2n+1)/2 cosh x · K0 (x) dx =

i (c0) (c0) Pn(c0) (x) sinh x K0 (x) + Q(c0) n (x) cosh x K0 (x) − Rn (x) sinh x K1 (x) − Sn (x) cosh x K1 (x) , Z

=

x−(2n+1)/2 sinh x · K1 (x) dx =

i (s1) (s1) − Pn(s1) (x) sinh x K0 (x) − Q(s1) (x) cosh x K (x) + R (x) sinh x K (x) + S (x) cosh x K (x) , 0 1 1 n n n

h

x(2n−1)/2

x−(2n+1)/2 sinh x · K0 (x) dx =

i (s0) (s0) Pn(s0) (x) sinh x K0 (x) + Q(s0) (x) cosh x K (x) − R (x) sinh x K (x) − S (x) cosh x K (x) , 0 1 1 n n n

Z

=

x−(2n+1)/2 cosh x · I1 (x) dx =

i (c1) (c1) Pn(c1) (x) sinh x I0 (x) + Q(c1) n (x) cosh x I0 (x) + Rn (x) sinh x I1 (x) + Sn (x) cosh x I1 (x) ,

Z

=

x−5/2 cosh x · K0 (x) dx =

(s0)

(x) = 512 x3 −60 x , R3 (c0)

(x) = −192 x2 − 90 , R3 (s1)

(x) = 512 x3 −60 x , Q3

115

(c0)

(x) = −64 x2 , S3

(s1)

(x) = −192 x2 , R3

(s0)

(x) = −512 x3 −36 x S3

(x) = −64 x2

(x) = −512 x3 − 36 x

(s1)

(x) = −64 x2 −90 , S3

(x) = −512 x3 −36 x

(c1)

P3

(c1)

(x) = −192 x2 , Q3

(c1)

(x) = 512 x3 − 60 x , R3

(s0)

M4 = 3675 , P4 (s0)

R4 (c0)

P4

(s0)

(x) = 4096 x4 − 480 x2 − 1050 , Q4 (s0)

(x) = −512 x3 − 300 x , S4 (c0)

(x) = −1536 x3 − 420 x , Q4 (c0)

R4

(s1)

(c1)

(s0)

M5 = 297675 , P5

(s0)

R5 (c0)

P5

(c1)

(x) = 4096 x4 − 480 x2 , Q4 (c1)

(x) = −512 x3 − 300 x , S4

(s0)

(x) = −49152 x4 − 13440 x2 − 66150 , Q5

(s0)

(x) = −131072 x5 − 9216 x3 − 14700 x , S5

(c0)

(x) = −16384 x4 − 9600 x2 , S5 (s1)

N5 = 363825 , P5 (s1)

R5

(c1)

(x) = −16384 x4 − 9600 x2

(x) = −49152 x4 − 13440 x2 − 66150 ,

(s1)

(x) = 131072 x5 − 15360 x3 − 18900 x , Q5 (s1)

(c1)

(x) = 131072 x5 − 15360 x3 − 18900 x ,

(x) = −131072 x5 − 9216 x3 − 14700 x

(x) = −16384 x4 − 9600 x2 − 66150 , S5

P5

(x) = −512 x3 − 300 x

(x) = −4096 x4 − 288 x2 − 1050

(c0)

(c0)

(x) = 4096 x4 − 480 x2 ,

(x) = −1536 x3 − 420 x ,

(x) = 131072 x5 − 15360 x3 − 18900 x , Q5 R5

R5

(s1)

(x) = −1536 x3 − 420 x , Q4

(s1)

(c1)

R4

(x) = −512 x3 − 300 x

(x) = −4096 x4 − 288 x2 − 1050 , S4

P4

(x) = −1536 x3 − 420 x

(x) = 4096 x4 − 480 x2 − 1050 , (c0)

(s1)

(c1)

(x) = −49152 x4 − 13440 x2 , Q5

(x) = −64 x2 − 90

(x) = −4096 x4 − 288 x2

(x) = −4096 x4 − 288 x2 , S4

N4 = 4725 , P4 R4

(c1)

(x) = −512 x3 − 36 x , S3

(x) = −49152 x4 − 13440 x2 ,

(x) = −131072 x5 − 9216 x3 − 14700 x

(x) = 131072 x5 − 15360 x3 − 18900 x , (c1)

(x) = −131072 x5 − 9216 x3 − 14700 x , S5

(x) = −16384 x4 − 9600 x2 − 66150

M6 = 7203735 , (s0)

P6

(s0)

(x) = 1048576 x6 − 122880 x4 − 151200 x2 − 1309770 , Q6 (s0)

R6 (c0)

P6

(s0)

(x) = −131072 x5 − 76800 x3 − 238140 x , S6 (c0)

(x) = −393216 x5 − 107520 x3 − 291060 x , Q6 (c0)

R6

(s1)

(s1)

(x) = −393216 x5 −107520 x3 −291060 x , Q6

(s1)

(c1)

(c1)

(x) = −131072 x5 − 76800 x3 − 238140 x

(x) = −1048576 x6 − 73728 x4 − 117600 x2 − 1309770 , S6

P6 R6

(x) = 1048576 x6 − 122880 x4 − 151200 x2 − 1309770 , (c0)

(s1)

R6

(x) = −1048576 x6 − 73728 x4 − 117600 x2

(x) = −1048576 x6 − 73728 x4 − 117600 x2 , S6

N6 = 8513505 , P6

(x) = −393216 x5 − 107520 x3 − 291060 x ,

(c1)

(x) = 1048576 x6 − 122880 x4 − 151200 x2 , Q6 (c1)

(x) = −131072 x5 − 76800 x3 − 238140 x , S6 (s0)

M7 = 405810405 , P7 (s0)

Q7

(s0)

R7

(x) = 1048576 x6 −122880 x4 −151200 x2 ,

(x) = −131072 x5 − 76800 x3 − 238140 x

(x) = −393216 x5 − 107520 x3 − 291060 x ,

(x) = −1048576 x6 − 73728 x4 − 117600 x2 − 1309770

(x) = −6291456 x6 − 1720320 x4 − 4656960 x2 − 62432370 ,

(x) = 16777216 x7 − 1966080 x5 − 2419200 x3 − 11351340 x ,

(x) = −16777216 x7 − 1179648 x5 − 1881600 x3 − 9604980 x , (s0)

S7

(x) = −2097152 x6 − 1228800 x4 − 3810240 x2 116

(c0)

P7

(x) = 16777216 x7 − 1966080 x5 − 2419200 x3 − 11351340 x ,

(c0)

Q7

(x) = −6291456 x6 − 1720320 x4 − 4656960 x2 − 62432370 , (c0)

R7 (c0)

S7

(x) = −2097152 x6 − 1228800 x4 − 3810240 x2 ,

(x) = −16777216 x7 − 1179648 x5 − 1881600 x3 − 9604980 x (s1)

N7 = 468242775 , P7

(s1)

Q7 (s1)

R7

(s1)

S7

(x) = −16777216 x7 − 1179648 x5 − 1881600 x3 − 9604980 x (c1)

(c1)

(c1)

R7

(x) = −16777216 x7 − 1179648 x5 − 1881600 x3 − 9604980 x , (x) = −2097152 x6 − 1228800 x4 − 3810240 x2 − 62432370

(s0)

M8 = 13043905875 , P8 (s0)

Q8

(s0)

(x) = −16777216 x7 − 9830400 x5 − 30481920 x3 − 231891660 x ,

(s0)

(x) = −134217728 x8 − 9437184 x6 − 15052800 x4 − 76839840 x2

S8

(c0)

P8 (c0)

(x) = 134217728 x8 − 15728640 x6 − 19353600 x4 − 90810720 x2 − 1739187450 ,

(x) = −50331648 x7 − 13762560 x5 − 37255680 x3 − 267567300 x ,

R8

Q8

(x) = −6291456 x6 − 1720320 x4 − 4656960 x2 ,

(x) = 16777216 x7 − 1966080 x5 − 2419200 x3 − 11351340 x ,

(c1)

S7

(x) = −6291456 x6 − 1720320 x4 − 4656960 x2 ,

(x) = −2097152 x6 − 1228800 x4 − 3810240 x2 − 62432370 ,

P7 Q7

(x) = −50331648 x7 − 13762560 x5 − 37255680 x3 − 267567300 x ,

(x) = 134217728 x8 − 15728640 x6 − 19353600 x4 − 90810720 x2 − 1739187450 , (c0)

R8

(x) = −134217728 x8 − 9437184 x6 − 15052800 x4 − 76839840 x2 ,

(c0)

S8

(x) = −16777216 x7 − 9830400 x5 − 30481920 x3 − 231891660 x

(s1)

N8 = 14783093325 , P8 (s1)

Q8 (s1)

R8

(x) = −50331648 x7 − 13762560 x5 − 37255680 x3 − 267567300 x ,

(x) = 134217728 x8 − 15728640 x6 − 19353600 x4 − 90810720 x2 ,

(x) = −134217728 x8 − 9437184 x6 − 15052800 x4 − 76839840 x2 − 1739187450 , (s1)

S8

(c1)

P8

(c1)

Q8

(c1)

(x) = −16777216 x7 − 9830400 x5 − 30481920 x3 − 231891660 x

(x) = 134217728 x8 − 15728640 x6 − 19353600 x4 − 90810720 x2 ,

(x) = −50331648 x7 − 13762560 x5 − 37255680 x3 − 267567300 x ,

(c1)

R8 S8

(x) = 16777216 x7 − 1966080 x5 − 2419200 x3 − 11351340 x ,

(x) = −16777216 x7 − 9830400 x5 − 30481920 x3 − 231891660 x ,

(x) = −134217728 x8 − 9437184 x6 − 15052800 x4 − 76839840 x2 − 1739187450

117

Recurrence Relations: Z

x−(n+1/2) sinh x · I0 (x) dx =

8(n − 1) (2n − 1)2

Z

x−(n−1/2) cosh x · I0 (x) dx−

2x−n+1/2 [(2n − 1) sinh x · I0 (x) − 2x cosh x · I0 (x) + 2x sinh x · I1 (x) ] (2n − 1)2 Z Z 8(n − 1) −(n+1/2) x cosh x · I0 (x) dx = x−(n−1/2) sinh x · I0 (x) dx− (2n − 1)2



2x−n+1/2 [(2n − 1) cosh x · I0 (x) + 2x cosh x · I1 (x) − 2x sinh x · I0 (x) ] (2n − 1)2 Z Z 8(n − 1) x−(n+1/2) sinh x · I1 (x) dx = x−(n−1/2) sinh x · I0 (x) dx+ 4n2 − 1



2x−n+1/2 [2x sinh x · I0 (x) − 2x cosh x · I1 (x) − (2n − 1) sinh x · I1 (x) ] 4n2 − 1 Z Z 8(n − 1) x−(n−1/2) cosh x · I0 (x) dx+ x−(n+1/2) cosh x · I1 (x) dx = 4n2 − 1

+

+

Z

+

2x−n+1/2 [2x cosh x · I0 (x) − 2x sinh x · I1 (x) − (2n − 1) cosh x · I1 (x) ] 4n2 − 1

x−(n+1/2) sinh x · K0 (x) dx =

8(n − 1) (2n − 1)2

Z

x−(n−1/2) cosh x · K0 (x) dx+

2x−n+1/2 [ − (2n − 1) sinh x · K0 (x) + 2x cosh x · K0 (x) + 2x sinh x · K1 (x) ] (2n − 1)2 Z Z 8(n − 1) x−(n−1/2) sinh x · K0 (x) dx+ x−(n+1/2) cosh x · K0 (x) dx = (2n − 1)2

2x−n+1/2 [ − (2n − 1) cosh x · K0 (x) + 2x cosh x · K1 (x) + 2x sinh x · K0 (x) ] (2n − 1)2 Z Z 8(n − 1) −(n+1/2) x sinh x · K1 (x) dx = − x−(n−1/2) sinh x · K0 (x) dx− 4n2 − 1

+

2x−n+1/2 [2x sinh x · K0 (x) + 2x cosh x · K1 (x) + (2n − 1) sinh x · K1 (x) ] 4n2 − 1 Z Z 8(n − 1) −(n+1/2) x−(n−1/2) cosh x · K0 (x) dx− x cosh x · K1 (x) dx = − 4n2 − 1





2x−n+1/2 [2x cosh x · K0 (x) + 2x sinh x · K1 (x) + (2n − 1) cosh x · K1 (x) ] 4n2 − 1

118

1.2.9. Integrals of the type

R

x2n+1 ln x · Z0 (x) dx

Z x ln x · J0 (x) dx = J0 (x) + x ln x · J1 (x) Z x ln x · I0 (x) dx = −I0 (x) + x ln x · I1 (x) Z Z

    x3 ln x · J0 (x) dx = x2 − 4 + 2x2 ln x J0 (x) + −4x + x3 − 4x ln x J1 (x)     x3 ln x · I0 (x) dx = −x2 − 4 − 2x2 ln x I0 (x) + 4x + x3 + 4x ln x I1 (x) Z

x5 ln x · J0 (x) dx =

      = x4 − 32 x2 + 64 + 4 x4 − 32 x2 ln x J0 (x) + −8 x3 + 96 x + x5 − 16 x3 + 64 x ln x J1 (x) Z x5 ln x · I0 (x) dx =       = −x4 − 32 x2 − 64 + −4 x4 − 32 x2 ln x I0 (x) + 8 x3 + 96 x + x5 + 16 x3 + 64 x ln x I1 (x) Z    x7 ln x · J0 (x) dx = x6 − 84 x4 + 1536 x2 − 2304 + 6 x6 − 144 x4 + 1152 x2 ln x J0 (x)+    + −12 x5 + 480 x3 − 4224 x + x7 − 36 x5 + 576 x3 − 2304 x ln x J1 (x) Z

   x7 ln x · I0 (x) dx = −x6 − 84 x4 − 1536 x2 − 2304 + −6 x6 − 144 x4 − 1152 x2 ln x I0 (x)+    + 12 x5 + 480 x3 + 4224 x + x7 + 36 x5 + 576 x3 + 2304 x ln x I1 (x) Z x9 ln x · J0 (x) dx =

   = x8 − 160 x6 + 7680 x4 − 116736 x2 + 147456 + 8 x8 − 384 x6 + 9216 x4 − 73728 x2 ln x J0 (x)+    + −16 x7 + 1344 x5 − 39936 x3 + 307200 x + x9 − 64 x7 + 2304 x5 − 36864 x3 + 147456 x ln x J1 (x) Z x9 ln x · I0 (x) dx =    = −x8 − 160 x6 − 7680 x4 − 116736 x2 − 147456 + −8 x8 − 384 x6 − 9216 x4 − 73728 x2 ln x I0 (x)+    + 16 x7 + 1344 x5 + 39936 x3 + 307200 x + x9 + 64 x7 + 2304 x5 + 36864 x3 + 147456 x ln x I1 (x) Let

Z Z

xn ln x · J0 (x) dx = (Pn (x) + Qn (x) ln x)J0 (x) + (Rn (x) + Sn (x) ln x)J1 (x) , xn ln x · I0 (x) dx = (Pn∗ (x) + Q∗n (x) ln x)I0 (x) + (Rn∗ (x) + Sn∗ (x) ln x)I1 (x) ,

then holds: P11 = x10 − 260 x8 + 23680 x6 − 952320 x4 + 13148160 x2 − 14745600 Q11 = 10 x10 − 800 x8 + 38400 x6 − 921600 x4 + 7372800 x2 R11 = −20 x9 + 2880 x7 − 180480 x5 + 4730880 x3 − 33669120 x S11 = x11 − 100 x9 + 6400 x7 − 230400 x5 + 3686400 x3 − 14745600 x ∗ P11 = −x10 − 260 x8 − 23680 x6 − 952320 x4 − 13148160 x2 − 14745600

Q∗11 = −10 x10 − 800 x8 − 38400 x6 − 921600 x4 − 7372800 x2 ∗ R11 = 20 x9 + 2880 x7 + 180480 x5 + 4730880 x3 + 33669120 x ∗ S11 = x11 + 100 x9 + 6400 x7 + 230400 x5 + 3686400 x3 + 14745600 x

119

P13 = x12 − 384 x10 + 56640 x8 − 4331520 x6 + 159252480 x4 − 2070282240 x2 + 2123366400 Q13 = 12 x12 − 1440 x10 + 115200 x8 − 5529600 x6 + 132710400 x4 − 1061683200 x2 R13 = −24 x11 + 5280 x9 − 568320 x7 + 31518720 x5 − 769720320 x3 + 5202247680 x S13 = x13 − 144 x11 + 14400 x9 − 921600 x7 + 33177600 x5 − 530841600 x3 + 2123366400 x ∗ P13 = −x12 − 384 x10 − 56640 x8 − 4331520 x6 − 159252480 x4 − 2070282240 x2 − 2123366400

Q∗13 = −12 x12 − 1440 x10 − 115200 x8 − 5529600 x6 − 132710400 x4 − 1061683200 x2 ∗ R13 = 24 x11 + 5280 x9 + 568320 x7 + 31518720 x5 + 769720320 x3 + 5202247680 x ∗ S13 = x13 + 144 x11 + 14400 x9 + 921600 x7 + 33177600 x5 + 530841600 x3 + 2123366400 x

P15 = x14 − 532 x12 + 115584 x10 − 14327040 x8 + 1003806720 x6 − −34929377280 x4 + 435502448640 x2 − 416179814400 Q15 = 14 x14 − 2352 x12 + 282240 x10 − 22579200 x8 + +1083801600 x6 − 26011238400 x4 + 208089907200 x2 R15 = −28 x13 + 8736 x11 − 1438080 x9 + 137195520 x7 − −7106641920 x5 + 165728747520 x3 − 1079094804480 x S15 = x15 − 196 x13 + 28224 x11 − 2822400 x9 + 180633600 x7 − −6502809600 x5 + 104044953600 x3 − 416179814400 x ∗ P15 = −x14 − 532 x12 − 115584 x10 − 14327040 x8 − 1003806720 x6 −

−34929377280 x4 − 435502448640 x2 − 416179814400 Q∗15 = −14 x14 − 2352 x12 − 282240 x10 − 22579200 x8 − −1083801600 x6 − 26011238400 x4 − 208089907200 x2 ∗ R15 = 28 x13 + 8736 x11 + 1438080 x9 + 137195520 x7 +

+7106641920 x5 + 165728747520 x3 + 1079094804480 x ∗ S15 = x15 + 196 x13 + 28224 x11 + 2822400 x9 + 180633600 x7 +

+6502809600 x5 + 104044953600 x3 + 416179814400 x

Recurrence formulas: Z

2n

=x

Z ln x[2nJ0 (x) + xJ1 (x)] − 2n

2n−1

x Z

= x2n ln x[xI1 (x) − 2nI0 (x)] + 2n The integrals of the type

R

x2n+1 · ln x · J0 (x) dx =

Z

Z J0 (x) dx −

2n

x J1 (x) dx − 4n

2

Z

x2n−1 · ln x · J0 (x) dx

x2n+1 · ln x · I0 (x) dx =

x2n−1 I0 (x) dx −

Z

x2n I1 (x) dx + 4n2

xm Zν (x) dx are described before.

120

Z

x2n−1 · ln x · I0 (x) dx

R

1.2.10. Integrals of the type

x2n ln x · Z1 (x) dx

Z

Z ln x · J1 (x) dx = − ln x · J0 (x) + Z

Z ln x · I1 (x) dx = ln x · I0 (x) −

J0 (x) dx x I0 (x) dx x

Concerning the integrals on the right hand side see 1.1.3, page 13. Z  x2 ln x · J1 (x) dx = 2 − x2 ln x J0 (x) + x (1 + 2 ln x) J1 (x) Z Z Z

 x2 ln x · I1 (x) dx = 2 + x2 ln x I0 (x) − x (1 + 2 ln x) I1 (x)

      x4 ln x · J1 (x) dx = 6 x2 − 16 + −x4 + 8 x2 ln x J0 (x) + x3 − 20 x + 4 x3 − 16 x ln x J1 (x)       x4 ln x · I1 (x) dx = 6 x2 + 16 + x4 + 8 x2 ln x I0 (x) + −x3 − 20 x + −4 x3 − 16 x ln x I1 (x) Z

   x6 ln x · J1 (x) dx = 10 x4 − 224 x2 + 384 + −x6 + 24 x4 − 192 x2 ln x J0 (x)+    + x5 − 64 x3 + 640 x + 6 x5 − 96 x3 + 384 x ln x J1 (x)

Z

   x6 ln x · I1 (x) dx = 10 x4 + 224 x2 + 384 + x6 + 24 x4 + 192 x2 ln x I0 (x)+    + −x5 − 64 x3 − 640 x + −6 x5 − 96 x3 − 384 x ln x I1 (x)

Z

   x8 ln x·J1 (x) dx = 14 x6 − 816 x4 + 13440 x2 − 18432 + −x8 + 48 x6 − 1152 x4 + 9216 x2 ln x J0 (x)+    + x7 − 132 x5 + 4416 x3 − 36096 x + 8 x7 − 288 x5 + 4608 x3 − 18432 x ln x J1 (x)

Z

   x8 ln x · I1 (x) dx = 14 x6 + 816 x4 + 13440 x2 + 18432 + x8 + 48 x6 + 1152 x4 + 9216 x2 ln x I0 (x)+    + −x7 − 132 x5 − 4416 x3 − 36096 x + −8 x7 − 288 x5 − 4608 x3 − 18432 x ln x I1 (x)

Let

Z Z

xn ln x · J1 (x) dx = [Pn (x) + Qn (x) ln x]J0 (x) + [Rn (x) + Sn (x) ln x]J1 (x) , xn ln x · I1 (x) dx = [Pn∗ (x) + Q∗n (x) ln x]I0 (x) + [Rn∗ (x) + Sn∗ (x) ln x]I1 (x) ,

then holds: P10 (x) = 18 x8 − 1984 x6 + 86016 x4 − 1241088 x2 + 1474560 Q10 (x) = −x10 + 80 x8 − 3840 x6 + 92160 x4 − 737280 x2 R10 (x) = x9 − 224 x7 + 15744 x5 − 436224 x3 + 3219456 x S10 (x) = 10 x9 − 640 x7 + 23040 x5 − 368640 x3 + 1474560 x ∗ P10 (x) = 18 x8 + 1984 x6 + 86016 x4 + 1241088 x2 + 1474560

Q∗10 (x) = x10 + 80 x8 + 3840 x6 + 92160 x4 + 737280 x2 ∗ R10 (x) = −x9 − 224 x7 − 15744 x5 − 436224 x3 − 3219456 x ∗ S10 (x) = −10 x9 − 640 x7 − 23040 x5 − 368640 x3 − 1474560 x

P12 (x) = 22 x10 − 3920 x8 + 322560 x6 − 12349440 x4 + 165150720 x2 − 176947200 Q12 (x) = −x12 + 120 x10 − 9600 x8 + 460800 x6 − 11059200 x4 + 88473600 x2 121

R12 (x) = x11 − 340 x9 + 40960 x7 − 2396160 x5 + 60456960 x3 − 418775040 x S12 (x) = 12 x11 − 1200 x9 + 76800 x7 − 2764800 x5 + 44236800 x3 − 176947200 x ∗ P12 (x) = 22 x10 + 3920 x8 + 322560 x6 + 12349440 x4 + 165150720 x2 + 176947200

Q∗12 (x) = x12 + 120 x10 + 9600 x8 + 460800 x6 + 11059200 x4 + 88473600 x2 ∗ R12 (x) = −x11 − 340 x9 − 40960 x7 − 2396160 x5 − 60456960 x3 − 418775040 x ∗ S12 (x) = −12 x11 − 1200 x9 − 76800 x7 − 2764800 x5 − 44236800 x3 − 176947200 x

P14 (x) = 26 x12 − 6816 x10 + 908160 x8 − 66170880 x6 + +2362245120 x4 − 30045634560 x2 + 29727129600 Q14 (x) = −x14 + 168 x12 − 20160 x10 + 1612800 x8 − −77414400 x6 + 1857945600 x4 − 14863564800 x2 R14 (x) = x13 − 480 x11 + 88320 x9 − 8878080 x7 + +474439680 x5 − 11306926080 x3 + 74954833920 x S14 (x) = 14 x13 − 2016 x11 + 201600 x9 − 12902400 x7 + +464486400 x5 − 7431782400 x3 + 29727129600 x ∗ P14 (x) = 26 x12 + 6816 x10 + 908160 x8 + 66170880 x6 +

+2362245120 x4 + 30045634560 x2 + 29727129600 Q∗14 (x) = x14 + 168 x12 + 20160 x10 + 1612800 x8 + +77414400 x6 + 1857945600 x4 + 14863564800 x2 ∗ R14 (x) = −x13 − 480 x11 − 88320 x9 − 8878080 x7 −

−474439680 x5 − 11306926080 x3 − 74954833920 x ∗ S14 (x) = −14 x13 − 2016 x11 − 201600 x9 − 12902400 x7 −

−464486400 x5 − 7431782400 x3 − 29727129600 x

Recurrence formulas: Z

Z +

x2n+2 · ln x · J1 (x) dx = x2n+1 ln x[(2n + 2)J1 (x) − xJ0 (x)]+

x2n+1 J0 (x) dx − (2n + 2) Z

Z −

2n+1

x

Z

x2n J1 (x) dx − 4n(n + 1)

Z

x2n · ln x · J1 (x) dx

x2n+2 · ln x · I1 (x) dx = x2n+1 ln x[xI0 (x) − (2n + 2)I1 (x)]− Z I0 (x) dx + (2n + 2)

The integrals of the type

R

Z

2n

x I1 (x) dx + 4n(n + 1)

xm Zν (x) dx are described before.

122

x2n · ln x · I1 (x) dx

1.2.11. Integrals of the type

R

x2n+ν ln x · Zν (x) dx

a) The Functions Λk and Λ∗k , k = 0, 1 : Let Λ0 (x) =

∞ X

2k+1

αk x

k=0

=

∞ X k=0

(−1)k x2k+1 = 22k · (k!)2 · (2k + 1)

Z

x

J0 (t) dt = x J0 (x) + Φ(x) . 0

(Φ(x) and further on Ψ(x) defined as on page 7) Λ0 (x) = x − k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x3 x5 x7 x9 x11 x13 x15 + − + − + − + ... 12 320 16 128 1 327 104 162 201 600 27 603 763 200 6 242 697 216 000 αk

1.0000000000000000E+00 -8.3333333333333329E-02 3.1250000000000002E-03 -6.2003968253968251E-05 7.5352044753086416E-07 -6.1651672979797980E-09 3.6226944592830012E-11 -1.6018716996829596E-13 5.5211570531352012E-16 -1.5246859958300586E-18 3.4486945143775135E-21 -6.5058017249306315E-24 1.0391211088430869E-26 -1.4232975959389203E-29 1.6902284962328838E-32 -1.7568683294176930E-35 1.6117104111016952E-38 -1.3145438350557573E-41 9.5948102742224525E-45 -6.3038564554696844E-48 3.7477195390749646E-51

1/αk 1 -12 320 -16128 1327104 -162201600 27603763200 -6242697216000 1811214552268800 -655872751986278400 289964795614986240000 -153708957370763182080000 96235173310390861824000000 -70259375330450160400465920000 59163598426411660994999746560000 -56919461934375356612430790656000000 -56919461934375356612430790656000000 -76072016263922024994318857577431040000000 104223009253931112643645081672942092288000000 -158633053760659041611878822148470455926784000000 266828931453826490506134634177940048943513600000000

Values of this function may be found in [1], Table 11.1 . .......... . . . . . . . . . ............. .... . . . . . . . . . .. ... 1.4 ....... . . . . . . . ....... . . ....... . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . .. . . . . . . . . .. . . . . . . . ... ... .. . ... . .. .. .. .. .. .. .. .. .. .. . .. .... . . . . . . . ...... . ...... . . . . . .... . ... . . . . . ....... ... . . . . . . . . .. . . . . . . . ................ ............... . ... . . . . . . . . .. . . . . . . . .... . ............ . . .. . . . . . . . . .. . . . . . . . ... . . . . . . . . . . 1.2 ... . . . . . . ..... . ... . .... . . . . .... . . .. . . .. ... ...... .. .. .. .. ... .. ..... ... .. ...... . .. .. .... . . . . . . . . . . . . ...... . . . . .. . . . .. . . . . . . . ...... . . . . . . . ... . . . . .... . .... . . . . . . . ........ . . . . . . . ... . . . . . ..... .... . . . . . . . ... ......... . . . . . ... . . . . . . ......... . . ..... . . .... . . .... . 1.0 .... .. . . . .... . .. .. .. ... .. .. .. .. ... .. ..... .. ... .. .... .. .. . .... . . . . . . . . . . . . . . ..... . ..... .. .. .. .. ... .. ..... .. .. .. .. ... .. .... .......... ....... .. ... .. ... . .. 0.8 ....... . . ..... . . . . ... . . . . . . . ... . . ...... . . . . .. ...... . . . . . .... . . . . . . . ... . . . . ............................. . . . . . .... . . . . . . . .. . . . . . . . .......... . . . . . . ... .... .. .. .. .. .. .. .. .. .... .. ........ ............ Λ0 (x) .. .. . . . . . . . . . . .... .. . . . . . . . . . . . 0.6 ....... . ..... . . . . . ... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . .. . . . . . . . . .. . . . . . . . ... . . . . . . . . . . .... .. . .. .. .. .. .. .. .. .. .. .... .. ... . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . 0.4 .. . . . . . . . . . . . .... .. . .. . . . . . . . . . . . . . . . . . .... .. . . . . . . . . . ...... . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . ... . 0.2 ... .. .. .. .. .. .. .. .. .. .. .. ...... .. .. .. .. .. .. .. .. .. .. ...... . . . . . . . . . . . . ..................................................................................................................................................................................................................................................................................................................................................................................................... ... 2 4 6 8 10 12 14 16 18 Figure 1 : Function Λ0 (x) 123

Approximations with Chebyshev polynomials are given in [1], table 9.3 . The maxima and minima of Λ0 (x) are situated in the zeros of J0 (x): k

1

2

3

4

5

6

7

8

max

1.470300

1.268168

1.205654

1.172888

1.151982

1.137178

1.125991

1.117157

min

0.668846

0.769119

0.812831

0.838567

0.855986

0.868771

0.878666

0.886617

Asymptotic expansion: r Λ0 (x) ∼ 1 +

  ∞ 2 X λk 2k − 1 sin x + π πx xk 4 k=0

Recurrence relation: λk+1 = −

 2k + 1  (12k + 10)λk + (4k 2 − 1)λk−1 16(k + 1)

If k > 1, then up to k ≈ 30 holds λk ≈ (−1)k Γ(sk ) with sk = k +

1 1 − √ . 2 3 k

Coefficients of the asymptotic formula: k

λk

λk

qk = |λk /λk−1 |

|λk |/Γ(sk )

0 1

1 −5 8 129 128 − 2655 1024 301035 32768 − 10896795 262144 961319205 4194304 50046571575 − 33554432 24035398261875 2147483648 1634825936118375 − 17179869184 248523783571238175 274877906944 − 20877210220441199625 2199023255552 7683027147736313147775 70368744177664

1 -0.625

0.625

-

1.007812500

1.612500000

0.882203509

-2.592773438

2.572674419

0.958684418

9.186859131

3.543255650

0.992044824

-41.56797409

4.524720963

1.007474317

229.1963589

5.513772656

1.014554883

-1491.504060

6.507538198

1.017456390

11192.35450

7.504072427

1.018151550

-95159.39374

8.502178320

1.017633944

904124.2577

9.501156135

1.016430975

-9493856.042

10.50060980

1.014835786

109182382.6

11.50032001

1.014835786

2 3 4 5 6 7 8 9 10 11 12

Roughly spoken, the item   λk 2k − 1 π sin x + xk 4 in the asymptotic series should not be used if |x| < qk . Let

r dn (x) = 1 +

  n 2 X λk 2k − 1 π − Λ0 (x) . sin x + πx xk 4 k=0

The following table gives some consecutive maxima and minima of interest of this functions:

124

x

n=0 dn (x)

3.953 7.084 10.221 13.360 16.500

n=1 dn (x)

x

-5.390E-2 2.479E-2 -1.475E-2 1.000E-2 -7.337E-3

5.510 8.647 11.787 14.927 18.068

n=2 dn (x)

x

-9.219-3 3.315E-3 -1.592E-3 9.002E-4 -5.647E-4

3.936 7.074 10.214 13.355 16.496

1.020E-2 -1.751-3 5.360E-4 -2.197E-4 1.076E-4

n=3 dn (x)

x 5.501 8.642 11.783 14.924 18.065

2.128E-3 -3.501E-4 9.561E-5 -3.469E-5 1.511E-5

. ......... ................... .... .... .. . .... .. d (x) ..... .. ... . ...... 0 ... . .... . . .... 0.2 ... ... ... ....... .... .. ..... .... .... .. .... .... .. ..... .... .. .... .... ... . .... ... d3 (x).. ... 0.1 ...... .. ... .... ... .... .. ... .... ... . .. .... ... .............. .......... . . . . . . .... .. ... .......... ... .... ... ... .......... .................................................................... ..... .... .... ................ . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......................................................................................................................................................................................................................................................................................................................................................................................................................................... .. .................. .......... ......... . .. . .... ......... .... 4 1 7 ....... .2. .... ... ......3.... . . . ......... . . . . . . . . ... .. .... . ... . . . . . ......... .......... ........... . .... . . . .... .................................................. .... . .. . .... .. .. .... .. .... .. . . . . . . d2 (x) -0.1 ... . ... .. .... d1 (x).. . .. .... .. .. .... .. .... .. .. .... . . .... .. .... .. . . -0.2... Figure 1 : Differences d0 (x) . . . d3 (x) Let Λ∗0 (x)

=

∞ X

2k+1

|αk | x

=

k=0

∞ X k=0

1 x2k+1 = 22k · (k!)2 · (2k + 1)

Z

x

I0 (t) dt = x I0 (x) + Ψ(x) . 0

Asymptotic expansion (see Λ0 (x)): Λ∗0

  5 129 2655 ex + (x) = √ 1+ + + ... 8x 128x2 1024x3 2πx

Furthermore, let Λ1 (x) =

∞ X k=0

βk x2k+1 =

∞ X k=0

∞ X (−1)k αk 2k+1 x = x2k+1 . 2k 2 2 2 · (k!) · (2k + 1) 2k + 1 k=0

Λ1 (x) can be written as a hypergeometric function. One has Λ0 (x) = x Λ01 (x) , Λ1 (0) = 0

Z ⇐⇒

Λ1 (x) = 0

x

Λ0 (t) dt . t

x3 x5 x7 x9 x11 x13 x15 Λ1 (x) = x − + − + − + − +... 36 1 600 112 896 11 943 936 1 784 217 600 358 848 921 600 93 640 458 240 000 125

... ......... . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . .... .... . . . . . . . . ... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . .. . . . . . . . . .. ................................... . . . . . . 4.2 ... . . . . . . . . . . ........................ . . . . . . . . . . .... .................... . . . . . . . . . . . . . . . . Λ1 (x) ............................... . . . .... . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .............. .... . . . . . . . . . . . . . . . . . . . . . . . . ...... . . . . . . . . .. . . . . . . . .. . . . . . . . . . . . . . . . . ... . . . . . . .......................... . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . ... 3.6 ... .. . . . . . . . . . . . . .................... . . . . . . . ... . . . . ........ . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . .. .. .. .. . . . . . . . .... . . .... . . . . . . . . . ....................... . . . . . . . .... .... . . . . . . . . ... . . . . . . . ... . . . . . . ..................... . . . . . .... . . . . . . . ... . . . . . . . . ... . . . . . . . .... . . . . . . . ... . . . . . . . . ... . . . . . . . ... . . . . .............. . . . . . . . . 3.0 ... . . ........ . . . . . . . . . ... .. .. .. .. .. .. .... . .. .. .. .. .... . . . . . . . . . . . . . .... ....... . . . . . . . . . . . . . .... .... . . . . . . . . . . . . . . . . . . . . . . . . . .... . .. . . . . . . . . . . 2.4 ...... . . . . . . . . ... . . ...... . . . ... . . . . . . . . ... . . . . . . . .... . . . . . . . ... . . . . . . . . ... . . . . . . . .... . . . . . . . ... . . . . . . . . ... . . . . . . . ... . .... . . ... . . . . . . . . . . . . . . . ... . . . . .... . . . . . . . . . ... . .... . . . . . . . . . . .. .. . . . . . . . . . . .... . . . . . . . . . . ...... . . . . . . ......... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . .. . . . . . . . . .. . . . . . . . ... 1.8 ... .. .. . . . . . . . . . .. ... . . . . . . . . . . . . . . . . . . .... .. . ... .. . . . . . . . . . .... . . . . . . . . . . .. . . . . . . . . . . .. . .. .... ....... . . . .. ..... . . .. . . . . . . . ... . . . . . . . . ... . . . . . . . .... . . . . . . . ... . . . . . . . . ... . . . . . . . .... . . . . . . . ... . . . . . . . . ... . . . . . . . ... . . . . . . 1.2 .. . . . . . . . . . ... .. ... .. . . . . . . . . . .... .. .. .. .. .. .. .. .. .. .. .. .. .... . .. . . . . . . . . . . . . . . . . . . . . .... .... . . . . . . . . . . .... ... . . . . . . . . . . 0.6 ...... . ...... . . . . . ... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . ... . . . . . . . . .. . . . . . . . .... . . . . . . . .. . . . . . . . . .. . . . . . . . ... .... ... . . . . . . . . . . . . . . . . . . . . .... .. . . . . . . . . . . . . . . . . . . . . .... .... . . . . . . . . . . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . ......................................................................................................................................................................................................................................................................................................................................................................................................................................... ... . 2 4 6 8 10 12 14 16 18 .... Figure 2 :

Function Λ1 (x),

dots: C + ln 2x

Asymptotic series with Euler’s constant C = 0.577 215 664 901 533 : r   ∞ 2 X µk 2k − 1 Λ1 (x) ∼ C + ln 2x − sin x + π πx xk 4 k=1

126

k

µk

µk

|µk /µk−1 |

1

1 − 17 8 809 128 25307 − 1024 3945243 32768 − 184487487 262144 20148017853 4194304 1258927642755 − 33554432 708892035920595 2147483648 − 55510620666083595 17179869184 9574308055473282135 274877906944 − 901713551323983156045 2199023255552

1

1

-2.125

2.125

6.320 312 500

2.974

-24.713 867 187 500

3.910

120.399 261 474 609

4.871

-703.763 912 200 928

5.845

4 803.661 788 225 174

6.826

-37 518.967 472 166

7.810

330 103.578 008 988

8.798

-3 231 143.384 827 510

9.788

34 831 129.798 379

10.780

-410 051 848.723 007

11.773

2 3 4 5 6 7 8 9 10 11 12

Some consecutive maxima and minima of the differences r   n 2 X µk 3 − 2k δn (x) = C + ln 2x − sin x + π − Λ1 (x) πx xk 4 k=1

n=1 n=2 n=3 n=4

x

2.4704

5.569

8.689

11.819

14.953

18.090

δn (x)

9.374E-2

-1.855E-2

6.824E-3

-3.309E-3

1.880E-3

-1.182E-3

x

3.991

7.115

10.246

13.380

16.517

19.655

δn (x)

2.312E-2

-4.117E-3

1.279E-3

-5.284E-4

2.598E-4

-1.436E-4

x

5.541

8.673

11.808

14.945

18.083

21.222

δn (x)

5.439E-3

-9.148E-4

2.525E-4

-9.214E-5

4.028E-5

-1.997E-5

x

10.237

13.374

16.512

19.651

22.791

25.931

δn (x)

-2.043E-4

5.163E-5

-1.707E-5

6.771E-6

-3.061E-6

1.527E-6

Let Λ∗1 (x) =

∞ X

|βk | x2k+1 =

∞ X

22k

k=0

k=0

x2k+1 . · (k!)2 · (2k + 1)2

b) Basic Integrals: Z ln x · J0 (x) dx = Λ0 (x) · ln x − Λ1 (x) + c Z In particular, let Z

ln x · I0 (x) dx = Λ∗0 (x) · ln x − Λ∗1 (x) + c

x

Z ln t · J0 (t) dt = F (x) and

0

0

127

x

ln t · I0 (t) dt = F ∗ (x) .

. . . . . . . ....... . . . . . . . ... . . . . . . . . . . . . . . .... . . . . . . . . . . . 0.6......... . . . . . . . . . ... . . .. . . . . . . . . ... . . . . . . . . . . .. . . . . . . . . . . .... . . . . . . . . . . .. . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . . . . F ∗ (x) . . . .... . . . . .. . . . .... . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.4 ... . . . . . . . . . . . .. . . . ... . . . . . . . .... . . . . .. . . . 0.2......... . . . . . . . . . ... . ... . . . . . . . . . ... . . . . . . . . . . .. . . . . . . . . . . .... . . . . . . . . . . .. . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . ... . . . .. . . . . . . .. . . . .... . . . . . . . . . . . . . . . . ..................................................................................................................................................................................................................................................................................................................................................................................................... ... . .. .. .. 14 12 10 8.. 6.. 4.. 2.. . ..... . . . . . . ... . . . . . . . . . . -0.2............. . . . . . . . . . ...... . . . . . . . . . . ... . . . . . . . . . . ... . . . . . . . . . . .... . . . . . . . . . . ... . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . ...... . . . . . . . . ........ . . . . . . . . . . . . . . . . . -0.4............. . . . . . . . . . .... . . . . . . . . . . . ... . . . . . . . . . . ... . . . . . . . . . . .... . . . . . . . . . . ... . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . .. .... .... . . . . . . . . . . . . .... .... .. .. .. . . . . . . . . . . .. . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.6 .. .. .. .. .. .. ...... .. .. . .... .... .. .. . ......... .......... . . . . . ......... .... ... . . . . . . . . . . . . . . .......... . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .... . . . . . .... . . . . . . . . . . . . . . .. . . . . . . . . . . . ... . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ... . -0.8 ... .... ... . . .... . . ............ ... ... . ... .... . .. . . .. .. ... . . . . . .... .......... ............. .. F (x) ..... .... . . . . . . . . . . . . . . . . . . . . . . . -1.0......... . . . ...... . . . ... . . . . . . . .... . . ... . . . . . . . . . . .. . . . . . . . ... . .... . . . . . . . . ...... .. . . . . . . . . . . ... . . . . . . . . . ... ... . . . . . ... . .... . . . .... . .. . . ... . . . . .... .. .. .... .. . . . . . . . . . . -1.2......... . . . . . . . . . ... . . . . . . . . . ...... ... . . . . . . . . . . .. . . . . . ... . . . .... . . . . . . . . . . ....... . . . . . . . . . ... . . . . . . . .... . . ... . . . . . ....... ..... ..... ..... ..... ...... ..... ..... ..... ..... ..... ....... ..... ..... ..... ..... ..... ..... ..... ..... ....... ..... ........... ..... ..... ..... ..... ..... ....... ..... ..... ..... ..... ..... ..... ..... ..... ....... ..... ...... ..... ..... . . . . . . .. .... . . . ..... . . . .. .. .. -1.4......... . . . . . . . . . ... . . . . . . . . . . . ........ . . . . . . . . . .. . . . . .. . . . . . .... . . . . . . . . . . .. . ...... . . . . . . . ... . . . . . .... . . . . ... . . . . . . ... . . . . . . . .. . . . .. . . . . . . ... . . . ... .... . . . . .. . .. . . .. . . . . . . . . . . . . -1.6......... . . . . . . . . . .. . . . . . . . . . . . .. . . ..... . . . . . . . . ... . . . . . . . ... . . . . . . . . . . . . . . . ..... . . . . . .. . . . .... . . . . . . . ... . . . . . . .. . . . . .. . . ... ... .... . .. . . . . .. . . ... ... . ... . . . .... . . .... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ .................. . -1.8 ... . . . . . .. .. .. .. .. .. .. .. Figure 3 : Functions F (x) and F ∗ (x) Holds ([7 ], 6.772) with Euler’s constant C = 0.577... lim F (x) = − ln 2 − C = −1.270 362 845 461 478 170 .

x→∞

Asymptotic expansion: r F (x) ∼ − ln 2 − C +

"  # ∞  π  X λk ln x + µk 2 (2k − 1)π ln x · sin x − + · sin x + = πx 4 xk 4 k=1

r

     2 π  5 ln x + 8 π  129 ln x + 272 3π = − ln 2 − C + ln x · sin x − − sin x + + sin x + − πx 4 8x 4 128x2 4      5π 301 035 ln x + 809 824 7π 2 655 ln x + 6 472 sin x + + sin x + + ... − 1 024x3 4 32 768x4 4 Let r ∆n (x) = − ln 2 − C +

"  # n  2 π  X λk ln x + µk (2k − 1)π ln x · sin x − + · sin x + − F (x) πx 4 xk 4 k=1

128

.......... ∆n (x) .... .. .... .... .... .... .......................................................................... 1000 ∆1 (x) .... .... .... . .. .. . . . . . . . . 25 ... . .. ... ............ ............ ............ ... ..... . 1000 ∆1 (x) ... ... ....... .. ... .... . ... ...... ...... ...... ...... ...... ...... ...... .... .. 1000 ∆3 (x) ... 20 ........ .. . ... ... . ... .................. .... .. 1000 ∆4 (x) ... .... . . ... .... .. ... 15 ....... .. ... .... . ... .... .. ... .... ... .. ... .... .. . . . . . ... . 10 .. .. ... .... ... .. .... .... . .... . .. .... . .... .... . .... ... .... ......... .. ........ .............. .... . 5 ........ .. .. .... ..... . ..... . ........... . .... . .... .. ......................... .......... .. .. .... .... ... ..... .... . . . .... . . .. . . .... . . . . . . . . . . . . . . . . . . . . . . . ... .. ......... .... ........... .. . . . ... .. .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................................................................................ .................................... ....................................................................................................................................................................................................................................................................................................................................... . . . . . . .. . . . ... .... 17.5 . 7.5 10 ..... 12.5 ... 15 .. .. ..... .... x . .... .. .... . .... ... ..... . . . .... ... .. . .. . . . . . .... . . ..... .... . ... . . ... ......... .............. .... ..... .. . ... . . . . . . . . . . . . . . . . . . ..... . -5 ........ ........................... .. .. .... . . . . .... .. . .... . ... Figure 4 : ∆n (x), n = 1 − 4, 5 ≤ x ≤ 20 . -10 ..... ... ........ ... ... ............ ............ 105 ∆2 (x) 5 ......... ... ....... .. .......... . . ...... ...... ...... ..... 105 ∆3 (x) 4 ....... ... .. . . . . ... .... .. .. .. . ... .. . . . . ......... . 105 ∆4 (x) 3 ... . . ... .. . ... . ... .... . .. . .. ....... .. ... ... .. ... . . . . 2 ... ... ... ... .. . ... . .. ... . . .... . ............ ... .. .. ... ..... .. .... . 1 ... . . .. ... ... ... .. . . . . . . .. .. .. .... .. .. .. . . .... ...... ...... ...... . ..... ....... . ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ .. .... .. . . ....... ...... . 15 ... . .... ... 25 . 20 . ........ ...... . ... . . ... ... ... .... .. . . . . . . .. . ... .. .... -1 ...... . . . . . ... . ... ... . .... .. . ... .... .. .. .. ......... ..... .. .. ...... . ....... ... -2 .... . ... ... .... ... .. . ... .... ... .. . . ... -3 ....... ... ...... .. ... .. .. ........ .. .... .... . ...... -4 ....... .... ... .. . -5 ..... .... Figure 5 : ∆n (x), n = 2 − 4, 10 ≤ x ≤ 30 .... .... . -6

129

Some consecutive maxima and minima of the differences ∆n (x): x

11.822

14.944

18.079

21.217

24.356

27.496

∆n (x)

-6.213E-4

5.541E-4

-4.520E-4

3.644E-4

-2.959E-4

2.431E-4

x

7.046

10.134

13.404

16.513

19.647

22.785

∆n (x)

6.878E-4

-3.344E-5

-4.133E-5

4.183E-5

-3.303E-5

2.498E-5

x

18.083

21.215

24.354

27.494

30.634

33.775

∆n (x)

3.458-6

-2.863E-6

2.100E-6

-1.507E-6

1.087E-6

-7.949E-7

x

22.785

25.923

29.063

32.204

35.345

38.486

∆n (x)

-2.648E-7

1.982E-7

-1.385E-7

9.570E-8

-6.666E-8

4.709E-8

n=1 n=2 n=3 n=4

c) Integrals of x2n ln x · Z0 (x): Z ln x · J0 (x) dx = [x J0 (x) + Φ(x)] · ln x − Λ1 (x) Z Z Z

ln x · I0 (x) dx = [x I0 (x) + Ψ(x)] · ln x − Λ∗1 (x)

x2 ln x · J0 (x) dx = [x2 J1 (x) − Φ(x)] · ln x − xJ0 (x) + Λ1 (x) − 2Φ(x) x2 ln x · I0 (x) dx = [x2 I1 (x) + Ψ(x)] · ln x + xI0 (x) − Λ∗1 (x) + 2Ψ(x) Z

x4 ln x · J0 (x) dx =

= [3 x3 J0 (x) + (x4 − 9 x2 ) J1 (x) + 9Φ(x)] · ln x + (x3 + 9 x) J0 (x) − 6 x2 J1 (x) − 9Λ1 (x) + 24Φ(x) Z x4 ln x · I0 (x) dx = = [−3 x3 I0 (x) + (x4 + 9 x2 ) I1 (x) + 9Ψ(x)] · ln x + (−x3 + 9 x) I0 (x) + 6 x2 I1 (x) − 9Λ∗1 (x) + 24Ψ(x) Let

Z

xn ln x · J0 (x) dx =

= [Pn (x) J0 (x) + Qn (x) J1 (x) + pn Φ(x)] · ln x + Rn (x) J0 (x) + Sn (x) J1 (x) − pn Λ1 (x) + qn Φ(x) and

Z

xn ln x · I0 (x) dx =

= [Pn∗ (x) I0 (x) + Q∗n (x) I1 (x) + p∗n Ψ(x)] · ln x + Rn∗ (x) I0 (x) + Sn∗ (x) I1 (x) − p∗n Λ∗1 (x) + qn∗ Ψ(x) , then holds P6 (x) = 5 x5 − 75 x3 ,

Q6 (x) = x6 − 25 x4 + 225 x2 ,

S6 (x) = −10 x4 + 240 x2 , P6∗ (x) = −5 x5 − 75 x3 ,

Q∗6 (x) = x6 + 25 x4 + 225 x2 ,

S6∗ (x) = 10 x4 + 240 x2 ,

P8 (x) = 7 x7 − 245 x5 + 3675 x3 , R8 (x) = x7 −119 x5 +3745 x3 +11025 x , P8∗ (x) R8∗ (x)

7

7

5

3

= −x −119 x −3745 x +11025 x ,

p∗6 = 225 ,

q6 = −690 R6∗ (x) = −x5 − 55 x3 + 225 x q6∗ = 690

Q8 (x) = x8 − 49 x6 + 1225 x4 − 11025 x2

S8 (x) = −14 x6 +840 x4 −14910 x2 , 3

= −7 x − 245 x − 3675 x , 5

p6 = −225 ,

R6 (x) = x5 − 55 x3 − 225 x

S8∗ (x)

Q∗8 (x) 6

8

6

q8 = 36960

2

= x + 49 x + 1225 x + 11025 x

= 14 x +840 x4 +14910 x2 , 130

p8 = 11025 , 4

p∗8 = 11025 ,

q8∗ = 36960

P10 (x) = 9 x9 − 567 x7 + 19845 x5 − 297675 x3 ,

Q10 (x) = x10 − 81 x8 + 3969 x6 − 99225 x4 + 893025 x2

R10 (x) = x9 −207 x7 +14049 x5 −369495 x3 −893025 x , p10 = −893025 , ∗ P10 (x) = −9 x9 − 567 x7 − 19845 x5 − 297675 x3 ,

S10 (x) = −18 x8 +2016 x6 −90090 x4 +1406160 x2 q10 = −3192210

Q∗10 (x) = x10 + 81 x8 + 3969 x6 + 99225 x4 + 893025 x2

∗ R10 (x) = −x9 −207 x7 −14049 x5 −369495 x3 +893025 x ,

p∗10 = 893025 ,

∗ S10 (x) = 18 x8 +2016 x6 +90090 x4 +1406160 x2

∗ q10 = 3192210

P12 (x) = 11 x11 − 1089 x9 + 68607 x7 − 2401245 x5 + 36018675 x3 Q12 (x) = x12 − 121 x10 + 9801 x8 − 480249 x6 + 12006225 x4 − 108056025 x2 R12 (x) = x11 − 319 x9 + 37521 x7 − 2136519 x5 + 51257745 x3 + 108056025 x S12 (x) = −22 x10 + 3960 x8 − 331254 x6 + 13083840 x4 − 189791910 x2 p12 = 108056025 , ∗ P12 (x)

11

= −11 x

q12 = 405903960

9

− 1089 x − 68607 x7 − 2401245 x5 − 36018675 x3

Q∗12 (x) = x12 + 121 x10 + 9801 x8 + 480249 x6 + 12006225 x4 + 108056025 x2 ∗ R12 (x) = −x11 − 319 x9 − 37521 x7 − 2136519 x5 − 51257745 x3 + 108056025 x

Q∗12 (x) = 22 x10 + 3960 x8 + 331254 x6 + 13083840 x4 + 189791910 x2 p∗12 = 108056025 ,

∗ q12 = 405903960

P14 (x) = 13 x13 − 1859 x11 + 184041 x9 − 11594583 x7 + 405810405 x5 − 6087156075 x3 Q14 (x) = x14 − 169 x12 + 20449 x10 − 1656369 x8 + 81162081 x6 − 2029052025 x4 + 18261468225 x2 R14 (x) = x13 − 455 x11 + 82225 x9 − 8124831 x7 + 423504081 x5 − 9599044455 x3 − 18261468225 x S14 (x) = −26 x12 + 6864 x10 − 924066 x8 + 68468400 x6 − 2523330810 x4 + 34884289440 x2 p14 = −18261468225 , ∗ P14 (x)

13

= −13 x

11

− 1859 x

q14 = −71407225890

9

− 184041 x − 11594583 x7 − 405810405 x5 − 6087156075 x3

Q∗14 (x) = x14 + 169 x12 + 20449 x10 + 1656369 x8 + 81162081 x6 + 2029052025 x4 + 18261468225 x2 ∗ R14 (x) = −x13 − 455 x11 − 82225 x9 − 8124831 x7 − 423504081 x5 − 9599044455 x3 + 18261468225 x ∗ S14 (x) = 26 x12 + 6864 x10 + 924066 x8 + 68468400 x6 + 2523330810 x4 + 34884289440 x2

p∗14 = 18261468225 ,

∗ q14 = 71407225890

P16 (x) = 15 x15 −2925 x13 +418275 x11 −41409225 x9 +2608781175 x7 −91307341125 x5 +1369610116875 x3 Q16 (x) = x16 − 225 x14 + 38025 x12 − 4601025 x10 + 372683025 x8 − 18261468225 x6 + +456536705625 x4 − 4108830350625 x2 R16 (x) = x15 − 615 x13 + 158145 x11 − 24021855 x9 + 2175924465 x7 − 107462730375 x5 + +2342399684625 x3 + 4108830350625 x S16 (x) = −30 x14 + 10920 x12 − 2157870 x10 + 257605920 x8 − 17840252430 x6 + +628620993000 x4 − 8396809170750 x2 p16 = 4108830350625 ,

q16 = 16614469872000

131

∗ P16 (x) = −15 x15 −2925 x13 −418275 x11 −41409225 x9 −2608781175 x7 −91307341125 x5 −1369610116875 x3

Q∗16 (x) = x16 + 225 x14 + 38025 x12 + 4601025 x10 + 372683025 x8 + 18261468225 x6 + +456536705625 x4 + 4108830350625 x2 ∗ R16 (x) = −x15 − 615 x13 − 158145 x11 − 24021855 x9 − 2175924465 x7 − 107462730375 x5 −

−2342399684625 x3 + 4108830350625 x ∗ S16 (x) = 30 x14 + 10920 x12 + 2157870 x10 + 257605920 x8 + 17840252430 x6 +

+628620993000 x4 + 8396809170750 x2 p∗16 = 4108830350625 ,

∗ q16 = 16614469872000

P18 (x) = 17 x17 − 4335 x15 + 845325 x13 − 120881475 x11 + 11967266025 x9 − 753937759575 x7 + +26387821585125 x5 − 395817323776875 x3 Q18 (x) = x18 − 289 x16 + 65025 x14 − 10989225 x12 + 1329696225 x10 − 107705394225 x8 + +5277564317025 x6 − 131939107925625 x4 + 1187451971330625 x2 R18 (x) = x17 − 799 x15 + 277185 x13 − 59925255 x11 + 8350229745 x9 − 717540730335 x7 + +34161178676625 x5 − 723520252830375 x3 − 1187451971330625 x S18 (x) = −34 x16 + 16320 x14 − 4448730 x12 + 780059280 x10 − 87119333730 x8 + 5776722871920 x6 − −197193714968250 x4 + 2566378082268000 x2 p18 = −1187451971330625 ,

q18 = −4941282024929250

∗ P18 (x) = −17 x17 − 4335 x15 − 845325 x13 − 120881475 x11 − 11967266025 x9 − 753937759575 x7 −

−26387821585125 x5 − 395817323776875 x3 Q∗18 (x) = x18 + 289 x16 + 65025 x14 + 10989225 x12 + 1329696225 x10 + 107705394225 x8 + +5277564317025 x6 + 131939107925625 x4 + 1187451971330625 x2 ∗ R18 (x) = −x17 − 799 x15 − 277185 x13 − 59925255 x11 − 8350229745 x9 − 717540730335 x7 −

−34161178676625 x5 − 723520252830375 x3 + 1187451971330625 x ∗ S18 (x) = 34 x16 + 16320 x14 + 4448730 x12 + 780059280 x10 + 87119333730 x8 + 5776722871920 x6 +

+197193714968250 x4 + 2566378082268000 x2 p∗18 = 1187451971330625 ,

∗ q18 = 4941282024929250

Recurrence formulas: Z

x2n+2 · ln x · J0 (x) dx = x2n+1 ln x[(2n + 1)J0 (x) + xJ1 (x)]− Z

x2n J0 (x) dx −

−(2n + 1) Z

Z

x2n+1 J1 (x) dx − (2n + 1)2

Z

x2n · ln x · J0 (x) dx

x2n+2 · ln x · I0 (x) dx = −x2n+1 ln x[(2n + 1)I0 (x) − xI1 (x)]+ Z

x I0 (x) dx −

+(2n + 1) The integrals of the type

2n

R

Z

2n+1

x

2

I1 (x) dx + (2n + 1)

xm Zν (x) dx are described before.

132

Z

x2n · ln x · I0 (x) dx

d) Integrals of x2n+1 ln x · Z1 (x): Z x ln x · J1 (x) dx = Φ(x) · ln x + x J0 (x) − Λ1 (x) + Φ(x) Z Z

x ln x · I1 (x) dx = −Ψ(x) · ln x − x I0 (x) + Λ∗1 (x) − Ψ(x)

x3 ln x · J1 (x) dx = [−x3 J0 (x) + 3x2 J1 (x) − 3 Φ(x)] ln x − 3x J0 (x) + x2 J1 (x) + 3 Λ1 (x) − 7 Φ(x) Z

x3 ln x · I1 (x) dx = [x3 I0 (x) − 3x2 I1 (x) − 3 Ψ(x)] ln x − 3x I0 (x) − x2 I1 (x) + 3 Λ∗1 (x) − 7 Ψ(x)

Let

Z

xn ln x · J0 (x) dx =

= [Pn (x) J0 (x) + Qn (x) J1 (x) + pn Φ(x)] · ln x + Rn (x) J0 (x) + Sn (x) J1 (x) − pn Λ1 (x) + qn Φ(x) and

Z

xn ln x · I0 (x) dx =

= [Pn∗ (x) I0 (x) + Q∗n (x) I1 (x) + p∗n Ψ(x)] · ln x + Rn∗ (x) I0 (x) + Sn∗ (x) I1 (x) − p∗n Λ∗1 (x) + qn∗ Ψ(x) , then holds P5 (x) = −x5 + 15 x3 ,

Q5 (x) = 5 x4 − 45 x2 ,

R5 (x) = 8 x3 + 45 x ,

p5 = 45 , P5∗ (x) = x5 + 15 x3 ,

q5 = 129

Q∗5 (x) = −5 x4 − 45 x2 ,

R5∗ (x) = 8 x3 − 45 x ,

p∗5 = −45 ,

P7∗ (x)

7

5

Q7 (x) = 7 x6 − 175 x4 + 1575 x2

S7 (x) = x6 − 95 x4 + 1905 x2 , Q∗7 (x)

3

= x + 35 x + 525 x ,

R7∗ (x) = 12 x5 + 460 x3 − 1575 x ,

p9 = 99225 , 7

5

p7 = −1575 , 4

q7 = −5055

2

= −7 x − 175 x − 1575 x

p∗7 = −1575 ,

q7∗ − 5055

Q9 (x) = 9 x8 − 441 x6 + 11025 x4 − 99225 x2

R9 (x) = 16 x7 − 1316 x5 + 37380 x3 + 99225 x , 9

6

S7∗ (x) = −x6 − 95 x4 − 1905 x2 ,

P9 (x) = −x9 + 63 x7 − 2205 x5 + 33075 x3 ,

P9∗ (x)

S5∗ (x) = −x4 − 39 x2

q5∗ = −129

P7 (x) = −x7 + 35 x5 − 525 x3 , R7 (x) = 12 x5 − 460 x3 − 1575 x ,

S5 (x) = x4 − 39 x2 ,

S9 (x) = x8 − 175 x6 + 8785 x4 − 145215 x2 q9 = 343665

Q∗9 (x)

3

= x + 63 x + 2205 x + 33075 x ,

R9∗ (x) = 16 x7 + 1316 x5 + 37380 x3 − 99225 x , p∗9 = −99225 ,

= −9 x8 − 441 x6 − 11025 x4 − 99225 x2

S9∗ (x) = −x8 − 175 x6 − 8785 x4 − 145215 x2 q9∗ = −343665

P11 (x) = −x11 + 99 x9 − 6237 x7 + 218295 x5 − 3274425 x3 Q11 (x) = 11 x10 − 891 x8 + 43659 x6 − 1091475 x4 + 9823275 x2 R11 (x) = 20 x9 − 2844 x7 + 174384 x5 − 4362120 x3 − 9823275 x S11 (x) = x10 − 279 x8 + 26145 x6 − 1090215 x4 + 16360785 x2 p11 = −9823275 ,

q11 = −36007335

133

∗ P11 (x) = x11 + 99 x9 + 6237 x7 + 218295 x5 + 3274425 x3

Q∗11 (x) = −11 x10 − 891 x8 − 43659 x6 − 1091475 x4 − 9823275 x2 ∗ R11 (x) = 20 x9 + 2844 x7 + 174384 x5 + 4362120 x3 − 9823275 x ∗ R11 (x) = −x10 − 279 x8 − 26145 x6 − 1090215 x4 − 16360785 x2

p∗11 = −9823275 ,

∗ q11 = −36007335

P13 (x) = −x13 + 143 x11 − 14157 x9 + 891891 x7 − 31216185 x5 + 468242775 x3 Q13 (x) = 13 x12 − 1573 x10 + 127413 x8 − 6243237 x6 + 156080925 x4 − 1404728325 x2 R13 (x) = 24 x11 − 5236 x9 + 556380 x7 − 30175992 x5 + 702369360 x3 + 1404728325 x S13 (x) = x12 − 407 x10 + 61281 x8 − 4786551 x6 + 182096145 x4 − 2575350855 x2 p13 = 1404728325 , ∗ P13 (x)

13

=x

11

+ 143 x

q13 = 5384807505

9

+ 14157 x + 891891 x7 + 31216185 x5 + 468242775 x3

∗ R13 (x) = −13 x12 − 1573 x10 − 127413 x8 − 6243237 x6 − 156080925 x4 − 1404728325 x2 ∗ R13 (x) = 24 x11 + 5236 x9 + 556380 x7 + 30175992 x5 + 702369360 x3 − 1404728325 x ∗ S13 (x) = −x12 − 407 x10 − 61281 x8 − 4786551 x6 − 182096145 x4 − 2575350855 x2

p∗13 = −1404728325 ,

∗ q13 = −5384807505

P15 (x) = −x15 + 195 x13 − 27885 x11 + 2760615 x9 − 173918745 x7 + +6087156075 x5 − 91307341125 x3 Q15 (x) = 15 x14 − 2535 x12 + 306735 x10 − 24845535 x8 + 1217431215 x6 − −30435780375 x4 + 273922023375 x2 R15 (x) = 28 x13 − 8684 x11 + 1417416 x9 − 133467048 x7 + 6758371620 x5 − −150072822900 x3 − 273922023375 x S15 (x) = x14 − 559 x12 + 123409 x10 − 15517359 x8 + 1108188081 x6 − −39879014175 x4 + 541525809825 x2 p15 = −273922023375 ,

q15 = −1089369856575

∗ P15 (x) = x15 + 195 x13 + 27885 x11 + 2760615 x9 + 173918745 x7 +

+6087156075 x5 + 91307341125 x3 Q∗15 (x) = −15 x14 − 2535 x12 − 306735 x10 − 24845535 x8 − 1217431215 x6 − −30435780375 x4 − 273922023375 x2 ∗ R15 (x) = 28 x13 + 8684 x11 + 1417416 x9 + 133467048 x7 + 6758371620 x5 +

+150072822900 x3 − 273922023375 x ∗ S15 (x) = −x14 − 559 x12 − 123409 x10 − 15517359 x8 − 1108188081 x6 −

−39879014175 x4 − 541525809825 x2 p∗15 = −273922023375 ,

∗ q15 = −1089369856575

P17 (x) = −x17 + 255 x15 − 49725 x13 + 7110675 x11 − 703956825 x9 + 44349279975 x7 − −1552224799125 x5 + 23283371986875 x3 134

Q17 (x) = 17 x16 − 3825 x14 + 646425 x12 − 78217425 x10 + 6335611425 x8 − 310444959825 x6 + +7761123995625 x4 − 69850115960625 x2 R17 (x) = 32 x15 − 13380 x13 + 3106740 x11 − 449780760 x9 + 39599497080 x7 − 1918173757500 x5 + +41190404755500 x3 + 69850115960625 x S17 (x) = x16 − 735 x14 + 223665 x12 − 41284815 x10 + 4751983665 x8 − 321545759535 x6 + +11143093586625 x4 − 146854586253375 x2 p17 = 69850115960625 , ∗ P17 (x)

17

=x

15

+ 255 x

13

+ 49725 x

11

+ 7110675 x

q17 = 286554818174625

+ 703956825 x9 + 44349279975 x7 + 1552224799125 x5 +

+23283371986875 x3 Q∗17 (x) = −17 x16 − 3825 x14 − 646425 x12 − 78217425 x10 − 6335611425 x8 − 310444959825 x6 − −7761123995625 x4 − 69850115960625 x2 ∗ R17 (x)

15

= 32 x

13

+ 13380 x

+ 3106740 x11 + 449780760 x9 + 39599497080 x7 + 1918173757500 x5 + +41190404755500 x3 − 69850115960625 x

∗ S17 (x) = −x16 − 735 x14 − 223665 x12 − 41284815 x10 − 4751983665 x8 − 321545759535 x6 −

−11143093586625 x4 − 146854586253375 x2 p∗17

= −69850115960625 ,

∗ q17 = −286554818174625

P19 (x) = −x19 + 323 x17 − 82365 x15 + 16061175 x13 − 2296748025 x11 + 227378054475 x9 − −14324817431925 x7 + 501368610117375 x5 − 7520529151760625 x3 Q19 (x) = 19 x18 − 5491 x16 + 1235475 x14 − 208795275 x12 + 25264228275 x10 − 2046402490275 x8 + +100273722023475 x6 − 2506843050586875 x4 + 22561587455281875 x2 17

R19 (x) = 36 x

− 19516 x15 + 6111840 x13 − 1259461320 x11 + 170621631180 x9 − 14387211635940 x7 + +675450216441000 x5 − 14142702127554000 x3 − 22561587455281875 x

S19 (x) = x18 − 935 x16 + 375105 x14 − 95515095 x12 + 16150822545 x10 − 1762972735095 x8 + +115035298883505 x6 − 3878619692322375 x4 + 49948635534422625 x2 p19 = −22561587455281875 ,

q19 = −95071810444986375

∗ P19 (x) = x19 + 323 x17 + 82365 x15 + 16061175 x13 + 2296748025 x11 + 227378054475 x9 +

+14324817431925 x7 + 501368610117375 x5 + 7520529151760625 x3 Q∗19 (x) = −19 x18 − 5491 x16 − 1235475 x14 − 208795275 x12 − 25264228275 x10 − 2046402490275 x8 − −100273722023475 x6 − 2506843050586875 x4 − 22561587455281875 x2 ∗ R19 (x) = 36 x17 + 19516 x15 + 6111840 x13 + 1259461320 x11 + 170621631180 x9 + 14387211635940 x7 +

+675450216441000 x5 + 14142702127554000 x3 − 22561587455281875 x ∗ S19 (x) = −x18 − 935 x16 − 375105 x14 − 95515095 x12 − 16150822545 x10 − 1762972735095 x8 −

−115035298883505 x6 − 3878619692322375 x4 − 49948635534422625 x2 p∗19 = −22561587455281875 ,

∗ q19 = −95071810444986375

Recurrence formulas: Z

x2n+1 · ln x · J1 (x) dx = x2n ln x [(2n + 1)J1 (x) − xJ0 (x)]+ Z Z Z + x2n J0 (x) dx − (2n + 1) x2n−1 J1 (x) dx − (4n2 − 1) x2n−1 · ln x · J1 (x) dx Z x2n+1 · ln x · I1 (x) dx = −x2n ln x [xI0 (x) − (2n + 1)I1 (x)]− Z Z Z − x2n I0 (x) dx + (2n + 1) x2n−1 I1 (x) dx + (4n2 − 1) x2n−1 · ln x · I1 (x) dx R The integrals of the type xm Zν x(x) dx are described before. 135

1.2.12. Integrals of the type

R

xn e±x ln x · Zν (x) dx

n = 0: Z Z Z Z

ex ln x I0 (x) dx = ex {(1 − 2x) I0 (x) + 2x I1 (x) + ln x [x I0 (x) − x I1 (x)] }

e−x ln x I0 (x) dx = e−x {−(1 + 2x) I0 (x) − 2x I1 (x) + ln x [x I0 (x) + x I1 (x)] } ex ln x K0 (x) dx = ex {(1 − 2x) K0 (x) − 2x K1 (x) + ln x [x K0 (x) + x K1 (x)] }

e−x ln x K0 (x) dx = e−x {−(1 + 2x) K0 (x) + 2x K1 (x) + ln x [x K0 (x) − x K1 (x)] }

n = 1: Z

ex {(−2 x2 + 3 x − 3) I0 (x) + (2 x2 − 2 x) I1 (x) + ln x [3x2 I0 (x) − (3 x2 − 3 x) I1 (x)] } 9 Z x e−x ln x I0 (x) dx =

=

=

=

=

e−x {−(2 x2 + 3 x + 3) I0 (x) − (2 x2 + 2 x) I1 (x) + ln x [3x2 I0 (x) + (3 x2 + 3 x) I1 (x)] } 9 Z x ex ln x K0 (x) dx =

ex {(−2 x2 + 3 x − 3) K0 (x) + (−2 x2 + 2 x) K1 (x) + ln x [3 x2 K0 (x) + (3 x2 − 3 x) K1 (x)] } 9 Z x e−x ln x K0 (x) dx = e−x {−(2 x2 + 3 x + 3) K0 (x) + (2 x2 + 2 x) K1 (x) + ln x [3x2 K0 (x) − (3 x2 + 3 x) K1 (x)] } 9 Z x ex ln x I1 (x) dx = ex {(2 x2 + 6 x − 6) I0 (x) − (2 x2 + 7 x) I1 (x) + ln x [−3x2 I0 (x) + (3 x2 + 6 x) I1 (x)] } 9 Z x e−x ln x I1 (x) dx =

=

=

=

= n = 2: Z

x ex ln x I0 (x) dx =

e−x {(−2x2 + 6x + 6) I0 (x) − (2x2 − 7x) I1 (x) + ln x [3x2 I0 (x) + (3x2 − 6x) I1 (x)] } 9 Z x ex ln x K1 (x) dx =

ex {−(2x2 + 6x − 6) K0 (x) − (2x2 + 7x) K1 (x) + ln x [3x2 K0 (x) + (3x2 + 6x) K1 (x)] } 9 Z x e−x ln x K1 (x) dx = e−x {(2x2 − 6x − 6) K0 (x) − (2x2 − 7x) K1 (x) − ln x [3x2 K0 (x) − (3x2 − 3x) K1 (x)] } 9

x2 ex ln x I0 (x) dx =

ex {(−18 x3 + 13 x2 − 60 x + 60) I0 (x) + (18 x3 − 4 x2 + 4 x) I1 (x)+ 225

+ ln x [(45 x3 + 30 x2 ) I0 (x) + (−45 x3 + 60 x2 − 60 x) I1 (x)] } 136

Z

e−x {−(18 x3 + 13 x2 + 60 x + 60) I0 (x) − (18 x3 + 4 x2 + 4 x) I1 (x)+ 225

x2 e−x ln x I0 (x) dx =

+ ln x [(45 x3 − 30 x2 ) I0 (x) + (45 x3 + 60 x2 + 60 x) I1 (x)] } Z

x2 ex ln x K0 (x) dx =

ex {(−18 x3 + 13 x2 − 60 x + 60) K0 (x) + (−18 x3 + 4 x2 − 4 x) K1 (x)+ 225

+ ln x [(45 x3 + 30 x2 ) K0 (x) + (45 x3 − 60 x2 + 60 x) K1 (x)] } Z

x2 e−x ln x K0 (x) dx =

e−x {−(18 x3 + 13 x2 + 60 x + 60) K0 (x) + (18 x3 + 4 x2 + 4 x) K1 (x)+ 225

+ ln x [(45 x3 − 30 x2 ) K0 (x) − (45 x3 + 60 x2 + 60 x) K1 (x)] } Z

x2 ex ln x I1 (x) dx =

ex {(6 x3 + 4 x2 − 30 x + 30) I0 (x) + (−6 x3 − 7 x2 + 7 x) I1 (x)+ 75

+ ln x [(−15 x3 + 15 x2 ) I0 (x) + (15 x3 + 30 x2 − 30 x) I1 (x)] } Z

e−x {(−6 x3 + 4 x2 + 30 x + 30) I0 (x) + (−6 x3 + 7 x2 + 7 x) I1 (x)+ 75

x2 e−x ln x I1 (x) dx =

+ ln x [(15 x3 + 15 x2 ) I0 (x) + (15 x3 − 30 x2 − 30 x) I1 (x)] } Z

x2 ex ln x K1 (x) dx =

ex {(−6 x3 − 4 x2 + 30 x − 30) K0 (x) + (−6 x3 − 7 x2 + 7 x) K1 (x)+ 75

+ ln x [(15 x3 − 15 x2 ) K0 (x) + (15 x3 + 30 x2 − 30 x) K1 (x)] } Z

x2 e−x ln x K1 (x) dx =

e−x {(6 x3 − 4 x2 − 30 x − 30) K0 (x) + (−6 x3 + 7 x2 + 7 x) K1 (x)+ 75

+ ln x [(−15 x3 − 15 x2 ) K0 (x) + (15 x3 − 30 x2 − 30 x) K1 (x)] } n = 3: Z

=

x3 ex ln x I0 (x) dx =

ex {(−50 x4 + 31 x3 − 171 x2 + 420 x − 420) I0 (x) + (50 x4 − 6 x3 − 132 x2 + 132 x) I1 (x)+ 1225 + ln x [(175 x4 + 210 x3 − 210 x2 ) I0 (x) + (−175 x4 + 315 x3 − 420 x2 + 420 x) I1 (x)] } Z x3 e−x ln x I0 (x) dx =

=

e−x {−(50 x4 + 31 x3 + 171 x2 + 420 x + 420) I0 (x) − (50 x4 + 6 x3 − 132 x2 − 132 x) I1 (x)+ 1225 + ln x [(175 x4 − 210 x3 − 210 x2 ) I0 (x) + (175 x4 + 315 x3 + 420 x2 + 420 x) I1 (x)] } Z x3 ex ln x K0 (x) dx =

=

ex {(−50 x4 + 31 x3 − 171 x2 + 420 x − 420) K0 (x) + (−50 x4 + 6 x3 + 132 x2 − 132 x) K1 (x)+ 1225 + ln x [(175 x4 + 210 x3 − 210 x2 ) K0 (x) + (175 x4 − 315 x3 + 420 x2 − 420 x) K1 (x)] } Z x3 e−x ln x K0 (x) dx =

=

e−x {−(50 x4 + 31 x3 + 171 x2 + 420 x + 420) K0 (x) + (50 x4 + 6 x3 − 132 x2 − 132 x) K1 (x)+ 1225 + ln x [(175 x4 − 210 x3 − 210 x2 ) K0 (x) − (175 x4 + 315 x3 + 420 x2 + 420 x) K1 (x)] } Z x3 ex ln x I1 (x) dx =

=

ex {(150 x4 + 54 x3 − 614 x2 + 1680 x − 1680) I0 (x) + (−150 x4 − 129 x3 − 388 x2 + 388 x) I1 (x)+ 3675 137

+ ln x [(−525 x4 + 840 x3 − 840 x2 ) I0 (x) + (525 x4 + 1260 x3 − 1680 x2 + 1680 x) I1 (x)] } Z x3 e−x ln x I1 (x) dx = =

e−x {(−150 x4 + 54 x3 + 614 x2 + 1680 x + 1680) I0 (x) + (−150 x4 + 129 x3 − 388 x2 − 388 x) I1 (x)+ 3675 + ln x [(525 x4 + 840 x3 + 840 x2 ) I0 (x) + (525 x4 − 1260 x3 − 1680 x2 − 1680 x) I1 (x)] } Z x3 ex ln x K1 (x) dx =

ex {(−150 x4 − 54 x3 + 614 x2 − 1680 x + 1680) K0 (x) + (−150 x4 − 129 x3 − 388 x2 + 388 x) K1 (x)+ 3675

=

+ ln x [(525 x4 − 840 x3 + 840 x2 ) K0 (x) + (525 x4 + 1260 x3 − 1680 x2 + 1680 x) K1 (x)] } Z x3 e−x ln x K1 (x) dx = =

e−x {(150 x4 − 54 x3 − 614 x2 − 1680 x − 1680) K0 (x) + (−150 x4 + 129 x3 − 388 x2 − 388 x) K1 (x)+ 3675 + ln x [(−525 x4 − 840 x3 − 840 x2 ) K0 (x) + (525 x4 − 1260 x3 − 1680 x2 − 1680 x) K1 (x)] }

n = 4: Z x4 ex ln x I0 (x) dx =

ex {(−2450 x5 + 1425 x4 − 12864 x3 + 33024 x2 − 60480 x + 60480) I0 (x)+ 99225

+(2450 x5 −200 x4 −11736 x3 +35808 x2 −35808 x) I1 (x)+ln x [(11025 x5 +18900 x4 −30240 x3 +30240 x2 ) I0 (x)+ +(−11025 x5 + 25200 x4 − 45360 x3 + 60480 x2 − 60480 x) I1 (x)] } Z

x4 e−x ln x I0 (x) dx =

e−x {−(2450 x5 + 1425 x4 + 12864 x3 + 33024 x2 + 60480 x + 60480) I0 (x)− 99225

−(2450 x5 +200 x4 −11736 x3 −35808 x2 −35808 x) I1 (x)+ln x [(11025 x5 −18900 x4 −30240 x3 −30240 x2 ) I0 (x)+ +(11025 x5 + 25200 x4 + 45360 x3 + 60480 x2 + 60480 x) I1 (x)] } Z

x4 ex ln x K0 (x) dx =

ex {(−2450 x5 + 1425 x4 − 12864 x3 + 33024 x2 − 60480 x + 60480) K0 (x)+ 99225

+(−2450 x5 + 200 x4 + 11736 x3 − 35808 x2 + 35808 x) K1 (x) + ln x [(11025 x5 + 18900 x4 − 30240 x3 + +30240 x2 ) K0 (x) + (11025 x5 − 25200 x4 + 45360 x3 − 60480 x2 + 60480 x) K1 (x)] } Z

x4 e−x ln x K0 (x) dx =

e−x {−(2450 x5 + 1425 x4 + 12864 x3 + 33024 x2 + 60480 x + 60480) K0 (x)+ 99225

+(2450 x5 + 200 x4 − 11736 x3 − 35808 x2 − 35808 x) K1 (x) + ln x [(11025 x5 − 18900 x4 − 30240 x3 − −30240 x2 ) K0 (x) − (11025 x5 + 25200 x4 + 45360 x3 + 60480 x2 + 60480 x) K1 (x)] } Z

x4 ex ln x I1 (x) dx =

ex {(490 x5 + 120 x4 − 2838 x3 + 7878 x2 − 15120 x + 15120) I0 (x)+ 19845

+(−490 x5 −365 x4 −2367 x3 +8196 x2 −8196 x) I1 (x)+ln x [(−2205 x5 +4725 x4 −7560 x3 +7560 x2 ) I0 (x)+ +(2205 x5 + 6300 x4 − 11340 x3 + 15120 x2 − 15120 x) I1 (x)] } Z

x4 e−x ln x I1 (x) dx =

e−x {(−490 x5 + 120 x4 + 2838 x3 + 7878 x2 + 15120 x + 15120) I0 (x)+ 19845

+(−490 x5 + 365 x4 − 2367 x3 − 8196 x2 − 8196 x) I1 (x) + ln x [(2205 x5 + 4725 x4 + 7560 x3 + 7560 x2 ) I0 (x)+ +(2205 x5 − 6300 x4 − 11340 x3 − 15120 x2 − 15120 x) I1 (x)] } Z

x4 ex ln x K1 (x) dx =

ex {(−490 x5 − 120 x4 + 2838 x3 − 7878 x2 + 15120 x − 15120) K0 (x)+ 19845 138

+(−490 x5 −365 x4 −2367 x3 +8196 x2 −8196 x) K1 (x)+ln x [(2205 x5 −4725 x4 +7560 x3 −7560 x2 ) K0 (x)+ +(2205 x5 + 6300 x4 − 11340 x3 + 15120 x2 − 15120 x) K1 (x)] } Z

x4 e−x ln x K1 (x) dx =

e−x {(490 x5 − 120 x4 − 2838 x3 − 7878 x2 − 15120 x − 15120) K0 (x)+ 19845

+(−490 x5 +365 x4 −2367 x3 −8196 x2 −8196 x) K1 (x)+ln x [(−2205 x5 −4725 x4 −7560 x3 −7560 x2 ) K0 (x)+ +(2205 x5 − 6300 x4 − 11340 x3 − 15120 x2 − 15120 x) K1 (x)] } n = 5: Z

=

x5 ex ln x I0 (x) dx =

ex {(−7938 x6 + 4459 x5 − 61035 x4 + 214080 x3 − 435840 x2 + 665280 x − 665280) I0 (x)+ 480249 +(7938 x6 − 490 x5 − 58280 x4 + 237960 x3 − 539040 x2 + 539040 x) I1 (x)+ + ln x [(43659 x6 + 97020 x5 − 207900 x4 + 332640 x3 − 332640 x2 ) I0 (x)+ +(−43659 x6 + 121275 x5 − 277200 x4 + 498960 x3 − 665280 x2 + 665280 x) I1 (x)] } Z x5 e−x ln x I0 (x) dx =

=

e−x {−(7938 x6 + 4459 x5 + 61035 x4 + 214080 x3 + 435840 x2 + 665280 x + 665280) I0 (x)− 480249 −(7938 x6 + 490 x5 − 58280 x4 − 237960 x3 − 539040 x2 − 539040 x) I1 (x)+ + ln x [(43659 x6 − 97020 x5 − 207900 x4 − 332640 x3 − 332640 x2 ) I0 (x)+ −(43659 x6 + 121275 x5 + 277200 x4 + 498960 x3 + 665280 x2 + 665280 x) I1 (x)] } Z x5 ex ln x K0 (x) dx =

=

ex {(−7938 x6 + 4459 x5 − 61035 x4 + 214080 x3 − 435840 x2 + 665280 x − 665280) K0 (x)+ 480249 +(−7938 x6 + 490 x5 + 58280 x4 − 237960 x3 + 539040 x2 − 539040 x) K1 (x)+ + ln x [(43659 x6 + 97020 x5 − 207900 x4 + 332640 x3 − 332640 x2 ) K0 (x)+ +(43659 x6 − 121275 x5 + 277200 x4 − 498960 x3 + 665280 x2 − 665280 x) K1 (x)] } Z x5 e−x ln x K0 (x) dx =

=

e−x {−(7938 x6 + 4459 x5 + 61035 x4 + 214080 x3 + 435840 x2 + 665280 x + 665280) K0 (x)+ 480249 +(7938 x6 + 490 x5 − 58280 x4 − 237960 x3 − 539040 x2 − 539040 x) K1 (x)+ + ln x [(43659 x6 − 97020 x5 − 207900 x4 − 332640 x3 − 332640 x2 ) K0 (x)− −(43659 x6 + 121275 x5 + 277200 x4 + 498960 x3 + 665280 x2 + 665280 x) K1 (x)] } Z x5 ex ln x I1 (x) dx =

=

ex {(13230 x6 + 2450 x5 − 108210 x4 + 405984 x3 − 849504 x2 + 1330560 x − 1330560) I0 (x)+ 800415 +(−13230 x6 − 9065 x5 − 98080 x4 + 442656 x3 − 1033728 x2 + 1033728 x) I1 (x)+ + ln x [(−72765 x6 + 194040 x5 − 415800 x4 + 665280 x3 − 665280 x2 ) I0 (x)+ +(72765 x6 + 242550 x5 − 554400 x4 + 997920 x3 − 1330560 x2 + 1330560 x) I1 (x)] } Z x5 e−x ln x I1 (x) dx = 139

=

e−x {(−13230 x6 + 2450 x5 + 108210 x4 + 405984 x3 + 849504 x2 + 1330560 x + 1330560) I0 (x)+ 800415 +(−13230 x6 + 9065 x5 − 98080 x4 − 442656 x3 − 1033728 x2 − 1033728 x) I1 (x)+ + ln x [(72765 x6 + 194040 x5 + 415800 x4 + 665280 x3 + 665280 x2 ) I0 (x)+ +(72765 x6 − 242550 x5 − 554400 x4 − 997920 x3 − 1330560 x2 − 1330560 x) I1 (x)] } Z x5 ex ln x K1 (x) dx =

=

ex {(−13230 x6 − 2450 x5 + 108210 x4 − 405984 x3 + 849504 x2 − 1330560 x + 1330560) K0 (x)+ 800415 +(−13230 x6 − 9065 x5 − 98080 x4 + 442656 x3 − 1033728 x2 + 1033728 x) K1 (x)+ + ln x [(72765 x6 − 194040 x5 + 415800 x4 − 665280 x3 + 665280 x2 ) K0 (x)+ +(72765 x6 + 242550 x5 − 554400 x4 + 997920 x3 − 1330560 x2 + 1330560 x) K1 (x)] } Z x5 e−x ln x K1 (x) dx =

=

e−x {(13230 x6 − 2450 x5 − 108210 x4 − 405984 x3 − 849504 x2 − 1330560 x − 1330560) K0 (x)+ 800415 +(−13230 x6 + 9065 x5 − 98080 x4 − 442656 x3 − 1033728 x2 − 1033728 x) K1 (x)+ + ln x [(−72765 x6 − 194040 x5 − 415800 x4 − 665280 x3 − 665280 x2 ) K0 (x)+ +(72765 x6 − 242550 x5 − 554400 x4 − 997920 x3 − 1330560 x2 − 1330560 x) K1 (x)] }

n = 6: Z

=

x6 ex ln x I0 (x) dx =

ex {(−106722 x7 + 58653 x6 − 1137388 x5 + 5114220 x4 − 14236800 x3 + 25768320 x2 − 34594560 x+ 9018009 +34594560) I0 (x) + (106722 x7 − 5292 x6 − 1106420 x5 + 5617760 x4 − 17030880 x3 + 34239360 x2 −

−34239360 x) I1 (x)+ln x [(693693 x7 +1891890 x6 −5045040 x5 +10810800 x4 −17297280 x3 +17297280 x2 ) I0 (x)+ +(−693693 x7 + 2270268 x6 − 6306300 x5 + 14414400 x4 − 25945920 x3 + 34594560 x2 − 34594560 x) I1 (x)] } Z x6 e−x ln x I0 (x) dx = =

e−x {−(106722 x7 + 58653 x6 + 1137388 x5 + 5114220 x4 + 14236800 x3 + 25768320 x2 + 34594560 x+ 9018009 +34594560) I0 (x) − (106722 x7 + 5292 x6 − 1106420 x5 − 5617760 x4 − 17030880 x3 − 34239360 x2 −

−34239360 x) I1 (x)+ln x [(693693 x7 −1891890 x6 −5045040 x5 −10810800 x4 −17297280 x3 −17297280 x2 ) I0 (x)+ +(693693 x7 + 2270268 x6 + 6306300 x5 + 14414400 x4 + 25945920 x3 + 34594560 x2 + 34594560 x) I1 (x)] } Z x6 ex ln x K0 (x) dx = =

ex {(−106722 x7 + 58653 x6 − 1137388 x5 + 5114220 x4 − 14236800 x3 + 25768320 x2 − 34594560 x+ 9018009 +34594560) K0 (x) + (−106722 x7 + 5292 x6 + 1106420 x5 − 5617760 x4 + 17030880 x3 − 34239360 x2 + +34239360 x) K1 (x) + ln x [(693693 x7 + 1891890 x6 − 5045040 x5 + 10810800 x4 − 17297280 x3 +

+17297280 x2 ) K0 (x) + (693693 x7 − 2270268 x6 + 6306300 x5 − 14414400 x4 + 25945920 x3 − 34594560 x2 + +34594560 x) K1 (x)] } Z

x6 e−x ln x K0 (x) dx = 140

=

e−x {−(106722 x7 + 58653 x6 + 1137388 x5 + 5114220 x4 + 14236800 x3 + 25768320 x2 + 34594560 x+ 9018009 +34594560) K0 (x) + (106722 x7 + 5292 x6 − 1106420 x5 − 5617760 x4 − 17030880 x3 − 34239360 x2 − −34239360 x) K1 (x) + ln x [(693693 x7 − 1891890 x6 − 5045040 x5 − 10810800 x4 − 17297280 x3 −

−17297280 x2 ) K0 (x) − (693693 x7 + 2270268 x6 + 6306300 x5 + 14414400 x4 + 25945920 x3 + 34594560 x2 + +34594560 x) K1 (x)] } Z

x6 ex ln x I1 (x) dx =

ex {(45738 x7 +6804 x6 −508634 x5 +2428410 x4 −6912480 x3 +12678240 x2 − 3864861

−17297280 x+17297280) I0 (x)+(−45738 x7 −29673 x6 −478135 x5 +2637280 x4 −8206560 x3 +16707840 x2 − −16707840 x) I1 (x)+ln x [(−297297 x7 +945945 x6 −2522520 x5 +5405400 x4 −8648640 x3 +8648640 x2 ) I0 (x)+ +(297297 x7 + 1135134 x6 − 3153150 x5 + 7207200 x4 − 12972960 x3 + 17297280 x2 − 17297280 x) I1 (x)] } Z e−x {(−45738 x7 +6804 x6 +508634 x5 +2428410 x4 +6912480 x3 +12678240 x2 + x6 e−x ln x I1 (x) dx = 3864861 +17297280 x+17297280) I0 (x)+(−45738 x7 +29673 x6 −478135 x5 −2637280 x4 −8206560 x3 −16707840 x2 − −16707840 x) I1 (x)+ln x [(297297 x7 +945945 x6 +2522520 x5 +5405400 x4 +8648640 x3 +8648640 x2 ) I0 (x)+ +(297297 x7 − 1135134 x6 − 3153150 x5 − 7207200 x4 − 12972960 x3 − 17297280 x2 − 17297280 x) I1 (x)] } Z ex {(−45738 x7 −6804 x6 +508634 x5 −2428410 x4 +6912480 x3 −12678240 x2 + x6 ex ln x K1 (x) dx = 3864861 +17297280 x−17297280) K0 (x)+(−45738 x7 −29673 x6 −478135 x5 +2637280 x4 −8206560 x3 +16707840 x2 − −16707840 x) K1 (x)+ln x [(297297 x7 −945945 x6 +2522520 x5 −5405400 x4 +8648640 x3 −8648640 x2 ) K0 (x)+ +(297297 x7 + 1135134 x6 − 3153150 x5 + 7207200 x4 − 12972960 x3 + 17297280 x2 − 17297280 x) K1 (x)] } Z e−x x6 e−x ln x K1 (x) dx = {(45738 x7 −6804 x6 −508634 x5 −2428410 x4 −6912480 x3 −12678240 x2 − 3864861 −17297280 x−17297280) K0 (x)+(−45738 x7 +29673 x6 −478135 x5 −2637280 x4 −8206560 x3 −16707840 x2 − −16707840 x) K1 (x)+ln x [(−297297 x7 −945945 x6 −2522520 x5 −5405400 x4 −8648640 x3 −8648640 x2 ) K0 (x)+ +(297297 x7 − 1135134 x6 − 3153150 x5 − 7207200 x4 − 12972960 x3 − 17297280 x2 − 17297280 x) K1 (x)] } n = 7: Z x7 ex ln x I0 (x) dx =

ex {(−122694 x8 + 66429 x7 − 1734705 x6 + 9530780 x5 − 33807900 x4 + 13803075

+84362880 x3 − 142020480 x2 + 172972800 x − 172972800) I0 (x) + (122694 x8 − 5082 x7 − 1703268 x6 + +10336900 x5 − 39071200 x4 + 104922720 x3 − 197554560 x2 + 197554560 x) I1 (x)+ + ln x [(920205 x8 +2972970 x7 −9459450 x6 +25225200 x5 −54054000 x4 +86486400 x3 −86486400 x2 ) I0 (x)+ +(−920205 x8 + 3468465 x7 − 11351340 x6 + 31531500 x5 − 72072000 x4 + 129729600 x3 − 172972800 x2 + +172972800 x) I1 (x)] } Z

x7 e−x ln x I0 (x) dx =

−x

e {(−122694 x8 − 66429 x7 − 1734705 x6 − 9530780 x5 − 33807900 x4 − 13803075

−84362880 x3 − 142020480 x2 − 172972800 x − 172972800) I0 (x) + (−122694 x8 − 5082 x7 + 1703268 x6 + +10336900 x5 + 39071200 x4 + 104922720 x3 + 197554560 x2 + 197554560 x) I1 (x)+ + ln x [(920205 x8 −2972970 x7 −9459450 x6 −25225200 x5 −54054000 x4 −86486400 x3 −86486400 x2 ) I0 (x)+ +(920205 x8 + 3468465 x7 + 11351340 x6 + 31531500 x5 + 72072000 x4 + 129729600 x3 + 172972800 x2 + +172972800 x) I1 (x)] } 141

Z

x7 ex ln x K0 (x) dx =

ex {(−122694 x8 + 66429 x7 − 1734705 x6 + 9530780 x5 − 33807900 x4 + 13803075

+84362880 x3 − 142020480 x2 + 172972800 x − 172972800) K0 (x) + (−122694 x8 + 5082 x7 + 1703268 x6 − −10336900 x5 + 39071200 x4 − 104922720 x3 + 197554560 x2 − 197554560 x) K1 (x)+ + ln x [(920205 x8 +2972970 x7 −9459450 x6 +25225200 x5 −54054000 x4 +86486400 x3 −86486400 x2 ) K0 (x)+ +(920205 x8 − 3468465 x7 + 11351340 x6 − 31531500 x5 + 72072000 x4 − 129729600 x3 + 172972800 x2 − −172972800 x) K1 (x)] } Z

x7 e−x ln x K0 (x) dx =

e−x {−(122694 x8 + 66429 x7 + 1734705 x6 + 9530780 x5 + 33807900 x4 + 13803075

+84362880 x3 + 142020480 x2 + 172972800 x + 172972800) K0 (x) + (122694 x8 + 5082 x7 − 1703268 x6 − −10336900 x5 − 39071200 x4 − 104922720 x3 − 197554560 x2 − 197554560 x) K1 (x)+ + ln x [(920205 x8 −2972970 x7 −9459450 x6 −25225200 x5 −54054000 x4 −86486400 x3 −86486400 x2 ) K0 (x)− −(920205 x8 + 3468465 x7 + 11351340 x6 + 31531500 x5 + 72072000 x4 + 129729600 x3 + 172972800 x2 + +172972800 x) K1 (x)] } Z

ex {(858858 x8 + 106722 x7 − 12526290 x6 + 72642640 x5 − 262741200 x4 + 96621525

x7 ex ln x I1 (x) dx =

+662547840 x3 −1123808640 x2 +1383782400 x−1383782400) I0 (x)+(−858858 x8 −536151 x7 −12004524 x6 + +78190700 x5 − 302273600 x4 + 820848960 x3 − 1555726080 x2 + 1555726080 x) I1 (x)+ + ln x [(−6441435 x8 + 23783760 x7 − 75675600 x6 + 201801600 x5 − 432432000 x4 + 691891200 x3 − −691891200 x2 ) I0 (x) + (6441435 x8 + 27747720 x7 − 90810720 x6 + 252252000 x5 − 576576000 x4 + −1037836800 x3 − 1383782400 x2 + 1383782400 x) I1 (x)] } Z

x7 e−x ln x I1 (x) dx =

e−x {(−858858 x8 + 106722 x7 + 12526290 x6 + 72642640 x5 + 262741200 x4 + 96621525

+662547840 x3 +1123808640 x2 +1383782400 x+1383782400) I0 (x)+(−858858 x8 +536151 x7 −12004524 x6 − −78190700 x5 − 302273600 x4 − 820848960 x3 − 1555726080 x2 − 1555726080 x) I1 (x)+ + ln x [(6441435 x8 + 23783760 x7 + 75675600 x6 + 201801600 x5 + 432432000 x4 + 691891200 x3 + +691891200 x2 ) I0 (x) + (6441435 x8 − 27747720 x7 − 90810720 x6 − 252252000 x5 − 576576000 x4 − −1037836800 x3 − 1383782400 x2 − 1383782400 x) I1 (x)] } Z

x7 ex ln x K1 (x) dx =

ex {(−858858 x8 − 106722 x7 + 12526290 x6 − 72642640 x5 + 262741200 x4 − 96621525

−662547840 x3 +1123808640 x2 −1383782400 x+1383782400) K0 (x)+(−858858 x8 −536151 x7 −12004524 x6 + +78190700 x5 − 302273600 x4 + 820848960 x3 − 1555726080 x2 + 1555726080 x) K1 (x)+ + ln x [(6441435 x8 − 23783760 x7 + 75675600 x6 − 201801600 x5 + 432432000 x4 − 691891200 x3 + +691891200 x2 ) K0 (x) + (6441435 x8 + 27747720 x7 − 90810720 x6 + 252252000 x5 − 576576000 x4 + +1037836800 x3 − 1383782400 x2 + 1383782400 x) K1 (x)] } Z

x7 e−x ln x K1 (x) dx =

e−x {(858858 x8 − 106722 x7 − 12526290 x6 − 72642640 x5 − 262741200 x4 − 96621525

−662547840 x3 −1123808640 x2 −1383782400 x−1383782400) K0 (x)+(−858858 x8 +536151 x7 −12004524 x6 − −78190700 x5 − 302273600 x4 − 820848960 x3 − 1555726080 x2 − 1555726080 x) K1 (x)+ + ln x [(−6441435 x8 − 23783760 x7 − 75675600 x6 − 201801600 x5 − 432432000 x4 − 691891200 x3 − −691891200 x2 ) K0 (x) + (6441435 x8 − 27747720 x7 − 90810720 x6 − 252252000 x5 − 576576000 x4 − 142

−1037836800 x3 − 1383782400 x2 − 1383782400 x) K1 (x)] } n = 8: Z x8 ex ln x I0 (x) dx =

ex {(−27606150 x9 + 14784627 x8 − 500382432 x7 + 3249519840 x6 − 3989088675

−14001917440 x5 + 44566771200 x4 − 104240855040 x3 + 166972323840 x2 − 188194406400 x+ +188194406400) I0 (x) + (27606150 x9 − 981552 x8 − 493929744 x7 + 3487748544 x6 − 15787083200 x5 + +52887833600 x4 − 132836981760 x3 + 239847444480 x2 − 239847444480 x) I1 (x)+ + ln x [(234652275 x9 +876035160 x8 −3234591360 x7 +10291881600 x6 −27445017600 x5 +58810752000 x4 − −94097203200 x3 + 94097203200 x2 ) I0 (x) + (−234652275 x9 + 1001183040 x8 − 3773689920 x7 + +12350257920 x6 − 34306272000 x5 + 78414336000 x4 − 141145804800 x3 + 188194406400 x2 − −188194406400 x) I1 (x)] } Z

x8 e−x ln x I0 (x) dx =

−x

e {(−27606150 x9 − 14784627 x8 − 500382432 x7 − 3249519840 x6 − 3989088675

−14001917440 x5 − 44566771200 x4 − 104240855040 x3 − 166972323840 x2 − 188194406400 x− −188194406400) I0 (x) + (−27606150 x9 − 981552 x8 + 493929744 x7 + 3487748544 x6 + 15787083200 x5 + +52887833600 x4 + 132836981760 x3 + 239847444480 x2 + 239847444480 x) I1 (x)+ + ln x [(234652275 x9 −876035160 x8 −3234591360 x7 −10291881600 x6 −27445017600 x5 −58810752000 x4 − −94097203200 x3 − 94097203200 x2 ) I0 (x) + (234652275 x9 + 1001183040 x8 + 3773689920 x7 + +12350257920 x6 + 34306272000 x5 + 78414336000 x4 + 141145804800 x3 + 188194406400 x2 + +188194406400 x) I1 (x)] } Z

x8 ex ln x K0 (x) dx =

ex {(−27606150 x9 + 14784627 x8 − 500382432 x7 + 3249519840 x6 − 3989088675

−14001917440 x5 + 44566771200 x4 − 104240855040 x3 + 166972323840 x2 − 188194406400 x+ +188194406400) K0 (x) + (−27606150 x9 + 981552 x8 + 493929744 x7 − 3487748544 x6 + 15787083200 x5 − −52887833600 x4 + 132836981760 x3 − 239847444480 x2 + 239847444480 x) K1 (x)+ + ln x [(234652275 x9 +876035160 x8 −3234591360 x7 +10291881600 x6 −27445017600 x5 +58810752000 x4 − −94097203200 x3 +94097203200 x2 ) K0 (x)+(234652275 x9 −1001183040 x8 +3773689920 x7 −12350257920 x6 + +34306272000 x5 − 78414336000 x4 + 141145804800 x3 − 188194406400 x2 + 188194406400 x) K1 (x)] } Z e−x {−(27606150 x9 + 14784627 x8 + 500382432 x7 + 3249519840 x6 + x8 e−x ln x K0 (x) dx = 3989088675 +14001917440 x5 + 44566771200 x4 + 104240855040 x3 + 166972323840 x2 + 188194406400 x+ +188194406400) K0 (x) + (27606150 x9 + 981552 x8 − 493929744 x7 − 3487748544 x6 − 15787083200 x5 − −52887833600 x4 − 132836981760 x3 − 239847444480 x2 − 239847444480 x) K1 (x)+ + ln x [(234652275 x9 −876035160 x8 −3234591360 x7 −10291881600 x6 −27445017600 x5 −58810752000 x4 − −94097203200 x3 −94097203200 x2 ) K0 (x)−(234652275 x9 +1001183040 x8 +3773689920 x7 +12350257920 x6 + +34306272000 x5 + 78414336000 x4 + 141145804800 x3 + 188194406400 x2 + 188194406400 x) K1 (x)] } Z

x8 ex ln x I1 (x) dx =

ex {(3067350 x9 +327184 x8 −56932194 x7 +388322130 x6 −1702592080 x5 + 443232075

+5468744400 x4 −12866743680 x3 +20708177280 x2 −23524300800 x+23524300800) I0 (x)+(−3067350 x9 − −1860859 x8 − 55189673 x7 + 414527148 x6 − 1913825900 x5 + 6474843200 x4 − 16359577920 x3 + 143

+29654204160 x2 −29654204160 x) I1 (x)+ln x [(−26072475 x9 +109504395 x8 −404323920 x7 +1286485200 x6 − −3430627200 x5 +7351344000 x4 −11762150400 x3 +11762150400 x2 ) I0 (x)+(26072475 x9 +125147880 x8 − −471711240 x7 + 1543782240 x6 − 4288284000 x5 + 9801792000 x4 − 17643225600 x3 + 23524300800 x2 − −23524300800 x) I1 (x)] } Z

x8 e−x ln x I1 (x) dx =

−x

e {(−3067350 x9 +327184 x8 +56932194 x7 +388322130 x6 +1702592080 x5 + 443232075

+5468744400 x4 +12866743680 x3 +20708177280 x2 +23524300800 x+23524300800) I0 (x)+(−3067350 x9 + +1860859 x8 − 55189673 x7 − 414527148 x6 − 1913825900 x5 − 6474843200 x4 − 16359577920 x3 − −29654204160 x2 −29654204160 x) I1 (x)+ln x [(26072475 x9 +109504395 x8 +404323920 x7 +1286485200 x6 + +3430627200 x5 +7351344000 x4 +11762150400 x3 +11762150400 x2 ) I0 (x)+(26072475 x9 −125147880 x8 − −471711240 x7 − 1543782240 x6 − 4288284000 x5 − 9801792000 x4 − 17643225600 x3 − 23524300800 x2 − −23524300800 x) I1 (x)] } Z

x

x8 ex ln x K1 (x) dx =

e {(−3067350 x9 −327184 x8 +56932194 x7 −388322130 x6 +1702592080 x5 − 443232075

−5468744400 x4 +12866743680 x3 −20708177280 x2 +23524300800 x−23524300800) K0 (x)+(−3067350 x9 − −1860859 x8 − 55189673 x7 + 414527148 x6 − 1913825900 x5 + 6474843200 x4 − 16359577920 x3 + +29654204160 x2 −29654204160 x) K1 (x)+ln x [(26072475 x9 −109504395 x8 +404323920 x7 −1286485200 x6 + +3430627200 x5 −7351344000 x4 +11762150400 x3 −11762150400 x2 ) K0 (x)+(26072475 x9 +125147880 x8 − −471711240 x7 + 1543782240 x6 − 4288284000 x5 + 9801792000 x4 − 17643225600 x3 + 23524300800 x2 − −23524300800 x) K1 (x)] } Z

x8 e−x ln x K1 (x) dx =

−x

e {(3067350 x9 −327184 x8 −56932194 x7 −388322130 x6 −1702592080 x5 − 443232075

−5468744400 x4 −12866743680 x3 −20708177280 x2 −23524300800 x−23524300800) K0 (x)+(−3067350 x9 + +1860859 x8 − 55189673 x7 − 414527148 x6 − 1913825900 x5 − 6474843200 x4 − 16359577920 x3 − −29654204160 x2 −29654204160 x) K1 (x)+ln x [(−26072475 x9 −109504395 x8 −404323920 x7 −1286485200 x6 − −3430627200 x5 −7351344000 x4 −11762150400 x3 −11762150400 x2 ) K0 (x)+(26072475 x9 −125147880 x8 − −471711240 x7 − 1543782240 x6 − 4288284000 x5 − 9801792000 x4 − 17643225600 x3 − 23524300800 x2 − −23524300800 x) K1 (x)] } n = 9: Z x9 ex ln x I0 (x) dx =

ex {(−295488050 x10 +156946075 x9 −6682958139 x8 +50085741024 x7 − 53335593025

−253835174880 x6 + 981076078080 x5 − 2932377638400 x4 + 6569043425280 x3 − 10144737146880 x2 + +10727081164800 x−10727081164800) I0 (x)+(295488050 x10 −9202050 x9 −6618605136 x8 +53311928208 x7 − −281136719808 x6 + 1128572222400 x5 − 3537368755200 x4 + 8512679992320 x3 − 14925933711360 x2 + +14925933711360 x) I1 (x) + ln x [(2807136475 x10 + 11889048600 x9 − 49934004120 x8 + 184371707520 x7 − −586637251200 x6 +1564366003200 x5 −3352212864000 x4 +5363540582400 x3 −5363540582400 x2 ) I0 (x)+ +(−2807136475 x10 + 13375179675 x9 − 57067433280 x8 + 215100325440 x7 − 703964701440 x6 + +1955457504000 x5 −4469617152000 x4 +8045310873600 x3 −10727081164800 x2 +10727081164800 x) I1 (x)] } Z e−x x9 e−x ln x I0 (x) dx = {(−295488050 x10 −156946075 x9 −6682958139 x8 −50085741024 x7 − 53335593025 144

−253835174880 x6 − 981076078080 x5 − 2932377638400 x4 − 6569043425280 x3 − 10144737146880 x2 − −10727081164800 x−10727081164800) I0 (x)+(−295488050 x10 −9202050 x9 +6618605136 x8 +53311928208 x7 + +281136719808 x6 + 1128572222400 x5 + 3537368755200 x4 + 8512679992320 x3 + 14925933711360 x2 + +14925933711360 x) I1 (x) + ln x [(2807136475 x10 − 11889048600 x9 − 49934004120 x8 − 184371707520 x7 − −586637251200 x6 −1564366003200 x5 −3352212864000 x4 −5363540582400 x3 −5363540582400 x2 ) I0 (x)+ +(2807136475 x10 +13375179675 x9 +57067433280 x8 +215100325440 x7 +703964701440 x6 +1955457504000 x5 + +4469617152000 x4 + 8045310873600 x3 + 10727081164800 x2 + 10727081164800 x) I1 (x)] } Z

x9 ex ln x K0 (x) dx =

ex {(−295488050 x10 +156946075 x9 −6682958139 x8 +50085741024 x7 − 53335593025

−253835174880 x6 + 981076078080 x5 − 2932377638400 x4 + 6569043425280 x3 − 10144737146880 x2 + +10727081164800 x−10727081164800) K0 (x)+(−295488050 x10 +9202050 x9 +6618605136 x8 −53311928208 x7 + +281136719808 x6 − 1128572222400 x5 + 3537368755200 x4 − 8512679992320 x3 + 14925933711360 x2 − −14925933711360 x) K1 (x) + ln x [(2807136475 x10 + 11889048600 x9 − 49934004120 x8 + 184371707520 x7 − −586637251200 x6 +1564366003200 x5 −3352212864000 x4 +5363540582400 x3 −5363540582400 x2 ) K0 (x)+ +(2807136475 x10 −13375179675 x9 +57067433280 x8 −215100325440 x7 +703964701440 x6 −1955457504000 x5 + +4469617152000 x4 − 8045310873600 x3 + 10727081164800 x2 − 10727081164800 x) K1 (x)] } Z

x9 e−x ln x K0 (x) dx =

e−x {−(295488050 x10 +156946075 x9 +6682958139 x8 +50085741024 x7 + 53335593025

+253835174880 x6 + 981076078080 x5 + 2932377638400 x4 + 6569043425280 x3 + 10144737146880 x2 + +10727081164800 x+10727081164800) K0 (x)+(295488050 x10 +9202050 x9 −6618605136 x8 −53311928208 x7 − −281136719808 x6 − 1128572222400 x5 − 3537368755200 x4 − 8512679992320 x3 − 14925933711360 x2 − −14925933711360 x) K1 (x) + ln x [(2807136475 x10 − 11889048600 x9 − 49934004120 x8 − 184371707520 x7 − −586637251200 x6 −1564366003200 x5 −3352212864000 x4 −5363540582400 x3 −5363540582400 x2 ) K0 (x)− −(2807136475 x10 +13375179675 x9 +57067433280 x8 +215100325440 x7 +703964701440 x6 +1955457504000 x5 + +4469617152000 x4 + 8045310873600 x3 + 10727081164800 x2 + 10727081164800 x) K1 (x)] } Z

x9 ex ln x I1 (x) dx =

ex {(177292830 x10 + 16563690 x9 − 4085423914 x8 + 32024777664 x7 − 32001355815

−164877988800 x6 + 642462822400 x5 − 1930087219200 x4 + 4339632353280 x3 − 6723428167680 x2 + +7151387443200 x−7151387443200) I0 (x)+(−177292830 x10 −105210105 x9 −3989681696 x8 +33947949728 x7 − −182209926528 x6 + 737896611200 x5 − 2325137561600 x4 + 5615525099520 x3 − 9871162613760 x2 + +9871162613760 x) I1 (x) + ln x [(−1684281885 x10 + 7926032400 x9 − 33289336080 x8 + 122914471680 x7 − −391091500800 x6 +1042910668800 x5 −2234808576000 x4 +3575693721600 x3 −3575693721600 x2 ) I0 (x)+ +(1684281885 x10 +8916786450 x9 −38044955520 x8 +143400216960 x7 −469309800960 x6 +1303638336000 x5 − −2979744768000 x4 + 5363540582400 x3 − 7151387443200 x2 + 7151387443200 x) I1 (x)] } Z

x9 e−x ln x I1 (x) dx =

e−x {(−177292830 x10 +16563690 x9 +4085423914 x8 +32024777664 x7 + 32001355815

+164877988800 x6 + 642462822400 x5 + 1930087219200 x4 + 4339632353280 x3 + 6723428167680 x2 + +7151387443200 x+7151387443200) I0 (x)+(−177292830 x10 +105210105 x9 −3989681696 x8 −33947949728 x7 − −182209926528 x6 − 737896611200 x5 − 2325137561600 x4 − 5615525099520 x3 − 9871162613760 x2 − −9871162613760 x) I1 (x) + ln x [(1684281885 x10 + 7926032400 x9 + 33289336080 x8 + 122914471680 x7 + +391091500800 x6 +1042910668800 x5 +2234808576000 x4 +3575693721600 x3 +3575693721600 x2 ) I0 (x)+ 145

+(1684281885 x10 −8916786450 x9 −38044955520 x8 −143400216960 x7 −469309800960 x6 −1303638336000 x5 − −2979744768000 x4 − 5363540582400 x3 − 7151387443200 x2 − 7151387443200 x) I1 (x)] } Z

x9 ex ln x K1 (x) dx =

ex {(−177292830 x10 − 16563690 x9 + 4085423914 x8 − 32024777664 x7 + 32001355815

+164877988800 x6 − 642462822400 x5 + 1930087219200 x4 − 4339632353280 x3 + 6723428167680 x2 − −7151387443200 x+7151387443200) K0 (x)+(−177292830 x10 −105210105 x9 −3989681696 x8 +33947949728 x7 − −182209926528 x6 + 737896611200 x5 − 2325137561600 x4 + 5615525099520 x3 − 9871162613760 x2 + +9871162613760 x) K1 (x) + ln x [(1684281885 x10 − 7926032400 x9 + 33289336080 x8 − 122914471680 x7 + +391091500800 x6 −1042910668800 x5 +2234808576000 x4 −3575693721600 x3 +3575693721600 x2 ) K0 (x)+ +(1684281885 x10 +8916786450 x9 −38044955520 x8 +143400216960 x7 −469309800960 x6 +1303638336000 x5 − −2979744768000 x4 + 5363540582400 x3 − 7151387443200 x2 + 7151387443200 x) K1 (x)] } Z

x9 e−x ln x K1 (x) dx =

e−x {(177292830 x10 − 16563690 x9 − 4085423914 x8 − 32024777664 x7 − 32001355815

−164877988800 x6 − 642462822400 x5 − 1930087219200 x4 − 4339632353280 x3 − 6723428167680 x2 − −7151387443200 x−7151387443200) K0 (x)+(−177292830 x10 +105210105 x9 −3989681696 x8 −33947949728 x7 − −182209926528 x6 − 737896611200 x5 − 2325137561600 x4 − 5615525099520 x3 − 9871162613760 x2 − −9871162613760 x) K1 (x) + ln x [(−1684281885 x10 − 7926032400 x9 − 33289336080 x8 − 122914471680 x7 − −391091500800 x6 −1042910668800 x5 −2234808576000 x4 −3575693721600 x3 −3575693721600 x2 ) K0 (x)+ +(1684281885 x10 −8916786450 x9 −38044955520 x8 −143400216960 x7 −469309800960 x6 −1303638336000 x5 − −2979744768000 x4 − 5363540582400 x3 − 7151387443200 x2 − 7151387443200 x) K1 (x)] } n = 10: Z x10 ex ln x I0 (x) dx =

ex {(−4266847442 x11 + 2251618941 x10 − 117807097980 x9 + 940839860961

+1000787719932 x8 − 5829673272192 x7 + 26484562500480 x6 − 96176811386880 x5 + 275819194828800 x4 − −598998804848640 x3 + 899357077463040 x2 − 901074817843200 x + 901074817843200) I0 (x)+ +(4266847442 x11 − 118195220 x10 − 116928608940 x9 + 1058156244288 x8 − 6371084833344 x7 + +29810373836544 x6 − 112008092716800 x5 + 336471606374400 x4 − 785863855042560 x3 + +1348176746004480 x2 − 1348176746004480 x) I1 (x) + ln x [(44801898141 x11 + 212219517510 x10 − −998680082400 x9 + 4194456346080 x8 − 15487223431680 x7 + 49277529100800 x6 − 131406744268800 x5 + +281585880576000 x4 − 450537408921600 x3 + 450537408921600 x2 ) I0 (x)+ +(−44801898141 x11 + 235799463900 x10 − 1123515092700 x9 + 4793664395520 x8 − 18068427336960 x7 + +59133034920960 x6 − 164258430336000 x5 + 375447840768000 x4 − 675806113382400 x3 + +901074817843200 x2 − 901074817843200 x) I1 (x)] } Z

x10 e−x ln x I0 (x) dx =

e−x {(−4266847442 x11 − 2251618941 x10 − 117807097980 x9 − 940839860961

−1000787719932 x8 − 5829673272192 x7 − 26484562500480 x6 − 96176811386880 x5 − 275819194828800 x4 − −598998804848640 x3 − 899357077463040 x2 − 901074817843200 x − 901074817843200) I0 (x)+ +(−4266847442 x11 − 118195220 x10 + 116928608940 x9 + 1058156244288 x8 + 6371084833344 x7 + +29810373836544 x6 +112008092716800 x5 +336471606374400 x4 +785863855042560 x3 +1348176746004480 x2 + +1348176746004480 x) I1 (x)+ln x [(44801898141 x11 −212219517510 x10 −998680082400 x9 −4194456346080 x8 − 146

−15487223431680 x7 − 49277529100800 x6 − 131406744268800 x5 − 281585880576000 x4 − −450537408921600 x3 − 450537408921600 x2 ) I0 (x) + (44801898141 x11 + 235799463900 x10 + +1123515092700 x9 + 4793664395520 x8 + 18068427336960 x7 + 59133034920960 x6 + 164258430336000 x5 + +375447840768000 x4 + 675806113382400 x3 + 901074817843200 x2 + 901074817843200 x) I1 (x)] } Z ex x10 ex ln x K0 (x) dx = {(−4266847442 x11 + 2251618941 x10 − 117807097980 x9 + 940839860961 +1000787719932 x8 − 5829673272192 x7 + 26484562500480 x6 − 96176811386880 x5 + 275819194828800 x4 − −598998804848640 x3 + 899357077463040 x2 − 901074817843200 x + 901074817843200) K0 (x)+ +(−4266847442 x11 + 118195220 x10 + 116928608940 x9 − 1058156244288 x8 + 6371084833344 x7 − −29810373836544 x6 +112008092716800 x5 −336471606374400 x4 +785863855042560 x3 −1348176746004480 x2 + +1348176746004480 x) K1 (x) + ln x [(44801898141 x11 + 212219517510 x10 − 998680082400 x9 + +4194456346080 x8 −15487223431680 x7 +49277529100800 x6 −131406744268800 x5 +281585880576000 x4 − −450537408921600 x3 + 450537408921600 x2 ) K0 (x) + (44801898141 x11 − 235799463900 x10 + +1123515092700 x9 − 4793664395520 x8 + 18068427336960 x7 − 59133034920960 x6 + 164258430336000 x5 − −375447840768000 x4 + 675806113382400 x3 − 901074817843200 x2 + 901074817843200 x) K1 (x)] } Z e−x {−(4266847442 x11 + 2251618941 x10 + 117807097980 x9 + x10 e−x ln x K0 (x) dx = 940839860961 +1000787719932 x8 + 5829673272192 x7 + 26484562500480 x6 + 96176811386880 x5 + 275819194828800 x4 + +598998804848640 x3 + 899357077463040 x2 + 901074817843200 x + 901074817843200) K0 (x)+ +(4266847442 x11 + 118195220 x10 − 116928608940 x9 − 1058156244288 x8 − 6371084833344 x7 − −29810373836544 x6 − 112008092716800 x5 − 336471606374400 x4 − 785863855042560 x3 − −1348176746004480 x2 − 1348176746004480 x) K1 (x) + ln x [(44801898141 x11 − 212219517510 x10 − −998680082400 x9 − 4194456346080 x8 − 15487223431680 x7 − 49277529100800 x6 − 131406744268800 x5 − −281585880576000 x4 − 450537408921600 x3 − 450537408921600 x2 ) K0 (x) − (44801898141 x11 + +235799463900 x10 + 1123515092700 x9 + 4793664395520 x8 + 18068427336960 x7 + 59133034920960 x6 + +164258430336000 x5 + 375447840768000 x4 + 675806113382400 x3 + 901074817843200 x2 + +901074817843200 x) K1 (x)] } Z

x10 ex ln x I1 (x) dx =

ex {(1939476110 x11 + 161175300 x10 − 54364094070 x9 + 427654482255

+481328149302 x8 − 2844440165952 x7 + 13018292481600 x6 − 47491102310400 x5 + 136629661593600 x4 − −297451505111040 x3 + 447630641418240 x2 − 450537408921600 x + 450537408921600) I0 (x)+ +(−1939476110 x11 − 1130913355 x10 − 53357417685 x9 + 507288738528 x8 − 3103413201504 x7 + +14636400395904 x6 −55257417129600 x5 +166529222092800 x4 −389860081551360 x3 +669992578375680 x2 − −669992578375680 x) I1 (x) + ln x [(−20364499155 x11 + 106109758755 x10 − 499340041200 x9 + +2097228173040 x8 − 7743611715840 x7 + 24638764550400 x6 − 65703372134400 x5 + 140792940288000 x4 − −225268704460800 x3 +225268704460800 x2 ) I0 (x)+(20364499155 x11 +117899731950 x10 −561757546350 x9 + +2396832197760 x8 − 9034213668480 x7 + 29566517460480 x6 − 82129215168000 x5 + 187723920384000 x4 − −337903056691200 x3 + 450537408921600 x2 − 450537408921600 x) I1 (x)] } Z

x10 e−x ln x I1 (x) dx =

e−x {(−1939476110 x11 + 161175300 x10 + 54364094070 x9 + 427654482255

+481328149302 x8 + 2844440165952 x7 + 13018292481600 x6 + 47491102310400 x5 + 136629661593600 x4 + 147

+297451505111040 x3 + 447630641418240 x2 + 450537408921600 x + 450537408921600) I0 (x)+ +(−1939476110 x11 + 1130913355 x10 − 53357417685 x9 − 507288738528 x8 − 3103413201504 x7 − −14636400395904 x6 −55257417129600 x5 −166529222092800 x4 −389860081551360 x3 −669992578375680 x2 − −669992578375680 x) I1 (x) + ln x [(20364499155 x11 + 106109758755 x10 + 499340041200 x9 + +2097228173040 x8 + 7743611715840 x7 + 24638764550400 x6 + 65703372134400 x5 + 140792940288000 x4 + +225268704460800 x3 +225268704460800 x2 ) I0 (x)+(20364499155 x11 −117899731950 x10 −561757546350 x9 − −2396832197760 x8 − 9034213668480 x7 − 29566517460480 x6 − 82129215168000 x5 − 187723920384000 x4 − −337903056691200 x3 − 450537408921600 x2 − 450537408921600 x) I1 (x)] } Z

x10 ex ln x K1 (x) dx =

ex {(−1939476110 x11 − 161175300 x10 + 54364094070 x9 − 427654482255

−481328149302 x8 + 2844440165952 x7 − 13018292481600 x6 + 47491102310400 x5 − 136629661593600 x4 + +297451505111040 x3 − 447630641418240 x2 + 450537408921600 x − 450537408921600) K0 (x)+ +(−1939476110 x11 − 1130913355 x10 − 53357417685 x9 + 507288738528 x8 − 3103413201504 x7 + +14636400395904 x6 −55257417129600 x5 +166529222092800 x4 −389860081551360 x3 +669992578375680 x2 − −669992578375680 x) K1 (x) + ln x [+(20364499155 x11 − 106109758755 x10 + 499340041200 x9 − −2097228173040 x8 + 7743611715840 x7 − 24638764550400 x6 + 65703372134400 x5 − 140792940288000 x4 + +225268704460800 x3 −225268704460800 x2 ) K0 (x)+(20364499155 x11 +117899731950 x10 −561757546350 x9 + +2396832197760 x8 − 9034213668480 x7 + 29566517460480 x6 − 82129215168000 x5 + 187723920384000 x4 − −337903056691200 x3 + 450537408921600 x2 − 450537408921600 x) K1 (x)] } Z

x10 e−x ln x K1 (x) dx =

e−x {(1939476110 x11 − 161175300 x10 − 54364094070 x9 − 427654482255

−481328149302 x8 − 2844440165952 x7 − 13018292481600 x6 − 47491102310400 x5 − 136629661593600 x4 − −297451505111040 x3 − 447630641418240 x2 − 450537408921600 x − 450537408921600) K0 (x)+ +(−1939476110 x11 + 1130913355 x10 − 53357417685 x9 − 507288738528 x8 − 3103413201504 x7 − −14636400395904 x6 −55257417129600 x5 −166529222092800 x4 −389860081551360 x3 −669992578375680 x2 − −669992578375680 x) K1 (x) + ln x [(−20364499155 x11 − 106109758755 x10 − 499340041200 x9 − −2097228173040 x8 − 7743611715840 x7 − 24638764550400 x6 − 65703372134400 x5 − 140792940288000 x4 − −225268704460800 x3 −225268704460800 x2 ) K0 (x)+(20364499155 x11 −117899731950 x10 −561757546350 x9 − −2396832197760 x8 − 9034213668480 x7 − 29566517460480 x6 − 82129215168000 x5 − 187723920384000 x4 − −337903056691200 x3 − 450537408921600 x2 − 450537408921600 x) K1 (x)] }

148

Recurrence relations: R R About the recurrence relations for the integrals xn e±x Iν (x) dx and xn e±x Kν (x) dx see the pages 70 and 74. Z xn+1 ex xn+1 ex ln(x) I0 (x) dx = {[(n + 1 + x) I0 (x) − xI1 (x)] ln(x) − I0 (x)}− 2n + 3 Z Z 2 (n + 1)2 xn ln x ex I0 (x) dx + xn+1 ex I1 (x) dx − 2n + 3 2n + 3 Z xn+1 ex xn+1 ex ln(x) K0 (x) dx = {[(n + 1 + x) K0 (x) + xK1 (x)] ln(x) − K0 (x)}− 2n + 3 Z Z 2 (n + 1)2 xn ln x ex K0 (x) dx − xn+1 ex K1 (x) dx − 2n + 3 2n + 3 Z xn+1 e−x xn+1 e−x ln(x) I0 (x) dx = {[−(n + 1 − x) I0 (x) + xI1 (x)] ln(x) + I0 (x)}+ 2n + 3 Z Z 2 (n + 1)2 xn ln x ex I0 (x) dx − xn+1 ex I1 (x) dx + 2n + 3 2n + 3 Z xn+1 e−x xn+1 e−x ln(x) K0 (x) dx = {[(x − n − 1) K0 (x) − xK1 (x)] ln(x) + K0 (x)}+ 2n + 3 Z Z 2 (n + 1)2 xn ln x ex K0 (x) dx + xn+1 ex K1 (x) dx + 2n + 3 2n + 3 R R The recurrence relations for the integrals xn+1 e±x Z1 (x) dx refer to xn e±x Z0 (x) dx instead R following of xn e±x Z1 (x) dx . Z xn+1 ex n+2 xn+1 ex ln(x) I1 (x) dx = {[(n + 2 − x) I0 (x) + xI1 (x)] ln(x) − I0 (x)}− 2n + 3 n+1 Z Z Z (n + 1)(n + 2) 1 1 n x n+1 x − x ln x e I0 (x) dx + x e I0 (x) dx + xn+1 ex I1 (x) dx 2n + 3 n+1 (n + 1)(2n + 3) xn+1 e−x n+2 {[(n + 2 + x) I0 (x) + xI1 (x)] ln(x) − I0 (x)}− 2n + 3 n+1 Z Z Z (n + 1)(n + 2) 1 1 − xn ln x ex I0 (x) dx − xn+1 ex I0 (x) dx − xn+1 ex I1 (x) dx 2n + 3 n+1 (n + 1)(2n + 3) Z

xn+1 e−x ln(x) I1 (x) dx =

xn+1 ex n+2 {[(x − n − 2) K0 (x) + xK1 (x)] ln(x) + K0 (x)}+ 2n + 3 n+1 Z Z Z 1 1 (n + 1)(n + 2) xn ln x ex K0 (x) dx − xn+1 ex K0 (x) dx + xn+1 ex K1 (x) dx + 2n + 3 n+1 (n + 1)(2n + 3) Z

xn+1 ex ln(x) K1 (x) dx =

xn+1 e−x n+2 {[−(n + 2 + x) K0 (x) + xK1 (x)] ln(x) + K0 (x)}+ 2n + 3 n+1 Z Z Z 1 1 (n + 1)(n + 2) n x n+1 x x ln x e K0 (x) dx + x e K0 (x) dx + xn+1 ex K1 (x) dx + 2n + 3 n+1 (n + 1)(2n + 3) Z

xn+1 e−x ln(x) K1 (x) dx =

149

1.2.13.

R

2

xn e−x Jν (αx) dx

a) The Case α = 1, Basic Integrals: Some improper integrals: From [13], 4.14. (34) and (35) one has (or [14], 8.2.(21); see also [7], 6.643 and 9.235) √ −1/8   Z ∞ 1 πe −x2 e J0 (x) dx = I0 = 0.78515 05503 2 8 0 Z ∞ 2 e−1/4 x e−x J0 (x) dx = = 0.38940 03915 2 0     √ −1/8  Z ∞ 2 πe 1 1 x2 e−x J0 (x) dx = 3I0 + I1 = 0.30055 34957 16 8 8 0 Z ∞ 2 3e−1/4 x3 e−x J0 (x) dx = = 0.29205 02937 8 0     √ −1/8  Z ∞ 2 πe 1 1 x4 e−x J0 (x) dx = 13I0 + 7I1 = 0.32968 09799 64 8 8 0 Z ∞ 2 17e−1/4 x5 e−x J0 (x) dx = = 0.41373 79160 32 0     √ −1/8  Z ∞ 2 πe 1 1 x6 e−x J0 (x) dx = 87I0 + 69I1 = 0.56005 83093 256 8 8 0 ∞

Z 0

  √ −1/8    2 πe 1 1 e−x J1 (x) dx = I0 + I1 = 0.41706 34325 x 4 8 8 Z ∞ 2 e−x J1 (x) dx = 1 − e−1/4 = 0.22119 92169 0



Z

−x2

xe



J1 (x) dx =

0 ∞

Z

2

3 −x2

x e



J1 (x) dx =

0 ∞

Z

5 −x2

x e

π e−1/8 32

2



J1 (x) dx =

0 ∞

Z

π e−1/8 128

Z Fν (x) =

x

7e−1/4 = 0.34072 53426 16      1 1 43I0 + I1 = 0.52828 82809 8 8

2

x6 e−x J1 (x) dx =

0

Let

e−1/4 = 0.19470 01958 4      1 1 5I0 − I1 = 0.24229 85273 8 8

x4 e−x J1 (x) dx =

0 ∞

Z

     1 1 I0 − I1 = 0.18404 35589 8 8

x2 e−x J1 (x) dx =

0 ∞

Z

π e−1/8 8

2

73e−1/4 = 0.88831 96432 64

2

e−t Jν (t) dt = ν + e−x [ Pν (x) J0 (x) + Qν (x) J1 (x)] ,

ν = 0, 1,

0

with Pν (x) =

∞ X

(ν)

ak x2k+1−ν =

k=0

∞ (ν) X αk (ν)

k=0

x2k+1−ν

and

γk

Qν (x) =

∞ X

(ν)

bk x2k+ν =

k=0

Furthermore, let Z F− (x) = 0

x

2

2 e−t J1 (t) dt = e−x [ P− (x) J0 (x) + Q− (x) J1 (x)] t

150

∞ (ν) X βk (ν)

k=0

δk

x2k+ν .

with P− (x) =

∞ X

(−)

ak

x2k+1 =

k=0

∞ (−) X αk (−)

k=0

x2k+1

Q− (x) =

and

γk

∞ X

(−)

bk

k=0

∞ (−) X βk (−)

k=0 (ν)

The minimum and maximum values of Fs (x) are located in the zeros xk (ν)

x2k+ν =

x2k .

δk

(ν)

(ν)

of Jν (x), 0 < xk < xk+1 .

(s)

Let Fs (xk ) = ∆k + limx→∞ Fs (x) . The following table shows, that Fs (x) must not be be computed for large values of x. s

Value

k=1

0

xk

2.4048

(0) ∆k

k=2 5.5201 −5

5.1225 · 10

1

xk

-

(1) ∆k (−) ∆k

k=3 8.6537 −16

−1.5215 · 10

3.8317

11.7915 −36

2.6395 · 10

7.0156 −9

k=4 −1.6974 · 10−64

10.1735 −25

2.5200 · 10

−6.1486 · 10

6.2084 · 10−10

−8.5976 · 10−26

13.3237

−49

−2.4330 · 10−81

6.4624 · 10−50

−1.8160 · 10−82

6.6365 · 10

Remark: In any case, if Fs (x) is written as 2

Fs (x) = e−x ψs (x) + lim Fs (x) , x→∞

then one has x

1.52

2.15

2.63

3.03

3.39

3.72

4.01

4.29

4.55

4.80

exp(−x2 ) 10−1 10−2 10−3 The influence of ψs (x) vanishes soon.

10−4

10−5

10−6

10−7

10−8

10−9

10−10

I) s = 0 : With k ≥ 1 holds (0)

(0)

ak+1 =

(0)

(0)

(0)

(8k − 1)bk − 4bk−1 (8k + 3)ak − 4ak−1 (0) , bk+1 = . (2k + 1)(2k + 3) (2k + 1)2 Z x 2 e−t J0 (t) dt = 0

−x2

=e

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13



3

5

    x 79 7 7 4 23 6 x 2 − − x − . . . J0 (x) + x + x + x + . . . J1 (x) x+ 3 45 1575 9 75 (0)

αk

1 1 -1 -79 -1993 -7121 -1354193 -40551359 -1336259641 -48167009767 -1886078276353 -79669949349167 -515151737265743 -9145224759056621

(0)

γk

1 3 45 1575 99225 1403325 1404728325 273922023375 69850115960625 22561587455281875 9002073394657468125 4348001449619557104375 357157261933035047859375 88819371717557400059765625

151

(0)

ak 1.00000 0.33333 -0.02222 -0.05015 -0.02008 -0.00507 -0.00096 -0.00014 -0.00001 -0.00000 -0.00000 -0.00000 -0.00000 -0.00000

00000 33333 22222 87302 56639 43769 40248 80398 91304 21349 02095 00183 00014 00001

.

(0)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (0)

(0)

βk

0 1 7 23 887 13973 85853 5342341 119718871 33755333 5066536837 26744808373 -19585169733827 -594894329175841

(0)

(0)

δk

(0)

bk

1 1 9 75 11025 893025 36018675 18261468225 4108830350625 14659900880625 38970014695486875 11120208311047460625 33334677780416604466875 5682047348934648488671875

(0)

(0)

(0)

0.00000 00000 1.00000 00000 0.77777 77778 0.3066666667 0.0804535147 0.0156468184 0.0023835691 0.0002925472 0.0000291370 0.0000023026 0.0000001300 0.0000000024 -0.0000000006 -0.0000000001

(0)

(0)

(0)

One has a0 , a1 > 0, a2 , . . . , a22 < 0, but a23 > 0 . Holds b11 · b12 < 0 and b41 · b42 < 0. First positive zeros of P0 (x): 1.5091, 4.8104, 7.9822 . Maxima: P0 (1.1915) = 1.3870, P0 (7.9191) = 3.6414 · 1026 , mimimum: P0 (4.7057) = −1.1187 · 109 . First positive zeros of Q0 (x): 3.3521, 6.4769, 9.6124. Maxima: Q0 (3.2008) = 9162.0, Q0 (9.5602) = 9.5630 · 1038 , minimum: Q0 (6.3994) = −1.4373 · 1017 Approximation: 2 F0 (x) ≈ F˜0 (x) = 0.7851505503 erf(x) + e−x

5 X

(0)

ck x2k+1

k=0 (0)

(0)

(0)

k

ck

k

ck

k

ck

0 3

1.14052 47597 · 10−1 −3.24389 43744 · 10−6

1 4

−7.29834 93536 · 10−3 3.26550 30992 · 10−8

2 5

2.05660 25858 · 10−4 −2.27888 93576 · 10−10

. ......... ... 1 2 3 4 5 x .......................................................................................................................................................................................................................................................................................................................................................................................................... ............................................. .... ............ ....................................................................... ....... ............. .... . . . . . . . . . ..... -1 ........ ...... ..... ..... ..... .... . . . ... ... ..... -2 ......... 1010 [F˜0 (x) − F0 (x)] ....... .... . . . .... .... .... .... .... ...... . . . . . . . . . ..... -3 ... ..... ....... ... ..................... ... -4 ..... Asymptotic expansion:

√ −x2 2e + √ πx

x



  π e−1/8 1 I0 + 2 8 0        1 129 76203 π 3 921 775773 π − − + . . . sin x + + − + . . . cos x + + + − 2x 256x3 65536x5 4 16x2 2048x4 524288x6 4 Z

2

e−t J0 (t) dx



See the remark on page 151. Let √ Z x √ −1/8    πe 1 2 1 π x2 −t2 ϕ1 (x) = e e J0 (t) dt − I0 , ϕ2 (x) = − √ · sin x + , 2 8 4 πx 2x 0 √     2 1 π 3 π ϕ3 (x) = − √ sin x + + cos x + . 4 16x2 4 πx 2x The following figure shows that ϕ1 (x) ≈ ϕ2 (x) if x > 2. From this √ Z x √ −1/8    πe 1 2 1 π x2 −t2 e J0 (t) dt − e I0 ≈ −√ · sin x + 2 8 4 πx 2x 0 152

and therefore holds √

x

Z

2

e−t J0 (t) dt ≈

0

π e−1/8 I0 2

√   2  2 e−x π 1 . −√ · sin x + 8 4 πx 2x

It can than ϕ2 (x) if x > 4. . be seen that ϕ3 (x) .is. .better .... . ......... .. ... .. ..... ..... .... . . ............................................................. .... . . . . ............................................ 100 ϕ1 (x) ........ .... . . . 5 ... .......... . . ........... ... . . . . . . . . . ..... ... . ... ... ... ......... . .. ...... ..... ..... ..... ..... ..... .. 100 ϕ2 (x) ......... 4 ........ . . . ...... .... ... . . . . . ....... ... .. ... . .. ........ . . . . . . . . . . . . 100 ϕ3 (x) . ... . . ........ 3 ........ . . .......... . ... .. . . .... ... .. . . ...... . .... .. ........ 2 ....... . . ......... ... .. ... .. ..... ... ... . .. ...... . . . ........ 1 ........ .... .. ......... .... .... .. ......... .. .. . . . ................................................................................................................................................................................................................................................................................................................................................................................................................................... ........ .... .... .. ......... 3 4 5 7 .......... 6 .... ... . .......... ...... ... . ......... .............. ... ... .. .......... . ........... . . . . . . . . .... ... . . ............ ... .. .................. ............. ............................................. -2 ........... ... ... . .. . . . . -3 ..... .. ... . .... .. -4 .......... ..... . .. II) s = 1 : With k ≥ 1 holds (1)

(1) ak+1

(1)

(1)

(1)

(8k − 1)ak − 4ak−1 (8k + 3)bk − 4bk−1 (1) = , bk+1 = . 4k(k + 1) 4(k + 1)2 Z x 2 e−t J1 (t) dt = 0

−x2



=1+e

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

  3   13 5 x 11 5 145 7 3 3 x − . . . J0 (x) + − − x − x − . . . J1 (x) −1 − x − x − 8 192 2 32 1152 2

(1)

αk

-1 -1 -3 -13 -11 431 17513 88033 3160567 17176879 4895935679 213635978321 9969483318887 495901729080313

(1)

γk

1 1 8 192 9216 147456 17694720 424673280 95126814720 3913788948480 9862748150169600 4339609186074624000 2291313650247401472000 1429779717754378518528000

153

(1)

ak -1.00000 -1.00000 -0.37500 -0.06770 -0.00119 0.00292 0.00098 0.00020 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000

00000 00000 00000 83333 35764 29058 97303 72958 32248 43888 04964 00492 00044 00003

(1)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 (1)

(1)

βk

0 -1 -11 -145 -259 -8893 -195919 -231881 -19100009 -567362171 -5932850387 -569500272763 -17366529773737

(1)

(1)

(1)

δk

bk

1 2 32 1152 8192 1474560 212336640 1981808640 1522029035520 493137407508480 65751654334464000 95471402093641728000 54991527605937635328000

(1)

(1)

(1)

(1)

0.00000 -0.50000 -0.34375 -0.12586 -0.03161 -0.00603 -0.00092 -0.00011 -0.00001 -0.00000 -0.00000 -0.00000 -0.00000

00000 00000 00000 80556 62109 09516 26811 70047 25490 11505 00902 00060 00003

(1)

One has a4 · a5 < 0, a27 · a28 < 0 and b13 · b14 < 0, b47 · b48 < 0 . First positive zeros of P1 (x): 2.0140, 5.2565 and 8.4241. Minima: P1 (1.7541) = −7.0905 and P1 (8.3646) = −4.1348 · 1029 , maximum: P1 (5.1608) = 7.8803 · 1010 First positive zeros of Q1 (x): 3.7880, 6.9155 and 10.0515. Minima: Q1 (3.6545) = −1.5968 · 105 and Q1 (10.0017) = −4.3429 · 1042 , maximum: Q1 (6.8429) = 4.0769 · 1019 Approximation: " # 6 X 2 (1) 2k −x c x F1 (x) ≈ F˜1 (x) = 0.22119 92169 + e −0.22119 92169 + k

k=1 (1)

(1)

(1)

k

ck

k

ck

k

ck

1 4

2.88007 83071 · 10−2 −3.25444 94146 · 10−7

2 5

−1.22460 84642 · 10−3 2.72785 19850 · 10−9

3 6

2.58249 56345 · 10−5 −1.63082 82205 · 10−11

....... 1 2 3 4 5 x .............................................................................................................................................................................................................................................................................................................................................................................. ... ................ ............ .... ............. . ............... -2 ......... ............... ........... .... ................................................................................ ........ .............. ........ . ...... 11 ˜ . . . . . . . -4 ... ...10 ...... ..... [F1 (x) − F1 (x)] ... ...... ..... . . . .... . ..... .... ..... -6 ........ ..... ..... . . .... . . ..... ..... ....... ... .......................... -8 ........ Asymptotic expansion: Z

x

2

e−t J1 (t) dt



1 − e−1/4 +

0

√ −x2        137 85019 π 1773 1434089 π 1 7 2e + √ − + + . . . cos x + + − + − + . . . sin x + 2x 256x3 65536x5 4 16x2 2048x4 524288x6 4 πx See the remark on page 151. Let Z x  2 2 ϕ1 (x) = ex e−t J1 (t) dt − 1 + e−1/4 ,

√ 2 ϕ2 (x) = √ πx 0 √    2 1 π 7 ϕ3 (x) = √ cos x + − sin x + 2 4 16x πx 2x

154

 1 π cos x + , 2x 4  π . 4

·

......... . . ........... .... . .... ............................................ 100 ϕ1 (x) ............................................. ..... .................................................... . . . . . . . ................. .. .... . ...... ..... . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ..... ..... ..... ..... .. 100 ϕ2 (x) . . . . . ............... .... .... . 2 .. ................. ......... .. ... ... . . . . . . . . . . ............... .... . . . . . . . . . . . 100 ϕ3 (x) ... ...... . ................. . .... .. ................................................................................................................................................................................................................................................................................................................................................................................................................................................ . 3 5 6 7 ............................... .... .... ... 4 .......................... .... ... . .... ................... . . . .. .. ... . . . . . . . . -2 ....... . . ... ... . . ... .. .. .... . . . ... .... .. -4 ......... ..... . .. . . .... ..... . ..... . .. .... . . . ... . . -6 ......... ...... . ... . .... . ... . .. .... ... .. .... . . . . -8 ........ ... .. .. .... ... ... ... . . .... .. . .. .. ... ..... . . . . . -10 .. .. .... .... .... ... .... .... .... .. . . . -12 .......... . ..... ... ... . ...... .. .. . -14 ........ .. ... . ..... .. III) s = − : With k ≥ 1 holds (−)

(−)

ak+1 =

(−)

2

k 0 1 2 3 4 5 6 7 8 9 10 11 12

x

(−)

bk+1 =

(−)

(8k − 1)bk − 4bk−1 . (2k + 1)2

2

e−t J0 (t) dt = t 0      73 7 x4 x6 7x5 2 3 + x − . . . J0 (x) + −1 − x − − + . . . J1 (x) x+x + 15 525 3 25 Z

= e−x

(−)

(8k + 3)ak − 4ak−1 , (2k + 1)(2k + 3)

(0)

αk

1 1 7 73 991 2327 307991 6390233 136790767 2646943729 21787108711 -2416192168471 -37423740194359

(0)

γk

1 1 15 525 33075 467775 468242775 91307341125 23283371986875 7520529151760625 3000691131552489375 1449333816539852368125 119052420644345015953125

155

(0)

ak 1.00000 1.00000 0.46666 0.13904 0.02996 0.00497 0.00065 0.00006 0.00000 0.00000 0.00000 -0.00000 -0.00000

00000 00000 66667 76190 22071 46139 77592 99860 58750 03520 00726 00017 00003

(−)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 (−)

(−)

βk

-1 -1 -1 -1 31 1549 16789 1617533 54916223 24740029 7163341181 195955925549 50273780536949 661736445380167

(−)

(−)

(−)

δk

bk

1 1 3 25 3675 297675 12006225 6087156075 1369610116875 4886633626875 12990004898495625 3706736103682486875 11111559260138868155625 1894015782978216162890625

(−)

(−)

(−)

(−)

-1.00000 -1.00000 -0.33333 -0.0400 0.00843 0.00520 0.00139 0.00026 0.00004 0.00000 0.00000 0.00000 0.00000 0.00000

(−)

(−)

00000 00000 33333 00000 53741 36617 83579 57289 00962 50628 05145 00529 00045 00003 (−)

One has a10 · a11 < 0, a41 · a42 < 0 and b3 · b4 < 0, b25 · b26 < 0, b65 · b66 < 0 . First positive zeros of P− (x): 3.2793, 6.4739 and 9.6341. Maxima: P− (3.1244) = 4757.3 and P− (9.5821) = 1.2302 · 1039 , minimum: P− (6.3963) = −1.1684 · 1017 First positive zeros of Q− (x): 1.8812, 4.9850 and 8.1173. Minima: Q− (1.6008) = −4.7895 and Q− (8.0555) = −2.7233 · 1027 , maximum: Q− (4.8841) = 5.2197 · 109 Approximation: 2 F− (x) ≈ F˜− (x) = 0.41706 34325 erf(x) + e−x

5 X

(−)

ck x2k+1

k=0 (−)

k 0 3

ck

(−)

k

2.93943 11364 · 10−2 −3.26773 05781 · 10−7

1 4

ck

(−)

k

−1.23712 57573 · 10−3 2.73580 96839 · 10−9

2 5

ck

2.59830 30409 · 10−5 −1.63439 98979 · 10−11

. ........ 1 2 3 4 5 x . . ..................................................................................................................................................................................................................................................................................................................................................................... ... ..... .... ....... ..... .... ..... ........ ..... ...... -2 .... ...... .... ......... .......... .... ............. .... ................ . .............. 1011 [F˜ (x) − F (x)] . . . . . -4 ... ............................................................................... 1 1 ........... .................. ... . . ......... . . . . . . . . . ........ .... .......... ........ ......... .... . ......... . . . . . . . .............. ................ . ........ -6 ......... ... . Asymptotic expansion: Z

x

0

r +

2 −x2 e πx



2

e−t J1 (t) dt ∼ t



π e−1/8 4

     1 1 I0 + I1 + 8 8

      1 201 150683 π 7 2477 2419305 π − + − . . . cos x + + − + − + . . . sin x + 2x2 256x4 65536x6 4 16x3 2048x5 524288x7 4

See the remark on page 151. Let "Z x2 ϕ1 − (x) = e

√ √ −1/8 # 2  πe 2 1 e−t J1 (t) dt π − , ϕ2 (x) = √ · 2 cos x + , t 4 4 πx 2x 0 √     2 π 7 π 1 ϕ3 (x) = √ cos x + − sin x + . 4 16x3 4 πx 2x2 x

156

......... .... .... ............................................ 100 ϕ1 (x) ... ... .. ... . ..... ..... ..... ..... ..... .. 100 ϕ2 (x) 2 ........ .. .. ... ... . . . . . . . . . . . 100 ϕ3 (x) .. ... ......................................................................................................... . . . . . . . . . . . . .. ............................ ..... ..... . ......... . ............. .. ..... ............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................. . .... . . . . .... .. ... 3 4 5 6 7 ....... ... .. .... . . . . . . . .... ...... . . .... ...... ... .. . . . .. .... ..... ... .... ...... ... . . . . . ...... .... -2 ......... ..... ... . .... . ... .. ... .... ... .. .. . .... . . ... .. .. .... .. .. ..... . .... . . .... .. ...... . . . . . . . . -4 .. . . .... ... ..... .... .. .. .... .. ... .... .. .... ...... .... .... .. . -6 ........ . .. .. . . ..... .. .... .. .... . ... ..... .. b) Integrals (α = 1) Let Z Jν

−x2

=

e

Z Jν (x) dx , Z

Z

Z

2

e−x Jν (x) dx . x

2

e−x 1 1 [−2xJ0 (x) + J1 (x)] + J0 + J− 4 4 4 2

2

x2 e−x J1 (x) dx =

e−x 1 [−J0 (x) − 2xJ1 (x)] − J1 4 4

2

3 −x2

 3 e−x  J0 (x) dx = −(4x2 + 3)J0 (x) + 2xJ1 (x) − J1 8 8 2

Z

3 −x2

x e

 3 1 e−x  2xJ0 (x) + (4x2 + 1)J1 (x) + J0 − J− J1 (x) dx = − 8 8 8 2

4 −x2

x e Z

 e−x  3 7 J0 (x) dx = −(8x3 + 10x)J0 (x) + (4x2 + 7)J1 (x) + J0 + J− 16 16 16 2

4 −x2

x e Z

=

2 2 1 1 1 xe−x J1 (x) dx = − e−x J1 (x) + J0 − J− 2 2 2

2

x e

Z

J−

2 2 1 1 xe−x J0 (x) dx = − e−x J0 (x) − J1 2 2

x2 e−x J0 (x) dx = Z

Z

ν = 0, 1 and

 e−x  2 7 J1 (x) dx = − (4x + 7)J0 (x) + (8x3 + 6x)J1 (x) − J1 16 16 2

5 −x2

x e

 17 e−x  J0 (x) dx = −(16x4 + 28x2 + 17)J0 (x) + (8x3 + 22x)J1 (x) − J1 32 32 157

2

Z

Z

2

x5 e−x J1 (x) dx = − 2

2

x6 e−x J0 (x) dx =

 e−x  9 69 −(32x5 + 72x3 + 78x)J0 (x) + (16x4 + 66x2 + 69)J1 (x) + J0 + J− 64 64 64 2

Z

Z

 21 e−x  3 1 (8x + 22x)J0 (x) + (16x4 + 20x2 − 1)J1 (x) + J0 + J− 32 32 32

2

x6 e−x J1 (x) dx = −

 73 e−x  (16x4 + 60x2 + 73)J0 (x) + (32x5 + 56x3 + 26x)J1 (x) − J1 64 64

2

2

x7 e−x J0 (x) dx =

 131 e−x  −(64x6 + 176x4 + 276x2 + 131)J0 (x) + (32x5 + 152x3 + 290x)J1 (x) − J1 128 128 Z 2 x7 e−x J1 (x) dx =

2

 219 e−x  79 = − (32xu + 152x3 + 298x)J0 (x) + (64x6 + 144x4 + 140x2 + 79)J1 (x) + J0 + J1 128 128 128 Z 2 x8 e−x J0 (x) dx = 2

 93 e−x  887 = −(128 x7 + 416 x5 + 856 x3 + 794 x)J0 (x) + (64 x6 + 368 x4 + 980 x2 + 887)J1 (x) − J0 + J− 256 256 256 Z 2 x8 e−x J1 (x) dx = 2

=−

 1007 e−x  (64 x6 + 368 x4 + 996 x2 + 1007)J0 (x) + (128 x7 + 352 x5 + 520 x3 + 22 x)J1 (x) − J1 256 256 Z 2 2 e−x  −(256 x8 + 960 x6 + 2448 x4 + 3420 x2 + 1089)J0 (x) x9 e−x J0 (x) dx = 512  1089 +(128 x7 + 864 x5 + 2952 x3 + 4662 x)J1 (x) − J1 512 Z 2 e−x  9 −x2 x e J0 (x) dx = − (128 x7 + 864 x5 + 2984 x3 + 4966 x)J0 (x)+ 512  2973 1993 +(256 x8 + 832 x6 + 1648 x4 + 980 x2 − 1993)J1 (x) + J0 + J− 512 512 Z 2 e−x  10 −x2 x e −(512 x9 + 2176 x7 + 6624 x5 + 12424 x3 + 9326 x)J0 (x)+ J0 (x) dx = 1024  4647 13973 J0 + J− +(256 x8 + 1984 x6 + 8272 x4 + 18620 x2 + 13973)J1 (x) − 1025 1024 Z 2 2 e−x  x10 e−x J1 (x) dx = − (256 x8 + 1984 x6 + 8336 x4 + 19356 x2 + 17201)J0 (x)+ 1024  17201 +(512 x9 + 1920 x7 + 4768 x5 + 5368 x3 − 4310 x)J1 (x) − J1 1024

Recurrence relations: Z 2

= Z

4n + 1 x2n e−x [J1 (x) − 2xJ0 (x)] + 4 4 2

x2n+1 e−x J0 (x) dx = −

2

x2n+2 e−x J0 (x) dx = Z

2

x2n e−x J0 (x) dx −

2n − 1 4

Z

2

x2n−1 e−x J1 (x) dx

Z Z 2 2 2 x2n e−x 1 J0 (x) + n x2n−1 e−x J0 (x) dx − x2n e−x J1 (x) dx 2 2 Z 2 x2n+2 e−x J1 (x) dx =

158

2

x2n e−x n [J0 (x) + 2xJ1 (x)] + 2 2

=−

Z

2

x2n−1 e−x J0 (x) dx +

2

Z

2

x2n+1 e−x J1 (x) dx = −

x2n e−x 1 J1 (x) + 2 2

Z

4n − 1 4

Z

2n − 1 2

2

x2n e−x J0 (x) dx +

2

x2n e−x J1 (x) dx Z

2

x2n−1 e−x J1 (x) dx

c) General Case α 6= 1, Basic Integrals Some improper integrals: Z





π −α2 /8 e I0 2

2

e−x J0 (αx) dx =

0 2

e−x J1 (αx) dx =

0

√ e−x J1 (αx) dx π −α2 /8 = e x 4 2



Z 0

α2 8



2



Z



1 − e−α /4 α  2    2 α α I0 + I1 8 8

Let x

Z

2

e−t Jν (αt) dt =

Fν (x; α) = 0

2 ν + e−x [ Pν (x; α) J0 (αx) + Qν (x; α) J1 (αx)] , α

ν = 0, 1,

with ∞ X

Pν (x; α) =

(ν;α)

ak

x2k+1−ν =

k=0

∞ (ν;α) X αk k=0

(ν) γk

x2k+1−ν

Qν (x) =

and

∞ X

(ν;α)

bk

x2k+ν =

k=0

∞ (ν;α) X βk k=0

(ν) δk

x2k+ν .

Furthermore, let Z

x

F− (x; α) = 0

2

2 e−t J1 (αt) dt = e−x [ P− (x; α) J0 (αx) + Q− (x; α) J1 (αx)] t

with P− (x) =

∞ X

(−;α)

ak

x2k+1 =

k=0

∞ (−;α) X αk k=0

(−) γk

x2k+1

Q− (x; α) =

and

∞ X

(−;α)

bk

x2k+ν =

k=0

∞ (−;α) X βk k=0

(−) δk

x2k .

I) s = 0 : F0 (x; α) = 2

= e−x

 2 − α 3 α − 14α + 12 5 −α6 + 34α4 − 232α2 + 120 7 x + x + x + . . . J0 (αx)+ 3 45 1575    8α − α3 4 α5 − 24α3 + 92α 6 x + x . . . J1 (αx) + αx2 + 9 225 2

 x+

4

2

Recurrence relations: (0;α)

(0;α)

ak+1 = Approximation:



π −α2 /8 F0 (x; α) = e I0 2 (0;α)

c0

(0;α)

(4k + 2 − α2 )ak − 2αbk (2k + 1)(2k + 3) 

α2 8

(0;α)

,



(0;α)

bk+1 =

−x2

erf(x) + e

2bk

5 X

(0;α)

ck

(0;α)

+ αak 2k + 1

x2k+1

k=0

77 21 35 5 3 4 α2 =− α12 + α10 − α8 + α6 − α + = 1006632960 10485760 786432 6144 256 8

= −0.00000 00765 α12 + 0.00000 20027 α10 − 0.00004 45048 α8 + 0.00081 38021 α6 − −0.01171 87500 α4 + 0.12500 00000 α2 (0;α)

c1

= −0.00000 00510 α12 + 0.00000 13351 α10 − 0.00002 96699 α8 + 0.00054 25347 α6 − 0.00781 25000 α4 159

(0;α)

c2

= −0.00000 00204 α12 + 0.00000 05341 α10 − 0.00001 18679 α8 + 0.00021 70139 α6 (0;α)

c3

= −0.00000 00058 α12 + 0.00000 01526 α10 − 0.00000 33908 α8 (0;α)

c4

= −0.00000 00013 α12 + 0.00000 00339 α10 (0;α)

c5

= −0.00000 00002 α12

In the case of small values of |x| and α >> 1 the following approximation may be used (Φ(x) defined as on page 7): " 7 # " 7 # X (0) X (0) (0) 2k+1 2k+2 F0 (x; α) = σ (α) Φ(αx) + ϕk (α) x J0 (αx) + ψk (α) x J1 (αx) k=0

k=0

9 75 3675 59535 2401245 57972915 13043905875 418854310875 1 + + + + + + + + + α2 2 α4 2 α6 8 α8 8 α10 16 α12 16 α14 128 α16 128 α18 30241281245175 1212400457192925 213786613951685775 10278202593831046875 + + + + + 256 α20 256 α22 1024 α24 1024 α26 1070401384414690453125 60013837619516978071875 + + = 2048 α28 2048 α30  2  4  6  8  10  12 5 5 5 5 5 5 = 1+0.04 +0.0072 +0.0024 +0.00117 6 +0.00076 2048 +0.00061 47187 + α α α α α α  16  −18  20  14 5 5 5 5 +0.00066 78479808 +0.00085 78136287 +0.00123 86829 + +0.00059 36426 α α α α  22  24  26  28 5 5 5 5 +0.00198 63969 + 0.00350 26799 + 0.00673 5922852 + 0.01402 996503 + α α α α  30 5 +0.03146 45349 α σ (0) (α) = 1 +

Let (0) ϕk (α)

=

7 X

(k,0) sj

j=0 (k,0) sj

 2k 5 α

and

(0) ψk (α)

=

7 X

(k,0) tj

j=0

 2k+1 5 α

:

j

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

0 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

0 0.0600000000 0.0200000000 0.0098000000 0.0063504000 0.0051226560 0.0049470221 0.0055653998

0 -0.0333333333 -0.0163333333 -0.0105840000 -0.0085377600 -0.0082450368 -0.0092756664 -0.0119140782

0 0.0116666667 0.0075600000 0.0060984000 0.0058893120 0.0066254760 0.0085100558 0.0122885206

0 -0.0030000000 -0.0024200000 -0.0023370286 -0.0026291571 -0.0033770063 -0.0048763971 -0.0078199677

0 0.0006111111 0.0005901587 0.0006639286 0.0008527794 0.0012314134 0.0019747393 0.0034821237

0 -0.0001031746 -0.0001160714 -0.0001490873 -0.0002152821 -0.0003452341 -0.0006087629 -0.0011706978

0 0.0000148810 0.0000191138 0.0000276003 0.0000442608 0.0000780465 0.0001500895 0.0003126149

(k,0)

tj

:

j

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

0 1 2 3 4 5 6 7

-0.2000000000 -0.0360000000 -0.0120000000 -0.0058800000 -0.0038102400 -0.0030735936 -0.0029682132 -0.0033392399

0.1000000000 0.0333333333 0.0163333333 0.0105840000 0.0085377600 0.0082450368 0.0092756664 0.0119140782

-0.0333333333 -0.0163333333 -0.0105840000 -0.0085377600 -0.0082450368 -0.0092756664 -0.0119140782 -0.0172039289

0.0083333333 0.0054000000 0.0043560000 0.0042066514 0.0047324829 0.0060786113 0.0087775147 0.0140759418

-0.0016666667 -0.0013444444 -0.0012983492 -0.0014606429 -0.0018761146 -0.0027091095 -0.0043444265 -0.0076606720

0.0002777778 0.0002682540 0.0003017857 0.0003876270 0.0005597334 0.0008976088 0.0015827835 0.0030438144

-0.0000396825 -0.0000446429 -0.0000573413 -0.0000828008 -0.0001327824 -0.0002341396 -0.0004502684 -0.0009378448

0.0000049603 0.0000063713 0.0000092001 0.0000147536 0.0000260155 0.0000500298 0.0001042050 0.0002336970

Asymptotic expansion:

√ F0 (x; α)



π −α2 /8 e I0 2 160



α2 8

 +

2

2 e−x +√ παx

  π 32α4 + 120α2 − 15 2048α8 + 32256α6 + 60480α4 − 5040α2 − 4725 1 − + . . . cos x + + − 3 5 2x 256x 65536x 4  4α2 + 3 128α6 + 1120α4 + 420α2 + 105 + − + − 16x2 2048x4    8192α10 + 202752α8 + 887040α6 + 221760α4 + 41580α2 + 72765 π + . . . sin x + 524288x6 4



II) s = 1 : x

Z

2

e−t J1 (αt) dt =

0 2

=

 1 e−x α2 − 4 4 α4 − 20 α2 + 32 6 α6 − 44 α4 + 416 α2 − 384 8 + −1 − x2 + x − x + x + . . . J0 (αx)+ α α 8 192 9216    α α3 − 12 α 5 α5 − 32 α3 + 176 α 7 α7 − 60 α5 + 928 α3 − 3200 α 9 + − x3 + x − x + x + . . . J1 (αx) 2 32 1152 73728 

Recurrence relations: (1;α)

(1;α)

ak+1 =

(1;α)

− αbk 2k + 2

2ak

(1;α)

(1;α)

,

bk+1 =

2αak

(1;α)

+ (4k + 4 − α2 )bk (2k + 2)2

Approximation: (1;α)

F1 (x; α) = c0



2

1 − e−x



2

+ e−x

5 X

(1;α)

ck

x2k

k=1 (1;α) c0

= −0.00000 03391 α11 + 0.00000 81380 α9 − 0.00016 27604 α7 + 0.00260 41667 α5 − 0.03125 α3 + 0.25 α

(1;α)

c1

= 0.00000 03391 α11 − 0.00000 81380 α9 + 0.00016 27604 α7 − 0.00260 41667 α5 + 0.03125 α3 (1;α)

c2

= 0.00000 01695 α11 − 0.00000 40690 α9 + 0.00008 13802 α7 − 0.00130 20833 α5 (1;α)

c3 (1;α)

c4

= 0.00000 00565 α11 − 0.00000 13563 α9 + 0.00002 71267 α7 (1;α)

= 0.00000 00141 α11 − 0.00000 03391 α9 ,

c5

= 0.00000 00028 α11

In the case of small values of |x| and α >> 1 the following approximation may be used: " 7 # " 7 # X (1) X (1) 2k 2k+1 F1 (x; α) = ϕk (α) x J0 (αx) + ψk (α) x J1 (αx) k=1

Let (1)

ϕk (α) =

7 X j=0

(k,1)

sj

k=0

(k,1)

sj

 2k+1 5 α

and

(1)

ψk (α) =

7 X

(k,1)

tj

j=0

 2k+2 5 α

:

j

k=1

k=2

k=3

k=4

k=5

k=6

k=7

0 1 2 3 4 5 6 7

0.2000000000 0.0320000000 0.0102400000 0.0049152000 0.0031457280 0.0025165824 0.0024159191 0.0027058294

-0.1000000000 -0.0320000000 -0.0153600000 -0.0098304000 -0.0078643200 -0.0075497472 -0.0084557169 -0.0108233176

0.0333333333 0.0160000000 0.0102400000 0.0081920000 0.0078643200 0.0088080384 0.0112742892 0.0162349764

-0.0083333333 -0.0053333333 -0.0042666667 -0.0040960000 -0.0045875200 -0.0058720256 -0.0084557169 -0.0135291470

0.0016666667 0.0013333333 0.0012800000 0.0014336000 0.0018350080 0.0026424115 0.0042278584 0.0074410308

-.0002777778 -0.0002666667 -0.0002986667 -0.0003822933 -0.0005505024 -0.0008808038 -0.0015502148 -0.0029764123

0.0000396825 0.0000444444 0.0000568889 0.0000819200 0.0001310720 0.0002306867 0.0004429185 0.0009212705

(k,1)

tj

:

161

j

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

0 1 2 3 4 5 6 7

-0.0800000000 -0.0128000000 -0.0040960000 -0.0019660800 -0.0012582912 -0.0010066330 -0.0009663676 -0.0010823318

0.0800000000 0.0256000000 0.0122880000 0.0078643200 0.0062914560 0.0060397978 0.0067645735 0.0086586541

-0.0400000000 -0.0192000000 -0.0122880000 -0.0098304000 -0.0094371840 -0.0105696461 -0.0135291470 -0.0194819717

0.0133333333 0.0085333333 0.0068266667 0.0065536000 0.0073400320 0.0093952410 0.0135291470 0.0216466352

-0.0033333333 -0.0026666667 -0.0025600000 -0.0028672000 -0.0036700160 -0.0052848230 -0.0084557169 -0.0148820617

0.0006666667 0.0006400000 0.0007168000 0.0009175040 0.0013212058 0.0021139292 0.0037205154 0.0071433896

-0.0001111111 -0.0001244444 -0.0001592889 -0.0002293760 -0.0003670016 -0.0006459228 -0.0012401718 -0.0025795574

0.0000158730 0.0000203175 0.0000292571 0.0000468114 0.0000823881 0.0001581852 0.0003290252 0.0007370164

Asymptotic expansion: 2

1 − e−α F1 (x; α) ∼ α  ·

r

/4

+

2 −x2 e · παx

  π 1 32 α4 + 88 α2 − 15 2048 α8 + 26112 α6 + 38976 α4 − 4080 α2 − 4725 + + . . . cos x + − − 2 256 α2 x2 65536 α4 x4 4  2 4 α + 3 128 α6 + 864 α4 + 324 α2 + 105 − + − 16 αx 2048 α3 x3    8192 α10 + 169984 α8 + 598272 α6 + 149568 α4 + 34860 α2 + 72765 π + + . . . sin x + 524288 α5 x5 4

III) s = − : F− (x; α) =  4α − α3 3 α5 − 16α3 + 36α 5 −α7 + 36α4 − 296α3 + 480 7 x + x + x + . . . J0 (αx)+ 3 45 1575    4 2 6 4 −α + 10α − 12 4 α − 26α + 136α2 − 120 6 + −1 + (α2 − 2)x2 + x + x . . . J1 (αx) 9 225

2

= e−x



αx +

Recurrence relations: (−;α)

(−;α)

ak+1 =

(−;α)

(4k + 2 − α2 )ak − 2αbk (2k + 1)(2k + 3)

(−;α)

(−;α)

,

bk+1 =

2bk

(−;α)

+ αak 2k + 1

Approximation: (−;α)

F− (x; α) = c0

2

erf(x) + e−x

5 X

(−;α)

ck

x2k−1

k=1 (−;α) c0

= −0.00000 01479 α

11

9

+ 0.00000 39441 α − 0.00009 01517 α7 + 0.00173 09120 α5 −

−0.02769 45914 α3 + 0.44311 34627 α (−;α)

c1

= 0.00000 016689 α11 − 0.00000 44505 α9 + 0.00010 17253 α7 − 0.00195 3125 α5 + 0.03125 α3 (−;α)

c2

= 0.00000 01113 α11 − 0.00000 29670 α9 + 0.00006 78168 α7 − 0.00130 20833 α5 (−;α)

c3 (−;α)

c4

= 0.00000 00445 α11 − 0.00000 11868 α9 + 0.00002 71267 α7

= 0.00000 00127 α11 − 0.00000 03391 α9 ,

(−;α)

c5

= 0.00000 00028 α11

In the case of small values of |x| and α >> 1 the following approximation may be used (Φ(x) defined as on page 7): " 7 # " 7 # X (−) X (−) (−) 2k+1 2k F− (x; α) = σ (α) Φ(αx) + ϕk (α) x J0 (αx) + ψk (α) x J1 (αx) k=0

Let (0)

ϕk (α) =

7 X j=0

(k,0)

sj

 2k−1 5 α

k=0

and

(−)

ψk (α) =

7 X j=0

162

(k,−)

tj

 2k 5 α

(k,−)

sj

:

j

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

0 1 2 3 4 5 6 7

5 0 0 0 0 0 0 0

0 -0.1000000000 -0.0200000000 -0.0070000000 -0.0035280000 -0.0023284800 -0.0019027008 -0.0018551333

0 0.0333333333 0.0116666667 0.0058800000 0.0038808000 0.0031711680 0.0030918888 0.0035041406

0 -0.0083333333 -0.0042000000 -0.0027720000 -0.0022651200 -0.0022084920 -0.0025029576 -0.0032338212

0 0.0016666667 0.0011000000 0.0008988571 0.0008763857 0.0009932371 0.0012832624 0.0018618971

0 -0.0002777778 -0.0002269841 -0.0002213095 -0.0002508175 -0.0003240562 -0.0004701760 -0.0007569834

0 0.0000396825 0.0000386905 0.0000438492 0.0000566532 0.0000821986 0.0001323398 0.0002341396

0 -0.0000049603 -0.0000056217 -0.0000072632 -0.0000105383 -0.0000169666 -0.0000300179 -0.0000578917

j

k=0

k=1

k=2

k=3

k=4

k=5

k=6

k=7

0 1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

0 0.0600000000 0.0120000000 0.0042000000 0.0021168000 0.0013970880 0.0011416205 0.0011130800

0 -0.0333333333 -0.0116666667 -0.0058800000 -0.0038808000 -0.0031711680 -0.0030918888 -0.0035041406

0 0.0116666667 0.0058800000 0.0038808000 0.0031711680 0.0030918888 0.0035041406 0.0045273497

0 -0.0030000000 -0.0019800000 -0.0016179429 -0.0015774943 -0.0017878269 -0.0023098723 -0.0033514147

0 0.0006111111 0.0004993651 0.0004868810 0.0005517984 0.0007129235 0.0010343873 0.0016653635

0 -0.0001031746 -0.0001005952 -0.0001140079 -0.0001472983 -0.0002137164 -0.0003440834 -0.0006087629

0 0.0000148810 0.0000168651 0.0000217897 0.0000316148 0.0000508999 0.0000900537 0.0001736750

(k,−)

tj

:

Asymptotic expansion: √

  2  2  r π −α2 /8 α α 2 −x2 F− (x; α) ∼ e I0 + I1 + e · 4 8 8 παx  ·

  1 −32 α4 − 152 α2 + 15 2048 α8 + 38400 α6 + 86080 α4 − 6000 α2 − 4725 π − + + . . . cos x + − 2x 256 α2 x3 65536 α4 x5 4  2 4 α + 3 128 α6 + 1376 α4 + 516 α2 + 105 − + − 16 αx2 2048 α3 x4    8192 α10 + 235520 α8 + 1224960 α6 + 306240 α4 + 48300 α2 + 72765 π + + . . . sin x + 524288 α5 x6 4

d) Integrals (α 6= 1) Z 2 2 α e−x J0 (αx) − e−x J1 (αx) dx xe J0 (αx) dx = − 2 2 Z Z Z −x2 2 −x 2 2 α e 1 e J1 (αx) x e−x J1 (αx) dx = − J1 (αx) − e−x J0 (αx) dx − dx 2 2 2 x Z

−x2

Let

Z

2

x2n+ν e−x Jν (αx) dx =

2

= e−x [An;ν (x; α) J0 (αx) + Bn;ν (x; α) J1 (αx)] + Pn;ν and Z

2

Z

2

e−x J0 (αx) dx + Qn;ν

2

e−x J1 (αx) dx x

Z

e−x J1 (αx) dx .

x2n+1−ν e−x Jν (αx) dx = e−x [Cn;ν (x; α) J0 (αx) + Dn;ν (x; α) J1 (αx)] + Rn;ν A1; 0 (x; α) = −

A1;1 (x; α) = −

αx , 8

x , 2

B1; 0 (x; α) =

B1;1 (x; α) =

C1;0 (x; α) =

α , 4

P1; 0 (α) =

−4 x2 + α2 − 2 , 8

−4 x2 + α2 − 4 , 8

Q1; 0 (x; α) =

P1;1 (α) =

−α3 + 4 α , 8

αx , 4

R1;0 (α) =

D1;0 (x; α) =

163

−α2 + 2 , 4

2

Z

2

α 4

Q1;1 (x; α) = α3 − 4 α 8

α2 − 2 8

C1;1 (x; α) = − A2;0 (x; α) =

α , 4

D1;1 (x; α) = −

−4 x3 + (α2 − 6) x , 8

x , 2

R1;1 (α) = −

B2;0 (x; α) =

α2 4

4 α x2 − α3 + 8 α , 16

−α3 + 8 α α4 − 10 α2 + 12 , Q2;0 (x; α) = 16 16   3 3 4 −4 α x + α − 12 α x −12 − 16 x + 4 α2 − 24 x2 − α4 + 14 α2 A2;1 (x; α) = , B2;1 (x; α) = , 16 32 P2;0 (α) =

α5 − 16 α3 + 36 α −α4 + 14 α2 − 12 , Q2;1 (x; α) = 32 32  2  4 2 4 2 −16 x + 4 α − 32 x − α + 16 α − 32 4 α x3 + −α3 + 12 α x C2;0 (x; α) = , D2;0 (x; α) = , 32 16 P2;1 (α) =

R2;0 (α) = −4 α x2 + α3 − 8 α C2;1 (x; α) = , 16

−α5 + 16 α3 − 32 α 32

 −4 x3 + α2 − 4 x D2;1 (x; α) = , 8

R2;1 (α) =

A3;0 (x; α) =

−16 x5 + (4 α2 − 40)x3 − (α4 − 22 α2 + 60)x , 32

B3;0 (x; α) =

16 α x4 + (64 α − 4 α3 )x2 + α5 − 24 α3 + 92 α , 64

α4 − 8 α2 16

α5 − 24 α3 + 92 α −α6 + 26 α4 − 136 α2 + 120 , Q3;0 (x; α) = 64 64  3  5 3 5 3 −16 α x + 4 α − 80 α x + −α + 32 α − 180 α x A3;1 (x; α) = , 64   −64 x6 + 16 α2 − 160 x4 + −4 α4 + 104 α2 − 240 x2 + α6 − 34 α4 + 232 α2 − 120 , B3;1 (x; α) = 128 P3;0 (α) =

−α7 + 36 α5 − 296 α3 + 480 α α6 − 34 α4 + 232 α2 − 120 , Q3;1 (x; α) = 128 128  4  2 6 2 4 2 6 −64 x + 16 α − 192 x + −4 α + 112 α − 384 x + α − 36 α4 + 288 α2 − 384 , C3;0 (x; α) = 128   16 α x5 + −4 α3 + 80 α x3 + α5 − 32 α3 + 176 α x D3;0 (x; α) = , 54 P3;1 (α) =

α7 − 36 α5 + 288 α3 − 384 α 128  4 3 −16 α x + 4 α − 64 α x2 − α5 + 24 α3 − 96 α C3;1 (x; α) = , 64   −16 x5 + 4 α2 − 32 x3 + −α4 + 20 α2 − 32 x D3;1 (x; α) = , 32 R3;0 (α) =

−α6 + 24 α4 − 96 α2 R3;1 (α) = 64  5   7 2 4 −64 x + 16 α − 224 x + −4 α + 136 α2 − 560 x3 + α6 − 46 α4 + 488 α2 − 840 x A4;0 (x; α) = , 128   64 α x6 + −16 α3 + 384 α x4 + 4 α5 − 160 α3 + 1136 α x2 − α7 + 48 α5 − 568 α3 + 1408 α B4;0 (x; α) = , 256 −α7 + 48 α5 − 568 α3 + 1408 α α8 − 50 α6 + 660 α4 − 2384 α2 + 1680 , Q4;0 (x; α) = 256 256  5  3  7 3 5 3 7 −64 α x + 16 α − 448 α x + −4 α + 192 α − 1680 α x + α − 60 α5 + 936 α3 − 3360 α x A4;1 (x; α) = , 256 P4;0 (α) =

164

  1 [−256 x8 + 64 α2 − 896 x6 + −16 α4 + 608 α2 − 2240 x4 + 512  6 + 4 α − 216 α4 + 2592 α2 − 3360 x2 − α8 + 62 α6 − 1044 α4 + 4656 α2 − 1680] , B4;1 (x; α) =

P4;1 (α) =

α9 − 64 α7 + 1164 α5 − 6528 α3 + 8400 α , 512

−α8 + 62 α6 − 1044 α4 + 4656 α2 − 1680 512   1 C4;0 (x; α) = [−256 x8 + 64 α2 − 1024 x6 + −16 α4 + 640 α2 − 3072 x4 + 512  6 + 4 α − 224 α4 + 2944 α2 − 6144 x2 − α8 + 64 α6 − 1152 α4 + 6144 α2 − 6144] ,    64 α x7 + −16 α3 + 448 α x5 + 4 α5 − 192 α3 + 1664 α x3 + −α7 + 60 α5 − 928 α3 + 3200 α x , D4;0 (x; α) = 256 Q4;1 (x; α) =

−α9 + 64 α7 − 1152 α5 + 6144 α3 − 6144 α 512  4  6 3 5 −64 α x + 16 α − 384 α x + −4 α + 160 α3 − 1152 α x2 + α7 − 48 α5 + 576 α3 − 1536 α C4;1 (x; α) = , 256    −64 x7 + 16 α2 − 192 x5 + −4 α4 + 128 α2 − 384 x3 + α6 − 44 α4 + 416 α2 − 384 x D4;1 (x; α) = , 128 R4;0 (α) =

α8 − 48 α6 + 576 α4 − 1536 α2 256   1 A5;0 (x; α) = [−256 x9 + 64 α2 − 1152 x7 + −16 α4 + 736 α2 − 4032 x5 + 512   6 4 + 4 α − 264 α + 4128 α2 − 10080 x3 + −α8 + 78 α6 − 1764 α4 + 12144 α2 − 15120 x] , R4;1 (α) =

  1 [256 α x8 + −64 α3 + 2048 α x6 + 16 α5 − 896 α3 + 9152 α x4 + 1024  7 + −4 α + 288 α5 − 5472 α3 + 23808 α x2 + α9 − 80 α7 + 1908 α5 − 14880 α3 + 27024 α] , B5;0 (x; α) =

P5;0 (α) =

−α10 + 82 α8 − 2064 α6 + 18408 α4 − 51312 α2 + 30240 , 1024

α9 − 80 α7 + 1908 α5 − 14880 α3 + 27024 α 1024   1 [−256 α x9 + 64 α3 − 2304 α x7 + −16 α5 + 1024 α3 − 12096 α x5 + A5;1 (x; α) = 1024   7 5 + 4 α − 336 α + 7584 α3 − 40320 α x3 + −α9 + 96 α7 − 2844 α5 + 28992 α3 − 75600 α x] , Q5;0 (x; α) =

  1 [−1024 x10 + 256 α2 − 4608 x8 + −64 α4 + 3200 α2 − 16128 x6 + 2048   + 16 α6 − 1184 α4 + 20096 α2 − 40320 x4 + −4 α8 + 360 α6 − 9360 α4 + 70464 α2 − 60480 x2 + B5;1 (x; α) =

+α10 − 98 α8 + 3024 α6 − 33672 α4 + 110832 α2 − 30240] , P5;1 (α) =

−α11 + 100 α9 − 3216 α7 + 39360 α5 − 168816 α3 + 181440 α , 2048

α10 − 98 α8 + 3024 α6 − 33672 α4 + 110832 α2 − 30240 2048   1 C5;0 (x; α) = [−1024 x10 + 256 α2 − 5120 x8 + −64 α4 + 3328 α2 − 20480 x6 + 2048   + 16 α6 − 1216 α4 + 22016 α2 − 61440 x4 + −4 α8 + 368 α6 − 9984 α4 + 83456 α2 − 122880 x2 + Q5;1 (x; α) =

+α10 − 100 α8 + 3200 α6 − 38400 α4 + 153600 α2 − 122880] ,   1 D5;0 (x; α) = [256 α x9 + −64 α3 + 2304 α x7 + 16 α5 − 1024 α3 + 12032 α x5 + 1024 165

  + −4 α7 + 336 α5 − 7552 α3 + 39424 α x3 + α9 − 96 α7 + 2832 α5 − 28416 α3 + 70144 α x] , α11 − 100 α9 + 3200 α7 − 38400 α5 + 153600 α3 − 122880 α 2048   1 8 3 C5;1 (x; α) = [−256 α x + 64 α − 2048 α x6 + −16 α5 + 896 α3 − 9216 α x4 + 1024  7 + 4 α − 288 α5 + 5504 α3 − 24576 α x2 − α9 + 80 α7 − 1920 α5 + 15360 α3 − 30720 α] , R5;0 (α) =

  1 [−256 x9 + 64 α2 − 1024 x7 + −16 α4 + 704 α2 − 3072 x5 + 512   + 4 α6 − 256 α4 + 3712 α2 − 6144 x3 + −α8 + 76 α6 − 1632 α4 + 9856 α2 − 6144 x] , D5;1 (x; α) =

−α10 + 80 α8 − 1920 α6 + 15360 α4 − 30720 α2 1024   1 A6;0 (x; α) = [−1024 x11 + 256 α2 − 5632 x9 + −64 α4 + 3712 α2 − 25344 x7 + 2048   6 4 + 16 α − 1376 α + 28288 α2 − 88704 x5 + −4 α8 + 424 α6 − 13392 α4 + 131136 α2 − 221760 x3 +  + α10 − 118 α8 + 4560 α6 − 67800 α4 + 342768 α2 − 332640 x] , R5;1 (α) =

  1 [1024 α x10 + −256 α3 + 10240 α x8 + 64 α5 − 4608 α3 + 61184 α x6 + 4096   7 5 + −16 α + 1536 α − 39808 α3 + 241664 α x4 + 4 α9 − 448 α7 + 15696 α5 − 190848 α3 + 584256 α x2 − B6;0 (x; α) =

−α11 + 120 α9 − 4784 α7 + 75648 α5 − 438192 α3 + 624768 α] , α12 − 122 α10 + 5020 α8 − 84768 α6 + 573792 α4 − 1310304 α2 + 665280 , 4096 −α11 + 120 α9 − 4784 α7 + 75648 α5 − 438192 α3 + 624768 α Q6;0 (x; α) = 4096   1 A6;1 (x; α) = [−1024 α x11 + 256 α3 − 11264 α x9 + −64 α5 + 5120 α3 − 76032 α x7 + 4096   7 5 + 16 α − 1728 α + 50816 α3 − 354816 α x5 + −4 α9 + 512 α7 − 20784 α5 + 297984 α3 − 1108800 α x3 +  + α11 − 140 α9 + 6672 α7 − 130368 α5 + 980592 α3 − 1995840 α x] , P6;0 (α) =

  1 [−4096 x12 + 1024 α2 − 22528 x10 + −256 α4 + 15872 α2 − 101376 x8 + 8192   6 4 + 64 α − 6016 α + 131584 α2 − 354816 x6 + −16 α8 + 1888 α6 − 65856 α4 + 683776 α2 − 887040 x4 +  + 4 α10 − 536 α8 + 23616 α6 − 396768 α4 + 2134464 α2 − 1330560 x2 − B6;1 (x; α) =

−α12 + 142 α10 − 6940 α8 + 142176 α6 − 1178976 α4 + 3063072 α2 − 665280] , α13 − 144 α11 + 7220 α9 − 155520 α7 + 1439712 α5 − 5024256 α3 + 4656960 α , 8192 −α12 + 142 α10 − 6940 α8 + 142176 α6 − 1178976 α4 + 3063072 α2 − 665280 Q6;1 (x; α) = 8192   1 C6;0 (x; α) = [−4096 x12 + 1024 α2 − 24576 x10 + −256 α4 + 16384 α2 − 122880 x8 + 8192   + 64 α6 − 6144 α4 + 141312 α2 − 491520 x6 + −16 α8 + 1920 α6 − 69120 α4 + 774144 α2 − 1474560 x4 +  + 4 α10 − 544 α8 + 24576 α6 − 433152 α4 + 2617344 α2 − 2949120 x2 − P6;1 (α) =

−α12 + 144 α10 − 7200 α8 + 153600 α6 − 1382400 α4 + 4423680 α2 − 2949120] ,   1 D6;0 (x; α) = [1024 α x11 + −256 α3 + 11264 α x9 + 64 α5 − 5120 α3 + 75776 α x7 + 4096   7 5 + −16 α + 1728 α − 50688 α3 + 350208 α x5 + 4 α9 − 512 α7 + 20736 α5 − 294912 α3 + 1069056 α x3 +  + −α11 + 140 α9 − 6656 α7 + 129024 α5 − 949248 α3 + 1806336 α x] , 166

−α13 + 144 α11 − 7200 α9 + 153600 α7 − 1382400 α5 + 4423680 α3 − 2949120 α 8192   1 10 3 C6;1 (x; α) = [−1024 α x + 256 α − 10240 α x8 + −64 α5 + 4608 α3 − 61440 α x6 + 4096   7 5 + 16 α − 1536 α + 39936 α3 − 245760 α x4 + −4 α9 + 448 α7 − 15744 α5 + 193536 α3 − 614400 α x2 + R6;0 (α) =

+α11 − 120 α9 + 4800 α7 − 76800 α5 + 460800 α3 − 737280 α] ,   1 D6;1 (x; α) = [−1024 x11 + 256 α2 − 5120 x9 + −64 α4 + 3584 α2 − 20480 x7 + 2048   6 4 + 16 α − 1344 α + 26112 α2 − 61440 x5 + −4 α8 + 416 α6 − 12672 α4 + 113664 α2 − 122880 x3 +  + α10 − 116 α8 + 4352 α6 − 61056 α4 + 267264 α2 − 122880 x] , R6;1 (α) =

α12 − 120 α10 + 4800 α8 − 76800 α6 + 460800 α4 − 737280 α2 4096

Recurrence relations: Z

2

x2n+2 e−x J0 (αx) dx =

Z Z 2 2 x2n e−x 4n + 2 − α (2n − 1)α 2n −x2 x e x2n−1 e−x J1 (αx) dx = [αJ1 (αx) − 2xJ0 (αx)] + J0 (αx) dx − 4 4 4 Z Z Z 2 2n −x 2 x e α 2n+1 −x2 2n−1 −x2 x e J0 (αx) dx = − J0 (αx) + n x e J0 (αx) dx − x2n e−x J1 (αx) dx 2 2 Z 2 x2n+2 e−x J1 (αx) dx = 2

=− Z

αn x2n+1 e−x [αJ0 (αx) + 2xJ1 (αx)] + 2 2 2

2

x2n+1 e−x J1 (αx) dx = −

Z

x2n e−x α J1 (αx) + 2 2

2

x2n−1 e−x J0 (αx) dx + Z

2

4n − α2 4

x2n e−x J0 (αx) dx +

2n − 1 2

Z

Z

2

x2n e−x J1 (αx) dx 2

x2n−1 e−x J1 (αx) dx

e) Special Cases: ν = 0 Z

2

x3 e−x J0 (2x) dx = Z

Z

2

x3 ex I0 (2x) dx = 2

x3 ex K0 (2x) dx =

Z

5 −x2

x e =

x −x2 e [J1 (2x) − xJ0 (2x)] 2 x x2 e [xI0 (2x) − I1 (2x)] 2 x x2 e [xK0 (2x) + K1 (2x)] 2

 q  √ J0 2 2 + 2 x dx =

  q  q  q  √ √ √ √ √ x −x2 x( 2 − x2 ) J0 (2 2 + 2 x + 2 + 2 (x2 + 1 − 2) J1 2 2 + 2 x e 2  q  Z √ 2 x5 ex I0 2 2 + 2 x dx =

  q  q  q  √ √ √ √ √ x x2 2 2 = e x( 2 + x ) I0 (2 2 + 2 x − 2 + 2 (x − 1 + 2) I1 2 2 + 2 x 2  q  Z √ 5 x2 x e K0 2 2 + 2 x dx = =

  q  q  q  √ √ √ √ √ x x2 e x( 2 + x2 ) K0 (2 2 + 2 x + 2 + 2 (x2 − 1 + 2) K1 2 2 + 2 x 2 167

 q  √ x e J0 2 2 − 2 x dx =  q  q    q √ √ √ √ √ x −x2 2 2 = e −x( 2 + x ) J0 (2 2 − 2 x + 2 − 2 (x + 1 + 2) J1 2 2 − 2 x 2  q  Z √ 5 x2 x e I0 2 2 − 2 x dx =  q  q  q   √ √ √ √ √ x x2 2 2 = e x(x − 2) I0 (2 2 − 2 x − 2 − 2 (x − 1 − 2) I1 2 2 − 2 x 2  q  Z √ 5 x2 x e K0 2 2 − 2 x dx =  q  q  q   √ √ √ √ √ x x2 2 2 = e x(x − 2) K0 (2 2 − 2 x + 2 − 2 (x − 1 − 2) K1 2 2 − 2 x 2 Z

5 −x2

e) Special Cases: ν = 1 √ √ √ 2 x √ e−x [(1 − x2 )J1 (2 2x) − x 2 J0 (2 2x)] 2 √ √ √ 2 x √ ex [(1 + x2 )I1 (2 2x) − x 2 I0 (2 2x)] 2 Z √ √ √ √ 2 2 x x4 ex K1 (2 2x) dx = √ ex [(1 + x2 )K1 (2 2x) + x 2 K0 (2 2x)] 2

Z

√ 2 x4 e−x J1 (2 2x) dx = Z √ 2 x4 ex I1 (2 2x) dx =

  q √ x e J1 2 3 + 3 x dx =   q   q  q √ 2 √ √ √ √ √ x −x2 4 2 = e (−x + (1 + 3)x − 3 + 1) J1 (2 3 + 3 x − 3 + 3 x (x + 1 − 3) J0 2 3 + 3 x 2  q  Z √ 6 x2 x e I1 2 3 + 3 x dx =   q   q  q √ 2 √ √ √ √ √ x x2 4 2 (x + (1 + 3)x + 3 − 1) I1 (2 3 + 3 x − 3 + 3 x (x − 1 + 3) I0 2 3 + 3 x = e 2  q  Z √ 6 x2 x e K1 2 3 + 3 x dx =   q  q  q  √ √ √ √ √ √ x 2 = ex (x4 + (1 + 3)x2 + 3 − 1) K1 (2 3 + 3 x + 3 + 3 x (x2 − 1 + 3) K0 2 3 + 3 x 2 Z

6 −x2

 q  √ x e J1 2 3 − 3 x dx =   q  q  q  √ 2 √ √ √ √ √ x −x2 4 2 = e (−x + (1 − 3)x + 3 + 1) J1 (2 3 − 3 x − 3 − 3 x (x + 1 + 3) J0 2 3 − 3 x 2  q  Z √ 6 x2 x e I1 2 3 − 3 x dx =   q  q  q  √ √ √ √ √ √ x 2 = ex (x4 + (1 − 3)x2 − 3 − 1) I1 (2 3 − 3 x − 3 − 3 x (x2 − 1 − 3) I0 2 3 − 3 x 2   q Z √ 2 x6 ex K1 2 3 − 3 x dx =   q  q  q  √ √ √ √ √ √ x 2 = ex (x4 + (1 − 3)x2 − 3 − 1) K1 (2 3 − 3 x + 3 − 3 x (x2 − 1 − 3) K0 2 3 − 3 x 2 Z

6 −x2

168

1.2.12. Integrals with Orthogonal Polynomials Fn (x):

R

Fn (x) · Zν (x) dx

The used form of the orthogonal polynomials is shown in the integrals with J0 (x). Φ(x) and Ψ(x) are defined on page 7. a) Legendre Polynomials Pn (x) : Weight function: w(x) ≡ 1, interval −1 ≤ x ≤ 1. R R R R Holds P0 (x) Zν (x) dx = Zν (x) dx and P1 (x) Zν (x) dx = x Zν (x) dx . The denominator of the polynomial is written in front of the integral on the left hand side. n=2 Z

Z P2 (x) · J0 (x) dx =

2

Z 2 Z

(3x2 − 1) J0 (x) dx = −x J0 (x) + 3x2 J1 (x) − 4 Φ(x)

 P2 (x) · J1 (x) dx = −3x2 + 1 J0 (x) + 6x J1 (x) P2 (x) · I0 (x) dx = −x I0 (x) + 3x2 I1 (x) + 2 Ψ(x)

2

Z 2

P2 (x) · I1 (x) dx = (3x2 − 1) I0 (x) − 6x I1 (x)

n=3 Z

Z P3 (x) · J0 (x) dx =

2

Z

 (5x3 − 3x) J0 (x) dx = 10x2 J0 (x) + 5x3 − 23x J1 (x)

P3 (x) · J1 (x) dx = −5x3 J0 (x) + 15x2 J1 (x) − 18Φ(x)

2 Z 2 Z 2

P3 (x) · I0 (x) dx = −10x2 I0 (x) + (5x3 + 17x) I1 (x) P3 (x) · I1 (x) dx = 5x3 I0 (x) − 15x2 I1 (x) − 12 Ψ(x)

n=4 Z 8

Z P4 (x) · J0 (x) dx =

 35 x4 − 30 x2 + 3 J0 (x) dx =

  = 105 x3 + 3 x J0 (x) + 35 x4 − 345 x2 J1 (x) + 348Φ(x) Z 8 Z

  P4 (x) · J1 (x) dx = −35 x4 + 310 x2 − 3 J0 (x) + 140 x3 − 620 x J1 (x)

  P4 (x) · I0 (x) dx = −105 x3 + 3 x I0 (x) + 35 x4 + 285 x2 I1 (x) + 288 Ψ(x)

8

Z 8

  P4 (x) · I1 (x) dx = 35 x4 + 250 x2 + 3 I0 (x) + −140 x3 − 500 x I1 (x)

n=5 Z 8

Z P5 (x) · J0 (x) dx =

 63 x5 − 70 x3 + 15 x J0 (x) dx =

  = 252 x4 − 2156 x2 J0 (x) + 63 x5 − 1078 x3 + 4327 x J1 (x) Z 8

  P5 (x) · J1 (x) dx = −63 x5 + 1015 x3 J0 (x) + 315 x4 − 3045 x2 J1 (x) + 3060 Φ(x) Z

8 Z 8

  P5 (x) · I0 (x) dx = −252 x4 − 1876 x2 I0 (x) + 63 x5 + 938 x3 + 3767 x I1 (x)

  P5 (x) · I1 (x) dx = 63 x5 + 875 x3 I0 (x) + −315 x4 − 2625 x2 I1 (x) − 2640 Ψ(x)

n=6 Z 16

Z P6 (x) · J0 (x) dx =

 231 x6 − 315 x4 + 105 x2 − 5 J0 (x) dx = 169

  = 1155 x5 − 18270 x3 − 5 x J0 (x) + 231 x6 − 6090 x4 + 54915 x2 J1 (x) − 54920 Φ(x) Z 16 Z 16 Z 16

  P6 (x) · J1 (x) dx = −231 x6 + 5859 x4 − 46977 x2 + 5 J0 (x) + 1386 x5 − 23436 x3 + 93954 x J1 (x)   P6 (x)·I0 (x) dx = −1155 x5 − 16380 x3 − 5 x I0 (x)+ 231 x6 + 5460 x4 + 49245 x2 I1 (x)+49240 Ψ(x)   P6 (x) · I1 (x) dx = 231 x6 + 5229 x4 + 41937 x2 − 5 I0 (x) + −1386 x5 − 20916 x3 − 83874 x I1 (x)

n=7 Z 16

Z P7 (x) · J0 (x) dx =

 429 x7 − 693 x5 + 315 x3 − 35 x J0 (x) dx =

  + 2574 x6 − 64548 x4 + 517014 x2 J0 (x) + 429 x7 − 16137 x5 + 258507 x3 − 1034063 x J1 (x) Z 16 P7 (x) · J1 (x) dx =   = −429 x7 + 15708 x5 − 235935 x3 J0 (x) + 3003 x6 − 78540 x4 + 707805 x2 J1 (x) − 707840 Φ(x) Z 16 P7 (x) · I0 (x) dx =   = −2574 x6 − 59004 x4 − 472662 x2 I0 (x) + 429 x7 + 14751 x5 + 236331 x3 + 945289 x I1 (x) Z 16 P7 (x) · I1 (x) dx =   = 429 x7 + 14322 x5 + 215145 x3 I0 (x) + −3003 x6 − 71610 x4 − 645435 x2 I1 (x) − 645400 Ψ(x) n=8 Z

Z P8 (x) · J0 (x) dx =

128

 6435 x8 − 12012 x6 + 6930 x4 − 1260 x2 + 35 J0 (x) dx =

 = 45045 x7 − 1636635 x5 + 24570315 x3 + 35 x J0 (x)+  + 6435 x8 − 327327 x6 + 8190105 x4 − 73712205 x2 J1 (x) + 73712240 Φ(x) Z

 P8 (x) · J1 (x) dx = −6435 x8 + 320892 x6 − 7708338 x4 + 61667964 x2 − 35 J0 (x)+

128

 + 51480 x7 − 1925352 x5 + 30833352 x3 − 123335928 x J1 (x) Z 128

Z 128

 P8 (x) · I0 (x) dx = −45045 x7 − 1516515 x5 − 22768515 x3 + 35 x I0 (x)+

+(6435 x8 + 303303 x6 + 7589505 x4 + 68304285 x2 ) I1 (x) + 68304320 Ψ(x)  P8 (x) · I1 (x) dx = 6435 x8 + 296868 x6 + 7131762 x4 + 57052836 x2 + 35 I0 (x)+  + −51480 x7 − 1781208 x5 − 28527048 x3 − 114105672 x I1 (x)

n=9 Z

Z P9 (x) · J0 (x) dx =

128

 12155 x9 − 25740 x7 + 18018 x5 − 4620 x3 + 315 x J0 (x) dx =

 = 97240 x8 − 4821960 x6 + 115799112 x4 − 926402136 x2 J0 (x)+  + 12155 x9 − 803660 x7 + 28949778 x5 − 463201068 x3 + 1852804587 x J1 (x) Z 128

 P9 (x) · J1 (x) dx = −12155 x9 + 791505 x7 − 27720693 x5 + 415815015 x3 J0 (x)+

 + 109395 x8 − 5540535 x6 + 138603465 x4 − 1247445045 x2 J1 (x) + 1247445360 Φ(x) Z  128 P9 (x) · I0 (x) dx = −97240 x8 − 4513080 x6 − 108385992 x4 − 867078696 x2 I0 (x)+ 170

 + 12155 x9 + 752180 x7 + 27096498 x5 + 433539348 x3 + 1734157707 x I1 (x) Z  128 P9 (x) · I1 (x) dx = 12155 x9 + 740025 x7 + 25918893 x5 + 388778775 x3 I0 (x)+  + −109395 x8 − 5180175 x6 − 129594465 x4 − 1166336325 x2 I1 (x) − 1166336640 Ψ(x) n = 10 Z Z 256 P10 (x) · J0 (x) dx =

 46189 x10 − 109395 x8 + 90090 x6 − 30030 x4 + 3465 x2 − 63 J0 (x) dx =

 = 415701 x9 − 26954928 x7 + 943872930 x5 − 14158184040 x3 − 63 x J0 (x)+  + 46189 x10 − 3850704 x8 + 188774586 x6 − 4719394680 x4 + 42474555585 x2 J1 (x) − 42474555648 Φ(x) Z 256 P10 (x) · J1 (x) dx =  = −46189 x10 + 3804515 x8 − 182706810 x6 + 4384993470 x4 − 35079951225 x2 + 63 J0 (x)+  + 461890 x9 − 30436120 x7 + 1096240860 x5 − 17539973880 x3 + 70159902450 x J1 (x) Z  256 P10 (x) · I0 (x) dx = −415701 x9 − 25423398 x7 − 890269380 x5 − 13353950610 x3 − 63 x I0 (x)+  + 46189 x10 + 3631914 x8 + 178053876 x6 + 4451316870 x4 + 40061855295 x2 I1 (x) + 40061855232 Ψ(x) Z  256 P10 (x)·I1 (x) dx = 46189 x10 + 3585725 x8 + 172204890 x6 + 4132887330 x4 + 33063102105 x2 − 63 I0 (x)+ +(−461890 x9 − 28685800 x7 − 1033229340 x5 − 16531549320 x3 − 66126204210 x) I1 (x) n = 11 Z P11 (x) · J0 (x) dx =

256 Z =

 88179 x11 − 230945 x9 + 218790 x7 − 90090 x5 + 15015 x3 − 693 x J0 (x) dx =

 = 881790 x10 − 72390760 x8 + 3476069220 x6 − 83426021640 x4 + 667408203150 x2 J0 (x)+  + 88179 x11 − 9048845 x9 + 579344870 x7 − 20856505410 x5 + 333704101575 x3 − 1334816406993 x J1 (x) Z 256 P11 (x) · J1 (x) dx =  = −88179 x11 + 8960666 x9 − 564740748 x7 + 19766016270 x5 − 296490259065 x3 J0 (x)+  + 969969 x10 − 80645994 x8 + 3953185236 x6 − 98830081350 x4 + 889470777195 x2 J1 (x)− −889470777888 Φ(x) Z 256 P11 (x) · I0 (x) dx =  = −881790 x10 − 68695640 x8 − 3298703460 x6 − 79168522680 x4 − 633348211470 x2 I0 (x)+  + 88179 x11 + 8586955 x9 + 549783910 x7 + 19792130670 x5 + 316674105735 x3 + 1266696422247 x I1 (x) Z 256 P11 (x) · I1 (x) dx =  = 88179 x11 + 8498776 x9 + 535641678 x7 + 18747368640 x5 + 281210544615 x3 I0 (x)+  + −969969 x10 − 76488984 x8 − 3749491746 x6 − 93736843200 x4 − 843631633845 x2 I1 (x)− −843631633152 Ψ(x) n = 12 Z 1024

P12 (x) · J0 (x) dx = 171

Z

 676039 x12 − 1939938 x10 + 2078505 x8 − 1021020 x6 + 225225 x4 − 18018 x2 + 231 J0 (x) dx =

=

 = 7436429 x11 − 753665913 x9 + 47495502054 x7 − 1662347676990 x5 + 24935215830525 x3 + 231 x J0 (x)+ +(676039 x12 − 83740657 x10 + 6785071722 x8 − 332469535398 x6 + 8311738610175 x4 − −74805647509593 x2 ) J1 (x) + 74805647509824 Φ(x) Z 1024

P12 (x) · J1 (x) dx = (−676039 x12 + 83064618 x10 − 6647247945 x8 + 319068922380 x6 −

−7657654362345 x4 + 61261234916778 x2 − 231) J0 (x) + (8112468 x11 − 830646180 x9 + 53177983560 x7 − −1914413534280 x5 + 30630617449380 x3 − 122522469833556 x) J1 (x) Z 1024

P12 (x) · I0 (x) dx = (−7436429 x11 − 718747029 x9 − 45295612362 x7 − 1585341327570 x5 −

−23780120589225 x3 + 231 x) I0 (x) + (676039 x12 + 79860781 x10 + 6470801766 x8 + 317068265514 x6 + +7926706863075 x4 + 71340361749657 x2 ) I1 (x) + 71340361749888 Ψ(x) Z 1024

P12 (x)·I1 (x) dx = (676039 x12 +79184742 x10 +6336857865 x8 +304168156500 x6 +7300035981225 x4 +

+58400287831782 x2 + 231) I0 (x) + (−8112468 x11 − 791847420 x9 − 50694862920 x7 − 1825008939000 x5 − −29200143924900 x3 − 116800575663564 x) I1 (x) n = 13 Z 1024 Z =

P13 (x) · J0 (x) dx =

 1300075 x13 − 4056234 x11 + 4849845 x9 − 2771340 x7 + 765765 x5 − 90090 x3 + 3003 x J0 (x) dx =

= (15600900 x12 − 1912670340 x10 + 153052425960 x8 − 7346533074120 x6 + 176316796841940 x4 − −1410534374915700 x2 ) J0 (x) + (1300075 x13 − 191267034 x11 + 19131553245 x9 − 1224422179020 x7 + +44079199210485 x5 − 705267187457850 x3 + 2821068749834403 x) J1 (x) Z 1024

P13 (x) · J1 (x) dx = (−1300075 x13 + 189966959 x11 − 18811578786 x9 + 1185132234858 x7 −

−41479628985795 x5 + 622194434877015 x3 ) J0 (x) + (16900975 x12 − 2089636549 x10 + 169304209074 x8 − −8295925644006 x6 + 207398144928975 x4 − 1866583304631045 x2 ) J1 (x) + 1866583304634048 Φ(x) Z P13 (x) · I0 (x) dx = (−15600900 x12 − 1831545660 x10 − 146562451560 x8 − 7034981046840 x6 − −168839548187220 x4 − 1350716385317580 x2 ) I0 (x) + (1300075 x13 + 183154566 x11 + 18320306445 x9 + +1172496841140 x7 + 42209887046805 x5 + 675358192658790 x3 + 2701432770638163 x) I1 (x) Z 1024 P13 (x) · I1 (x) dx = (1300075 x13 + 181854491 x11 + 18008444454 x9 + 1134529229262 x7 + +39708523789935 x5 + 595627856758935 x3 ) I0 (x) + (−16900975 x12 − 2000399401 x10 − 162076000086 x8 − −7941704604834 x6 − 198542618949675 x4 − 1786883570276805 x2 ) I1 (x) − 1786883570279808 Ψ(x) n = 14 Z Z 2048 P14 (x) · J0 (x) dx = (5014575 x14 − 16900975 x12 + 22309287 x10 − 14549535 x8 + 4849845 x6 − −765765 x4 + 45045 x2 − 429) J0 (x) dx = (65189475 x13 − 9508005650 x11 + 941493342933 x9 − −59314182451524 x7 + 2075996410052565 x5 − 31139946153085770 x3 − 429 x) J0 (x)+ +(5014575 x14 − 864364150 x12 + 104610371437 x10 − 8473454635932 x8 + 415199282010513 x6 − 172

−10379982051028590 x4 + 93419838459302355 x2 ) J1 (x) − 93419838459302784 Φ(x) Z 2048

P14 (x) · J1 (x) dx = (−5014575 x14 + 859349575 x12 − 103144258287 x10 + 8251555212495 x8 − −396074655049605 x6 + 9505791721956285 x4 − 76046333775695325 x2 + 429) J0 (x)+

+(70204050 x13 − 10312194900 x11 + 1031442582870 x9 − 66012441699960 x7 + 2376447930297630 x5 − −38023166887825140 x3 + 152092667551390650 x) J1 (x) Z

P14 (x) · I0 (x) dx = (−65189475 x13 − 9136184200 x11 − 904683019383 x9 − 56994928374384 x7 −

2048

−1994822517352665 x5 − 29922337757992680 x3 − 429 x) I0 (x) + (5014575 x14 + 830562200 x12 + +100520335487 x10 + 8142132624912 x8 + 398964503470533 x6 + 9974112585997560 x4 + +89767013274023085 x2 ) I1 (x) + 89767013274022656 Ψ(x) Z 2048

P14 (x) · I1 (x) dx = (5014575 x14 + 825547625 x12 + 99088024287 x10 + 7927027393425 x8 +

+380497319734245 x6 + 9131935672856115 x4 + 73055485382893965 x2 − 429) I0 (x)+ +(−70204050 x13 − −9906571500 x11 − 990880242870 x9 − 63416219147400 x7 − 2282983918405470 x5 − −36527742691424460 x3 − 146110970765787930 x) I1 (x) n = 15 Z Z 2048 P15 (x) · J0 (x) dx = (9694845 x15 − 35102025 x13 + 50702925 x11 − 37182145 x9 + +14549535 x7 − −2909907 x5 + 255255 x3 − 6435 x) J0 (x) dx = (135727830 x14 − 23223499740 x12 + 2787326998050 x10 − −222986457301160 x8 +10703350037752890 x6 −256880400917708988 x4 +2055043207342182414 x2 ) J0 (x)+ +(9694845 x15 − 1935291645 x13 + 278732699805 x11 − 27873307162645 x9 + 1783891672958815 x7 − −64220100229427247 x5 + 1027521603671091207 x3 − 4110086414684371263 x) J1 (x) Z

P15 (x) · J1 (x) dx = (−9694845 x15 + 1925596800 x13 − 275411045325 x11 + 27265730669320 x9 −

2048

−1717741046716695 x7 + 60120936637994232 x5 − 901814049570168735 x3 ) J0 (x) + (145422675 x14 − −25032758400 x12 + 3029521498575 x10 − 245391576023880 x8 + 12024187327016865 x6 − −300604683189971160 x4 + 2705442148710506205 x2 ) J1 (x) − 2705442148710512640 Φ(x) Z

P15 (x) · I0 (x) dx = (−135727830 x14 − 22381051140 x12 − 2686233166050 x10 − 214898355826840 x8 − −10315121166985530 x6 − 247562907996013092 x4 − 1980503263968615246 x2 ) I0 (x)+ +(9694845 x15 + 1865087595 x13 + 268623316605 x11 + 26862294478355 x9 + 1719186861164255 x7 + −61890726999003273 x5 + 990251631984307623 x3 + 3961006527937224057 x) I1 (x) Z

2048

P15 (x) · I1 (x) dx = (9694845 x15 + 1855392750 x13 + 265371866175 x11 + 26271777569180 x9 + +1655122001407875 x7 + 57929270046365718 x5 + 868939050695741025 x3 ) I0 (x)+

+(−145422675 x14 −24120105750 x12 −2919090527925 x10 −236445998122620 x8 −11585854009855125 x6 − −289646350231828590 x4 − 2606817152087223075 x2 ) I1 (x) − 2606817152087216640 Ψ(x)

173

b) Chebyshev Polynomials of the first kind Tn (x) : Weight function: w(x) = (1 − x2 )−1/2 , interval −1 ≤ x ≤ 1. R R R R Holds T0 (x) Zν (x) dx = Zν (x) dx and T1 (x) Zν (x) dx = x Zν (x) dx . n=2 Z

Z T2 (x) · J0 (x) dx = Z

(2 x2 − 1) J0 (x) dx = −xJ0 (x) + 2x2 J1 (x) − 3 Φ(x)

T2 (x) · J1 (x) dx = (−2 x2 + 1) J0 (x) + 4x J1 (x)

Z

T2 (x) · I0 (x) dx = −x I0 (x) + 2x2 I1 (x) + Ψ(x) Z

T2 (x) · I1 (x) dx = (2x2 − 1) I0 (x) − 4 I1 (x)

n=3 Z

Z T3 (x) · J0 (x) dx = Z

(4 x3 − 3 x) J0 (x) dx = 8 x2 J0 (x) + (4 x3 − 19 x) J1 (x)

T3 (x) · J1 (x) dx = −4x3 J0 (x) + 12x2 J1 (x) − 15 Φ(x) Z Z

T3 (x) · I0 (x) dx = −8 x2 I0 (x) + (4 x3 + 13 x) I1 (x) T3 (x) · I1 (x) dx = 4x3 I0 (x) − 12x2 I1 (x) − 9 Ψ(x)

n=4 Z Z T4 (x) · J0 (x) dx = (8 x4 − 8 x2 + 1) J0 (x) dx = (24 x3 + x) J0 (x) + (8 x4 − 80 x2 ) J1 (x) + 81 Φ(x) Z Z Z

T4 (x) · J1 (x) dx = (−8 x4 + 72 x2 − 1) J0 (x) + (32 x3 − 144 x) J1 (x) T4 (x) · I0 (x) dx = (−24x3 + x) I0 (x) + (8 x4 + 64 x2 ) I1 (x) + 65 Ψ(x) T4 (x) · I1 (x) dx = (8 x4 + 56 x2 + 1) I0 (x) + (−32 x3 − 112 x) I1 (x)

n=5 Z

Z T5 (x) · J0 (x) dx =

(16 x5 − 20 x3 + 5 x) J0 (x) dx =

= (64 x4 − 552 x2 ) J0 (x) + (16 x5 − 276 x3 + 1109 x) J1 (x) Z

T5 (x) · J1 (x) dx = (−16 x5 + 260 x3 ) J0 (x) + (80 x4 − 780 x2 ) J1 (x) + 785 Φ(x) Z

Z

T5 (x) · I0 (x) dx = (−64 x4 − 472 x2 ) I0 (x) + (16 x5 + 236 x3 + 949 x) I1 (x)

T5 (x) · I1 (x) dx = (16 x5 + 220 x3 ) I0 (x) + (−80 x4 − 660 x2 ) I1 (x) − 665 Ψ(x)

n=6 Z

Z T6 (x) · J0 (x) dx =

(32 x6 − 48 x4 + 18 x2 − 1) J0 (x) dx =

= (160 x5 − 2544 x3 − x) J0 (x) + (32 x6 − 848 x4 + 7650 x2 ) J1 (x) − 7651 Φ(x) Z Z

T6 (x) · J1 (x) dx = (−32 x6 + 816 x4 − 6546 x2 + 1) J0 (x) + (192 x5 − 3264 x3 + 13092 x) J1 (x) T6 (x) · I0 (x) dx = (−160 x5 − 2256 x3 − x) I0 (x) + (32 x6 + 752 x4 + 6786 x2 ) I1 (x) + 6785 Ψ(x) 174

Z

T6 (x) · I1 (x) dx = (32 x6 + 720 x4 + 5778 x2 − 1) I0 (x) + (−192 x5 − 2880 x3 − 11556 x) I1 (x)

n=7 Z

Z T7 (x) · J0 (x) dx =

(64 x7 − 112 x5 + 56 x3 − 7 x) J0 (x) dx =

= (384 x6 − 9664 x4 + 77424 x2 ) J0 (x) + (64 x7 − 2416 x5 + 38712 x3 − 154855 x) J1 (x) Z

T7 (x)·J1 (x) dx = (−64 x7 +2352 x5 −35336 x3 ) J0 (x)+(448 x6 −11760 x4 +106008 x2 ) J1 (x)−106015 Φ(x) Z T7 (x) · I0 (x) dx = = (−384 x6 − 8768 x4 − 70256 x2 ) I0 (x) + (64 x7 + 2192 x5 + 35128 x3 + 140505 x) I1 (x)

Z

T7 (x) · I1 (x) dx = (64 x7 + 2128 x5 + 31976 x3 ) I0 (x) + (−448 x6 − 10640 x4 − 95928 x2 ) I1 (x) − 95921 Ψ(x)

n=8 Z

Z T8 (x) · J0 (x) dx =

(128 x8 − 256 x6 + 160 x4 − 32 x2 + 1) J0 (x) dx =

= (896 x7 −32640 x5 +490080 x3 +x)J0 (x)+(128 x8 −6528 x6 +163360 x4 −1470272 x2 )J1 (x)+1470273 Φ(x) Z T8 (x) · J1 (x) dx = (−128 x8 + 6400 x6 − 153760 x4 + 1230112 x2 − 1) J0 (x)+ +(1024 x7 − 38400 x5 + 615040 x3 − 2460224 x) J1 (x) Z

T8 (x) · I0 (x) dx = (−896 x7 − 30080 x5 − 451680 x3 + x) I0 (x)+

+(128 x8 + 6016 x6 + 150560 x4 + 1355008 x2 ) I1 (x) + 1355009 Ψ(x) Z

T8 (x) · I1 (x) dx = (128 x8 + 5888 x6 + 141472 x4 + 1131744 x2 + 1) I0 (x)+ +(−1024 x7 − 35328 x5 − 565888 x3 − 2263488 x) I1 (x)

n=9 Z

Z T9 (x) · J0 (x) dx =

(256 x9 − 576 x7 + 432 x5 − 120 x3 + 9 x) J0 (x) dx =

= (2048 x8 − 101760 x6 + 2443968 x4 − 19551984 x2 ) J0 (x)+ +(256 x9 − 16960 x7 + 610992 x5 − 9775992 x3 + 39103977) J1 (x) Z

T9 (x) · J1 (x) dx = (−256 x9 + 16704 x7 − 585072 x5 + 8776200 x3 ) J0 (x)+

+(2304 x8 − 116928 x6 + 2925360 x4 − 26328600 x2 ) J1 (x) + 26328609 Φ(x) Z

T9 (x) · I0 (x) dx = (−2048 x8 − 94848 x6 − 2278080 x4 − 18224400 x2 ) I0 (x)+ +(256 x9 + 15808 x7 + 569520 x5 + 9112200 x3 + 36448809 x) I1 (x) Z

T9 (x) · I1 (x) dx = (256 x9 + 15552 x7 + 544752 x5 + 8171160 x3 ) I0 (x)+

+(−2304 x8 − 108864 x6 − 2723760 x4 − 24513480 x2 ) I1 (x) − 24513489 Ψ(x) n = 10 Z

Z T10 (x) · J0 (x) dx =

(512 x10 − 1280 x8 + 1120 x6 − 400 x4 + 50 x2 − 1) J0 (x) dx =

= (4608 x9 − 299264 x7 + 10479840 x5 − 157198800 x3 − x) J0 (x)+ +(512 x10 − 42752 x8 + 2095968 x6 − 52399600 x4 + 471596450 x2 ) J1 (x) − 471596451 Φ(x) 175

Z

T10 (x) · J1 (x) dx = (−512 x10 + 42240 x8 − 2028640 x6 + 48687760 x4 − 389502130 x2 + 1) J0 (x)+ +(5120 x9 − 337920 x7 + 12171840 x5 − 194751040 x3 + 779004260 x) J1 (x) Z

T10 (x) · I0 (x) dx = (−4608 x9 − 281344 x7 − 9852640 x5 − 147788400 x3 − x) I0 (x)+

+(512 x10 + 40192 x8 + 1970528 x6 + 49262800 x4 + 443365250 x2 ) I1 (x) + 443365249 Ψ(x) Z

T10 (x) · I1 (x) dx = (512 x10 + 39680 x8 + 1905760 x6 + 45737840 x4 + 365902770 x2 − 1) I0 (x)+ +(−5120 x9 − 317440 x7 − 11434560 x5 − 182951360 x3 − 731805540 x) I1 (x)

n = 11 Z

Z T11 (x) · J0 (x) dx =

(1024 x11 − 2816 x9 + 2816 x7 − 1232 x5 + 220 x3 − 11 x) J0 (x) dx =

= (10240 x10 − 841728 x8 + 40419840 x6 − 970081088 x4 + 7760649144 x2 ) J0 (x)+ +(1024 x11 − 105216 x9 + 6736640 x7 − 242520272 x5 + 3880324572 x3 − 15521298299 x) J1 (x) Z

T11 (x) · J1 (x) dx = (−1024 x11 + 104192 x9 − 6566912 x7 + 229843152 x5 − 3447647500 x3 ) J0 (x)+

+(11264 x10 − 937728 x8 + 45968384 x6 − 1149215760 x4 + 10342942500 x2 ) J1 (x) − 10342942511 Φ(x) Z T11 (x) · I0 (x) dx = (−10240 x10 − 796672 x8 − 38257152 x6 − 918166720 x4 − 7345334200 x2 ) I0 (x)+ +(1024 x11 + 99584 x9 + 6376192 x7 + 229541680 x5 + 3672667100 x3 + 14690668389 x) I1 (x) Z

T11 (x) · I1 (x) dx = (1024 x11 + 98560 x9 + 6212096 x7 + 217422128 x5 + 3261332140 x3 ) I0 (x)+

+(−11264 x10 − 887040 x8 − 43484672 x6 − 1087110640 x4 − 9783996420 x2 ) I1 (x) − 9783996409 Ψ(x) n = 12 Z Z T12 (x) · J0 (x) dx = (2048 x12 − 6144 x10 + 6912 x8 − 3584 x6 + 840 x4 − 72 x2 + 1) J0 (x) dx = = (22528 x11 − 2285568 x9 + 144039168 x7 − 5041388800 x5 + 75620834520 x3 + x) J0 (x)+ +(2048 x12 − 253952 x10 + 20577024 x8 − 1008277760 x6 + 25206944840 x4 − 226862503632 x2 ) J1 (x)+ +226862503633 Φ(x) Z

T12 (x) · J1 (x) dx = (−2048 x12 + 251904 x10 − 20159232 x8 + 967646720 x6 − 23223522120 x4 + +185788177032 x2 − 1) J0 (x) + (24576 x11 − 2519040 x9 + 161273856 x7 − 5805880320 x5 + +92894088480 x3 − 371576354064 x) J1 (x)

Z

T12 (x)·I0 (x) dx = (−22528 x11 −2174976 x9 −137071872 x7 −4797497600 x5 −71962466520 x3 +x) I0 (x)+ +(2048 x12 + 241664 x10 + 19581696 x8 + 959499520 x6 + 23987488840 x4 + 215887399488 x2 ) I1 (x)+ +215887399489 Ψ(x) Z T12 (x) · I1 (x) dx =

= (2048 x12 + 239616 x10 + 19176192 x8 + 920453632 x6 + 22090888008 x4 + 176727103992 x2 + 1) I0 (x)+ +(−24576 x11 − 2396160 x9 − 153409536 x7 − 5522721792 x5 − 88363552032 x3 − 353454207984 x) I1 (x)

176

n = 13 Z T13 (x) · J0 (x) dx = Z =

(4096 x13 − 13312 x11 + 16640 x9 − 9984 x7 + 2912 x5 − 364 x3 + 13 x) J0 (x) dx =

= (49152 x12 −6031360 x10 +482641920 x8 −23166872064 x6 +556004941184 x4 −4448039530200 x2 ) J0 (x)+ +(4096 x13 − 603136 x11 + 60330240 x9 − 3861145344 x7 + 139001235296 x5 − 2224019765100 x3 + +8896079060413 x) J1 (x) Z

T13 (x) · J1 (x) dx = (−4096 x13 + 599040 x11 − 59321600 x9 + 3737270784 x7 − 130804480352 x5 +

+1962067205644 x3 ) J0 (x)+(53248 x12 −6589440 x10 +533894400 x8 −26160895488 x6 +654022401760 x4 − −5886201616932 x2 ) J1 (x) + 5886201616945 Φ(x) Z

T13 (x) · I0 (x) dx = (−49152 x12 − 5765120 x10 − 461342720 x8 − 22144390656 x6 −

−531465387392 x4 − 4251723098408 x2 ) I0 (x) + (4096 x13 + 576512 x11 + 57667840 x9 + +3690731776 x7 + 132866346848 x5 + 2125861549204 x3 + 8503446196829 x) I1 (x) Z

T13 (x) · I1 (x) dx = (4096 x13 + 572416 x11 + 56685824 x9 + 3571196928 x7 + 124991895392 x5 + +1874878430516 x3 ) I0 (x) + (−53248 x12 − 6296576 x10 − 510172416 x8 − 24998378496 x6 − −624959476960 x4 − 5624635291548 x2 ) I1 (x) − 5624635291561 Ψ(x)

n = 14 Z Z T14 (x)·J0 (x) dx = (8192 x14 −28672 x12 +39424 x10 −26880 x8 +9408 x6 −1568 x4 +98 x2 −1) J0 (x) dx = = (106496 x13 − 15544320 x11 + 1539242496 x9 − 96972465408 x7 + 3394036336320 x5 − 50910545049504 x3 − −x) J0 (x)+(8192 x14 −1413120 x12 +171026944 x10 −13853209344 x8 +678807267264 x6 −16970181683168 x4 + +152731635148610 x2 ) J1 (x) − 152731635148611 Φ(x) Z

T14 (x) · J1 (x) dx = (−8192 x14 + 1404928 x12 − 168630784 x10 + 13490489600 x8 − 647543510208 x6 +

+15541044246560 x4 − 124328353972578 x2 + 1) J0 (x) + (114688 x13 − 16859136 x11 + 1686307840 x9 − −107923916800 x7 + 3885261061248 x5 − 62164176986240 x3 + 248656707945156 x) J1 (x) Z

T14 (x) · I0 (x) dx = (−106496 x13 − 14913536 x11 − 1476794880 x9 − 93037889280 x7 − 3256326171840 x5 −

−48844892572896 x3 −x) I0 (x)+(8192 x14 +1355776 x12 +164088320 x10 +13291127040 x8 +651265234368 x6 + +16281630857632 x4 + 146534677718786 x2 ) I1 (x) + 146534677718785 Ψ(x) Z

T14 (x) · I1 (x) dx = (8192 x14 + 1347584 x12 + 161749504 x10 + 12939933440 x8 + 621116814528 x6 +

+14906803547104 x4 + 119254428376930 x2 − 1) I0 (x) + (−114688 x13 − 16171008 x11 − 1617495040 x9 − −103519467520 x7 − 3726700887168 x5 − 59627214188416 x3 − 238508856753860 x) I1 (x) n = 15 Z T15 (x) · J0 (x) dx = Z =

(16384 x15 − 61440 x13 + 92160 x11 − 70400 x9 + 28800 x7 − 6048 x5 + 560 x3 − 15 x) J0 (x) dx = = (229376 x14 − 39272448 x12 + 4713615360 x10 − 377089792000 x8 + 18100310188800 x6 − 177

−434407444555392 x4 + 3475259556444256 x2 ) J0 (x) + (16384 x15 − 3272704 x13 + 471361536 x11 − −47136224000 x9 +3016718364800 x7 −108601861138848 x5 +1737629778222128 x3 −6950519112888527 x) J1 (x) Z T15 (x) · J1 (x) dx = (−16384 x15 + 3256320 x13 − 465745920 x11 + 46108916480 x9 − 2904861767040 x7 + +101670161852448 x5 − 1525052427787280 x3 ) J0 (x) + (245760 x14 − 42332160 x12 + 5123205120 x10 − −414980248320 x8 + 20334032369280 x6 − 508350809262240 x4 + 4575157283361840 x2 ) J1 (x)− −4575157283361855 Φ(x) Z

T15 (x) · I0 (x) dx = (−229376 x14 − 37797888 x12 − 4536668160 x10 − 362932889600 x8 − −17420778873600 x6 − 418098692942208 x4 − 3344789543538784 x2 ) I0 (x)+ +(16384 x15 + 3149824 x13 + 453666816 x11 + 45366611200 x9 + 2903463145600 x7 + +104524673235552 x5 + 1672394771769392 x3 + 6689579087077553 x) I1 (x)

Z

T15 (x) · I1 (x) dx = (16384 x15 + 3133440 x13 + 448174080 x11 + 44369163520 x9 + 2795257330560 x7 +

+97834006563552 x5 + 1467510098453840 x3 ) I0 (x) + (−245760 x14 − 40734720 x12 − 4929914880 x10 − −399322471680 x8 − 19566801313920 x6 − 489170032817760 x4 − 4402530295361520 x2 ) I1 (x)− −4402530295361505 Ψ(x)

178

c) Chebyshev Polynomials of the second kind Un (x) : Weight function: w(x) = (1 − x2 )1/2 , interval −1 ≤ x ≤ 1. R R R R Holds U0 (x) Zν (x) dx = Zν (x) dx and U1 (x) Zν (x) dx = 2x Zν (x) dx . n=2 Z

Z U2 (x) · J0 (x) dx = Z Z

(4x2 − 1) J0 (x) dx = −x J0 (x) + 4x2 J1 (x) − 5 Φ(x)

U2 (x) · J1 (x) dx = (−4x2 + 1) J0 (x) + 8x J1 (x) U2 (x) · I0 (x) dx = −x I0 (x) + 4x2 I1 (x) + 3 Ψ(x) Z

U2 (x) · I1 (x) dx = (4x2 − 1) I0 (x) − 8x I1 (x)

n=3 Z

Z U3 (x) · J0 (x) dx = Z

(8 x3 − 4 x) J0 (x) dx = 16x2 J0 (x) + (8x3 − 36x) J1 (x)

U3 (x) · J1 (x) dx = −8x3 J0 (x) + 24x2 J1 (x) − 28 Φ(x) Z

Z

U3 (x) · I0 (x) dx = −16x2 I0 (x) + (8x3 + 28x) I1 (x) U3 (x) · I1 (x) dx = 8x3 I0 (x) − 24x2 I1 (x) − 20 Ψ(x)

n=4 Z Z U4 (x) · J0 (x) dx = (16 x4 − 12 x2 + 1) J0 (x) dx = (48 x3 + x) J0 (x) + (16 x4 − 156 x2 ) J1 (x) + 157 Φ(x) Z Z

U4 (x) · J1 (x) dx = (−16 x4 + 140 x2 − 1) J0 (x) + (64 x3 − 280 x) J1 (x)

U4 (x) · I0 (x) dx = (−48 x3 + x) I0 (x) + (16 x4 + 132 x2 ) I1 (x) + 133 Ψ(x) Z

U4 (x) · I1 (x) dx = (16 x4 + 116 x2 + 1) I0 (x) + (−64 x3 − 232 x) I1 (x)

n=5 Z Z U5 (x)·J0 (x) dx = (32 x5 −32 x3 +6 x) J0 (x) dx = (128 x4 −1088 x2 ) J0 (x)+(32 x5 −544 x3 +2182 x) J1 (x) Z

U5 (x) · J1 (x) dx = (−32 x5 + 512 x3 ) J0 (x) + (160 x4 − 1536 x2 ) J1 (x) + 1542 Φ(x) Z

Z

U5 (x) · I0 (x) dx = (−128 x4 − 960 x2 ) I0 (x) + (32 x5 + 480 x3 + 1926 x) I1 (x)

U5 (x) · I1 (x) dx = (32 x5 + 448 x3 ) I0 (x) + (−160 x4 − 1344 x2 ) I1 (x) − 1350 Ψ(x)

n=6 Z

Z U6 (x) · J0 (x) dx =

(64 x6 − 80 x4 + 24 x2 − 1) J0 (x) dx =

= (320 x5 − 5040 x3 − x) J0 (x) + (64 x6 − 1680 x4 + 15144 x2 ) J1 (x) − 15145 Φ(x) Z Z

U6 (x) · J1 (x) dx = (−64 x6 + 1616 x4 − 12952 x2 + 1) J0 (x) + (384 x5 − 6464 x3 + 25904 x) J1 (x)

U6 (x) · I0 (x) dx = (−320 x5 − 4560 x3 − x) I0 (x) + (64 x6 + 1520 x4 + 13704 x2 ) I1 (x) + 13703 Ψ(x) 179

Z

U6 (x) · I1 (x) dx = (64 x6 + 1456 x4 + 11672 x2 − 1) I0 (x) + (−384 x5 − 5824 x3 − 23344 x) I1 (x)

n=7 Z

Z U7 (x) · J0 (x) dx =

(128 x7 − 192 x5 + 80 x3 − 8 x) J0 (x) dx =

= (768 x6 − 19200 x4 + 153760 x2 ) J0 (x) + (128 x7 − 4800 x5 + 76880 x3 − 307528 x) J1 (x) Z Z Z

U7 (x)·J1 (x) dx = (−128 x7 +4672 x5 −70160 x3 ) J0 (x)+(896 x6 −23360 x4 +210480 x2 ) J1 (x)−210488 Φ(x) U7 (x) · I0 (x) dx = (−768 x6 − 17664 x4 − 141472 x2 ) I0 (x) + (128 x7 + 4416 x5 + 70736 x3 + 282936 x) I1 (x) U7 (x)·I1 (x) dx = (128 x7 +4288 x5 +64400 x3 ) I0 (x)+(−896 x6 −21440 x4 −193200 x2 ) I1 (x)−193192 Ψ(x)

n=8 Z

Z U8 (x) · J0 (x) dx =

(256 x8 − 448 x6 + 240 x4 − 40 x2 + 1) J0 (x) dx =

= (1792 x7 −64960 x5 +975120 x3 +x) J0 (x)+(256 x8 −12992 x6 +325040 x4 −2925400 x2 ) J1 (x)+2925401 Φ(x) Z U8 (x) · J1 (x) dx = (−256 x8 + 12736 x6 − 305904 x4 + 2447272 x2 − 1) J0 (x)+ +(2048 x7 − 76416 x5 + 1223616 x3 − 4894544 x) J1 (x) Z

U8 (x) · I0 (x) dx = (−1792 x7 − 60480 x5 − 907920 x3 + x) I0 (x)+

+(256 x8 + 12096 x6 + 302640 x4 + 2723720 x2 ) I1 (x) + 2723721 Ψ(x) Z

U8 (x) · I1 (x) dx = (256 x8 + 11840 x6 + 284400 x4 + 2275160 x2 + 1) I0 (x)+ +(−2048 x7 − 71040 x5 − 1137600 x3 − 4550320 x) I1 (x)

n=9 Z

Z U9 (x) · J0 (x) dx =

(512 x9 − 1024 x7 + 672 x5 − 160 x3 + 10 x) J0 (x) dx =

= (4096 x8 − 202752 x6 + 4868736 x4 − 38950208 x2 ) J0 (x)+ +(512 x9 − 33792 x7 + 1217184 x5 − 19475104 x3 + 77900426 x) J1 (x) Z

U9 (x) · J1 (x) dx = (−512 x9 + 33280 x7 − 1165472 x5 + 17482240 x3 ) J0 (x)+ +(4608 x8 − 232960 x6 + 5827360 x4 − 52446720 x2 ) J1 (x) + 52446730Φ(x)

Z

U9 (x) · I0 (x) dx = (−4096 x8 − 190464 x6 − 4573824 x4 − 36590272 x2 ) I0 (x)+ +(512 x9 + 31744 x7 + 1143456 x5 + 18295136 x3 + 73180554 x) I1 (x) Z

U9 (x) · I1 (x) dx = (512 x9 + 31232 x7 + 1093792 x5 + 16406720 x3 ) I0 (x)+

+(−4608 x8 − 218624 x6 − 5468960 x4 − 49220160 x2 ) I1 (x) − 49220170 Ψ(x) n = 10 Z

Z U10 (x) · J0 (x) dx =

(1024 x10 − 2304 x8 + 1792 x6 − 560 x4 + 60 x2 − 1) J0 (x) dx =

= (9216 x9 − 596736 x7 + 20894720 x5 − 313422480 x3 − x) J0 (x)+ +(1024 x10 − 85248 x8 + 4178944 x6 − 104474160 x4 + 940267500 x2 ) J1 (x) − 940267501 Φ(x) Z

U10 (x) · J1 (x) dx = (−1024 x10 + 84224 x8 − 4044544 x6 + 97069616 x4 − 776556988 x2 + 1) J0 (x)+ 180

+(10240 x9 − 673792 x7 + 24267264 x5 − 388278464 x3 + 1553113976 x) J1 (x) Z

U10 (x) · I0 (x) dx = (−9216 x9 − 564480 x7 − 19765760 x5 − 296484720 x3 − x) I0 (x)+

+(1024 x10 + 80640 x8 + 3953152 x6 + 98828240 x4 + 889454220 x2 ) I1 (x) + 889454219 Ψ(x) Z

U10 (x) · I1 (x) dx = (1024 x10 + 79616 x8 + 3823360 x6 + 91760080 x4 + 734080700 x2 − 1) I0 (x)+ +(−10240 x9 − 636928 x7 − 22940160 x5 − 367040320 x3 − 1468161400 x) I1 (x)

181

d) Laguerre Polynomials Ln (x) : Weight function: w(x) = e−x , interval 0 ≤ x < ∞ R R Holds L0 (x) Zν (x) dx = Zν (x) dx . n=1 Z

Z L1 (x) · J0 (x) dx =

(−x + 1) J0 (x) dx = x J0 (x) − x J1 (x) + Φ(x)

Z L1 (x) · J1 (x) dx = −J0 (x) − Φ(x) Z L1 (x) · I0 (x) dx = x I0 (x) − x I1 (x) + Ψ(x) Z L1 (x) · I1 (x) dx = I0 (x) + Ψ(x) n=2 Z

Z L2 (x) · J0 (x) dx = Z Z Z

(x2 − 4 x + 2) J0 (x) dx = 2x J0 (x) + (x2 − 4x) J1 (x) + Φ(x)

L2 (x) · J1 (x) dx = (−x2 − 2) J0 (x) + 2x J1 (x) − 4 Φ(x) L2 (x) · I0 (x) dx = 2x I0 (x) + (x2 − 4x) I1 (x) + 3 Ψ(x) L2 (x) · I1 (x) dx = (x2 + 2) I0 (x) − 2x I1 (x) + 4 Ψ(x)

n=3 Z Z L3 (x)·J0 (x) dx = (−x3 +9 x2 −18 x+6) J0 (x) dx = (−2 x2 +6 x) J0 (x)+(−x3 +9 x2 −14 x) J1 (x)−3 Φ(x) Z Z Z

L3 (x) · J1 (x) dx = (x3 − 9 x2 − 6) J0 (x) + (−3 x2 + 18 x) J1 (x) − 15 Φ(x) L3 (x) · I0 (x) dx = (2 x2 + 6 x) I0 (x) + (−x3 + 9 x2 − 22 x) I1 (x) + 15 Ψ(x) L3 (x) · I1 (x) dx = (−x3 + 9 x2 + 6) I0 (x) + (3 x2 − 18 x) I1 (x) + 21 Ψ(x)

n=4 Z

Z L4 (x) · J0 (x) dx =

(x4 − 16 x3 + 72 x2 − 96 x + 24) J0 (x) dx =

= (3 x3 − 32 x2 + 24 x) J0 (x) + (x4 − 16 x3 + 63 x2 − 32 x) J1 (x) − 39 Φ(x) Z Z Z

L4 (x) · J1 (x) dx = (−x4 + 16 x3 − 64 x2 − 24) J0 (x) + (4 x3 − 48 x2 + 128 x) J1 (x) − 48 Φ(x) L4 (x) · I0 (x) dx = (−3 x3 + 32 x2 + 24 x) I0 (x) + (x4 − 16 x3 + 81 x2 − 160 x) I1 (x) + 105 Ψ(x) L4 (x) · I1 (x) dx = (x4 − 16 x3 + 80 x2 + 24) I0 (x) + (−4 x3 + 48 x2 − 160 x) I1 (x) + 144 Ψ(x)

n=5 Z

Z L5 (x) · J0 (x) dx =

(−x5 + 25 x4 − 200 x3 + 600 x2 − 600 x + 120) J0 (x) dx =

= (−4 x4 + 75 x3 − 368 x2 + 120 x) J0 (x) + (−x5 + 25 x4 − 184 x3 + 375 x2 + 136 x) J1 (x) − 255 Φ(x) Z Z

L5 (x)·J1 (x) dx = (x5 −25 x4 +185 x3 −400 x2 −120) J0 (x)+(−5 x4 +100 x3 −555 x2 +800 x) J1 (x)−45 Φ(x) L5 (x)·I0 (x) dx = (4 x4 −75 x3 +432 x2 +120 x) I0 (x)+(−x5 +25 x4 −216 x3 +825 x2 −1464 x) I1 (x)+945 Ψ(x) 182

Z

L5 (x)·I1 (x) dx = (−x5 +25 x4 −215 x3 +800 x2 +120) I0 (x)+(5 x4 −100 x3 +645 x2 −1600 x) I1 (x)+1245 Ψ(x)

n=6 Z

Z L6 (x) · J0 (x) dx =

(x6 − 36 x5 + 450 x4 − 2400 x3 + 5400 x2 − 4320 x + 720) J0 (x) dx =

= (5 x5 − 144 x4 + 1275 x3 − 3648 x2 + 720 x) J0 (x)+ +(x6 − 36 x5 + 425 x4 − 1824 x3 + 1575 x2 + 2976 x) J1 (x) − 855 Φ(x) Z

L6 (x) · J1 (x) dx = (−x6 + 36 x5 − 426 x4 + 1860 x3 − 1992 x2 − 720) J0 (x)+ +(6 x5 − 180 x4 + 1704 x3 − 5580 x2 + 3984 x) J1 (x) + 1260 Φ(x) Z

L6 (x) · I0 (x) dx = (−5 x5 + 144 x4 − 1425 x3 + 5952 x2 + 720 x) I0 (x)+

+(x6 − 36 x5 + 475 x4 − 2976 x3 + 9675 x2 − 16224 x) I1 (x) + 10395 Ψ(x) Z

L6 (x) · I1 (x) dx = (x6 − 36 x5 + 474 x4 − 2940 x3 + 9192 x2 + 720) I0 (x)+ +(−6 x5 + 180 x4 − 1896 x3 + 8820 x2 − 18384 x) I1 (x) + 13140 Ψ(x)

n=7 Z Z L7 (x) · J0 (x) dx = (−x7 + 49 x6 − 882 x5 + 7350 x4 − 29400 x3 + 52920 x2 − 35280 x + 5040) J0 (x) dx = = (−6 x6 + 245 x5 − 3384 x4 + 18375 x3 − 31728 x2 + 5040 x) J0 (x)+ +(−x7 + 49 x6 − 846 x5 + 6125 x4 − 15864 x3 − 2205 x2 + 28176 x) J1 (x) + 7245Φ(x) Z

L7 (x) · J1 (x) dx = (x7 − 49 x6 + 847 x5 − 6174 x4 + 16695 x3 − 3528 x2 − 5040) J0 (x)+ +(−7 x6 + 294 x5 − 4235 x4 + 24696 x3 − 50085 x2 + 7056 x) J1 (x) + 14805 Φ(x) Z

L7 (x) · I0 (x) dx = (6 x6 − 245 x5 + 3672 x4 − 25725 x3 + 88176 x2 + 5040 x) I0 (x)+

+(−x7 + 49 x6 − 918 x5 + 8575 x4 − 44088 x3 + 130095 x2 − 211632 x) I1 (x) + 135135 Ψ(x) Z L7 (x) · I1 (x) dx = (−x7 + 49 x6 − 917 x5 + 8526 x4 − 43155 x3 + 121128 x2 + 5040) I0 (x)+ +(7 x6 − 294 x5 + 4585 x4 − 34104 x3 + 129465 x2 − 242256 x) I1 (x) + 164745 Ψ(x) n=8 Z L8 (x) · J0 (x) dx = Z =

(x8 − 64 x7 + 1568 x6 − 18816 x5 + 117600 x4 − 376320 x3 + 564480 x2 − 322560 x + 40320) J0 (x) dx = = (7 x7 − 384 x6 + 7595 x5 − 66048 x4 + 238875 x3 − 224256 x2 + 40320 x) J0 (x)+

+(x8 − 64 x7 + 1519 x6 − 16512 x5 + 79625 x4 − 112128 x3 − 152145 x2 + 125952 x) J1 (x) + 192465 Φ(x) Z

L8 (x) · J1 (x) dx = (−x8 + 64 x7 − 1520 x6 + 16576 x5 − 81120 x4 + 127680 x3 + 84480 x2 − 40320) J0 (x)+ +(8 x7 − 448 x6 + 9120 x5 − 82880 x4 + 324480 x3 − 383040 x2 − 168960 x) J1 (x) + 60480 Φ(x) Z

L8 (x) · I0 (x) dx = (−7 x7 + 384 x6 − 8085 x5 + 84480 x4 − 474075 x3 + 1428480 x2 + 40320 x) I0 (x)+

+(x8 − 64 x7 + 1617 x6 − 21120 x5 + 158025 x4 − 714240 x3 + 1986705 x2 − 3179520 x) I1 (x) + 2027025 Ψ(x) 183

Z

L8 (x) · I1 (x) dx = (x8 − 64 x7 + 1616 x6 − 21056 x5 + 156384 x4 − 692160 x3 + 1815552 x2 + 40320) I0 (x)+ +(−8 x7 + 448 x6 − 9696 x5 + 105280 x4 − 625536 x3 + 2076480 x2 − 3631104 x) I1 (x) + 2399040 Ψ(x)

n=9 Z Z L9 (x) · J0 (x) dx = (−x9 + 81 x8 − 2592 x7 + 42336 x6 − 381024 x5 + 1905120 x4 − 5080320 x3 + +6531840 x2 − 3265920 x + 362880) J0 (x) dx = (−8 x8 + 567 x7 − 15168 x6 + 191835 x5 − 1160064 x4 + +2837835 x3 − 880128 x2 + 362880 x) J0 (x) + (−x9 + 81 x8 − 2528 x7 + 38367 x6 − 290016 x5 + +945945 x4 − 440064 x3 − 1981665 x2 − 1505664 x) J1 (x) + 2344545 Φ(x) Z L9 (x) · J1 (x) dx = = (x9 − 81 x8 + 2529 x7 − 38448 x6 + 292509 x5 − 982368 x4 + 692685 x3 + 1327104 x2 − 362880) J0 (x)+ +(−9 x8 + 648 x7 − 17703 x6 + 230688 x5 − 1462545 x4 + 3929472 x3 − 2078055 x2 − 2654208 x) J1 (x)− −1187865 Φ(x) Z L9 (x) · I0 (x) dx = = (8 x8 − 567 x7 + 15936 x6 − 231525 x5 + 1906560 x4 − 9188235 x3 + 25413120 x2 + 362880 x) I0 (x)+ +(−x9 +81 x8 −2656 x7 +46305 x6 −476640 x5 +3062745 x4 −12706560 x3 +34096545 x2 −54092160 x) I1 (x)+ +34459425 Ψ(x) Z

L9 (x) · I1 (x) dx = (−x9 + 81 x8 − 2655 x7 + 46224 x6 − 473949 x5 + 3014496 x4 − 12189555 x3 + +30647808 x2 + 362880) I0 (x)+

+(9 x8 −648 x7 +18585 x6 −277344 x5 +2369745 x4 −12057984 x3 +36568665 x2 −61295616 x) I1 (x)+39834585 Ψ(x) n = 10 Z Z L10 (x) · J0 (x) dx = (x10 − 100 x9 + 4050 x8 − 86400 x7 + 1058400 x6 − 7620480 x5 + 31752000 x4 − −72576000 x3 + 81648000 x2 − 36288000 x + 3628800) J0 (x) dx = (9 x9 − 800 x8 + 27783 x7 − 480000 x6 + +4319595 x5 −18961920 x4 +30462075 x3 +6543360 x2 +3628800 x) J0 (x)+(x10 −100 x9 +3969 x8 −80000 x7 + +863919 x6 − 4740480 x5 + 10154025 x4 + 3271680 x3 − 9738225 x2 − 49374720 x) J1 (x) + 13367025 Φ(x) Z L10 (x) · J1 (x) dx = (−x10 + 100 x9 − 3970 x8 + 80100 x7 − 867840 x6 + 4816980 x5 − 10923840 x4 + +321300 x3 +5742720 x2 −3628800) J0 (x)+(10 x9 −900 x8 +31760 x7 −560700 x6 +5207040 x5 −24084900 x4 + +43695360 x3 − 963900 x2 − 11485440 x) J1 (x) − 35324100 Φ(x) Z

L10 (x) · I0 (x) dx = (−9 x9 + 800 x8 − 28917 x7 + 556800 x6 − 6304095 x5 + 43845120 x4 − 189817425 x3 + +495912960 x2 + 3628800 x) I0 (x) + (x10 − 100 x9 + 4131 x8 − 92800 x7 + 1260819 x6 − 10961280 x5 + +63272475 x4 − 247956480 x3 + 651100275 x2 − 1028113920 x) I1 (x) + 654729075 Ψ(x) Z

L10 (x) · I1 (x) dx = (x10 − 100 x9 + 4130 x8 − 92700 x7 + 1256640 x6 − 10864980 x5 + 61911360 x4 −

−235550700 x3 + 576938880 x2 + 3628800) I0 (x) + (−10 x9 + 900 x8 − 33040 x7 + 648900 x6 − 7539840 x5 + +54324900 x4 − 247645440 x3 + 706652100 x2 − 1153877760 x) I1 (x) + 742940100 Ψ(x) 184

n = 11 Z Z L11 (x) · J0 (x) dx = (−x11 + 121 x10 − 6050 x9 + 163350 x8 − 2613600 x7 + 25613280 x6 − 153679680 x5 + +548856000 x4 − 1097712000 x3 + 1097712000 x2 − 439084800 x + 39916800) J0 (x) dx = = (−10 x10 + 1089 x9 − 47600 x8 + 1074843 x7 − 13396800 x6 + 90446895 x5 − 293195520 x4 + +289864575 x3 + 150140160 x2 + 39916800 x) J0 (x)+ +(−x11 + 121 x10 − 5950 x9 + 153549 x8 − 2232800 x7 + 18089379 x6 − 73298880 x5 + +96621525 x4 + 75070080 x3 + 228118275 x2 − 739365120 x) J1 (x) − 188201475 Φ(x) Z

L11 (x) · J1 (x) dx = (x11 − 121 x10 + 5951 x9 − 153670 x8 + 2238687 x7 − 18237120 x6 + 75325635 x5 −

−111165120 x4 −32172525 x3 −208391040 x2 −39916800) J0 (x)+(−11 x10 +1210 x9 −53559 x8 +1229360 x7 − −15670809 x6 +109422720 x5 −376628175 x4 +444660480 x3 +96517575 x2 +416782080 x) J1 (x)−535602375 Φ(x) Z L11 (x) · I0 (x) dx = (10 x10 − 1089 x9 + 49200 x8 − 1212057 x7 + 18043200 x6 − 170488395 x5 + +1047755520 x4 −4203893925 x3 +10577468160 x2 +39916800 x) I0 (x)+(−x11 +121 x10 −6150 x9 +173151 x8 − −3007200 x7 + 34097679 x6 − 261938880 x5 + 1401297975 x4 − 5288734080 x3 + 13709393775 x2 − −21594021120 x) I1 (x) + 13749310575 Ψ(x) Z

L11 (x) · I1 (x) dx = (−x11 + 121 x10 − 6149 x9 + 173030 x8 − 3000987 x7 + 33918720 x6 − −258714225 x5 + 1362905280 x4 − 4978425375 x3 + 12000954240 x2 + 39916800) I0 (x)+

+(11 x10 − 1210 x9 + 55341 x8 − 1384240 x7 + 21006909 x6 − 203512320 x5 + 1293571125 x4 − −5451621120 x3 + 14935276125 x2 − 24001908480 x) I1 (x) + 15374360925 Ψ(x) n = 12 Z Z L12 (x) · J0 (x) dx = (x12 − 144 x11 + 8712 x10 − 290400 x9 + 5880600 x8 − 75271680 x7 + 614718720 x6 − −3161410560 x5 +9879408000 x4 −17563392000 x3 +15807052800 x2 −5748019200 x+479001600) J0 (x) dx = = (11 x11 −1440 x10 +77319 x9 −2208000 x8 +36293103 x7 −345646080 x6 +1803334995 x5 −4350136320 x4 + +2588199075 x3 − 325693440 x2 + 479001600 x) J0 (x)+ +(x12 − 144 x11 + 8591 x10 − 276000 x9 + 5184729 x8 − 57607680 x7 + 360666999 x6 − 1087534080 x5 + +862733025 x4 − 162846720 x3 + 8042455575 x2 − 5096632320 x) J1 (x) − 7563453975 Φ(x) Z

L12 (x) · J1 (x) dx = (−x12 + 144 x11 − 8592 x10 + 276144 x9 − 5193240 x8 + 57874608 x7 − 365443200 x6 + +1135799280 x5 − 1108771200 x4 + 526402800 x3 − 6936883200 x2 − 479001600) J0 (x)+ 11

+(12 x −1584 x10 +85920 x9 −2485296 x8 +41545920 x7 −405122256 x6 +2192659200 x5 −5678996400 x4 + +4435084800 x3 − 1579208400 x2 + 13873766400 x) J1 (x) − 4168810800 Φ(x) Z

L12 (x) · I0 (x) dx = (−11 x11 + 1440 x10 − 79497 x9 + 2438400 x8 − 46172511 x7 + 568673280 x6 − −4689631485 x5 + 26293800960 x4 − 99982696275 x3 + 245477191680 x2 + 479001600 x) I0 (x)+

+(x12 − 144 x11 + 8833 x10 − 304800 x9 + 6596073 x8 − 94778880 x7 + 937926297 x6 − 6573450240 x5 + +33327565425 x4 − 122738595840 x3 + 315755141625 x2 − 496702402560 x) I1 (x) + 316234143225 Ψ(x) Z

L12 (x) · I1 (x) dx = (x12 − 144 x11 + 8832 x10 − 304656 x9 + 6587160 x8 − 94465008 x7 + 930902400 x6 − −6467685840 x5 + 32221065600 x4 − 114578679600 x3 + 273575577600 x2 + 479001600) I0 (x)+ +(−12 x11 + 1584 x10 − 88320 x9 + 2741904 x8 − 52697280 x7 + 661255056 x6 − 5585414400 x5 + +32338429200 x4 − 128884262400 x3 + 343736038800 x2 − 547151155200 x) I1 (x) + 349484058000 Ψ(x)

185

e) Hermite Polynomials Hn (x) : 2

Weight function: w(x) = e−x , interval −∞ < x < ∞. R R R R Holds H0 (x) Zν (x) dx = Zν (x) dx and H1 (x) Zν (x) dx = 2x Zν (x) dx . n=2 Z

Z H2 (x) · J0 (x) dx = Z Z

(4 x2 − 2) J0 (x) dx = −2x J0 (x) + 4x2 J1 (x) − 6 Φ(x)

H2 (x) · J1 (x) dx = (−4 x2 + 2) J0 (x) + 8x J1 (x) H2 (x) · I0 (x) dx = −2x I0 (x) + 4x2 I1 (x) + 2 Ψ(x) Z

H2 (x) · I1 (x) dx = (4x2 − 2) I0 (x) − 8x I1 (x)

n=3 Z

Z H3 (x) · J0 (x) dx = Z

(8 x3 − 12 x) J0 (x) dx = 16x2 J0 (x) + (8x3 − 44x) J1 (x)

H3 (x) · J1 (x) dx = −8x3 J0 (x) + 24x2 J1 (x) − 36 Φ(x) Z

Z

H3 (x) · I0 (x) dx = −16x2 I0 (x) + (8x3 + 20x) I1 (x) H3 (x) · I1 (x) dx = 8x3 I0 (x) − 24x2 I1 (x) − 12 Ψ(x)

n=4 Z Z H4 (x)·J0 (x) dx = (16 x4 −48 x2 +12) J0 (x) dx = (48 x3 +12 x) J0 (x)+(16 x4 −192 x2 ) J1 (x)+204 Φ(x) Z Z

H4 (x) · J1 (x) dx = (−16 x4 + 176 x2 − 12) J0 (x) + (64 x3 − 352 x) J1 (x)

H4 (x) · I0 (x) dx = (−48 x3 + 12 x) I0 (x) + (16 x4 + 96 x2 ) I1 (x) + 108 Ψ(x) Z

H4 (x) · I1 (x) dx = (16 x4 + 80 x2 + 12) I0 (x) + (−64 x3 − 160 x) I1 (x)

n=5 Z

Z H5 (x) · J0 (x) dx =

(32 x5 − 160 x3 + 120 x) J0 (x) dx =

= (128 x4 − 1344 x2 ) J0 (x) + (32 x5 − 672 x3 + 2808 x) J1 (x) Z

H5 (x) · J1 (x) dx = (−32 x5 + 640 x3 ) J0 (x) + (160 x4 − 1920 x2 ) J1 (x) + 2040 Φ(x) Z

Z

H5 (x) · I0 (x) dx = (−128 x4 − 704 x2 ) I0 (x) + (32 x5 + 352 x3 + 1528 x) I1 (x)

H5 (x) · I1 (x) dx = (32 x5 + 320 x3 ) I0 (x) + (−160 x4 − 960 x2 ) I1 (x) − 1080 Ψ(x)

n=6 Z

Z H6 (x) · J0 (x) dx =

(64 x6 − 480 x4 + 720 x2 − 120) J0 (x) dx =

= (320 x5 − 6240 x3 − 120 x) J0 (x) + (64 x6 − 2080 x4 + 19440 x2 ) J1 (x) − 19560 Φ(x) Z Z

H6 (x) · J1 (x) dx = (−64 x6 + 2016 x4 − 16848 x2 + 120) J0 (x) + (384 x5 − 8064 x3 + 33696 x) J1 (x)

H6 (x) · I0 (x) dx = (−320 x5 − 3360 x3 − 120 x) I0 (x) + (64 x6 + 1120 x4 + 10800 x2 ) I1 (x) + 10680 Ψ(x) 186

Z

H6 (x) · I1 (x) dx = (64 x6 + 1056 x4 + 9168 x2 − 120) I0 (x) + (−384 x5 − 4224 x3 − 18336 x) I1 (x)

n=7 Z

Z H7 (x) · J0 (x) dx =

(128 x7 − 1344 x5 + 3360 x3 − 1680 x) J0 (x) dx =

= (768 x6 − 23808 x4 + 197184 x2 ) J0 (x) + (128 x7 − 5952 x5 + 98592 x3 − 396048 x) J1 (x) Z Z Z

H7 (x)·J1 (x) dx = (−128 x7 +5824 x5 −90720 x3 ) J0 (x)+(896 x6 −29120 x4 +272160 x2 ) J1 (x)−273840 Φ(x) H7 (x) · I0 (x) dx = (−768 x6 − 13056 x4 − 111168 x2 ) I0 (x) + (128 x7 + 3264 x5 + 55584 x3 + 220656 x) I1 (x) H7 (x)·I1 (x) dx = (128 x7 +3136 x5 +50400 x3 ) I0 (x)+(−896 x6 −15680 x4 −151200 x2 ) I1 (x)−149520 Ψ(x)

n=8 Z

Z H8 (x) · J0 (x) dx =

(256 x8 − 3584 x6 + 13440 x4 − 13440 x2 + 1680) J0 (x) dx =

= (1792 x7 −80640 x5 +1249920 x3 +1680 x) J0 (x)+(256 x8 −16128 x6 +416640 x4 −3763200 x2 ) J1 (x)+3764880 Φ(x) Z H8 (x) · J1 (x) dx = (−256 x8 + 15872 x6 − 394368 x4 + 3168384 x2 − 1680) J0 (x)+ +(2048 x7 − 95232 x5 + 1577472 x3 − 6336768 x) J1 (x) Z

H8 (x) · I0 (x) dx = (−1792 x7 − 44800 x5 − 712320 x3 + 1680 x) I0 (x)+ +(256 x8 + 8960 x6 + 237440 x4 + 2123520 x2 ) I1 (x) + 2125200 Ψ(x)

Z

H8 (x) · I1 (x) dx = (256 x8 + 8704 x6 + 222336 x4 + 1765248 x2 + 1680) I0 (x)+ +(−2048 x7 − 52224 x5 − 889344 x3 − 3530496 x) I1 (x)

n=9 Z

Z H9 (x) · J0 (x) dx =

(512 x9 − 9216 x7 + 48384 x5 − 80640 x3 + 30240 x) J0 (x) dx =

= (4096 x8 − 251904 x6 + 6239232 x4 − 50075136 x2 ) J0 (x)+ +(512 x9 − 41984 x7 + 1559808 x5 − 25037568 x3 + 100180512 x) J1 (x) Z

H9 (x) · J1 (x) dx = (−512 x9 + 41472 x7 − 1499904 x5 + 22579200 x3 ) J0 (x)+ +(4608 x8 − 290304 x6 + 7499520 x4 − 67737600 x2 ) J1 (x) + 67767840 Φ(x)

Z

H9 (x) · I0 (x) dx = (−4096 x8 − 141312 x6 − 3585024 x4 − 28518912 x2 ) I0 (x)+ +(512 x9 + 23552 x7 + 896256 x5 + 14259456 x3 + 57068064) I1 (x) Z

H9 (x) · I1 (x) dx = (512 x9 + 23040 x7 + 854784 x5 + 12741120 x3 ) I0 (x)+

+(−4608 x8 − 161280 x6 − 4273920 x4 − 38223360 x) I1 (x) − 38253600 Ψ(x) n = 10 Z Z H10 (x) · J0 (x) dx = (1024 x10 − 23040 x8 + 161280 x6 − 403200 x4 + 302400 x2 − 30240) J0 (x) dx = = (9216 x9 − 741888 x7 + 26772480 x5 − 402796800 x3 − 30240 x) J0 (x)+ +(1024 x10 − 105984 x8 + 5354496 x6 − 134265600 x4 + 1208692800 x2 ) J1 (x) − 1208723040 Φ(x) 187

Z

H10 (x)·J1 (x) dx = (−1024 x10 +104960 x8 −5199360 x6 +125187840 x4 −1001805120 x2 +30240) J0 (x)+ +(10240 x9 − 839680 x7 + 31196160 x5 − 500751360 x3 + 2003610240 x) J1 (x) Z

H10 (x) · I0 (x) dx = (−9216 x9 − 419328 x7 − 15482880 x5 − 231033600 x3 − 30240 x) I0 (x)+ +(1024 x10 + 59904 x8 + 3096576 x6 + 77011200 x4 + 693403200 x2 ) I1 (x) + 693372960 Ψ(x)

Z

H10 (x) · I1 (x) dx = (1024 x10 + 58880 x8 + 2987520 x6 + 71297280 x4 + 570680640 x2 − 30240) I0 (x)+ +(−10240 x9 − 471040 x7 − 17925120 x5 − 285189120 x3 − 1141361280 x) I1 (x)

n = 11 Z Z H11 (x) · J0 (x) dx = (2048 x11 − 56320 x9 + 506880 x7 − 1774080 x5 + 2217600 x3 − 665280 x) J0 (x) dx = = (20480 x10 − 2088960 x8 + 103311360 x6 − 2486568960 x4 + 19896986880 x2 ) J0 (x)+ +(2048 x11 − 261120 x9 + 17218560 x7 − 621642240 x5 + 9948493440 x3 − 39794639040 x) J1 (x) Z

H11 (x) · J1 (x) dx = (−2048 x11 + 259072 x9 − 16828416 x7 + 590768640 x5 − 8863747200 x3 ) J0 (x)+

+(22528 x10 − 2331648 x8 + 117798912 x6 − 2953843200 x4 + 26591241600 x2 ) J1 (x) − 26591906880 Φ(x) Z H11 (x) · I0 (x) dx = (−20480 x10 − 1187840 x8 − 60057600 x6 − 1434286080 x4 − 11478723840 x2 ) I0 (x)+ +(2048 x11 + 148480 x9 + 10009600 x7 + 358571520 x5 + 5739361920 x3 + 22956782400 x) I1 (x) Z

H11 (x) · I1 (x) dx = (2048 x11 + 146432 x9 + 9732096 x7 + 338849280 x5 + 5084956800 x3 ) I0 (x)+

−(−22528 x10 − 1317888 x8 − 68124672 x6 − 1694246400 x4 − 15254870400 x2 ) I1 (x) − 15254205120 Ψ(x) n = 12 Z H12 (x) · J0 (x) dx = Z =

(4096 x12 − 135168 x10 + 1520640 x8 − 7096320 x6 + 13305600 x4 − 7983360 x2 + 665280) J0 (x) dx =

= (45056 x11 − 5677056 x9 + 368299008 x7 − 12925946880 x5 + 193929120000 x3 + 665280 x) J0 (x)+ +(4096 x12 − 630784 x10 + 52614144 x8 − 2585189376 x6 + 64643040000 x4 − 581795343360 x2 ) J1 (x)+ +581796008640 Φ(x) Z H12 (x) · J1 (x) dx = = (−4096 x12 +626688 x10 −51655680 x8 +2486568960 x6 −59690960640 x4 +477535668480 x2 −665280) J0 (x)+ +(49152 x11 − 6266880 x9 + 413245440 x7 − 14919413760 x5 + 238763842560 x3 − 955071336960 x) J1 (x) Z H12 (x) · I0 (x) dx = +(−45056 x11 − 3244032 x9 − 215018496 x7 − 7490165760 x5 − 112392403200 x3 + 665280 x) I0 (x)+ +(4096 x12 + 360448 x10 + 30716928 x8 + 1498033152 x6 + 37464134400 x4 + 337169226240 x2 ) I1 (x)+ +337169891520 Ψ(x) Z H12 (x) · I1 (x) dx = = (4096 x12 +356352 x10 +30028800 x8 +1434286080 x6 +34436171520 x4 +275481388800 x2 +665280) I0 (x)+ +(−49152 x11 − 3563520 x9 − 240230400 x7 − 8605716480 x5 − 137744686080 x3 − 550962777600 x) I1 (x) 188

n = 13 Z H13 (x) · J0 (x) dx = Z =

(8192 x13 −319488 x11 +4392960 x9 −26357760 x7 +69189120 x5 −69189120 x3 +17297280 x) J0 (x) dx =

= (98304 x12 −14991360 x10 +1234452480 x8 −59411865600 x6 +1426161530880 x4 −11409430625280 x2 ) J0 (x)+ +(8192 x13 − 1499136 x11 + 154306560 x9 − 9901977600 x7 + 356540382720 x5 − 5704715312640 x3 + +22818878547840 x) J1 (x) Z H13 (x) · J1 (x) dx = = (−8192 x13 +1490944 x11 −151996416 x9 +9602131968 x7 −336143808000 x5 +5042226309120 x3 ) J0 (x)+ +(106496 x12 −16400384 x10 +1367967744 x8 −67214923776 x6 +1680719040000 x4 −15126678927360 x2 ) J1 (x)+ +15126696224640 Φ(x) Z H13 (x) · I0 (x) dx = = (−98304 x12 −8601600 x10 −723271680 x8 −34558894080 x6 −829690214400 x4 −6637383336960 x2 ) I0 (x)+ +(8192 x13 + 860160 x11 + 90408960 x9 + 5759815680 x7 + 207422553600 x5 + 3318691668480 x3 + +13274783971200 x) I1 (x) Z H13 (x) · I1 (x) dx = = (8192 x13 + 851968 x11 + 88737792 x9 + 5564123136 x7 + 194813498880 x5 + 2922133294080 x3 ) I0 (x)+ +(−106496 x12 −9371648 x10 −798640128 x8 −38948861952 x6 −974067494400 x4 −8766399882240 x2 ) I1 (x)− −8766417179520 Ψ(x) n = 14 Z Z H14 (x)·J0 (x) dx = (16384 x14 −745472 x12 +12300288 x10 −92252160 x8 +322882560 x6 −484323840 x4 + +242161920 x2 − 17297280) J0 (x) dx = (212992 x13 − 38658048 x11 + 3937849344 x9 − 248730273792 x7 + +8707173995520 x5 −130609062904320 x3 −17297280 x) J0 (x)+(16384 x14 −3514368 x12 +437538816 x10 − −35532896256 x8 +1741434799104 x6 −43536354301440 x4 +391827430874880 x2 ) J1 (x)−391827448172160 Φ(x) Z H14 (x) · J1 (x) dx = (−16384 x14 + 3497984 x12 − 432058368 x10 + 34656921600 x8 − 1663855119360 x6 + +39933007188480 x4 −319464299669760 x2 +17297280) J0 (x)+(229376 x13 −41975808 x11 +4320583680 x9 − −277255372800 x7 + 9983130716160 x5 − 159732028753920 x3 + 638928599339520 x) J1 (x) Z

H14 (x)·I0 (x) dx = (−212992 x13 −22257664 x11 −2314211328 x9 −145149548544 x7 −5081848611840 x5 −

−76226276206080 x3 − 17297280 x) I0 (x) + (16384 x14 + 2023424 x12 + 257134592 x10 + 20735649792 x8 + +1016369722368 x6 + 25408758735360 x4 + 228679070780160 x2 ) I1 (x) + 228679053482880 Ψ(x) Z

H14 (x) · I1 (x) dx = (16384 x14 + 2007040 x12 + 253145088 x10 + 20159354880 x8 + 967971916800 x6 +

+23230841679360 x4 +185846975596800 x2 −17297280) I0 (x)+(−229376 x13 −24084480 x11 −2531450880 x9 − −161274839040 x7 − 5807831500800 x5 − 92923366717440 x3 − 371693951193600 x) I1 (x)

189

n = 15 Z Z H15 (x) · J0 (x) dx = (32768 x15 − 1720320 x13 + 33546240 x11 − 307507200 x9 + 1383782400 x7 − −2905943040 x5 + 2421619200 x3 − 518918400 x) J0 (x) dx = = (458752 x14 − 97714176 x12 + 12061163520 x10 − 967353139200 x8 + 46441253376000 x6 − −1114601704796160 x4 + 8916818481607680 x2 ) J0 (x)+ +(32768 x15 − 8142848 x13 + 1206116352 x11 − 120919142400 x9 + 7740208896000 x7 − −278650426199040 x5 + 4458409240803840 x3 − 17833637482133760 x) J1 (x) Z

H15 (x)·J1 (x) dx = (−32768 x15 +8110080 x13 −1193287680 x11 +118442987520 x9 −7463291996160 x7 +

+261218125808640 x5 − 3918274308748800 x3 ) J0 (x) + (491520 x14 − 105431040 x12 + 13126164480 x10 − −1065986887680 x8 + 52243043973120 x6 − 1306090629043200 x4 + 11754822926246400 x2 ) J1 (x)− −11754823445164800 Φ(x) Z

H15 (x)·I0 (x) dx = (−458752 x14 −56426496 x12 −7106641920 x10 −566071296000 x8 −27179724902400 x6 − −652301773885440 x4 − 5218419034321920 x2 ) I0 (x) + (32768 x15 + 4702208 x13 + 710664192 x11 +

+70758912000 x9 +4529954150400 x7 +163075443471360 x5 +2609209517160960 x3 +10436837549725440 x) I1 (x) Z H15 (x) · I1 (x) dx = (32768 x15 + 4669440 x13 + 701276160 x11 + 69118832640 x9 + 4355870238720 x7 + +152452552412160 x5 + 2286790707801600 x3 ) I0 (x) + (−491520 x14 − 60702720 x12 − 7714037760 x10 − −622069493760 x8 − 30491091671040 x6 − 762262762060800 x4 − 6860372123404800 x2 ) I1 (x)− −6860371604486400 Ψ(x)

190

1.3.2. Integrals of the type

R

xn Ei(x) · Zν (x) dx

About Ei(x) see [1], 5.1., or [7], 8.2. In [4], page 657, is no reference to the fact, that the integral should be used as principal value. Z x Ei(x) I0 (x) dx = xEi(x)I1 (x) + ex [(x − 1)I0 (x) − xI1 (x)] Z

x Ei(x) K0 (x) dx = −xEi(x)K1 (x) + ex [(x − 1)K0 (x) + xK1 (x)]

 ex  (−x2 − 6 x + 6)I0 (x) + (x2 + 5 x)I1 (x) 3 Z  ex  2 x2 Ei(x) K1 (x) dx = −Ei(x)[x2 K0 (x) + 2xK1 (x)] + (x + 6 x − 6)K0 (x) + (x2 + 5 x)K1 (x) 3 Z

x2 Ei(x) I1 (x) dx = Ei(x)[x2 I0 (x) − 2xI1 (x)] +

Z

x3 Ei(x) I0 (x) dx = Ei(x)[−2x2 I0 (x) + (x3 + 4 x)I1 (x)]+

 ex  + (3 x3 + 7 x2 + 60 x − 60)I0 (x) − (3 x3 + 16 x2 + 44 x)I1 (x) 15 Z x3 Ei(x) K0 (x) dx = − Ei(x)[2x2 K0 (x) + (x3 + 4x)K1 (x)]+ +

Z

+

 ex  (15 x4 + 102 x3 + 178 x2 + 1680 x − 1680)K0 (x) + (15 x4 + 57 x3 + 484 x2 + 1196 x)K1 (x) 105 Z

+

x4 Ei(x) I1 (x) dx = Ei(x) [(x4 + 8 x2 )I0 (x) − (16 x + 4 x3 )I1 (x)]+

 ex  − (15 x4 + 102 x3 + 178 x2 + 1680 x − 1680)I0 (x) + (15 x4 + 57 x3 + 484 x2 + 1196 x)I1 (x) 105 Z x4 Ei(x) K1 (x) dx = − Ei(x) [(x4 + 8 x2 )K0 (x) + (4 x3 + 16 x)K1 (x)]+

+

+

 ex  (3 x3 + 7 x2 + 60 x − 60)K0 (x) + (3 x3 + 16 x2 + 44 x)K1 (x) 15

x5 Ei(x) I0 (x) dx = Ei(x) [ − (4 x4 + 32 x2 )I0 (x) + (x5 + 16 x3 + 64 x)I1 (x)]+

 ex  (5 x5 + 15 x4 + 192 x3 + 288 x2 + 2880 x − 2880) I0 (x) − (5 x5 + 40 x4 + 72 x3 + 864 x2 + 2016 x)I1 (x) 45 Z x5 Ei(x) K0 (x) dx = − Ei(x) [(4 x4 + 32 x2 )K0 (x) + (x5 + 16 x3 + 64 x)K1 (x)]+  ex  (5 x5 + 15 x4 + 192 x3 + 288 x2 + 2880 x − 2880)K0 (x) + (5 x5 + 40 x4 + 72 x3 + 864 x2 + 2016 x)K1 (x) 45 Z

x6 Ei(x) I1 (x) dx = Ei(x) [(x6 + 24 x4 + 192 x2 )I0 (x) − (384 x + 96 x3 + 6 x5 )I1 (x)]+

ex  − (315 x6 + 3010 x5 + 5430 x4 + 91104 x3 + 130656 x2 + 1330560 x − 1330560)I0 (x)+ 3465  +(315 x6 + 1435 x5 + 20480 x4 + 29664 x3 + 403968 x2 + 926592 x)I1 (x) Z x6 Ei(x) K1 (x) dx = − Ei(x) [(x6 + 24 x4 + 192 x2 )K0 (x) + (6 x5 + 96 x3 + 384 x)K1 (x)]+

+

191

+

Z

ex  (315 x6 + 3010 x5 + 5430 x4 + 91104 x3 + 130656 x2 + 1330560 x − 1330560)K0 (x)+ 3465  +(315 x6 + 1435 x5 + 20480 x4 + 29664 x3 + 403968 x2 + 926592 x)K1 (x)

x7 Ei(x) I0 (x) dx = Ei(x) [−(6 x6 + 144 x4 + 1152 x2 )I0 (x) + (x7 + 36 x5 + 576 x3 + 2304 x)I1 (x)]+

ex  (1155 x7 + 4515 x6 + 88060 x5 + 120180 x4 + 2402304 x3 + 3363456 x2 + 34594560 x − 34594560)I0 (x)+ 15015  −(1155 x7 + 12600 x6 + 25060 x5 + 560480 x4 + 720864 x3 + 10570368 x2 + 24024192 x)I1 (x) Z x7 Ei(x) K0 (x) dx = − Ei(x) [(6 x6 + 144 x4 + 1152 x2 )K0 (x) + (x7 + 36 x5 + 576 x3 + 2304 x)K1 (x)]+

+

+

Z

ex  (1155 x7 + 4515 x6 + 88060 x5 + 120180 x4 + 2402304 x3 + 3363456 x2 + 34594560 x − 34594560)K0 (x)+ 15015  + (1155 x7 + 12600 x6 + 25060 x5 + 560480 x4 + 720864 x3 + 10570368 x2 + 24024192 x)K1 (x)

x8 Ei(x) I1 (x) dx = Ei(x)[(x8 +48 x6 +1152 x4 +9216 x2 )I0 (x)−(8 x7 +288 x5 +4608 x3 +18432 x)I1 (x)]+ +

ex  − (1001 x8 + 12474 x7 + 25830 x6 + 731920 x5 + 902640 x4 + 19312512 x3 + 26813568 x2 + 15015

+276756480 x − 276756480)I0 (x) + (1001 x8 + 5467 x7 + 113148 x6 + 166180 x5 + 4562240 x4 + 5625792 x3 +  +84751104 x2 + 192005376 x)I1 (x) Z x8 Ei(x) K1 (x) dx = − Ei(x)[(x8 +48 x6 +1152 x4 +9216 x2 )K0 (x)+(8 x7 +288 x5 +4608 x3 +18432 x)K1 (x)]+ +

ex  (1001 x8 + 12474 x7 + 25830 x6 + 731920 x5 + 902640 x4 + 19312512 x3 + 26813568 x2 + 15015

+276756480 x − 276756480)K0 (x) + (1001 x8 + 5467 x7 + 113148 x6 + 166180 x5 + 4562240 x4 + 5625792 x3 +  +84751104 x2 + 192005376 x)K1 (x)

Z

x9 Ei(x) I0 (x) dx =

= Ei(x) [− (8 x8 + 384 x6 + 9216 x4 + 73728 x2 )I0 (x) + (x9 + 64 x7 + 2304 x5 + 36864 x3 + 147456 x)I1 (x)]+ ex  (1365 x9 + 6643 x8 + 175392 x7 + 252000 x6 + 9228800 x5 + 10775040 x4 + 239388672 x3 + + 23205 +330897408 x2 + 3421716480 x − 3421716480)I0 (x) − (1365 x9 + 18928 x8 + 42896 x7 + 1479744 x6 +  +1830080 x5 + 56919040 x4 + 68631552 x3 + 1049063424 x2 + 2372653056 x)I1 (x) Z x9 Ei(x) K0 (x) dx = = − Ei(x) [(8 x8 + 384 x6 + 9216 x4 + 73728 x2 )K0 (x) + (x9 + 64 x7 + 2304 x5 + 36864 x3 + 147456 x)K1 (x)]+ ex  + (1365 x9 + 6643 x8 + 175392 x7 + 252000 x6 + 9228800 x5 + 10775040 x4 + 239388672 x3 + 23205 +330897408 x2 + 3421716480 x − 3421716480)K0 (x) + (1365 x9 + 18928 x8 + 42896 x7 + 1479744 x6 +  +1830080 x5 + 56919040 x4 + 68631552 x3 + 1049063424 x2 + 2372653056 x)K1 (x)

192

1.3.3. Integrals of the type Let

Z Si(x) = 0

R

xn Si(x) · Jν (x) dx and

x

sin t dt t

R

xn Ci(x) · Jν (x) dx Z

and

Ci(x) = C + ln x + 0

x

cos t − 1 dt . t

About C see page 126. (In [4], p. 656, the function ci(x) is defined by some integral which fails to converge.) Z x Si(x) J0 (x) dx = x Si(x) J1 (x) + sin x J0 (x) − sin x J1 (x) − cos x J0 (x) Z x Ci(x) J0 (x) dx = x Ci(x) J1 (x) + x sin x J0 (x) + cos x J0 (x) − x cos x J1 (x)

Z

x2 Si(x) J1 (x) dx =

Z

Z

Z

 1  −3 x2 Si(x) J0 (x) + 6 xSi(x) J1 (x) + x2 + 6 sin x J0 (x) − 5 x sin x J1 (x)− 3  −6 x cos x J0 (x) − x2 cos x J1 (x)

x2 Ci(x) J1 (x) dx =

1  −3 x2 Ci(x) J0 (x) + 6 xCi(x) J0 (x) + 6 x sin x J0 (x) + x2 sin x J1 (x)+ 3   + x2 + 6 cos x J0 (x) − 5 x cos x J1 (x)

  1  30 x2 Si(x) J0 (x) + 15 x3 − 60 x Si(x) J1 (x) + −7 x2 − 60 sin x J0 (x)+ 15    + −3 x3 + 44 x sin x J1 (x) + −3 x3 + 60 x cos x J0 (x) + 16 x2 cos x J1 (x)

x3 Si(x) J0 (x) dx =

  1  30 x2 Ci(x) J0 (x) + 15 x3 − 60 x Ci(x) J0 (x) + 3 x3 − 60 x sin x J0 (x)− 15    −16 x2 sin x J1 (x) + −7 x2 − 60 cos x J0 (x) + −3 x3 + 44 x cos x J1 (x)

x3 Ci(x) J0 (x) dx =

Z

  1  −105 x4 + 840 x2 Si(x) J0 (x) + 420 x3 − 1680 x Si(x) J1 (x)+ 105    + 15 x4 − 178 x2 − 1680 sin x J0 (x) + −57 x3 + 1196 x sin x J1 (x) + −102 x3 + 1680 x cos x J0 (x)+   + −15 x4 + 484 x2 cos x J1 (x)

Z

x4 Si(x) J1 (x) dx =

  1  −105 x4 + 840 x2 Ci(x) J0 (x) + 420 x3 − 1680 x Ci(x) J0 (x)+ 105    + 102 x3 − 1680 x sin x J0 (x) + 15 x4 − 484 x2 sin x J1 (x) + 15 x4 − 178 x2 − 1680 cos x J0 (x)+   + −57 x3 + 1196 x cos x J1 (x)

Z

x4 Ci(x) J1 (x) dx =

  1  180 x4 − 1440 x2 Si(x) J0 (x) + 45 x5 − 720 x3 + 2880 x Si(x) J1 (x)+ 45   + −15 x4 + 288 x2 + 2880 sin x J0 (x) + −5 x5 + 72 x3 − 2016 x sin x J1 (x)+    + −5 x5 + 192 x3 − 2880 x cos x J0 (x) + 40 x4 − 864 x2 cos x J1 (x)

x5 Si(x) J0 (x) dx =

193

Z

  1  180 x4 − 1440 x2 Ci(x) J0 (x) + 45 x5 − 720 x3 + 2880 x Ci(x) J0 (x)+ 45   + 5 x5 − 192 x3 + 2880 x sin x J0 (x) + −40 x4 + 864 x2 sin x J1 (x)+    + −15 x4 + 288 x2 + 2880 cos x J0 (x) + −5 x5 + 72 x3 − 2016 x cos x J1 (x)

x5 Ci(x) J0 (x) dx =

Z

 1  −3465 x6 + 83160 x4 − 665280 x2 Si(x) J0 (x)+ 3465  + 20790 x5 − 332640 x3 + 1330560 x Si(x) J1 (x)+   + 315 x6 − 5430 x4 + 130656 x2 + 1330560 sin x J0 (x) + −1435 x5 + 29664 x3 − 926592 x sin x J1 (x)+    + −3010 x5 + 91104 x3 − 1330560 x cos x J0 (x) + −315 x6 + 20480 x4 − 403968 x2 cos x J1 (x) Z

x6 Si(x) J1 (x) dx =

 1  −3465 x6 + 83160 x4 − 665280 x2 Ci(x) J0 (x)+ 3465   5 3 + 20790 x − 332640 x + 1330560 x Ci(x) J0 (x) + 3010 x5 − 91104 x3 + 1330560 x sin x J0 (x)+   + 315 x6 − 20480 x4 + 403968 x2 sin x J1 (x) + 315 x6 − 5430 x4 + 130656 x2 + 1330560 cos x J0 (x)+   + −1435 x5 + 29664 x3 − 926592 x cos x J1 (x) Z

Z

Z

x6 Ci(x) J1 (x) dx =

 1  90090 x6 − 2162160 x4 + 17297280 x2 Si(x) J0 (x)+ 15015  7 + 15015 x − 540540 x5 + 8648640 x3 − 34594560 x Si(x) J1 (x)+  + −4515 x6 + 120180 x4 − 3363456 x2 − 34594560 sin x J0 (x)+  + −1155 x7 + 25060 x5 − 720864 x3 + 24024192 x sin x J1 (x)+  + −1155 x7 + 88060 x5 − 2402304 x3 + 34594560 x cos x J0 (x)+   + 12600 x6 − 560480 x4 + 10570368 x2 cos x J1 (x)

x7 Si(x) J0 (x) dx =

 1  90090 x6 − 2162160 x4 + 17297280 x2 Ci(x) J0 (x)+ 15015  7 + 15015 x − 540540 x5 + 8648640 x3 − 34594560 x Ci(x) J0 (x)+  + 1155 x7 − 88060 x5 + 2402304 x3 − 34594560 x sin x J0 (x)+  + −12600 x6 + 560480 x4 − 10570368 x2 sin x J1 (x)+  + −4515 x6 + 120180 x4 − 3363456 x2 − 34594560 cos x J0 (x)+   + −1155 x7 + 25060 x5 − 720864 x3 + 24024192 x cos x J1 (x)

x7 Ci(x) J0 (x) dx =

 1  −15015 x8 + 720720 x6 − 17297280 x4 + 138378240 x2 Si(x) J0 (x)+ 15015  + 120120 x7 − 4324320 x5 + 69189120 x3 − 276756480 x Si(x) J1 (x)+  + 1001 x8 − 25830 x6 + 902640 x4 − 26813568 x2 − 276756480 sin x J0 (x)+  + −5467 x7 + 166180 x5 − 5625792 x3 + 192005376 x sin x J1 (x)+  + −12474 x7 + 731920 x5 − 19312512 x3 + 276756480 x cos x J0 (x)+   + −1001 x8 + 113148 x6 − 4562240 x4 + 84751104 x2 cos x J1 (x)

x8 Si(x) J1 (x) dx =

194

Z

Z

Z

 1  −15015 x8 + 720720 x6 − 17297280 x4 + 138378240 x2 Ci(x) J0 (x)+ 15015  + 120120 x7 − 4324320 x5 + 69189120 x3 − 276756480 x Ci(x) J0 (x)+  + 12474 x7 − 731920 x5 + 19312512 x3 − 276756480 x sin x J0 (x)+  + 1001 x8 − 113148 x6 + 4562240 x4 − 84751104 x2 sin x J1 (x)+  + 1001 x8 − 25830 x6 + 902640 x4 − 26813568 x2 − 276756480 cos x J0 (x)+   + −5467 x7 + 166180 x5 − 5625792 x3 + 192005376 x cos x J1 (x)

x8 Ci(x) J1 (x) dx =

 1  185640 x8 − 8910720 x6 + 213857280 x4 − 1710858240 x2 Si(x) J0 (x)+ 23205  + 23205 x9 − 1485120 x7 + 53464320 x5 − 855429120 x3 + 3421716480 x Si(x) J1 (x)+  + −6643 x8 + 252000 x6 − 10775040 x4 + 330897408 x2 + 3421716480 sin x J0 (x)+  + −1365 x9 + 42896 x7 − 1830080 x5 + 68631552 x3 − 2372653056 x sin x J1 (x)+  + −1365 x9 + 175392 x7 − 9228800 x5 + 239388672 x3 − 3421716480 x cos x J0 (x)+   + 18928 x8 − 1479744 x6 + 56919040 x4 − 1049063424 x2 cos x J1 (x)

x9 Si(x) J0 (x) dx =

 1  185640 x8 − 8910720 x6 + 213857280 x4 − 1710858240 x2 Ci(x) J0 (x)+ 23205  + 23205 x9 − 1485120 x7 + 53464320 x5 − 855429120 x3 + 3421716480 x Ci(x) J0 (x)+  + 1365 x9 − 175392 x7 + 9228800 x5 − 239388672 x3 + 3421716480 x sin x J0 (x)+  + −18928 x8 + 1479744 x6 − 56919040 x4 + 1049063424 x2 sin x J1 (x)+  + −6643 x8 + 252000 x6 − 10775040 x4 + 330897408 x2 + 3421716480 cos x J0 (x)+   + −1365 x9 + 42896 x7 − 1830080 x5 + 68631552 x3 − 2372653056 x cos x J1 (x)

x9 Ci(x) J0 (x) dx =

195

1.3.4.

R

xn erf(x) Jν (αx) dx

a) The Case α = 1 About the basic integrals Z F0 (x) =

x

2

e−t J0 (t) dt

Z and

0

F− (x) = 0

x

2

e−t J1 (t) dt t

see page 150 and following. Z Z 2 2 erf(x) J1 (x) dx = −erf(x) J0 (x) + √ e−x J0 (x) dx π Z

Z Z −x2 2 2 e−x 1 1 e J1 (x) dx e−x J0 (x) dx + √ x erf(x) J0 (x) dx = √ J1 (x) + x erf(x) J1 (x) − √ x π π π Z 2   e−x x2 erf(x) J1 (x) dx = √ [−2x J0 (x) + 5J1 (x)] + erf(x) −x2 J0 (x) + 2x J1 (x) − 2 π Z Z −x2 3 5 e J1 (x) dx −x2 − √ J0 (x) dx + √ e x 2 π 2 π 2

   e−x  x erf(x) J0 (x) dx = √ 10x J0 (x) + (4x2 − 19) J1 (x) + erf(x) 2x2 J0 (x) + (x3 − 4x) J1 (x) + 4 π Z Z −x2 2 e J1 (x) dx 9 19 e−x J0 (x) dx − √ + √ x 4 π 4 π Z 2  e−x  x4 erf(x) J1 (x) dx = √ (−8 x3 + 70 x) J0 (x) + (36 x2 − 145) J1 (x) + 8 π Z Z −x2   2 145 e 75 J1 (x) dx e−x J0 (x) dx − √ + erf(x) (−x4 + 8 x2 ) J0 (x) + (4 x3 − 16 x) J1 (x) + √ x 8 π 8 π Z 2  e−x  x5 erf(x) J0 (x) dx = √ (72 x3 − 538 x) J0 (x) + (16 x4 − 268 x2 + 1159) J1 (x) + 16 π Z Z −x2   621 1159 e J1 (x) dx 4 2 5 3 −x2 + erf(x) (4 x − 32 x ) J0 (x) + (x − 16 x + 64 x) J1 (x) − √ e J0 (x) dx+ √ x 16 π 16 π Z 2  e−x  x6 erf(x) J1 (x) dx = √ (−32 x5 + 792 x3 − 6534 x) J0 (x) + (208 x4 − 3156 x2 + 13977) J1 (x) + 32 π   +erf(x) (−x6 + 24 x4 − 192 x2 ) J0 (x) + (6 x5 − 96 x3 + 384 x) J1 (x) − Z Z −x2 13977 e J1 (x) dx 7443 −x2 e J0 (x) dx + √ − √ x 32 π 32 π Z x7 erf(x) J0 (x) dx = Z

3

2

=

 e−x  √ (416 x5 − 9352 x3 + 78706 x) J0 (x) + (64 x6 − 2352 x4 + 38012 x2 − 167803) J1 (x) + 64 π   + erf(x) (6 x6 − 144 x4 + 1152 x2 ) J0 (x) + (x7 − 36 x5 + 576 x3 − 2304 x) J1 (x) + Z Z −x2 89097 167803 e J1 (x) dx −x2 √ + √ e J0 (x) dx − x 64 π 64 π Z x8 erf(x) J1 (x) dx =

2

=

 e−x  √ (−128 x7 + 6240 x5 − 150488 x3 + 1258502 x) J0 (x) + (1088 x6 − 37264 x4 + 609172 x2 − 2683961) J1 (x) + 128 π 196

  + erf(x) (−x8 + 48 x6 − 1152 x4 + 9216 x2 ) J0 (x) + (8 x7 − 288 x5 + 4608 x3 − 18432 x) J1 (x) + Z Z −x2 2 2683961 1425459 e J1 (x) dx √ √ e−x J0 (x) dx − + x 128 π 128 π Z 2 e−x  √ (2176 x7 − 98976 x5 + 2410792 x3 − 20131066 x) J0 (x)+ x9 erf(x) J0 (x) dx = 256 π  + (256 x8 − 16576 x6 + 597872 x4 − 9745772 x2 + 42941383) J1 (x) +   + erf(x) (8 x8 − 384 x6 + 9216 x4 − 73728 x2 ) J0 (x) + (x9 − 64 x7 + 2304 x5 − 36864 x3 + 147456 x) J1 (x) − Z Z −x2 42941383 22810317 e J1 (x) dx −x2 √ e J0 (x) dx + √ − x 256 π 256π Recurrence relations: Z Z Z 4n + 1 4n + 5 2n+2 2n x erf(x) J1 (x) dx = x erf(x) J1 (x) dx + x2n+1 erf(x) J0 (x) dx− 2 2 2

 x2n+1 e−x x2n  √ −n(2n + 1) x erf(x) J0 (x) dx − J0 (x) + (2n + 1 − 2x2 ) J0 (x) − x J1 (x) erf(x) 2 π Z Z Z 16n3 − 36n2 + 18n − 1 16n2 + 3 x2n erf(x) J1 (x) dx+ x2n−2 erf(x) J1 (x) dx+ x2n+1 erf(x) J0 (x) dx = − 8n + 2 8n + 2 Z 2 x2n−1 e−x (4n − 1)(2n − 1)(n − 1) √ [(4n − 1) J0 (x) + (4n + 1)x J1 (x)]+ x2n−3 erf(x) J0 (x) dx + + 4n + 1 (4n + 1) π Z

+

2n−1

x2n−2 {[(4n − 3)x2 − (2n − 1)(4n − 1)] J0 (x) + [(8n + 2)x3 − 2n(4n − 3)x] J1 (x)] erf(x) 8n + 2

b) The General Case About the basic integrals Z F0 (x) =

x

2

e−t J0 (αt) dt

Z and

x

F− (x) =

0

0

2

e−t J1 (αt) dt t

see page 159 and following. Z Z 2 2 erf(x) J0 (αx) + √ erf(x) J1 (αx) dx = − e−x J 0 (αx) dx α α π Z

2

e−x x erf(x) 1 x erf(x) J 0 (αx) dx = √ J 1 (αx)+ J 1 (αx)− √ α πα π

Z

−x2

e

1 J 0 (αx) dx+ √ πα

Z

2

e−x J 1 (αx) dx x

2

erf(x) e−x [−αx2 J 0 (αx) + 2x J 1 (αx)]− x erf(x) J 1 (αx) dx = √ 2 [−2αx J 0 (αx) + (α2 + 4) J 1 (αx)] + α2 2 πα Z Z −x2 α2 + 2 α2 + 4 e J 1 (αx) −x2 dx − √ e J 0 (αx) dx + √ 2 x 2 πα 2 πα Z 2 e−x x3 erf(x) J 0 (αx) dx = √ 3 {2α(α2 + 4)x J 0 (αx) + [4α2 x2 − (α4 + 2 α2 + 16)] J 1 (αx)}+ 4 πα Z Z −x2 2 J 1 (αx) erf(x) α4 + 8 α4 + 2 α2 + 16 e √ 3 + 3 [2αx2 J 0 (αx)+(α2 x3 −4x) J 1 (αx)]+ √ 2 e−x J 0 (αx) dx− dx α x 4 πα 4 πα Z x4 erf(x) J 1 (αx) dx = Z

2

2

e−x = √ 4 {[−8α3 x3 + 2(α5 + 2 α3 + 32α)x] J 0 (αx) + [(4 α4 + 32 α2 )x2 − α6 − 16 α2 − 128] J 1 (αx)}+ 4 πα 197

erf(x) [(−α3 x4 + 8 α x2 ) J 0 (αx) + (4 α2 x3 − 16 x) J 1 (αx)]+ α4 Z Z −x2 2 α6 − 2 α4 + 12 α2 + 64 α6 + 16 α2 + 128 e J 1 (αx) √ 3 √ 4 + e−x J 0 (αx) dx − dx x 8 πα 8 πα +

Z

2

x5 erf(x) J 0 (αx) dx =

e−x √ {[(8 α5 + 64 α3 )x3 − (2 α7 − 8 α5 + 32 α3 + 512 α)x] J 0 (αx)+ 16 π α5

+[16α4 x4 − (4 α6 + 8 α4 + 256 α2 )x2 + α8 − 6 α6 + 12 α4 + 128 α2 + 1024] J 1 (αx)}+ +

erf(x) [(4 α3 x4 − 32 α x2 ) J 0 (αx) + (α4 x5 − 16 α2 x3 + 64 x) J 1 (αx)]− α5 Z 2 α8 − 8 α6 + 20 α4 + 96 α2 + 512 √ e−x J 0 (αx) dx+ − 16 π α4 Z −x2 α8 − 6 α6 + 12 α4 + 128 α2 + 1024 e J 1 (αx) √ 5 + dx x 16 π α Z x6 erf(x) J 1 (αx) dx =

2

=

e−x √ {[−32α5 x5 + (8 α7 + 16 α5 + 768 α3 )x3 − (2 α9 − 20 α7 + 24 α5 + 384 α3 + 6144 α)x] J 0 (αx)+ 32 π α6

+[(16 α6 +192 α4 )x4 −(4 α8 −16 α6 +96 α4 +3072 α2 )x2 +α10 −12 α8 +20 α6 +144 α4 +1536 α2 +12288] J 1 (αx)}+ +

Z

erf(x) [−(α5 x6 − 24 α3 x4 + 192 α x2 ) J 0 (αx) + (6 α4 x5 − 96 α2 x3 + 384 x) J 1 (αx)]− α6 Z 2 α10 − 14 α8 + 40 α6 + 120 α4 + 1152 α2 + 6144 √ − e−x J 0 (αx) dx+ 32 π α5 Z −x2 α10 − 12 α8 + 20 α6 + 144 α4 + 1536 α2 + 12288 e J 1 (αx) √ 6 + dx x 32 π α 2

x7 erf(x) J 0 (αx) dx =

e−x √ {[(32 α7 + 384 α5 )x5 − (8 α9 − 64 α7 + 192 α5 + 9216 α3 )x3 + 64 π α7

+(2 α11 − 40 α9 + 120 α7 + 288 α5 + 4608 α3 + 73728 α)x] J 0 (αx) + [64α6 x6 − (16 α8 + 32 α6 + 2304 α4 )x4 + +(4 α10 −56 α8 +48 α6 +1152 α4 +36864 α2 )x2 −α12 +22 α10 −88 α8 −120 α6 −1728 α4 −18432 α2 −147456] J 1 (αx)}+ +

erf(x) [(6 α5 x6 − 144 α3 x4 + 1152 α x2 ) J 0 (αx) + (α6 x7 − 36 α4 x5 + 576 α2 x3 − 2304 x) J 1 (αx)]+ α7 Z 2 α12 − 24 α10 + 128 α8 + 1440 α4 + 13824 α2 + 73728 √ 6 + e−x J 0 (αx) dx− 64 π α Z −x2 α12 − 22 α10 + 88 α8 + 120 α6 + 1728 α4 + 18432 α2 + 147456 e J 1 (αx) √ 7 − dx x 64 π α Z x8 erf(x) J 1 (αx) dx = 2

e−x √ = {[−128α7 x7 + (32 α9 + 64 α7 + 6144 α5 )x5 − (8 α11 − 144 α9 + 96 α7 + 3072 α5 + 147456 α3 )x3 + 128 π α8 +(2 α13 − 60 α11 + 336 α9 + 240 α7 + 4608 α5 + 73728 α3 + 1179648 α)x] J 0 (αx)+ +[(64 α8 + 1024 α6 )x6 − (16 α10 − 128 α8 + 512 α6 + 36864 α4 )x4 + +(4 α12 − 96 α10 + 240 α8 + 768 α6 + 18432 α4 + 589824 α2 )x2 − −α14 + 32 α12 − 216 α10 − 1920 α6 − 27648 α4 − 294912 α2 − 2359296] J 1 (αx)}+ +

erf(x) [−(α7 x8 −48 α5 x6 +1152 α3 x4 −9216 α x2 ) J 0 (αx)+(8 α6 x7 −288 α4 x5 +4608 α2 x3 −18432 x) J 1 (αx)]+ α8 198

Z 2 α14 − 34 α12 + 276 α10 − 336 α8 + 1680 α6 + 23040 α4 + 221184 α2 + 1179648 √ 7 e−x J 0 (αx) dx− + 128 π α Z −x2 14 12 10 α − 32 α + 216 α + 1920 α6 + 27648 α4 + 294912 α2 + 2359296 e J 1 (αx) √ 8 − dx x 128 π α Z

2

x9 erf(x) J 0 (αx) dx =

e−x √ {[(128 α9 + 2048 α7 )x7 − (32 α11 − 384 α9 + 1024 α7 + 98304 α5 )x5 + 256 π α9

+(8 α13 − 256 α11 + 1056 α9 + 1536 α7 + 49152 α5 + 2359296 α3 )x3 − −(2 α15 − 88 α13 + 912 α11 − 1344 α9 + 3840 α7 + 73728 α5 + 1179648 α3 + 18874368 α)x] J 0 (αx)+ +[256α8 x8 − (64 α10 + 128 α8 + 16384 α6 )x6 + (16 α12 − 352 α10 + 192 α8 + 8192 α6 + 589824 α4 )x4 − −(4 α14 − 152 α12 + 1056 α10 + 480 α8 + 12288 α6 + 294912 α4 + 9437184 α2 )x2 + +α16 − 46 α14 + 532 α12 − 1200 α10 + 1680 α8 + 30720 α6 + 442368 α4 + 4718592 α2 + 37748736] J 1 (αx)}+ +

erf(x) [(8 α7 x8 − 384 α5 x6 + 9216 α3 x4 − 73728 α x2 ) J 0 (αx)+ α9

+(α8 x9 − 64 α6 x7 + 2304 α4 x5 − 36864 α2 x3 + 147456 x) J 1 (αx)]− −

+

α16 − 48 α14 + 620 α12 − 2112 α10 + 3024 α8 + 26880 α6 + 368640 α4 + 3538944 α2 + 18874368 √ · 256 π α8 Z 2 · e−x J 0 (αx) dx+ α16 − 46 α14 + 532 α12 − 1200 α10 + 1680 α8 + 30720 α6 + 442368 α4 + 4718592 α2 + 37748736 √ · 256 π α9 Z −x2 e J 1 (αx) · dx x

Recurrence relations: Z Z Z n(2n + 1) α2 + 4n + 4 2n+1 2n+2 x erf(x) J0 (αx) dx − x2n−1 erf(x) J0 (αx) dx+ x erf(x) J1 (αx) dx = 2α α 4n + 1 + 2

Z

2

 x2n+1 e−x x2n  √ x erf(x) J1 (αx) dx − J0 (αx) + (2n + 1 − 2x2 ) J0 (αx) − αx J1 (αx) erf(x) 2α α π Z Z α4 + 2 α2 + 16 n2 2n+1 x erf(x) J0 (αx) dx = − x2n erf(x) J1 (αx) dx+ 2 (4 n + α2 ) α Z 16n3 − 12(α2 + 2)n2 + (10α + 8)n − α2 + x2n−2 erf(x) J1 (αx) dx+ 2α(4n + α2 ) Z (4n − 1)(2n − 1)(n − 1) + x2n−3 erf(x) J0 (αx) dx+ 4n + α2 2n

2

+ +

  x2n−1 e−x √ (4n − 1)α J0 (αx) + (4n + α2 )x J1 (αx) + 2 α(4n + α ) π

x2n−2 erf(x)  [α(4n − α2 − 2)x2 − α(4n − 1)(2n − 1)] J0 (αx) + [2(4n + α2 )x3 + 2n(2 − 4n + α2 )] J1 (αx) 2α(4n + α2 )

199

2. Products of two Bessel functions 2.1. Bessel Functions with the the same Argument x : See also [10], 3. . 2.1.1. Integrals of the type

R

x2n+1 Zν2 (x) dx (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν (x), p = 1, 2 .  1 J12 (x) dx = − J02 (x) + J12 (x) x 2

Z Z Z Z Z

Z

Z

Z

Z

Z

x5 J02 (x) dx x5 J12 (x) dx x5 I02 (x) dx x5 I12 (x) dx

xJ02 (x) dx =

 x2  2 J0 (x) + J12 (x) 2

 x 2 xJ0 (x) + xJ12 (x) − 2J0 (x) · J1 (x) 2

xI02 (x) dx =

xI12 (x) dx = Z

Z

 1 2 K12 (x) dx = K0 (x) − K12 (x) x 2

xJ12 (x) dx = Z

Z

 1 2 I12 (x) dx = I (x) − I12 (x) x 2 0

 x2  2 I0 (x) − I12 (x) 2

 x 2 xI1 (x) − xI02 (x) + 2I0 (x) · I1 (x) 2

xK02 (x) dx =

∗ E∗

 x2  2 K0 (x) − K12 (x) 2

 x 2 xK1 (x) − xK02 (x) − 2K0 (x) · K1 (x) ∗ E∗ 2  4  Z x4 2 x3 x x2 3 2 x J0 (x) dx = J (x) + J0 (x)J1 (x) + − J12 (x) 6 0 3 6 3  4  Z x4 2 2x3 x 2x2 x3 J12 (x) dx = J0 (x) − J0 (x)J1 (x) + + J12 (x) 6 3 6 3  4  Z x4 2 x3 x x2 x3 I02 (x) dx = I0 (x) + I0 (x)I1 (x) − + I12 (x) 6 3 6 3  4  Z x4 x 2x3 2x2 x3 I12 (x) dx = − I02 (x) + I0 (x)I1 (x) + − I12 (x) 6 3 6 3  4  Z x x4 2 x3 x2 3 2 x K0 (x) dx = K (x) − K0 (x)K1 (x) − + K12 (x) 6 0 3 6 3  4  2x3 x 2x2 x4 2 3 2 K0 (x)K1 (x) + − x K1 (x) dx = − K0 (x) − K12 (x) 6 3 6 3   5   6   6 4x4 2x 16x3 x 8x4 16x2 x 2 + J0 (x) + − J0 (x)J1 (x) + − + J12 (x) = 10 15 5 15 10 15 15  6     6  x 2x4 3x5 8x3 x 4x4 8x2 = − J02 (x) + − + J0 (x)J1 (x) + + − J12 (x) 10 5 5 5 10 5 5   5   6   6 x 4x4 2x 16x3 x 8x4 16x2 = − I02 (x) + + I0 (x)I1 (x) − + + I12 (x) 10 15 5 15 10 15 15  6   5   6  x 2x4 3x 8x3 x 4x4 8x2 = − + I02 (x) + + I0 (x)I1 (x) + − − I12 (x) 10 5 5 5 10 5 5 xK12 (x) dx =

200

  5   6  x6 4x4 2x 16x3 x 8x4 16x2 2 x = − K0 (x) − + K0 (x)K1 (x) − + + K12 (x) 10 15 5 15 10 15 15  6   5   6  Z x 2x4 3x 8x3 x 4x4 8x2 5 2 2 x K1 (x) dx = − + K0 (x) − + K0 (x)K1 (x) + − − K12 (x) 10 5 5 5 10 5 5  8   7  Z x 18x6 72x4 3x 108x5 288x3 x7 J02 (x) dx = + − J02 (x) + − + J0 (x)J1 (x)+ 14 35 35 7 35 35  8  x 27x6 144x4 288x2 + − + − J12 (x) 14 35 35 35     8 Z x 24x6 96x4 4x7 144x5 384x3 x7 J12 (x) dx = − + J02 (x) + − + − J0 (x)J1 (x)+ 14 35 35 7 35 35  8  x 36x6 192x4 384x2 + + − + J12 (x) 14 35 35 35   7   8 Z 18x6 72x4 3x 108x5 288x3 x 2 7 2 − − I0 (x) + + + I0 (x)I1 (x)− x I0 (x) dx = 14 35 35 7 35 35  8  x 27x6 144x4 288x2 − + + + I12 (x) 14 35 35 35  8    7 Z x 24x6 96x4 144x5 384x3 4x x7 I12 (x) dx = − + + I02 (x) + + + I0 (x)I1 (x)+ 14 35 35 7 35 35  8  x 36x6 192x4 384x2 − − − + I12 (x) 14 35 35 35  8   7  Z 18x6 72x4 108x5 288x3 x 3x − − + + x7 K02 (x) dx = K02 (x) − K0 (x)K1 (x)− 14 35 35 7 35 35   8 27x6 144x4 288x2 x + + + K12 (x) − 14 35 35 35  8   7  Z x 24x6 96x4 4x 144x5 384x3 7 2 2 x K1 (x) dx = − + + K0 (x) − + + K0 (x)K1 (x)+ 14 35 35 7 35 35  8  x 36x6 192x4 384x2 + − − − K12 (x) 14 35 35 35  10  Z x 16x8 256x6 1024x4 x9 J02 (x) dx = + − + J02 (x)+ 18 21 35 35  9  4x 128x7 1536x5 4096x3 + − + − J0 (x)J1 (x)+ 9 21 35 35   10 64x8 384x6 2048x4 4096x2 x − + − + J12 (x) + 18 63 35 35 35  10  Z x 20x8 64x6 256x4 9 2 x J1 (x) dx = − + − J02 (x)+ 18 21 7 7   5x9 160x7 384x5 1024x3 + − + J0 (x)J1 (x)+ + − 9 21 7 7  10  x 80x8 96x6 512x4 1024x2 + + − + − J12 (x) 18 63 7 7 7  10  Z x 16x8 256x6 1024x4 x9 I02 (x) dx = − − − I02 (x)+ 18 21 35 35  9  4x 128x7 1536x5 4096x3 + + + + I0 (x)I1 (x)− 9 21 35 35

Z

5

K02 (x) dx



201

 x10 64x8 384x6 2048x4 4096x2 − + + + + I12 (x) 18 63 35 35 35  10  Z x 20x8 64x6 256x4 9 2 x I1 (x) dx = − + + + I02 (x)+ 18 21 7 7  9  5x 160x7 384x5 1024x3 + + + + I0 (x)I1 (x)+ 9 21 7 7  10  x 80x8 96x6 512x4 1024x2 + − − − − I12 (x) 18 63 7 7 7   10 Z x 16x8 256x6 1024x4 x9 K02 (x) dx = − − − K02 (x)− 18 21 35 35  9  4x 128x7 1536x5 4096x3 − + + + K0 (x)K1 (x)− 9 21 35 35   10 64x8 384x6 2048x4 4096x2 x + + + + K12 (x) − 18 63 35 35 35  10  Z x 20x8 64x6 256x4 9 2 x K1 (x) dx = − + + + K02 (x)− 18 21 7 7  9  5x 160x7 384x5 1024x3 + + + K0 (x)K1 (x)+ − 9 21 7 7  10  x 80x8 96x6 512x4 1024x2 − − − − + K12 (x) 18 63 7 7 7 

Let

Z

xm · J02 (x) dx = Am (x) · J02 (x) + Bm (x) · J0 (x) · J1 (x) + Cm (x) · J12 (x) ,

Z

xm · J12 (x) dx = Dm (x) · J02 (x) + Em (x) · J0 (x) · J1 (x) + Fm (x) · J12 (x) ,

Z Z and

Z Z

then holds

∗ ∗ xm · I02 (x) dx = A∗m (x) · I02 (x) + Bm (x) · I0 (x) · I1 (x) + Cm (x) · I12 (x) , ∗ ∗ ∗ xm · I12 (x) dx = Dm (x) · I02 (x) + Em (x) · I0 (x) · I1 (x) + Fm (x) · I12 (x)

∗ ∗ xm · K02 (x) dx = A∗m (x) · K02 (x) − Bm (x) · K0 (x) · K1 (x) + Cm (x) · K12 (x) , ∗ ∗ ∗ xm · K12 (x) dx = Dm (x) · K02 (x) − Em (x) · K0 (x) · K1 (x) + Fm (x) · K12 (x) ,

1 12 100 10 4000 8 12800 6 51200 4 x + x − x + x − x 22 99 231 77 77 5 11 1000 9 32000 7 76800 5 204800 3 B11 = x − x + x − x + x 11 99 231 77 77 1 12 125 10 16000 8 19200 6 102400 4 204800 2 x − x + x − x + x − x C11 = 22 99 693 77 77 77 1 12 40 10 1600 8 15360 6 61440 4 D11 = x − x + x − x + x 22 33 77 77 77 6 400 9 12800 7 92160 5 245760 3 E11 = − x11 + x − x + x − x 11 33 77 77 77 1 12 50 10 6400 8 23040 6 122880 4 245760 2 F11 = x + x − x + x − x + x 22 33 231 77 77 77 1 12 100 10 4000 8 12800 6 51200 4 A∗11 = x − x − x − x − x 22 99 231 77 77 A11 =

202

5 11 1000 9 32000 7 76800 5 204800 3 x + x + x + x + x 11 99 231 77 77 125 10 16000 8 19200 6 102400 4 204800 2 1 ∗ x − x − x − x − x C11 = − x12 − 22 99 693 77 77 77 1 40 10 1600 8 15360 6 61440 4 ∗ D11 = − x12 − x − x − x − x 22 33 77 77 77 6 11 400 9 12800 7 92160 5 245760 3 ∗ E11 = x + x + x + x + x 11 33 77 77 77 1 12 50 10 6400 8 23040 6 122880 4 245760 2 ∗ F11 = x − x − x − x − x − x 22 33 231 77 77 77 ∗ B11 =

A13 =

1 14 180 12 4800 10 576000 8 5529600 6 22118400 4 x + x − x + x − x + x 26 143 143 1001 1001 1001

6 13 2160 11 48000 9 4608000 7 33177600 5 88473600 3 x − x + x − x + x − x 13 143 143 1001 1001 1001 1 14 216 12 6000 10 768000 8 8294400 6 44236800 4 88473600 2 C13 = x − x + x − x + x − x + x 26 143 143 1001 1001 1001 1001 1 14 210 12 5600 10 96000 8 921600 6 3686400 4 x − x + x − x + x − x D13 = 26 143 143 143 143 143 7 2520 11 56000 9 768000 7 5529600 5 14745600 3 E13 = − x13 + x − x + x − x + x 13 143 143 143 143 143 1 14 252 12 7000 10 128000 8 1382400 6 7372800 4 14745600 2 x + x − x + x − x + x − x F13 = 26 143 143 143 143 143 143 1 14 180 12 4800 10 576000 8 5529600 6 22118400 4 A∗13 = x − x − x − x − x − x 26 143 143 1001 1001 1001 6 13 2160 11 48000 9 4608000 7 33177600 5 88473600 3 ∗ B13 = x + x + x + x + x + x 13 143 143 1001 1001 1001 216 12 6000 10 768000 8 8294400 6 44236800 4 88473600 2 1 ∗ x − x − x − x − x − x C13 = − x14 − 26 143 143 1001 1001 1001 1001 1 210 12 5600 10 96000 8 921600 6 3686400 4 ∗ D13 = − x14 − x − x − x − x − x 26 143 143 143 143 143 7 13 2520 11 56000 9 768000 7 5529600 5 14745600 3 ∗ x + x + x + x + x + x E13 = 13 143 143 143 143 143 1 14 252 12 7000 10 128000 8 1382400 6 7372800 4 14745600 2 ∗ F13 = x − x − x − x − x − x − x 26 143 143 143 143 143 143 B13 =

A15 = B15 = C15 =

1 16 98 14 8232 12 219520 10 3763200 8 36126720 6 144506880 4 x + x − x + x − x + x − x 30 65 143 143 143 143 143

7 15 1372 13 98784 11 2195200 9 30105600 7 216760320 5 578027520 3 x − x + x − x + x − x + x 15 65 143 143 143 143 143

x16 343 14 49392 12 274400 10 5017600 8 54190080 6 289013760 4 578027520 2 − x + x − x + x − x + x − x 30 195 715 143 143 143 143 143

x16 112 14 9408 12 250880 10 4300800 8 41287680 6 165150720 4 − x + x − x + x − x + x 30 65 143 143 143 143 143 8 1568 13 112896 11 2508800 9 34406400 7 247726080 5 660602880 3 = − x15 + x − x + x − x + x − x 15 65 143 143 143 143 143 D15 =

E15 F15 =

x16 392 14 56448 12 313600 10 5734400 8 61931520 6 330301440 4 660602880 2 + x − x + x − x + x − x + x 30 195 715 143 143 143 143 143 A∗15 =

x16 98 14 8232 12 219520 10 3763200 8 36126720 6 144506880 4 − x − x − x − x − x − x 30 65 143 143 143 143 143 203

∗ B15 = ∗ C15 =−

7 15 1372 13 98784 11 2195200 9 30105600 7 216760320 5 578027520 3 x + x + x + x + x + x + x 15 65 143 143 143 143 143

x16 343 14 49392 12 274400 10 5017600 8 54190080 6 289013760 4 578027520 2 − x − x − x − x − x − x − x 30 195 715 143 143 143 143 143

x16 112 14 9408 12 250880 10 4300800 8 41287680 6 165150720 4 − x − x − x − x − x − x 30 65 143 143 143 143 143 8 15 1568 13 112896 11 2508800 9 34406400 7 247726080 5 660602880 3 x + x + x + x + x + x + x = 15 65 143 143 143 143 143

∗ D15 =− ∗ E15 ∗ F15 =

x16 392 14 56448 12 313600 10 5734400 8 61931520 6 330301440 4 660602880 2 − x − x − x − x − x − x − x 30 195 715 143 143 143 143 143

Recurrence Formulas: Z Z x2n  2 2n3 x2n+1 J02 (x) dx = (x + 2n2 )J02 (x) + x2 J12 (x) + 2nx J0 (x)J1 (x) − x2n−1 J02 (x) dx 4n + 2 2n + 1 Z x2n+1 J12 (x) dx = =

Z

=

  2n(n2 − 1) x2n  2 2 x J0 (x) + x2 + 2n(n + 1) J12 (x) − 2(n + 1)xJ0 (x)J1 (x) − 4n + 2 2n + 1

Z

x2n  2 2n3 = (x − 2n2 )I02 (x) − x2 I12 (x) + 2nx I0 (x)I1 (x) + 4n + 2 2n + 1 Z x2n+1 I12 (x) dx =

Z

x2n+1 I02 (x) dx

  2n(n2 − 1) x2n  2 2 −x I0 (x) + x2 − 2n(n + 1) I12 (x) + 2(n + 1)xI0 (x)I1 (x) + 4n + 2 2n + 1

x2n−1 J12 (x) dx

x2n−1 I02 (x) dx

Z

x2n  2 2n3 (x − 2n2 )K02 (x) − x2 K12 (x) − 2nx K0 (x)K1 (x) + 4n + 2 2n + 1 Z x2n+1 K12 (x) dx =

Z

  2n(n2 − 1) x2n  2 2 −x K0 (x) + x2 − 2n(n + 1) K12 (x) − 2(n + 1)xK0 (x)K1 (x) + = 4n + 2 2n + 1

Z

Z

x2n+1 K02 (x) dx =

204

x2n−1 I12 (x) dx

x2n−1 K02 (x) dx

x2n−1 K12 (x) dx

2.1.2. Integrals of the type

R

x−2n Zν2 (x) dx

See also [4], 1.8.3. Concerning the case x+2n Zν2 (x) see 2.1.3., p. 208 . (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν (x), p = 1, 2.   Z 2 1 J0 (x) dx = − 2x + J02 (x) + 2 J0 (x) J1 (x) − 2x J12 (x) x2 x   Z 2 1 I0 (x) dx = 2x − I 2 (x) − 2 I0 (x) I1 (x) − 2x I12 (x) x2 x 0   Z 1 K02 (x) dx = 2x − K02 (x) + 2 K0 (x) K1 (x) − 2x K12 (x) x2 x   Z 2 2x 2 2x 1 2 J1 (x) dx = J (x) − J0 (x) J1 (x) + − J12 (x) x2 3 0 3 3 3x   Z 2 2x 2 2 2x 1 I1 (x) dx = I (x) − I0 (x) I1 (x) − + I12 (x) x2 3 0 3 3 3x   Z 2x 2 2 2x 1 K12 (x) dx = K (x) + K (x) K (x) − + K12 (x) 0 1 x2 3 0 3 3 3x Z 2 1 1 1 J0 (x) dx = (16 x4 + 6 x2 − 9) J02 (x) + (−16 x2 + 6) J0 (x) J1 (x) + (16 x2 − 2) J12 (x) x4 27x3 27x2 27x Z 2 1 1 1 I0 (x) dx = (16 x4 − 6 x2 − 9) I02 (x) − (16 x2 + 6) I0 (x) I1 (x) − (16 x2 + 2) I12 (x) 4 3 2 x 27x 27x 27x Z K02 (x) 1 1 1 (16 x2 + 2) K12 (x) dx = (16 x4 − 6 x2 − 9) K02 (x) + (16 x2 + 6) K0 (x) K1 (x) − x4 27x3 27x2 27x Z 2 J1 (x) −16 x2 − 6 2 16 x2 − 6 −16 x4 + 2 x2 − 9 2 dx = J (x) + J (x) J (x) + J1 (x) 0 1 0 x4 45x 45x2 45x3 Z 2 16 x2 − 6 2 16 x2 + 6 16 x4 + 2 x2 + 9 2 I1 (x) dx = I (x) − I (x) I (x) − I1 (x) 0 1 0 x4 45x 45x2 45x3 Z 16 x2 − 6 2 16 x2 + 6 16 x4 + 2 x2 + 9 2 K12 (x) dx = K0 (x) + K0 (x) K1 (x) − K1 (x) 4 2 x 45x 45x 45x3 Z 2 −256 x6 − 96 x4 + 90 x2 − 675 2 256 x4 − 96 x2 + 270 J0 (x) dx = J (x) + J0 (x) J1 (x)+ 0 x6 3375x5 3375x4 + Z

−256 x4 + 32 x2 − 54 2 J1 (x) 3375x3

256 x6 − 96 x4 − 90 x2 − 675 2 256 x4 + 96 x2 + 270 I02 (x) dx = I (x) − I0 (x) I1 (x)− 0 x6 3375x5 3375x4 −

Z

256 x4 + 32 x2 + 54 2 I1 (x) 3375x3

K02 (x) 256 x6 − 96 x4 − 90 x2 − 675 2 256 x4 + 96 x2 + 270 dx = K0 (x) + K0 (x) K1 (x)− 6 5 x 3375x 3375x4 −

256 x4 + 32 x2 + 54 2 K1 (x) 3375x3

 2 J12 (x) 1 x (256 x4 + 96 x2 − 90) J02 (x) + x(−256 x4 + 96 x2 − 270) J0 (x) J1 (x)+ dx = 6 5 x 4725x  +(256 x6 − 32 x4 + 54 x2 − 675) J12 (x)

Z

Z

 2 I12 (x) 1 dx = x (256 x4 − 96 x2 − 90) I02 (x) − x(256 x4 + 96 x2 + 270) I0 (x) I1 (x)− 6 5 x 4725x 205

 −(256 x6 + 32 x4 + 54 x2 + 675) I12 (x) Z

 2 1 K12 (x) dx = x (256 x4 − 96 x2 − 90) K02 (x) + x(256 x4 + 96 x2 + 270) K0 (x) K1 (x)− 6 5 x 4725x  −(256 x6 + 32 x4 + 54 x2 + 675) K12 (x) Z 2  1 J0 (x) dx = (2048 x8 + 768 x6 − 720 x4 + 3150 x2 − 55125) J02 (x)+ 8 7 x 385875x

 +x(−2048 x6 + 768 x4 − 2160 x2 + 15750) J0 (x) J1 (x) + x2 (2048 x6 − 256 x4 + 432 x2 − 2250) J12 (x) Z 2  1 I0 (x) dx = (2048 x8 − 768 x6 − 720 x4 − 3150 x2 − 55125) I02 (x)− 8 7 x 385875x  −x(2048 x6 + 768 x4 + 2160 x2 + 15750) I0 (x) I1 (x) − x2 (2048 x6 + 256 x4 + 432 x2 + 2250) I12 (x) Z  K02 (x) 1 dx = (2048 x8 − 768 x6 − 720 x4 − 3150 x2 − 55125) K02 (x)+ x8 385875x7  +x(2048 x6 + 768 x4 + 2160 x2 + 15750) K0 (x) K1 (x) − x2 (2048 x6 + 256 x4 + 432 x2 + 2250) K12 (x) Z 2  2 1 J1 (x) dx = x (−2048 x6 − 768 x4 + 720 x2 − 3150) J02 (x)+ 8 7 x 496125x  +x(2048 x6 − 768 x4 + 2160 x2 − 15750) J0 (x) J1 (x) + (−2048 x8 + 256 x6 − 432 x4 + 2250 x2 − 55125) J12 (x) Z 2  2 1 I1 (x) dx = x (2048 x6 − 768 x4 − 720 x2 − 3150) I02 (x)− 8 7 x 496125x  −x(2048 x6 + 768 x4 + 2160 x2 + 15750) I0 (x) I1 (x) − (2048 x8 + 256 x6 + 432 x4 + 2250 x2 + 55125) I12 (x) Z  2 1 K12 (x) dx = x (2048 x6 − 768 x4 − 720 x2 − 3150) K02 (x)+ x8 496125x7  +x(2048 x6 + 768 x4 + 2160 x2 + 15750) K0 (x) K1 (x) − (2048 x8 + 256 x6 + 432 x4 + 2250 x2 + 55125) K12 (x) Z 2  J0 (x) 1 dx = (−65536 x10 − 24576 x8 + 23040 x6 − 100800 x4 + 992250 x2 − 31255875) J02 (x)+ 10 9 x 281302875x +x(65536 x8 − 24576 x6 + 69120 x4 − 504000 x2 + 6945750) J0 (x) J1 (x)+  +x2 (−65536 x8 + 8192 x6 − 13824 x4 + 72000 x2 − 771750) J12 (x) Z

 1 I02 (x) dx = (65536 x10 − 24576 x8 − 23040 x6 − 100800 x4 − 992250 x2 − 31255875) I02 (x)− x10 281302875x9 −x(65536 x8 + 24576 x6 + 69120 x4 + 504000 x2 + 6945750) I0 (x) I1 (x)−  −x2 (65536 x8 + 8192 x6 + 13824 x4 + 72000 x2 + 771750) I12 (x)

Z

 1 K02 (x) dx = (65536 x10 − 24576 x8 − 23040 x6 − 100800 x4 − 992250 x2 − 31255875) K02 (x)+ 10 9 x 281302875x +x(65536 x8 + 24576 x6 + 69120 x4 + 504000 x2 + 6945750) K0 (x) K1 (x)−  −x2 (65536 x8 + 8192 x6 + 13824 x4 + 72000 x2 + 771750) K12 (x) Z

 2 J12 (x) 1 dx = x (65536 x8 + 24576 x6 − 23040 x4 + 100800 x2 − 992250) J02 (x)+ 10 9 x 343814625x +x(−65536 x8 + 24576 x6 − 69120 x4 + 504000 x2 − 6945750) J0 (x) J1 (x)+  +(65536 x10 − 8192 x8 + 13824 x6 − 72000 x4 + 771750 x2 − 31255875) J12 (x)

Z

 2 I12 (x) 1 dx = x (65536 x8 − 24576 x6 − 23040 x4 − 100800 x2 − 992250) I02 (x)− 10 9 x 343814625x −x(65536 x8 + 24576 x6 + 69120 x4 + 504000 x2 + 6945750) I0 (x) I1 (x)−  −(65536 x10 + 8192 x8 + 13824 x6 + 72000 x4 + 771750 x2 − 31255875) I12 (x) 206

Z

 2 1 K12 (x) dx = x (65536 x8 − 24576 x6 − 23040 x4 − 100800 x2 − 992250) K02 (x)+ 10 9 x 343814625x +x(65536 x8 + 24576 x6 + 69120 x4 + 504000 x2 + 6945750) K0 (x) K1 (x)−  −(65536 x10 + 8192 x8 + 13824 x6 + 72000 x4 + 771750 x2 − 31255875) K12 (x)

Recurrence formulas: Z

J02 (x) dx = (2n + 1)−3 · x2n+2

 Z −[2x2 + (2n + 1)2 ] J02 (x) + (4n + 2)xJ0 (x)J1 (x) − 2x2 J12 (x) J02 (x) − 8n dx · x2n+1 x2n Z 2 I0 (x) dx = (2n + 1)−3 · x2n+2   2 Z 2 I0 (x) [2x − (2n + 1)2 ] I02 (x) − (4n + 2)xI0 (x)I1 (x) − 2x2 I12 (x) + 8n dx · x2n+1 x2n Z K02 (x) dx = (2n + 1)−3 · x2n+2   2 Z K02 (x) [2x − (2n + 1)2 ] K02 (x) + (4n + 2)xK0 (x)K1 (x) − 2x2 K12 (x) + 8n dx · x2n+1 x2n Z J12 (x) 1 dx = − · x2n+2 (2n + 3)(2n + 1)(2n − 1)   2 2 Z J12 (x) 2x J0 (x) + (4n − 2)xJ0 (x)J1 (x) + (4n2 − 1 + 2x2 ) J12 (x) + 8n dx · x2n+1 x2n Z 2 I1 (x) 1 dx = − · 2n+2 x (2n + 3)(2n + 1)(2n − 1)  2 2  Z 2 2x I0 (x) + (4n − 2)xI0 (x)I1 (x) + (4n2 − 1 − 2x2 ) I12 (x) I1 (x) · − 8n dx x2n+1 x2n Z K12 (x) 1 dx = − · x2n+2 (2n + 3)(2n + 1)(2n − 1)  2 2  Z 2x K0 (x) − (4n − 2)xK0 (x)K1 (x) + (4n2 − 1 − 2x2 ) K12 (x) K12 (x) · − 8n dx x2n+1 x2n 

207

2.1.3. Integrals of the type

R

x2n Zν2 (x) dx

a) The functions Θ(x) and Ω(x): From Hankel’s asymptotic expansion of Jν (x) and Yν (x) (see [1], 9.2, or [5], XIII. A. 4) and such of R Hν (x) follows, that no finite representations of the integrals Zν2 (x) dx by functions of the type A(x) J02 (x) + B(x) J0 (x) J1 (x) + C(x) J12 (x) + [D(x) J0 (x) + E(x) J1 (x)] Φ(x) + F (x) Φ 2 (x) with A(x)

n X

=

ai x i , . . . ,

i=−m

can be expected. Indeed, one has lim

x→+∞

1 ln x

x

Z

Jν2 (t) dt

0

=

1 π

and this contradicts the upper statement. At least should be given some other representations or approximations. x

Z

J02 (t) dt = 2

Θ(x) = 0

Z Ω(x) = 0

∞ X (−1)k · (2k)!  x 2k+1 · , (2k + 1) · (k!)4 2

k=0 x

I02 (t) dt = 2

∞ X k=0

 x 2k+1 (2k)! . · (2k + 1) · (k!)4 2

. 1.8.....Θ(x) . . . ... . . . . . . .... . . . . . . ... . . . . . . . ... . . . . . . . ... . . . . . . .... . . . . . . ... . . . . . . . ... . . . ............................................................. .. ... .. .. .. .. .. . .. .. ... .............. ... . ........................................ . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . ... . .. .. .. .. . .. ................................. .. .. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.6.. .. .. .. ...... .. ... .. .. . .. . .. . . . . . . . . . ... . . ........................ . . . . . . . .. .. .. . . . .. . . . . ... . . . . .. . . ... . . ... ... .. ... .. .......... .. .. .. .. .. ... .. .. . ... . . . . . . ...... . . . . . . ... . . . . .. . . . . . . .... . . . . . . . . . . .. . . . . . . . . . . . .. . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4.. .. ....... .. .. .. .. .. .. .... .. .. .. ... .. ... ... . . ... .. .. ... ........ .. .. .. .... .. .. .. .. .. ... ... ... . .. . . . . . . .. . . . . . . .. . . . . . . . . . . . . .. . .. . .. . . 1.2..... . . . . . . . ... . . . .......... .... . . . . ... . ... . . . . . . . .. . .... . . . . ... . . . . . . ...... . . . . . . .. . . . .... . . . .. . . . . . . . .... . . . . . . ... ... .. ................. .. .. ... .... .. .. .. ... .. ... ... .. . ... ....... .. . . . . . . . . .. . . . . . . . ... . . . . . . . . .. .. .. .. .. .. .. .. .. . .. .. . . . . . . . . . . . . 1.0.... . . . . .. . . ... ... . . . . . .... . . . . ... . ... . . . . . . . .. . .... . . . . ... . . . . . . ...... . . . . . . .. . . . ... . . . .. . . . . . . . .... . . . . . . ... . ... . . . . . .. . . .. . . .. .. .. .. .. .. .. .. ... ... .. ... .. ... .. .. .. ... . .. .. ..... . ... .. . . . . . . . . . . ... .. . . . .. .. . . . . . ... . . . . .. . .. . . . . . . . .. . ... . . . . .. . . . . . . .... . . . . . . .. . . . ... . . . .. . . . . . . . ... . . . . . . ... . . . . . .. .. .. .. .. ... 0.8... . ... ... .. ... .. .. ... .. .. ... .. .. .. .. .. .... .. .. .. .. ... .. .. ... .. . . . . . . .. . . .. . . . . ... . ... . . . . . . . .. .. .. .. .. .. .. .. .. . .. . ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . 0.6.. . .. .. .. .. .. .. .. .. .... ... . . .. . .. .. . . . .. . . . . . . . . . . .. .... . .. .. .. .. ... . .. . . . .. . . . . . ... .. ... .... . . . . . .. ... . . . . . ... . . . . .... . ... . . . . . . . .. . .... . . . . ... . . . . . . ...... . . . . . . .. . . . .... . . . .. . . . . . . . ..... . . . . . . ... 0.4... . .. . .. .. . .. .. .. ... .. .. .. ... .. .. ... .. . . .. ... .. .. .. .. .. .. ..... .. ... . . .. . .. .. . . . .. .. .. .. .. .. . .. .. .. ... . .. .. .. .. ... ... . . . ... . . . . . . . .. ... . . . . . ... . . . . ... . .. . . . . . . . . . .... . . . . .. . . . . . . ..... . . . . . . . . . . ... . . . . . . . . . . . ... . . . . . . ... . 0.2.. . . . . . . . . . . . . . .... .. .. .. .. . .. .. .. .... .. .. .. .. .. .. . ..... .. .. .. .. .. .. .... .. .. .. . .. .... . .. . . . . . . . ....... ......................................................................................................................................................................................................................................................................................................................................................x 2 4 6 8 10 12 14 16 18 20 Figure 6 : Function Θ (x) The dashed lines are located in the zeros of J0 (x).

208

If Θ(x) is computed by its series expansion with floating point numbers with n decimal digits, then the rounding error is (roughly spoken) about 10−n · Ω(x). The computation of Ω(x) does not cause problems. x 1 2 3 4 5 6 7 8 9 10

Θ(x) 0.850 1.132 1.153 1.286 1.386 1.396 1.460 1.527 1.534 1.571

894 017 502 956 983 339 064 171 810 266

480 958 059 020 380 284 224 173 723 461

Ω(x)

x

1.186 711 080 4.122 544 686 16.143 998 37 77.509 947 74 425.031 292 0 2 509.864 255 15 483.965 76 98 307.748 55 637 083.688 6 4 193 041.1057

11 12 13 14 15 16 17 18 19 20

Θ(x) 1.623 1.631 1.653 1.696 1.706 1.719 1.755 1.767 1.774 1.804

Ω(x)

448 897 795 509 616 735 251 226 861 335

675 146 366 451 878 792 443 854 457 251

27 934 437.937 187 937 123.616 1 274 682 776.62 8 704 524 383.83 59 786 647 515.3 412 698 941 831. 2 861 234 688 170 19 912 983 676 244 139 056 981 172 080 974 012 122 207 867

Differential equations: 2xΘ000 · Θ0 − 2Θ00 · Θ0 − xΘ002 + 4xΘ02 = 0 2xΩ000 · Ω0 − 2Ω00 · Ω0 − xΩ002 − 4xΩ02 = 0 Approximation by Chebyshev polynomials: From [2], table 9.1., follows, that in the case −8 ≤ x ≤ 8 holds Θ(x)



23 X

ck T2k+1

x

k=0

k 0 1 2 3 4 5 6 7 8 9 10 11

ck 1.80296 -0.41322 0.21926 -0.12660 0.08920 -0.08107 0.05544 -0.02523 0.00802 -0.00188 0.00034 -0.00004

30053 52443 25129 62713 60707 02495 00433 73073 84592 87924 34505 99025

02073 66465 41565 07010 21441 61597 79678 64048 74213 36267 49931 73931

k 59034 65056 79685 86382 83736 55273 61623 13366 97781 70784 43439 36611

12 13 14 15 16 17 18 19 20 21 22 23

8

.

(∗)

ck 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

59437 05921 00501 00036 00002 00000 00000 00000 00000 00000 00000 00000

33032 36076 50462 59712 32718 13019 00646 00028 00001 00000 00000 00000

29013 87261 51669 13919 06621 50604 15991 65553 14279 04122 00135 00004

This approximation differs from Θ(x) as shown in the following figure: .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 · 10−20 .... ... ...... .. .... ... .... ....... . ... ... .... ....... .. ... ....... .... ............. .... . . . . . . . . 10−20 .... . ... . . ...... . . . . . . . . . ... . .... . . . . . . . . . . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . .... . . . . . ... ..... . . . . . . . .............. .. ... ... . ... . .... .. . ... ... ... .. . .... ... ... ... .. ..... .. . .. .... .... .. .. . . . . . . ... ... ... . ... ... ... . ...... .. .... ... ..... .... .... .. .. .. ........... ... ... ... ... . . . . . ...... . . . . . . .................................................................................................................................................................................................................................................................................................................................................................................................................. . . . . . ... 1 . . . .. . . . . .... . . . ... . 7 .. . ... ... 8... ... ....5 ......... 2... 4 .. 6 ... ... . .. .. .. ............ .. 3 . . .... ... .. . . . . . . ... ... ... ... .. ... ... ... ... .. .... . . . . . . . . ..... ... .. ... . ... ... . ... . . . .... . ... . ... . ... .... .... . .. .. . . . . . . . . . −10−20 .... . . . . . . . . . ............ . . . . . . . . . . ..... . ..... . . . . . . . . . . . .............. . . . . . . . . . . . . . . . . . . . . . . . . ........... . . . . . . . . . ..... ... . . .... ........ ..... ... ... ... .... ... .... ... .... .. . . −2 · 10−20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .. .. .. .. .. .. 209

Asymptotic series of Θ(x) for x → +∞ : Θ(x)



1 [ln 8x + C + A(x) cos 2x + B(x) sin 2x + C(x)] π

with Euler’s constant C = 0.577 215 664 901 533 ... and A(x) = −

1 6747 1796265 3447866835 2611501938675 5739627264576975 29 − + − + − + + 2x 64x3 4096x5 131072x7 16777216x9 536870912x11 34359738368x13

8634220069330080225 136326392392790108383875 341752571613441977621007375 − + − ... , 1099511627776x15 281474976710656x17 9007199254740992x19 195 71505 26103735 63761381145 58671892003725 151798966421827725 3 B(x) = − 2 + − + − + − + 8x 256x4 16384x6 524288x8 67108864x10 2147483648x12 137438953472x14 262762002151603329375 4692430263630584633783625 13126880101429581600348860625 + − + − ... , 4398046511104x16 1125899906842624x18 36028797018963968x20 1 27 375 385875 11252115 8320313925 C(x) = − + − + − − 2 4 6 8 10 16x 512x 2048x 262144x 524288x 16777216x12 1119167124075 26440323306271875 1603719856835971875 3959969219293655192625 + − + − + ... . 67108864x14 34359738368x16 34359738368x18 1099511627776x20 The asymptotic series +

A(x) =

∞ X k=1

ak x2k−1

,

B(x) =

∞ X bk , x2k

k=1

C(x) =

∞ X ck x2k

k=0

begin with k 1 2 3 4 5 6 7 8 9 10

ak -0.500 000 000 000 000 0.453 125 000 000 000 -1.647 216 796 875 000 13.704 414 367 675 78 -205.508 877 933 025 4 4 864.301 418 280 229 -167 045.138 793 094 5 7 852 777.406 997 193 -484 328 639.035 390 4 37 942 157 373.010 10

bk

ck

-0.375 000 000 000 000 0.761 718 750 000 000 -4.364 318 847 656 250 49.788 923 263 549 80 -950.118 618 384 003 6 27 321.228 759 235 24 -1 104 482.845 562 072 59 745 162.196 032 50 -4 167 715 296.104 454 364 344 113 252.523 3

0.062 500 000 000 000 -0.052 734 375 000 000 0.183 105 468 750 000 -1.471 996 307 373 047 21.461 706 161 499 02 -495.929 355 919 361 1 16 676.889 718 696 48 -769 514.686 726 961 4 46 674 390.813 451 37 -3 601 571 024.131 458

Let xk denote the k-th positive zero of J0 (x), then holds   1 331 7 987 753 375 246 293 295 5 Θ(xk ) ∼ − . . . = ln xk + 4 2 − 9 4 + 11 6 − 14 8 + π 2 · xk 2 · xk 2 · xk 2 · xk 218 · x10 k   1 0.312 500 0.646 484 3.899 902 45.982 36 939.5344 = ln xk + − + − + − ... . π x2k x4k x6k x8k x10 k Simple approximation: Θ(x) ≈ (ln 8x + C)/π: .. 0.050 ..... . . . . . . . . . . .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .. ... .. . . . . . . . . . .... . . ...... . . . . . . . . . . . . . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 0.025 ... . .... ........ ... ... ................ .... .. .... .. 3 . ..1 . ... .....9 .......... ............ ................... x ....7 . . . . 5 . . . . . . . . . . ...................................................................................................................................................................................................... ....................................................11 ...............................................13 ................ ...................................15 ................................... . . . . . . . . . . . . . . . . ... . .... . .. . . . . ................. ..... ...................... ... .. ... ........ . ..... . . . . . . . . . . . ....................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............... -0.025 .... .... .... .. ... .. . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.050 ... ... ... .. .. ln 8x + C .... . .... . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . π. . . . . .−. .Θ(x) .............................. -0.075 .... ... ... .... ....... . -0.100 .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Figure 7 Let

" # n X 1 ak x cos 2x + bk sin 2x + ck ln 8x + C + − Θ(x) ∆n (x) = π x2k k=1

with ∆0 (x) = (ln 8x + C)/π. In the following table are given some first consecutive maxima and minima ∆∗n,k of the differences ∆n (x) ∆∗n,k = ∆n (xn,k ) . Values

xn,1 , ∆∗n,1

xn,2 , ∆∗n,2

xn,3 , ∆∗n,3

xn,4 , ∆∗n,4

xn,5 , ∆∗n,5

xn,6 , ∆∗n,6

xn,7 , ∆∗n,7

x

1.6216

3.1847

4.7356

6.3043

7.8688

9.4386

11.0064

∆0 (x)

-8.886E-02

4.536E-02

-3.347E-02

2.432E-02

-2.031E-02

1.651E-02

-1.454E-02

x

1.5839

3.1735

4.7253

6.2993

7.8633

9.4353

11.0027

∆1 (x)

2.104E-02

-3.483E-03

1.237E-03

-5.267E-04

2.863E-04

-1.638E-04

1.066E-04

x

1.5694

3.1664

4.7195

6.2969

7.8602

9.4338

11.0007

∆2 (x)

-1.894E-02

1.007E-03

-1.756E-04

4.430E-05

-1.583E-05

6.405E-06

-3.092E-06

x

1.5650

3.1612

4.7160

6.2952

7.8583

9.4330

10.9995

∆3 (x)

3.978E-02

-6.484E-04

5.541E-05

-8.322E-06

1.965E-06

-5.644E-07

2.029E-07

x

1.5642

3.1574

4.7138

6.2939

7.8569

9.4324

10.9986

∆4 (x)

-1.578E-01

7.486E-04

-3.105E-05

2.773E-06

-4.335E-07

8.855E-08

-2.376E-08

x

1.5644

3.1545

4.7124

6.2928

7.8559

9.4319

10.9979

∆5 (x)

1.041E+00

-1.376E-03

2.730E-05

-1.444E-06

1.494E-07

-2.172E-08

4.352E-09

x

1.5649

3.1523

4.7115

6.2918

7.8551

9.4314

10.9973

∆6 (x)

-1.045E+01

3.722E-03

-3.486E-05

1.085E-06

-7.420E-08

7.673E-09

-1.149E-09

x

1.5655

3.1507

4.7110

6.2909

7.8545

9.4310

10.9968

∆7 (x)

1.493E+02

-1.403E-02

6.123E-05

-1.115E-06

5.025E-08

-3.692E-09

4.132E-10

x

1.5660

3.1494

4.7107

6.2902

7.8540

9.4305

10.9964

∆8 (x)

-2.891E+03

7.055E-02

-1.421E-04

1.506E-06

-4.457E-08

2.324E-09

-1.942E-10

x

1.5664

3.1483

4.7105

6.2895

7.8537

9.4302

10.9961

∆9 (x)

7.303E+04

-4.582E-01

4.224E-04

-2.590E-06

5.022E-08

-1.854E-09

1.156E-10

If x > 8, then |∆n (x)| is restricted by |∆n (x)| ≤ |∆∗n,5 |. More accurate: n

0

1

2

3

4

|∆n (x)|
γx >> 1 one has e(1+γ)x Ω0 (x; γ) ≈ . √ 2π γ(1 + γ)x



Let Θ0 (x; γ) be computed with n decimal signs, then in the case x > γx >> 1 the loss of significant digits can be expected. Only about e(1+γ)x n − lg √ 2π γ(1 + γ)x significant digits are left. The upper integral with primary parameters:  2  Z x ∞ X (−1)k α + β2 2 2 k J0 (αs) · J0 (βs) ds = · (α − β ) · P x2k+1 k 2 · 4k · (2k + 1) 2 − β2 (k!) α 0 k=0

277

Asymptotic series for x > γx >> 1: 2 1 K(γ) + √ π π γx

Θ0 (x; γ) ∼

+

"

1 8πγ 3/2 x2

γ 2 − 10 γ + 1 2

(1 − γ)



 sin(1 − γ)x cos(γ + 1)x − + 1−γ γ+1

cos(1 − γ)x −

γ 2 + 10 γ + 1 2

(γ + 1)

# sin(γ + 1)x +

 4  9 γ + 52 γ 3 + 342 γ 2 + 52 γ + 9 9 γ 4 − 52 γ 3 + 342 γ 2 − 52 γ + 9 1 cos(γ + 1)x − sin(1 − γ)x + + (γ + 1)3 (1 − γ)3 128πγ 5/2 x3  3 25 γ 6 + 150 γ 5 + 503 γ 4 + 2804 γ 3 + 503 γ 2 + 150 γ + 25 sin(γ + 1)x− + (γ + 1)4 1024πγ 7/2 x4  25 γ 6 − 150 γ 5 + 503 γ 4 − 2804 γ 3 + 503 γ 2 − 150 γ + 25 − cos(1 − γ)x + ... , (1 − γ)4 where K denotes the complete elliptic integral of the first kind, see [1] or [5]. Particulary follows 2 lim Θ0 (x; γ) = K(γ) . x→∞ π Some values of this limit: γ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.00 1.0000 1.0025 1.0102 1.0237 1.0441 1.0732 1.1146 1.1750 1.2702 1.4518

0.01 1.0000 1.0030 1.0113 1.0254 1.0465 1.0767 1.1196 1.1826 1.2830 1.4810

0.02 1.0001 1.0036 1.0124 1.0272 1.0491 1.0803 1.1248 1.1905 1.2965 1.5139

0.03 1.0002 1.0043 1.0136 1.0290 1.0518 1.0841 1.1302 1.1988 1.3110 1.5517

0.04 1.0004 1.0050 1.0149 1.0309 1.0545 1.0880 1.1359 1.2074 1.3265 1.5959

0.05 1.0006 1.0057 1.0162 1.0329 1.0574 1.0920 1.1417 1.2166 1.3432 1.6489

0.06 1.0009 1.0065 1.0176 1.0350 1.0603 1.0962 1.1479 1.2262 1.3613 1.7145

0.07 1.0012 1.0073 1.0190 1.0371 1.0634 1.1006 1.1542 1.2363 1.3809 1.8004

0.08 1.0016 1.0083 1.0205 1.0394 1.0665 1.1051 1.1609 1.2470 1.4023 1.9232

0.09 1.0020 1.0092 1.0221 1.0417 1.0698 1.1097 1.1678 1.2583 1.4258 2.1369

The following picture shows Θ0 (x; 1/2) (solid line), the asymptotic approximation with x−1 (long dashes) and with x−2 (short dashes): ............ . 0 (x; γ)... ........Θ .... .... ..... .... . .... ...... ... . . . . 1.4 ........ ........................ ...... . ............. . ... ..... . ....... .. . . ... ....... ... .... ...... . . ........... .... .... .... .... .... . . . ....................................................... . 1.2 ........ .. .. ........................ ............... .... .. .. ......... ........................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................ 1.0732.. .. . .......... . ........................................................... ...................................................................... 1.0 ......... .. .. . .... . .. .. .. .... . . .. .. 0.8 ......... ... .. .... .. .... . . .... .. . . . . . . 0.6 .. . .. .... .. . .... .. . .. . 0.4 ........ ... . .... .. . .... .. .. . .. .. 0.2 .......... .. ...... .. ...... ...........................................................................................3.........................................................................6.........................................................................9......................................................................12 .........................................................................15 ............. Figure 10 : Function Θ0 (x; γ) with γ = 0.5 278

........Θ0 (x; γ) .... .... . . ....................... ........ 1.4 ......... ......... ............. . . . . ... ..... ..... ..... . . . . . . . . . . . . . . . . . . . . . . ..... .... .... ..... ..... ..... . . ....... ..... .. .... ... ............. ... ..... .... .. .... .. . . . . . ................. ..... ..... . . . . ..... ..... ..... ..... ..... . ... ....... ..... .... ....... 1.2 ......... .......... . ...... ..... .............. .......... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . .. ... ..... .... .. .... ............................................. .............................. ............ ..... ..... ..... .......... ..... . ............ .......... . ........................................................................... . . . . . . .... ... . . . 1.0 ......... . ........ .............. ..... ....... .......... ......................... ........ .......... .......... ................. .... ... ..... .... . . . . . ......... . . .... ...... . . . . . . . . . . . .............. . . ................................................ γ = 1/4 ... 0.8 ......... ... .... .... .. .... .. . . . .......... .......... .......... γ = 1/3 . . 0.6 .. . .... .. .... .. . . . . ..... ..... ..... ..... ..... . γ = 2/3 0.4 ..... ... .... ... .... .. .. . . . . . . . . . . . . . . . . γ = 3/4 0.2 ....... ..... ...... 3 6 9 12 15 . ........................................................................................................................................................................................................................................................................................................................................................................................................ Figure 11 : Some Functions Θ0 (x; γ) Let Z x Z x I1 (s) · I1 (γs) ds . J1 (s) · J1 (γs) ds and Ω1 (x; γ) = Θ1 (x; γ) = 0

0

Power series: Θ1 (x; γ) =

∞ X k=0

(−1)k −1 · (1 − γ 2 )k+1 · Pk+1 (k!)2 · 4k+1 · (k + 1) · (2k + 3)

and Ω1 (x; γ) =

∞ X k=0

(1 − γ 2 )k+1 · P −1 (k!)2 · 4k+1 · (k + 1) · (2k + 3) k+1





1 + γ2 1 − γ2

1 + γ2 1 − γ2





x2k+3

x2k+3 ,

Pn−1

where (x) denotes the associated Legendre functions of the first kind. Their values may be found by the recurrence relation, starting with n = 0:       1 + γ2 2n + 1 1 + γ 2 1 + γ2 n − 1 −1 1 + γ 2 −1 −1 · · Pn P Pn+1 = − 1 − γ2 n + 2 1 − γ2 1 − γ2 n + 2 n−1 1 − γ 2 with P0−1



1 + γ2 1 − γ2

 =γ

P1−1

and



1 + γ2 1 − γ2

 =

γ . 1 − γ2

Some first terms of the power series: Θ1 (x; γ) = −

γ 3 γ 3 + γ 5 γ 5 + 3 γ 3 + γ 7 γ 7 + 6 γ 5 + 6 γ 3 + γ 9 γ 9 + 10 γ 7 + 20 γ 5 + 10 γ 3 + γ 11 x − x + x − x + x − 12 160 5376 331776 32440320

γ 11 + 15 γ 9 + 50 γ 7 + 50 γ 5 + 15 γ 3 + γ 13 γ 13 + 21 γ 11 + 105 γ 9 + 175 γ 7 + 105 γ 5 + 21 γ 3 + γ 15 x + x − 4600627200 891813888000 −

γ 15 + 28 γ 13 + 196 γ 11 + 490 γ 9 + 490 γ 7 + 196 γ 5 + 28 γ 3 + γ 17 x + 226401819033600

γ 17 + 36 γ 15 + 336 γ 13 + 1176 γ 11 + 1764 γ 9 + 1176 γ 7 + 336 γ 5 + 36 γ 3 + γ 19 x − ... 72874750220697600 In the case x > γx >> 1 one has once again +

Ω1 (x; γ)



e(1+γ)x . √ 2π γ(1 + γ)x 279

Asymptotic series for x > γx >> 1: Θ1 (x; γ) ∼

− +

1 128g 3 x3



1 8g x2

   1 1 cos(1 + γ)x sin(1 − γ)x 2 [ K(γ) − E(γ) ] + √ − − πγ π γ x 1+γ 1−γ 

 3γ 2 − 2γ + 3 3γ 2 + 2γ + 3 sin(1 + γ)x + cos(1 − γ)x + (1 + γ)2 (1 − γ)2

 15γ 4 + 108γ 3 − 70γ 2 + 108γ + 15 15γ 4 − 108γ 3 − 70γ 2 − 108γ + 15 cos(1 + γ)x − sin(1 − γ)x − (1 + γ)3 (1 − γ)3  3 35γ 6 + 210γ 5 + 909γ 4 − 580γ 3 + 909γ 2 + 210γ + 35 − sin(1 + γ)x+ 1024γ 3 x4 (1 + γ)4   35γ 6 − 210γ 5 + 909γ 4 + 580γ 3 + 909γ 2 − 210γ + 35 + cos(1 − γ)x + . . . (1 − γ)4

with the complete elliptic integrals of the first and second kind. Particulary follows 2 lim Θ1 (x; γ) = [K(γ) − E(γ)] . x→∞ πγ Some values of this limit: γ 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.0 0.0000 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300 0.0351 0.0401 0.0451 0.1 0.0502 0.0553 0.0603 0.0654 0.0705 0.0756 0.0808 0.0859 0.0911 0.0963 0.2 0.1015 0.1068 0.1121 0.1174 0.1227 0.1280 0.1334 0.1389 0.1443 0.1498 0.3 0.1554 0.1609 0.1666 0.1722 0.1780 0.1837 0.1895 0.1954 0.2013 0.2073 0.4 0.2134 0.2195 0.2257 0.2319 0.2382 0.2446 0.2511 0.2577 0.2643 0.2711 0.5 0.2779 0.2849 0.2919 0.2991 0.3064 0.3138 0.3214 0.3290 0.3369 0.3448 0.6 0.3530 0.3613 0.3698 0.3785 0.3873 0.3964 0.4058 0.4153 0.4252 0.4353 0.7 0.4457 0.4564 0.4674 0.4789 0.4907 0.5029 0.5157 0.5289 0.5427 0.5571 0.8 0.5721 0.5879 0.6046 0.6221 0.6407 0.6605 0.6816 0.7042 0.7287 0.7552 0.9 0.7844 0.8165 0.8525 0.8934 0.9407 0.9967 1.0654 1.1543 1.2803 1.4971 ... ........ Θ1 (x; γ) ... .... .... .. . . . . .... .. ... . . . .. . . . . ... . ... .... ..... ..... ..... . . . . . . . .. ............. . . . . . . . . . . ... .. . 0.6 ... . .... . . . . .. .... . .. . ... ..... ..... ..... . . . . . . . . . ... . . . . . . . . . . . . . . . . . ... . . . . . ..... .. ... .... ......... .... .. ... ... . .. .. ... . . . . . . . . . . . .. . . . . . . . . . . .. . ... ..... ... ... . .. ..... ..... ..... ..... .... . .. .......... .. 0.4 ........ ..... . . . .... .... . ... .... . ... .... . .. .... .. ... . . . . . .. . . ... ..... ..... ..... ..... ..... ... . ..... . . . . . . . . ... .... . . .. .............................. ..... . . . . . . . . . . . . . . . . . . . . . . ..... ...... .. ....... . . .. ...... ... . .. .... .. . . . . . . . . . ... . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ........ ... ... . . . ... ... ..... . .......... . ... ...................... .......... ..................... .......... ......... ......... .. ... .. ... ..... ... . 0.2 ......... . . . . . . ... ... ... ........ ........ ... ........ ... .... .... .. . .... . . . . . . . ..... .. ... . .... . . .. .. ...... ... ... . . . . .. .... ....... . . . . .... .......... ... ... ......... ........................................................ ............... .... ... .. . . . . . . . . . . . . . .... . . . ... .. .... ... .... .. ... ..... .... 12 15 3. 9 ................... .... . .......... ..... . . . . . . . . . . . . . . . . . . ......................... .. ....................................................................................................................................................... .................................................................................................................................................................................................................... . ..... . .... . 6 ......................... .... ... ..... ..... ..... ..... γ = 2/3 ... ... .. .......... .......... γ = 1/3 ........ ........ ........ γ = 1/2 . . . . . . . . . γ = 3/4 .... .................................... γ = 1/4 Figure 12 : Some Functions Θ1 (x; γ) 280

The value of x may be too large to use the power series for Θ0 (x; γ) and γx may be too small to apply the asymptotic formula. In this case 2 Θ0 (x; γ) ∼ K(γ)+ π A0 (x; γ) cos x J0 (γx) + A1 (x; γ) cos x J1 (γx) + B0 (x; γ) sin x J0 (γx) + B1 (x; γ) sin x J1 (γx) √ + πx is applicable. Let Aµ (x; γ) =

∞ X k=0

(µ)

ak (x; γ) (1 − γ 2 )k+1 xk

Bµ (x; γ) =

and

∞ X k=0

(µ)

bk (x; γ) , (1 − γ 2 )k+1 xk

then holds (0)

a0 (x; γ) = −1 ,

(0)

11γ 2 + 5 31 γ 4 − 926 γ 2 − 129 (0) , a2 (x; γ) = − , 8 128   3 γ 2 + 15 59 γ 4 + 906 γ 2 + 59 (0) a3 (x; γ) = , 1024 (0)

a1 (x; γ) = −

a4 (x; γ) = (0)

a5 (x; γ) = −

7125 γ 8 + 15468 γ 6 − 4088898 γ 4 − 8215572 γ 2 − 301035 , 32768

102165 γ 10 − 208569 γ 8 + 25390098 γ 6 + 501398862 γ 4 + 469053609 γ 2 + 10896795 , 262144 (0)

a6 (x; γ) = −

45 [84231 γ 12 − 348490 γ 10 + 2847497 γ 8 − 451498956 γ 6 − 2481377623 γ 4 − 1343311306 γ 2 − 21362649] 4194304  γ 9 γ 4 + 206 γ 2 + 809 = , = −γ , 128  γ 75 γ 6 + 143 γ 4 − 24063 γ 2 − 25307 (1) , a3 (x; γ) = 1024  3γ 1225 γ 8 − 1892 γ 6 + 201078 γ 4 + 2678812 γ 2 + 1315081 (1) a4 (x; γ) = − , 32768

(1) a0 (x; γ)

(1) a5 (x; γ)

(1) a1 (x; γ)

 γ γ 2 − 17 , =− 8

(1) a2 (x; γ)

 3γ 19845 γ 10 − 67625 γ 8 + 467314 γ 6 − 58112658 γ 4 − 216355367 γ 2 − 61495829 , =− 262144 (1)

a6 (x; γ) =  3γ 800415 γ 12 − 3869530 γ 10 + 12921201 γ 8 + 680167252 γ 6 + 20763422609 γ 4 + 36255061542 γ 2 + 6716005951 4194304

(0)

b0 (x; γ) = 1 ,

(0)

31 γ 4 − 926 γ 2 − 129 11γ 2 + 5 (0) (0) (0) = a1 , b2 (x; γ) = = −a2 , 8 128   3 γ 2 + 15 59 γ 4 + 906 γ 2 + 59 (0) (0) b3 (x; γ) = = a3 , 1024

(0)

b1 (x; γ) = −

b4 (x; γ) = − (0)

b5 (x; γ) = −

7125 γ 8 + 15468 γ 6 − 4088898 γ 4 − 8215572 γ 2 − 301035 (0) = −a4 , 32768

102165 γ 10 − 208569 γ 8 + 25390098 γ 6 + 501398862 γ 4 + 469053609 γ 2 + 10896795 (0) = a5 , 262144 (0)

(0)

b6 (x; γ) = −a6 = 45 [84231 γ 12 − 348490 γ 10 + 2847497 γ 8 − 451498956 γ 6 − 2481377623 γ 4 − 1343311306 γ 2 − 21362649] 4194304 281

  γ γ 2 − 17 γ 9 γ 4 + 206 γ 2 + 809 (1) (1) (1) = −γ , = a1 , b2 (x; γ) = = a2 , = 8 128  γ 75 γ 6 + 143 γ 4 − 24063 γ 2 − 25307 (0) (1) = −a3 , b3 (x; γ) = − 1024  3γ 1225 γ 8 − 1892 γ 6 + 201078 γ 4 + 2678812 γ 2 + 1315081 (1) (1) = a4 , b4 (x; γ) = − 32768  3γ 19845 γ 10 − 67625 γ 8 + 467314 γ 6 − 58112658 γ 4 − 216355367 γ 2 − 61495829 (1) (1) = −a5 , b5 (x; γ) = 262144 (1) b0 (x; γ)

(1) b1 (x; γ)

(1)

(1)

b6 (x; γ) = a6 =  3γ 800415 γ 12 − 3869530 γ 10 + 12921201 γ 8 + 680167252 γ 6 + 20763422609 γ 4 + 36255061542 γ 2 + 6716005951 4194304 When γ

5

(0) (0) |ak (x; γ)/ak−1 (x; γ)|.

∆n (x; γ) = −Θ0 (x; γ)+ i 1 (n) (n) (n) (n) +√ A0 (x; γ) cos x J0 (γx) + A1 (x; γ) cos x J1 (γx) + B0 (x; γ) sin x J0 (γx) + B1 (x; γ) sin x J1 (γx) πx h

with A(n) µ (x; γ) =

n X k=0

(µ)

ak (x; γ) (1 − γ 2 )k+1 xk

and

Bµ(n) (x; γ) =

n X k=0

(µ)

bk (x; γ) . (1 − γ 2 )k+1 xk

For the case γ = 0.1 some of these differences are shown: .... ..... 0.100......... .... ... ... .. 0.075...... .... ... ... ... ... 0.050....... .... ....... ..... ..... . .... ... ... ....... .. ..∆ ... ... .1..(x, 0.1) . . . . . . .. .... . 0.025 .. . . ..... ... ............................................................................... .... ..... .... . ............. . . ... . . . . 4 6 8 ........... 10 x . . . . . . ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .. ..... ..... ........ ..... ..... ..... ..... ......................... .... .... .... ....... ... ..... ........ . . . . . . -0.025....... ..... . ...... ........ .... ......... ......... . . . . . . . . . . . . . ∆0 (x, 0.1) ................................. -0.050..... .... ... ... ... .. . 282

Figure 13 :

Differences ∆0 (x; γ) and ∆1 (x; γ) with γ = 0.1

0.050...... ...................... ..... ... .... ..... ..... .....∆1 (x, 0.1) .... ..... .... ..... .... ..... ..... .... ..... 0.025...... ..... .... ..... ..... .... ..... .... 0.1) .... .... ..... ................. ..... ..... .∆ .... 2...(x, . . .. ..... ..... . . ...... .... 8 10 .... 6 ... ................................... . . ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................x ...... ........... ............ . .... . . . . . . . . . 4 . . . . . . . . . . . . . . . . . ....................................................... .... . ... .. . .... .. .... . . . . ..

-0.025

Figure 14 :

Differences ∆1 (x; γ) and ∆2 (x; γ) with γ = 0.1

0.015......

... ......................................... ...... .............. ∆2 (x, 0.1) .............. ... .............. . . ................. 6..... .... ... . . . 10 x 8 4 ..... ... . . . . . . . . . . ......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ... .. .. .. ... .... . . .. . . .. . .... ... . .... .. .... ∆3 (x, 0.1) . . ... . ...... ... .. ...... . . .. . -0.02 ........ .. .... .. .. .. Figure 15 : Differences ∆2 (x; γ) and ∆3 (x; γ) with γ = 0.1 . . 0.002 .......... .... ....... .... ....... ∆3 (x, 0.1) ..... .... .... .... .... .... .... .... .... . .... . . . 0.001 .. .... ... .... .... ..... ..... .... .... ................ ..... ..... ..... . . . . . ..... 8 ..... ..... ..... .... . 10 12 . ..... . ..... ..... . .... ...... . ..... ..... ... . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................................... .................................................................................................................................... ........................................................................................................... ................................................................................................................................................................................................................................. . ........... . ..................... . . .... .. ................ .. .... .. ......................................................... .. . ... . ∆4 (x, 0.1) .... .. .... .. ... . -0.001..... ... ... ... . Figure 16 : Differences ∆3 (x; γ) and ∆4 (x; γ) with γ = 0.1 The same way the asymptotic expansion Θ1 (x; γ) ∼

2 [K(γ) − E(γ)]+ πγ

A∗0 (x; γ) cos x J0 (γx) + A∗1 (x; γ) cos x J1 (γx) + B0∗ (x; γ) sin x J0 (γx) + B1∗ (x; γ) sin x J1 (γx) √ πx is applicable in the case x >> 1 and γx ≈ 1. Let +

A∗µ (x; γ) =

∞ X k=0

(µ,∗)

ak (x; γ) (1 − γ 2 )k+1 xk

and

Bµ∗ (x; γ) =

∞ X k=0

283

(µ,∗)

bk (x; γ) , (1 − γ 2 )k+1 xk

14

then holds  γ 15 γ 4 − 382 γ 2 − 657 , = −γ , =− 128  3 γ 35 γ 6 + 327 γ 4 + 8457 γ 2 + 7565 (0,∗) a3 (x; γ) = 1024  8 6 3 γ 1575 γ − 860 γ − 455382 γ 4 − 2435292 γ 2 − 1304345 (0,∗) a4 (x; γ) = 32768  10 8 3 γ 24255 γ − 74795 γ + 1750326 γ 6 + 76252650 γ 4 + 190548859 γ 2 + 67043025 (0,∗) a5 (x; γ) = − 262144 (0,∗) a0 (x; γ)

(0,∗) a1 (x; γ)

 γ 3 γ 2 + 13 , =− 8

(0,∗)

a6 45 γ 63063 γ

12

− 295722 γ

10

(0,∗) a2 (x; γ)

(x; γ) =

 + 1295545 γ − 137114124 γ 6 − 1469273511 γ 4 − 2157119402 γ 2 − 532523145 4194304 8

57 γ 4 + 622 γ 2 + 345 7 γ2 + 9 (1,∗) , a2 (x; γ) = , 8 128 195 γ 6 − 8921 γ 4 − 30871 γ 2 − 9555 (1,∗) a3 (x; γ) = 1024 8 6 7035 γ + 100692 γ + 4097826 γ 4 + 7006164 γ 2 + 1371195 (1,∗) a4 (x; γ) = − 32768 10 8 6 97335 γ − 38595 γ − 54339354 γ − 442588230 γ 4 − 449504301 γ 2 − 60259815 (1,∗) a5 (x; γ) = − 262144 (1,∗)

a0

(x; γ) = −1 ,

(1,∗)

a1

(x; γ) =

(1,∗)

a6

(x; γ) =

3565485 γ 12 − 12841710 γ 10 + 423532419 γ 8 + 25838749116 γ 6 + 96291507171 γ 4 + 64464832914 γ 2 + 6264182925 4194304   γ 15 γ 4 − 382 γ 2 − 657 γ 3 γ 2 + 13 (0,∗) (0,∗) (0,∗) = a1 , b2 (x; γ) = = −a2 , =γ, =− 8 128  3 γ 35 γ 6 + 327 γ 4 + 8457 γ 2 + 7565 (0,∗) (0,∗) b3 (x; γ) = = a3 1024  3 γ 1575 γ 8 − 860 γ 6 − 455382 γ 4 − 2435292 γ 2 − 1304345 (0,∗) (0,∗) b4 (x; γ) = − = −a4 32768  3 γ 24255 γ 10 − 74795 γ 8 + 1750326 γ 6 + 76252650 γ 4 + 190548859 γ 2 + 67043025 (0,∗) (0,∗) b5 (x; γ) = − = a5 262144

(0,∗) b0 (x; γ)

(0,∗) b1 (x; γ)

(0,∗)

b6 45 γ 63063 γ

12

− 295722 γ

10

(0,∗)

(x; γ) = −a6

=

 + 1295545 γ − 137114124 γ − 1469273511 γ 4 − 2157119402 γ 2 − 532523145 4194304 8

6

57 γ 4 + 622 γ 2 + 345 7 γ2 + 9 (1,∗) (1,∗) (1,∗) , b2 (x; γ) = , = −a1 = a2 8 128 195 γ 6 − 8921 γ 4 − 30871 γ 2 − 9555 (1,∗) (1,∗) b3 (x; γ) = = −a3 1024 7035 γ 8 + 100692 γ 6 + 4097826 γ 4 + 7006164 γ 2 + 1371195 (1,∗) (1,∗) b4 (x; γ) = − = a4 32768 97335 γ 10 − 38595 γ 8 − 54339354 γ 6 − 442588230 γ 4 − 449504301 γ 2 − 60259815 (1,∗) (1,∗) b5 (x; γ) = = −a5 262144 (1,∗)

b0

(x; γ) = −1 ,

(1,∗)

b1

(x; γ) = −

(1,∗)

b6

(1,∗)

(x; γ) = a6 284

=

3565485 γ 12 − 12841710 γ 10 + 423532419 γ 8 + 25838749116 γ 6 + 96291507171 γ 4 + 64464832914 γ 2 + 6264182925 4194304 When γ |ak

The same holds for Let

(0,∗) bk (x; γ).

(0)

(x; γ)/ak−1 (x; γ)|.

∆∗n (x; γ) = −Θ1 (x; γ)+ i 1 h (n,∗) (n,∗) (n,∗) (n,∗) +√ A0 (x; γ) cos x J0 (γx) + A1 (x; γ) cos x J1 (γx) + B0 (x; γ) sin x J0 (γx) + B1 (x; γ) sin x J1 (γx) πx with A(n,∗) (x; γ) = µ

n X k=0

(µ,∗)

ak (x; γ) (1 − γ 2 )k+1 xk

and

Bµ(n,∗) (x; γ) =

n X k=0

(µ,∗)

bk (x; γ) . (1 − γ 2 )k+1 xk

For the case γ = 0.1 some of these differences are shown: .................. .... ......... ..... .... ..... ..... 0.025...... ..... .. ..... .... ... ∗ .... (x, 0.1) .................. ..... ..... ..... ...∆ . . . .. ..1... . ................................................... .... .... . . . ........... .......... . . ..... . . . . . . . . . . . ... . ......... .... .. .... .. ...... . ........ . ... ... ..... . .... ... . ... .. .... . ..... . . ... . ...........10 . .... ... . . . . . . . . . . . . . . 4 6 8 . . . . . . . . . . . . . . ........................................................................................................................................................................................................................................................................................................................................................................................................................x ...... . ..... .. ..... ..... .. . . . . .... .. . . . . . . . . . . . . . . . . . . . . . . . . . ..... ...... ..... ..... ..... ..... .... .. . ..... ..... ...... ..... . . . . . . .. . . . . . ... ∆∗0 (x, 0.1) .............. ........ ............. .......... . .... . . . . . . . . . . . . . . . . . ............. .... . .... -0.025

Figure 17 :

Differences ∆∗0 (x; γ) and ∆∗1 (x; γ) with γ = 0.1

0.002......

.... ∗ .... ..................................∆ ........1. (x, 0.1) .. ...... . ...... . ... . .. ...... ... ... ..... . . ..... . ... . ..... .. ... . ..... ..... .... .. .. . .. ... . . . ... ... . .. .......... ... ..... ..... ..... . . . .. .. . . .... .. . . . ... . . . .....................10 .. . ..... 4.... 6 ... ..... .. 8 ................... ................................................................................................................................................................................................................................................................................................................................................................................................................................................................x..... ..... ..... ................. ..... ..... ..... ..... ......... ... .. .. .......... ..... .... .. .. . . . . .............. . ................ . .... .. ................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .. .. ...... . ..... .. ∗ .... .. ∆2 (x, 0.1) . . . -0.015 ... 285





Figure 18 : Differences ∆1 (x; γ) and ∆2 (x; γ) with γ = 0.1 ... ............................ ...... ....... .... . . . . ..... ∆∗ (x, 0.1) . 0.0050 ..... ..... 2 ... ..... ... ..... ..... ... . ..... .. .. ..... ... . ..... . . .. 0.0025...... .. ... ............... ..... ..... ..... . . ...... . . . . . ..... ..... ..... .... ..... ..... ..... ..... ... ..... .... ..... . . ......................................................... . . . . 6 . . . . . ...................................................................................................................................................... ..........................................8...................................................................................................10 .........................................................................................................................12 ...................x ...... ..... ...................... ..... ..... ..... . ........ .... . . .. .......... . . . . . . . . . . . .... . ... ............. .. ........................................................ .... .. ... ∗ . -0.0025 ..... .. ∆3 (x, 0.1) . Figure 19 : Differences ∆∗2 (x; γ) and ∆∗3 (x; γ) with γ = 0.1 0.002 ...... ............................. ..... ... .... ..... ∗ .... .... .....∆3 (x, 0.1) .... ..... .... .... .... .... .... .... .... .... . . . 0.001 ... .... ... .... .... ............... ..... ..... ..... .... . . . . . ..... ... .... .... .... .. ..... ..... ... .... ..... ... . . . . . ..... .. ..... . .... ... . ....................................................................14 ..... 8 . . . ..................................x . . ..............................................................................................................................................................................................10 .......................................................................................................12 ............................................................... ......................... ... ..... ..................... ..... ..... ..... ..... ..... ..... .... ...... . .... ....... ......... .. .... .......... ............. . . . . . . . ................. . . . . . .... . .. . ............................... .... .. .... ... ∗ .... .. ∆4 (x, 0.1) . -0.001... .. Figure 20 : Differences ∆∗3 (x; γ) and ∆∗4 (x; γ) with γ = 0.1

286

b) Integrals: Holds (with 0 < β < α and β/α = γ < 1)   Z 1 b J0 (αx) J0 (βx) dx = Θ0 ax; , α a   Z 1 b I0 (αx) I0 (βx) dx = Ω0 ax; , α a

  1 b J1 (αx) J1 (βx) dx = Θ1 ax; α a   Z 1 b I1 (αx) I1 (βx) dx = Ω1 ax; α a Z

(Θν and Ων as definded on pages 277 and 279.) Z

2

x · J0 (αx) J0 (βx) dx =

+2

Z

Z

Z



2

(α2 − β 2 )

J0 (αx) J0 (βx) −

β 2 + α2 J1 (αx) J1 (βx) + 2 2 (α2 − β 2 ) (α2 − β 2 ) xβ α

x β 2 + α2

Z J0 (αx) J0 (βx) dx − 2

Z

βα

J1 (αx) J1 (βx) dx

2

(α2 − β 2 )

β x2 α x2 J (αx) J (βx) − J (αx) J (βx) + J1 (αx) J0 (βx)+ 0 0 0 1 2 α2 − β 2 α2 − β 2 (α2 − β 2 )



2

(α2 − β 2 )

β x2 α x2 J (αx) J (βx) + J1 (αx) J0 (βx)+ 0 1 α2 − β 2 α2 − β 2

xβ α

x2 · J1 (αx) J1 (βx) dx = 2

+

Z

x β 2 + α2

J1 (αx) J1 (βx) +

Z

2β α 2

(α2 − β 2 )

J0 (αx) J0 (βx) dx −

β 2 + α2

Z 2

(α2 − β 2 )

J1 (αx) J1 (βx) dx

(α2 + β 2 )x β x2 α x2 I0 (αx) I0 (βx) − 2 I0 (αx) I1 (βx) + 2 I1 (αx) I0 (βx)+ 2 2 2 2 (α − β ) α −β α − β2 Z Z 2 β αx α2 + β 2 2β α + 2 I (αx) I (βx) − I (αx) I (βx) dx − I1 (αx) I1 (βx) dx 1 1 0 0 (α − β 2 )2 (α2 − β 2 )2 (α2 − β 2 )2

x2 · I0 (αx) I0 (βx) dx = −

α x2 β x2 2 xα β I (αx) I (βx) + I (αx) I (βx) − I1 (αx) I0 (βx)− 0 0 0 1 (α2 − β 2 )2 α2 − β 2 α2 − β 2 Z Z (α2 + β 2 )x 2αβ α2 + β 2 − 2 I1 (αx) I1 (βx) + 2 I0 (αx) I0 (βx) dx + 2 I1 (αx) I1 (βx) dx (α − β 2 )2 (α − β 2 )2 (α − β 2 )2

x2 · I1 (αx) I1 (βx) dx =

4

x · J0 (αx) J0 (βx) dx = 3

− + +6 −

Z

4

 x2 α6 − 3 α4 − α4 x2 β 2 − α2 x2 β 4 − 10 α2 β 2 − 3 β 4 + x2 β 6 x 4

(α2 − β 2 )  x2 α4 − 2 α2 x2 β 2 − 15 α2 − 9 β 2 + x2 β 4 β x2 3

(α2 − β 2 )

 x2 α4 − 2 α2 x2 β 2 − 9 α2 − 15 β 2 + x2 β 4 α x2 3

(α2 − β 2 )

J0 (αx) J1 (βx)+ J1 (αx) J0 (βx)+

 x2 α4 − 2 α2 x2 β 2 − 4 α2 − 4 β 2 + x2 β 4 β α x 4

(α2 − β 2 )

9 α4 + 30 α2 β 2 + 9 β 4

Z

4

(α2 − β 2 )

x · J1 (αx) J1 (βx) dx = 6

J0 (αx) J0 (βx) dx + 24

J1 (αx) J1 (βx)−

β α β 2 + α2 4

(α2 − β 2 )

Z J1 (αx) J1 (βx) dx

 x2 α4 − 4 α2 − 2 x2 α2 β 2 + x2 β 4 − 4 β 2 β α x 4

(α2 − β 2 ) 287

J0 (αx) J0 (βx)−

J0 (αx) J0 (βx)−

− +

Z

3

(α2 − β 2 )

 x2 α4 − 21 α2 − 2 α2 x2 β 2 − 3 β 2 + x2 β 4 x2 β 3

(α2 − β 2 )

J0 (αx) J1 (βx)+ J1 (αx) J0 (βx)+

 x2 α6 − α4 − x2 α4 β 2 − 14 α2 β 2 − x2 α2 β 4 − β 4 + x2 β 6 x

+3 −24

 x2 α4 − 2 α2 x2 β 2 − 3 α2 − 21 β 2 + x2 β 4 α x2

4

(α2 − β 2 )

α β α2 + β 2

Z J0 (αx) J0 (βx) dx +

4

(α2 − β 2 )

4

x · I0 (αx) I0 (βx) dx = −

3x[ α2 + β 2



3 α4 + 42 α2 β 2 + 3 β 4

J1 (αx) J1 (βx)−

Z J1 (αx) J1 (βx) dx

4

(α2 − β 2 )

2   α2 − β 2 x2 + β 2 + 3 α2 3 β 2 + α2 ] I0 (αx) I0 (βx)− (α2 − β 2 )4

2 2 βx2 [ α2 − β 2 x2 + 15 α2 + 9 β 2 ] α x2 [ α2 − β 2 x2 + 9 α2 + 15 β 2 ] − I0 (αx) I1 (βx) + I1 (αx) I0 (βx)+ (α2 − β 2 )3 (α2 − β 2 )3 2 6 α β x[ α2 − β 2 x2 + 4 α2 + 4 β 2 ] I1 (αx) I1 (βx)− + (α2 − β 2 )4   Z  Z 3 β 2 + 3 α2 3 β 2 + α2 24 β α α2 + β 2 I0 (αx) I0 (βx) dx − I1 (αx) I1 (βx) dx − (α2 − β 2 )4 (α2 − β 2 )4 2  Z 6 α2 − β 2 α β x3 + 24 α2 + β 2 β αx x4 · I1 (αx) I1 (βx) dx = I0 (αx) I0 (βx)+ (α2 − β 2 )4 2  2  α2 − β 2 α x4 + 3 α2 + 7 β 2 α x2 α2 − β 2 β x4 + 3 7 α2 + β 2 β x2 + I0 (αx) I1 (βx)− I1 (αx) I0 (βx)− (α2 − β 2 )3 (α2 − β 2 )3  2 3 α2 + β 2 α2 − β 2 x2 + 3 α4 + 42 β 2 α2 + 3 β 4 I1 (αx) I1 (βx)+ − (α2 − β 2 )4  Z Z 24 α2 + β 2 β α 3 α4 + 42 β 2 α2 + 3 β 4 + I (αx) I (βx) dx + I1 (αx) I1 (βx) dx 0 0 (α2 − β 2 )4 (α2 − β 2 )4 Let Z

(ν)

xn · Jν (αx) Jν (βx) dx =

(ν)

Qn (x) Pn (x) J0 (αx) J0 (βx) + 2 J0 (αx) J1 (βx)+ (α2 − β 2 )n (α − β 2 )n−1

(ν)

(ν)

Sn (x) Rn (x) J1 (αx) J0 (βx) + 2 J1 (αx) J1 (βx)+ (α2 − β 2 )n−1 (α − β 2 )n Z Z (ν) (ν) Un (x) Vn (x) + 2 J0 (αx) J0 (βx) dx + 2 J1 (αx) J1 (βx) dx (α − β 2 )n (α − β 2 )n +

and Z

xn · Iν (αx) Iν (βx) dx =

(ν) ¯ (ν) P¯n (x) Q n (x) I (αx) I (βx) + I0 (αx) I1 (βx)+ 0 0 2 2 n 2 (α − β ) (α − β 2 )n−1

(ν) ¯ n(ν) (x) R S¯n (x) I (αx) I (βx) + I1 (αx) I1 (βx)+ 1 0 (α2 − β 2 )n−1 (α2 − β 2 )n Z Z (ν) ¯n(ν) U V¯n + 2 I0 (αx) I0 (βx) dx + 2 I1 (αx) I1 (βx) dx , (α − β 2 )n (α − β 2 )n

+

then holds

(0)

P6

= 5 x[ β 2 + α2



α2 − β 2

4

x4 − 3 5 α4 + 22 β 2 α2 + 5 β 4 288



α2 − β 2

2

x2 +

+3 β 2 + α2

 15 β 4 + 98 β 2 α2 + 15 α4 ] 4  2 (0) Q6 = −β x2 [ α2 − β 2 x4 − 5 11 α2 + 5 β 2 α2 − β 2 x2 + 465 α4 + 1230 β 2 α2 + 225 β 4 ] 4  2 (0) R6 = α x2 [ α2 − β 2 x4 − 5 5 α2 + 11 β 2 α2 − β 2 x2 + 225 α4 + 1230 β 2 α2 + 465 β 4 ] 4  2 (0) S6 = 10 α β x[ α2 − β 2 x4 − 24 β 2 + α2 α2 − β 2 x2 + 246 β 2 α2 + 69 α4 + 69 β 4 ]   (0) U6 = 15 β 2 + α2 15 β 4 + 98 β 2 α2 + 15 α4  (0) V6 = −30 β α 23 β 4 + 23 α4 + 82 β 2 α2 

 2 4 = 10 α β x[ α2 − β 2 x4 − 24 α2 + β 2 α2 − β 2 x2 + 81 α4 + 222 β 2 α2 + 81 β 4 ]  2 4 (1) Q6 = −α x2 [ α2 − β 2 x4 − 5 3 α2 + 13 β 2 α2 − β 2 x2 + 45 α4 + 765 β 4 + 1110 β 2 α2 ]  2 4 (1) R6 = x2 β[ α2 − β 2 x4 − 5 13 α2 + 3 β 2 α2 − β 2 x2 + 45 β 4 + 765 α4 + 1110 β 2 α2 ]  4 (1) S6 = 5 x[ α2 + β 2 α2 − β 2 x4 −    2 −3 3 α4 + 26 β 2 α2 + 3 β 4 α2 − β 2 x2 + 3 α2 + β 2 3 β 4 + 122 β 2 α2 + 3 α4 ]  (1) U6 = 30 27 α4 + 74 β 2 α2 + 27 β 4 β α   (1) V6 = −15 α2 + β 2 3 β 4 + 122 β 2 α2 + 3 α4 (1)

P6

 2 x4 + 3 5 α4 + 22 β 2 α2 + 5 β 4 α2 − β 2 x2 +   +3 β 2 + α2 15 β 4 + 98 β 2 α2 + 15 α4 ]    ¯ (0) = −β x2 [ α2 − β 2 4 x4 + 5 11 α2 + 5 β 2 α2 − β 2 2 x2 + 465 α4 + 1230 β 2 α2 + 225 β 4 ] Q 6    ¯ (0) = α x2 [ α2 − β 2 4 x4 + 5 5 α2 + 11 β 2 α2 − β 2 2 x2 + 225 α4 + 1230 β 2 α2 + 465 β 4 ] R 6 4  2 (0) S¯6 = 10 β α x[ α2 − β 2 x4 + 24 β 2 + α2 α2 − β 2 x2 + 69 α4 + 69 β 4 + 246 β 2 α2 ]   ¯ (0) = −15 β 2 + α2 15 β 4 + 98 β 2 α2 + 15 α4 U 6  (0) V¯6 = −30 β α 23 β 4 + 23 α4 + 82 β 2 α2 (0) P¯6 = −5 x[ β 2 + α2



α2 − β 2

4

4  2 (1) P¯6 = 10 α β x[ α2 − β 2 x4 + 24 α2 + β 2 α2 − β 2 x2 + 222 β 2 α2 + 81 α4 + 81 β 4 ]    ¯ (1) = α x2 [ α2 − β 2 4 x4 + 5 3 α2 + 13 β 2 α2 − β 2 2 x2 + 765 β 4 + 45 α4 + 1110 β 2 α2 ] Q 6    ¯ (1) = −x2 β[ α2 − β 2 4 x4 + 5 13 α2 + 3 β 2 α2 − β 2 2 x2 + 45 β 4 + 765 α4 + 1110 β 2 α2 ] R 6  4  2 (1) S¯6 = −5 x[ α2 + β 2 α2 − β 2 x4 + 3 3 α4 + 26 β 2 α2 + 3 β 4 α2 − β 2 x2 +   +3 α2 + β 2 3 β 4 + 122 β 2 α2 + 3 α4 ]  ¯ (1) = 30 27 α4 + 74 β 2 α2 + 27 β 4 β α U 6   (1) V¯6 = 15 α2 + β 2 3 β 4 + 122 β 2 α2 + 3 α4

(0)

P8

6  4 α2 − β 2 x6 − 5 7 α4 + 34 β 2 α2 + 7 β 4 α2 − β 2 x4 +   2 +15 α2 + β 2 35 β 4 + 314 β 2 α2 + 35 α4 α2 − β 2 x2 −

= 7 x[ α2 + β 2



−1575 β 8 − 1575 α8 − 21540 α2 β 6 − 45930 α4 β 4 − 21540 α6 β 2 ] 6  4 (0) Q8 = −β x2 [ α2 − β 2 x6 − 7 17 α2 + 7 β 2 α2 − β 2 x4 + 289

+35 107 α4 + 242 β 2 α2 + 35 β 4



α2 − β 2

2

x2 −

−160755 α4 β 2 − 25935 α6 − 124845 α2 β 4 − 11025 β 6 ] 6  4 (0) R8 = α x2 [ α2 − β 2 x6 − 7 7 α2 + 17 β 2 α2 − β 2 x4 +  2 +35 35 α4 + 242 β 2 α2 + 107 β 4 α2 − β 2 x2 − −160755 α2 β 4 − 25935 β 6 − 11025 α6 − 124845 α4 β 2 ] 6  4 (0) S8 = 14 β α x[ α2 − β 2 x6 − 60 α2 + β 2 α2 − β 2 x4 +  2 +15 71 α4 + 242 β 2 α2 + 71 β 4 α2 − β 2 x2 −   −240 α2 + β 2 11 β 4 + 74 β 2 α2 + 11 α4 ] (0)

U8

= −11025 α8 − 150780 α6 β 2 − 321510 α4 β 4 − 150780 α2 β 6 − 11025 β 8   (0) V8 = 3360 α β α2 + β 2 11 β 4 + 74 β 2 α2 + 11 α4

6  4 = 14 α β x[ α2 − β 2 x6 − 60 α2 + β 2 α2 − β 2 x4 +    2 +45 25 α4 + 78 β 2 α2 + 25 β 4 α2 − β 2 x2 − 720 α2 + β 2 5 β 4 + 22 β 2 α2 + 5 α4 ] 6  4 (1) Q8 = −α x2 [ α2 − β 2 x6 − 7 5 α2 + 19 β 2 α2 − β 2 x4 +   2 +105 3 β 2 + 5 α2 15 β 2 + α2 α2 − β 2 x2 − 186165 β 4 α2 − 1575 α6 − 48825 β 6 − 85995 β 2 α4 ] 6  4 (1) R8 = β x2 [ α2 − β 2 x6 − 7 5 β 2 + 19 α2 α2 − β 2 x4 +   2 +105 5 β 2 + 3 α2 β 2 + 15 α2 α2 − β 2 x2 − 85995 β 4 α2 − 48825 α6 − 1575 β 6 − 186165 β 2 α4 ]  6  4 (1) S8 = 7 x[ α2 + β 2 α2 − β 2 x6 − 5 5 α4 + 38 β 2 α2 + 5 β 4 α2 − β 2 x4 +   2 +45 α2 + β 2 5 β 4 + 118 β 2 α2 + 5 α4 α2 − β 2 x2 − (1)

P8

−19260 β 2 α6 − 225 β 8 − 19260 β 6 α2 − 53190 β 4 α4 − 225 α8 ]   (1) U8 = −10080 β α α2 + β 2 5 β 4 + 22 β 2 α2 + 5 α4 (1)

V8

= 1575 α8 + 134820 β 2 α6 + 372330 β 4 α4 + 134820 β 6 α2 + 1575 β 8 6  4 α2 − β 2 x6 + 5 7 α4 + 34 β 2 α2 + 7 β 4 α2 − β 2 x4 +   2 +15 α2 + β 2 35 β 4 + 314 β 2 α2 + 35 α4 α2 − β 2 x2 +

(0) P¯8 = −7 x[ α2 + β 2



+21540 β 2 α6 + 1575 β 8 + 21540 β 6 α2 + 45930 β 4 α4 + 1575 α8 ]    ¯ (0) = −β x2 [ α2 − β 2 6 x6 + 7 17 α2 + 7 β 2 α2 − β 2 4 x4 + Q 8  2 +35 107 α4 + 242 β 2 α2 + 35 β 4 α2 − β 2 x2 + +160755 β 2 α4 + 11025 β 6 + 124845 β 4 α2 + 25935 α6 ]    ¯ (0) = α x2 [ α2 − β 2 6 x6 + 7 7 α2 + 17 β 2 α2 − β 2 4 x4 + R 8  2 +35 35 α4 + 242 β 2 α2 + 107 β 4 α2 − β 2 x2 + +124845 β 2 α4 + 11025 α6 + 160755 β 4 α2 + 25935 β 6 ] 6  4 (0) S¯8 = 14 α β x[ α2 − β 2 x6 + 60 α2 + β 2 α2 − β 2 x4 +  2 +15 71 α4 + 242 β 2 α2 + 71 β 4 α2 − β 2 x2 +   +240 α2 + β 2 11 β 4 + 74 β 2 α2 + 11 α4 ] ¯ (0) = −11025 α8 − 150780 β 2 α6 − 321510 β 4 α4 − 150780 β 6 α2 − 11025 β 8 U 8 290

(0) V¯8 = −3360 β α α2 + β 2



11 β 4 + 74 β 2 α2 + 11 α4



 4 6 (1) P¯8 = 14 β α x[ α2 − β 2 x6 + 60 α2 + β 2 α2 − β 2 x4 +  2   +45 25 α4 + 78 β 2 α2 + 25 β 4 α2 − β 2 x2 + 720 α2 + β 2 5 β 4 + 22 β 2 α2 + 5 α4 ]    ¯ (1) = α x2 [ α2 − β 2 6 x6 + 7 5 α2 + 19 β 2 α2 − β 2 4 x4 + Q 8   2 +105 3 β 2 + 5 α2 15 β 2 + α2 α2 − β 2 x2 + 85995 β 2 α4 + 1575 α6 + 186165 β 4 α2 + 48825 β 6 ]    ¯ (1) = −β x2 [ α2 − β 2 6 x6 + 7 19 α2 + 5 β 2 α2 − β 2 4 x4 + R 8   2 +105 5 β 2 + 3 α2 β 2 + 15 α2 α2 − β 2 x2 + 85995 β 4 α2 + 1575 β 6 + 186165 β 2 α4 + 48825 α6 ]  6  4 (1) S¯8 = −7 x[ α2 + β 2 α2 − β 2 x6 + 5 5 α4 + 38 β 2 α2 + 5 β 4 α2 − β 2 x4 +   2 +45 α2 + β 2 5 β 4 + 118 β 2 α2 + 5 α4 α2 − β 2 x2 + +19260 β 2 α6 + 225 β 8 + 19260 β 6 α2 + 53190 β 4 α4 + 225 α8 ]   ¯ (1) = 10080 α2 + β 2 5 β 4 + 22 β 2 α2 + 5 α4 α β U 8 (1) V¯8 = 1575 α8 + 134820 β 2 α6 + 372330 β 4 α4 + 134820 β 6 α2 + 1575 β 8

8  6 α2 − β 2 x8 − 7 9 α4 + 46 β 2 α2 + 9 β 4 α2 − β 2 x6 +   4 +105 α2 + β 2 21 β 4 + 214 β 2 α2 + 21 α4 α2 − β 2 x4 −    2 −315 β 2 + 15 α2 15 β 2 + α2 7 β 4 + 18 β 2 α2 + 7 α4 α2 − β 2 x2 +   +315 α2 + β 2 315 β 8 + 6548 α2 β 6 + 19042 α4 β 4 + 6548 α6 β 2 + 315 α8 ] 8  6 (0) Q10 = −β x2 [ α2 − β 2 x8 − 9 9 β 2 + 23 α2 α2 − β 2 x6 +  4 +63 223 α4 + 482 α2 β 2 + 63 β 4 α2 − β 2 x4 −  2 −945 391 α6 + 2139 β 2 α4 + 1461 β 4 α2 + 105 β 6 α2 − β 2 x2 +

(0)

P10 = 9 x[ α2 + β 2



+25957260 β 2 α6 + 2299185 α8 + 46590390 α4 β 4 + 17157420 α2 β 6 + 893025 β 8 ] 8  6 (0) R10 = α x2 [ α2 − β 2 x8 − 9 9 α2 + 23 β 2 α2 − β 2 x6 +  4 +63 63 α4 + 482 α2 β 2 + 223 β 4 α2 − β 2 x4 −  2 −945 105 α6 + 1461 β 2 α4 + 2139 β 4 α2 + 391 β 6 α2 − β 2 x2 + +17157420 β 2 α6 + 893025 α8 + 46590390 α4 β 4 + 25957260 α2 β 6 + 2299185 β 8 ] 8  6 (0) S10 = 18 β α x[ α2 − β 2 x8 − 112 α2 + β 2 α2 − β 2 x6 +  4 +35 143 α4 + 482 α2 β 2 + 143 β 4 α2 − β 2 x4 −   2 −2520 α2 + β 2 31 β 4 + 194 α2 β 2 + 31 α4 α2 − β 2 x2 + +2395260 β 2 α6 + 177345 α8 + 5176710 α4 β 4 + 2395260 α2 β 6 + 177345 β 8 ]   (0) U10 = 2835 α2 + β 2 315 β 8 + 6548 α2 β 6 + 19042 α4 β 4 + 6548 β 2 α6 + 315 α8  (0) V10 = −5670 β α 563 β 8 + 563 α8 + 7604 β 2 α6 + 16434 α4 β 4 + 7604 α2 β 6 (1)

 6 x8 − 112 α2 + β 2 α2 − β 2 x6 +  4 +105 49 α4 + 158 β 2 α2 + 49 β 4 α2 − β 2 x4 −

P10 = 18 xα β[ α2 − β 2

8

291

−2520 α2 + β 2



35 β 4 + 186 β 2 α2 + 35 α4



α2 − β 2

2

x2 +

+2485980 β 2 α6 + 275625 β 8 + 2485980 β 6 α2 + 4798710 β 4 α4 + 275625 α8 ] 8  6 (1) Q10 = −α x2 [ α2 − β 2 x8 − 9 7 α2 + 25 β 2 α2 − β 2 x6 +  4 +63 35 α4 + 474 β 2 α2 + 259 β 4 α2 − β 2 x4 −  2 2 −945 35 α6 + 1223 β 2 α4 + 2313 β 4 α2 + 525 β 6 α2 − β 2 (β + α) x2 + +9718380 β 2 α6 + 4862025 β 8 + 35029260 β 6 α2 + 43188390 β 4 α4 + 99225 α8 ]  6 8 (1) R10 = β x2 [ α2 − β 2 x8 − 9 7 β 2 + 25 α2 α2 − β 2 x6 +  4 +63 259 α4 + 474 β 2 α2 + 35 β 4 α2 − β 2 x4 −  2 −945 525 α6 + 2313 β 2 α4 + 1223 β 4 α2 + 35 β 6 α2 − β 2 x2 + +35029260 β 2 α6 + 99225 β 8 + 9718380 β 6 α2 + 43188390 β 4 α4 + 4862025 α8 ]  8   6 (1) S10 = 9 x[ α2 + β 2 α2 − β 2 x8 − 7 7 β 2 + α2 β 2 + 7 α2 α2 − β 2 x6 +   4 +35 α2 + β 2 35 β 4 + 698 β 2 α2 + 35 α4 α2 − β 2 x4 −  2 −315 35 α8 + 1748 β 2 α6 + 4626 β 4 α4 + 1748 β 6 α2 + 35 β 8 α2 − β 2 x2 +   +315 α2 + β 2 35 β 8 + 5108 β 6 α2 + 22482 β 4 α4 + 5108 β 2 α6 + 35 α8 ]  (1) U10 = 5670 875 α8 + 7892 β 2 α6 + 15234 β 4 α4 + 7892 β 6 α2 + 875 β 8 β α   (1) V10 = −2835 α2 + β 2 35 β 8 + 5108 β 6 α2 + 22482 β 4 α4 + 5108 β 2 α6 + 35 α8 8  6 α2 − β 2 x8 + 7 9 α4 + 46 β 2 α2 + 9 β 4 α2 − β 2 x6 +   4 +105 β 2 + α2 21 β 4 + 214 β 2 α2 + 21 α4 α2 − β 2 x4 +    2 +315 β 2 + 15 α2 15 β 2 + α2 7 β 4 + 18 β 2 α2 + 7 α4 α2 − β 2 x2 +   +315 β 2 + α2 315 β 8 + 6548 β 6 α2 + 19042 β 4 α4 + 6548 β 2 α6 + 315 α8 ]    ¯ (0) = −β x2 [ α2 − β 2 8 x8 + 9 23 α2 + 9 β 2 α2 − β 2 6 x6 + Q 10  4 +63 223 α4 + 482 β 2 α2 + 63 β 4 α2 − β 2 x4 +  2 +945 391 α6 + 2139 α4 β 2 + 1461 β 4 α2 + 105 β 6 α2 − β 2 x2 +

(0) P¯10 = −9 x[ β 2 + α2



+46590390 β 4 α4 + 25957260 β 2 α6 + 17157420 β 6 α2 + 2299185 α8 + 893025 β 8 ]    ¯ (0) = α x2 [ α2 − β 2 8 x8 + 9 9 α2 + 23 β 2 α2 − β 2 6 x6 + R 10  4 +63 63 α4 + 482 β 2 α2 + 223 β 4 α2 − β 2 x4 +  2 +945 105 α6 + 1461 β 2 α4 + 2139 β 4 α2 + 391 β 6 α2 − β 2 x2 + +2299185 β 8 + 893025 α8 + 46590390 β 4 α4 + 25957260 β 6 α2 + 17157420 β 2 α6 ] 8  6 (0) S¯10 = 18 β α x[ α2 − β 2 x8 + 112 α2 + β 2 α2 − β 2 x6 +  4 +35 143 α4 + 482 β 2 α2 + 143 β 4 α2 − β 2 x4 +   2 +2520 α2 + β 2 31 β 4 + 194 β 2 α2 + 31 α4 α2 − β 2 x2 + +177345 β 8 + 177345 α8 + 5176710 β 4 α4 + 2395260 β 6 α2 + 2395260 β 2 α6 ]   ¯ (0) = −2835 α2 + β 2 315 β 8 + 6548 β 6 α2 + 19042 β 4 α4 + 6548 β 2 α6 + 315 α8 U 10  (0) V¯10 = −5670 β α 16434 β 4 α4 + 7604 β 2 α6 + 563 α8 + 7604 β 6 α2 + 563 β 8 292

 6 x8 + 112 α2 + β 2 α2 − β 2 x6 +  4 +105 49 α4 + 158 β 2 α2 + 49 β 4 α2 − β 2 x4 +   2 2 +2520 α2 + β 2 35 β 4 + 186 β 2 α2 + 35 α4 α2 − β 2 (β + α) x2 + (1) P¯10 = 18 α β x[ α2 − β 2

8

+2485980 β 2 α6 + 275625 β 8 + 2485980 β 6 α2 + 4798710 β 4 α4 + 275625 α8 ]    ¯ (1) = α x2 [ α2 − β 2 8 x8 + 9 7 α2 + 25 β 2 α2 − β 2 6 (β + α)6 x6 + Q 10  4 +63 35 α4 + 474 β 2 α2 + 259 β 4 α2 − β 2 x4 +  2 +945 35 α6 + 1223 β 2 α4 + 2313 β 4 α2 + 525 β 6 α2 − β 2 x2 + +9718380 β 2 α6 + 4862025 β 8 + 35029260 β 6 α2 + 43188390 β 4 α4 + 99225 α8 ]    ¯ (1) = −β x2 [ α2 − β 2 8 x8 + 9 7 β 2 + 25 α2 α2 − β 2 6 (β + α)6 x6 + R 10  4 +63 259 α4 + 474 β 2 α2 + 35 β 4 α2 − β 2 x4 +  2 +945 525 α6 + 2313 β 2 α4 + 1223 β 4 α2 + 35 β 6 α2 − β 2 x2 + +35029260 β 2 α6 + 99225 β 8 + 9718380 β 6 α2 + 43188390 β 4 α4 + 4862025 α8 ]   6  8 (1) S¯10 = −9 x[ α2 + β 2 α2 − β 2 x8 + 7 7 β 2 + α2 β 2 + 7 α2 α2 − β 2 x6 +   4 +35 α2 + β 2 35 β 4 + 698 β 2 α2 + 35 α4 α2 − β 2 x4 +  2 +315 35 α8 + 1748 β 2 α6 + 4626 β 4 α4 + 1748 β 6 α2 + 35 β 8 α2 − β 2 x2 +   +315 α2 + β 2 35 β 8 + 5108 β 6 α2 + 22482 β 4 α4 + 5108 β 2 α6 + 35 α8 ]  ¯ (1) = 5670 875 α8 + 7892 β 2 α6 + 15234 β 4 α4 + 7892 β 6 α2 + 875 β 8 β α U 10   (1) V¯10 = 2835 α2 + β 2 35 β 8 + 5108 β 6 α2 + 22482 β 4 α4 + 5108 β 2 α6 + 35 α8

293

R 2.2.4. Integrals of the type x2n+1 · Z0 (αx) · Z1 (βx) dx Holds (with 0 < β < α and β/α = γ < 1)     Z Z b 1 b 1 , J1 (αx) J1 (βx) dx = Θ1 ax; , J0 (αx) J0 (βx) dx = Θ0 ax; α a α a     Z Z 1 b 1 b I0 (αx) I0 (βx) dx = Ω0 ax; , I1 (αx) I1 (βx) dx = Ω1 ax; . α a α a (Θν and Ων as definded on pages 277 and 279. In these integrals both Bessel functions are of the same order, so one can suppose β < α. This relation is not presumed for the product Z0 (αx) · Z1 (βx), that means for the following integrals.) Z Z Z J0 (αx) J1 (βx) dx = −J0 (αx) J1 (βx) + β J0 (αx) J0 (βx) dx − α J1 (αx) J1 (βx) dx x Z Z Z I0 (αx) I1 (βx) dx = −I0 (αx) I1 (βx) + β I0 (αx) I1 (βx) dx + α I1 (αx) I1 (βx) dx x Z x J0 (αx) J1 (βx) dx = =

=

Z Z β α x [β J (αx) J (βx) + α J (αx) J (βx)]− J (αx) J (βx) dx+ J1 (αx) J1 (βx) dx 0 0 1 1 0 0 α2 − β 2 α2 − β 2 α2 − β 2 Z x I0 (αx) I1 (βx) dx = x β [α I1 (αx) I1 (βx) − β I0 (αx) I0 (βx)]+ 2 2 2 α −β α − β2

Let

Z

xn · J0 (αx) J1 (βx) dx =

Z I0 (αx) I0 (βx) dx+

α 2 α − β2

Z I1 (αx) I1 (βx) dx

Qn (x) Pn (x) J0 (αx) J0 (βx) + 2 J0 (αx) J1 (βx)+ (α2 − β 2 )n (α − β 2 )n−1

Rn (x) Sn (x) J1 (αx) J0 (βx) + 2 J1 (αx) J1 (βx)+ 2 n−1 −β ) (α − β 2 )n Z Z Un Vn + 2 J0 (αx) J0 (βx) dx + 2 J1 (αx) J1 (βx) dx (α − β 2 )n (α − β 2 )n +

(α2

and Z

xn · I0 (αx) I1 (βx) dx =

¯ n (x) P¯n (x) Q I0 (αx) I0 (βx) + 2 I0 (αx) I1 (βx)+ 2 n −β ) (α − β 2 )n−1

(α2

¯ n (x) R S¯n (x) I1 (αx) I0 (βx) + 2 I1 (αx) I1 (βx)+ 2 n−1 −β ) (α − β 2 )n Z Z ¯n U V¯n + 2 I0 (αx) I0 (βx) dx + 2 I1 (αx) I1 (βx) dx , (α − β 2 )n (α − β 2 )n +

(α2

then holds = β x[ α2 − β 2

2

x2 − 3 β 2 − 5 α2 ] ,

(0) P¯3 = −β x[ α2 − β 2

2

x2 + 5 α2 + 3 β 2 ] ,

(0)

P3

(0)

Q3 = x2 [α2 + 3 β 2 ] 2 (0) (0) R3 = −4 α β x2 , S3 = α x[ α2 − β 2 x2 − α2 − 7 β 2 ]   (0) (0) U3 = −β 5 α2 + 3 β 2 , V3 = α 7 β 2 + α2 ¯ (0) = −[α2 + 3 β 2 ]x2 Q 3  2 ¯ (0) = 4 α β x2 , S¯(0) = α x α2 − β 2 x2 + 7 β 2 + α2 R 3 3   (0) 2 ¯ = −β 5 α + 3 β 2 , V¯ (0) = −α 7 β 2 + α2 U 3 3 294

(0)

P5

= β x[ α2 − β 2

4

x4 − 3 11 α2 + 5 β 2

(0)

Q5 = x2 [ 3 α2 + 5 β 2

α2 − β 2



x2 + 3 3 β 2 + 13 α2



 3 α2 + 5 β 2 ]

2

  x2 − 3 15 β 2 + α2 β 2 + 3 α2 ] 2 (0) R5 = −4 β α x2 [2 α2 − β 2 x2 − 27 α2 − 21 β 2 ] 4  2 (0) S5 = α x[ α2 − β 2 x4 − 3 3 α2 + 13 β 2 α2 − β 2 x2 + 9 α4 + 246 α2 β 2 + 129 β 4 ]    (0) (0) U5 = 3β 3 β 2 + 13 α2 3 α2 + 5 β 2 , V5 = −3 α 43 β 4 + 82 α2 β 2 + 3 α4

(0) P¯5 = −β x[ α2 − β 2

4



x4 + 3 11 α2 + 5 β 2

¯ (0) = −x2 [ 3 α2 + 5 β 2 Q 5

(0) S¯5

α2 − β 2

2



α2 − β 2

2

x2 + 3 3 β 2 + 13 α2



 3 α2 + 5 β 2 ]

2

  x2 + 3 15 β 2 + α2 β 2 + 3 α2 ]  ¯ (0) = 4 β α x2 [2 α2 − β 2 2 x2 + 27 α2 + 21 β 2 ] R 5  2 4 = α x[ α2 − β 2 x4 + 3 3 α2 + 13 β 2 α2 − β 2 x2 + 9 α4 + 129 β 4 + 246 β 2 α2 ]   ¯ (0) = −3 3 β 2 + 13 α2 3 α2 + 5 β 2 β U 5  (0) V¯5 = −3 α 43 β 4 + 82 β 2 α2 + 3 α4 

α2 − β 2

6  4 = β x[ α2 − β 2 x6 − 5 17 α2 + 7 β 2 α2 − β 2 x4 +  2 +15 115 α4 + 234 β 2 α2 + 35 β 4 α2 − β 2 x2 − 1575 β 6 − 5625 α6 − 15915 β 4 α2 − 22965 β 2 α4 ]  4  2 (0) Q7 = x2 [ 5 α2 + 7 β 2 α2 − β 2 x4 − 5 15 α4 + 142 β 2 α2 + 35 β 4 α2 − β 2 x2 + (0)

P7

+1575 β 6 + 8805 β 2 α4 + 225 α6 + 12435 β 4 α2 ] 4  2 (0) R7 = −4 β α x2 [3 α2 − β 2 x4 − 5 25 α2 + 23 β 2 α2 − β 2 x2 + 1350 α4 + 3540 β 2 α2 + 870 β 4 ] 6  4 (0) S7 = α x[ α2 − β 2 x6 − 5 19 β 2 + 5 α2 α2 − β 2 x4 +  2 +15 15 α4 + 242 β 2 α2 + 127 β 4 α2 − β 2 x2 − 14205 β 2 α4 − 5055 β 6 − 26595 β 4 α2 − 225 α6 ]  (0) U7 = −15 375 α6 + 1531 β 2 α4 + 1061 β 4 α2 + 105 β 6 β  (0) V7 = 15 α 947 β 2 α4 + 15 α6 + 337 β 6 + 1773 β 4 α2 6  4 (0) P¯7 = −β x[ α2 − β 2 x6 + 5 17 α2 + 7 β 2 α2 − β 2 x4 +  2 +15 115 α4 + 234 β 2 α2 + 35 β 4 α2 − β 2 x2 + 1575 β 6 + 5625 α6 + 15915 β 4 α2 + 22965 β 2 α4 ]     ¯ (0) = −x2 [ 5 α2 + 7 β 2 α2 − β 2 4 x4 + 5 15 α4 + 142 β 2 α2 + 35 β 4 α2 − β 2 2 x2 + Q 7 +225 α6 + 8805 β 2 α4 + 12435 β 4 α2 + 1575 β 6 ]    ¯ (0) = 4 β α x2 [3 α2 − β 2 4 x4 + 5 25 α2 + 23 β 2 α2 − β 2 2 x2 + 1350 α4 + 3540 β 2 α2 + 870 β 4 ] R 7 6  4 (0) S¯7 = α x[ α2 − β 2 x6 + 5 19 β 2 + 5 α2 α2 − β 2 x4 +  2 +15 15 α4 + 242 β 2 α2 + 127 β 4 α2 − β 2 x2 + 14205 β 2 α4 + 225 α6 + 26595 β 4 α2 + 5055 β 6 ]  ¯ (0) = −15 375 α6 + 1531 β 2 α4 + 1061 β 4 α2 + 105 β 6 β U 7  (0) V¯7 = −15 α 947 β 2 α4 + 15 α6 + 337 β 6 + 1773 β 4 α2

(0)

P9

= β x[ α2 − β 2

8

x8 −7 23 α2 + 9 β 2



α2 − β 2

6

x6 +105 β 2 + 7 α2

295



21 β 2 + 11 α2



α2 − β 2

4

x4 −

−315 455 α6 + 2139 β 2 α4 + 1397 β 4 α2 + 105 β 6

(0)

Q9

(0)

S9



α2 − β 2

2

x2 +

+3262140 β 2 α6 + 452025 α8 + 4798710 β 4 α4 + 1709820 β 6 α2 + 99225 β 8 ]  4  6 = x2 [ 9 β 2 + 7 α2 α2 − β 2 x6 − 7 35 α4 + 286 β 2 α2 + 63 β 4 α2 − β 2 x4 +  2 +105 35 α6 + 867 β 2 α4 + 1041 β 4 α2 + 105 β 6 α2 − β 2 x2 −

−2749950 β 4 α4 − 99225 β 8 − 835380 β 2 α6 − 11025 α8 − 1465380 β 6 α2 ] 6  4 (0) R9 = −4 β α x2 [4 α2 − β 2 x6 − 7 49 α2 + 47 β 2 α2 − β 2 x4 +    2 +105 105 α4 + 318 β 2 α2 + 89 β 4 α2 − β 2 x2 − 630 β 2 + 7 α2 97 β 4 + 134 β 2 α2 + 25 α4 ]  4  6 8 = α x[ α2 − β 2 x8 − 7 7 α2 + 25 β 2 α2 − β 2 x6 + 35 35 α4 + 482 β 2 α2 + 251 β 4 α2 − β 2 x4 −  2 −315 35 α6 + 1287 β 2 α4 + 2313 β 4 α2 + 461 β 6 α2 − β 2 x2 + +343665 β 8 + 5176710 β 4 α4 + 3514140 β 6 α2 + 1276380 β 2 α6 + 11025 α8 ]  (0) U9 = 315 β 15234 β 4 α4 + 5428 β 6 α2 + 315 β 8 + 1435 α8 + 10356 β 2 α6  (0) V9 = −315 35 α8 + 4052 β 2 α6 + 16434 β 4 α4 + 11156 β 6 α2 + 1091 β 8 α

(0) P¯9 = −β x[ α2 − β 2

8

x8 +7 23 α2 + 9 β 2



6   4 α2 − β 2 ) x6 +105 β 2 + 7 α2 21 β 2 + 11 α2 α2 − β 2 x4 +

+315 455 α6 + 2139 β 2 α4 + 1397 β 4 α2 + 105 β 6

¯ (0) Q 9

(0) S¯9



α2 − β 2

2

x2 +

+1709820 β 6 α2 + 3262140 β 2 α6 + 99225 β 8 + 452025 α8 + 4798710 β 4 α4 ]  6  4 = −x2 [ 7 α2 + 9 β 2 α2 − β 2 x6 + 7 35 α4 + 286 β 2 α2 + 63 β 4 α2 − β 2 x4 +  2 +105 35 α6 + 867 β 2 α4 + 1041 β 4 α2 + 105 β 6 α2 − β 2 x2 +

+99225 β 8 + 1465380 β 6 α2 + 2749950 β 4 α4 + 835380 β 2 α6 + 11025 α8 ]    ¯ (0) = 4 β α x2 [4 α2 − β 2 6 x6 + 7 49 α2 + 47 β 2 α2 − β 2 4 x4 + R 9  2   +105 105 α4 + 318 β 2 α2 + 89 β 4 α2 − β 2 x2 + 630 β 2 + 7 α2 97 β 4 + 134 β 2 α2 + 25 α4 ] 8  6  4 = α x[ α2 − β 2 x8 + 7 7 α2 + 25 β 2 α2 − β 2 x6 + 35 35 α4 + 482 β 2 α2 + 251 β 4 α2 − β 2 x4 +  2 +315 35 α6 + 1287 β 2 α4 + 2313 β 4 α2 + 461 β 6 α2 − β 2 x2 + +3514140 β 6 α2 + 5176710 β 4 α4 + 1276380 β 2 α6 + 343665 β 8 + 11025 α8 ]  ¯ (0) = −315 1435 α8 + 10356 β 2 α6 + 15234 β 4 α4 + 5428 β 6 α2 + 315 β 8 β U 9  (0) V¯9 = −315 α 35 α8 + 4052 β 2 α6 + 16434 β 4 α4 + 11156 β 6 α2 + 1091 β 8  8 x10 − 9 29 α2 + 11 β 2 α2 − β 2 x8 +  6 +63 387 α4 + 794 β 2 α2 + 99 β 4 α2 − β 2 x6 −  4 −945 1113 α6 + 5429 β 2 α4 + 3467 β 4 α2 + 231 β 6 α2 − β 2 x4 +  2 +2835 6195 α8 + 52196 β 2 α6 + 78882 β 4 α4 + 25412 β 6 α2 + 1155 β 8 α2 − β 2 x2 − (0)

P11 = β x[ α2 − β 2

10

−54474525 α10 − 1575415170 β 4 α6 − 1200752910 β 6 α4 − 9823275 β 10 − 258673905 β 8 α2 − 616751415 β 2 α8 ]  8  6 (0) Q11 = x2 [ 9 α2 + 11 β 2 α2 − β 2 x8 − 9 63 α4 + 478 β 2 α2 + 99 β 4 α2 − β 2 x6 +  4 +63 315 α6 + 6719 β 2 α4 + 7633 β 4 α2 + 693 β 6 α2 − β 2 x4 −  2 −945 315 α8 + 15308 β 2 α6 + 44346 β 4 α4 + 20796 β 6 α2 + 1155 β 8 α2 − β 2 x2 + 296

+893025 α10 + 674225370 β 4 α6 + 232489845 β 8 α2 + 112756455 β 2 α8 + 827757630 β 6 α4 + 9823275 β 10 ] 8  6 (0) R11 = −4 β α x2 [5 α2 − β 2 x8 − 9 81 α2 + 79 β 2 α2 − β 2 x6 +  4 +252 189 α4 + 598 β 2 α2 + 173 β 4 α2 − β 2 x4 −  2 −1890 735 α6 + 4611 β 2 α4 + 4317 β 4 α2 + 577 β 6 α2 − β 2 x2 + +125998740 β 2 α6 + 6546015 β 8 + 93248820 β 6 α2 + 225297450 β 4 α4 + 13395375 α8 ]  8 10 10 (0) x − 9 9 α2 + 31 β 2 α2 − β 2 ) x8 + S11 = α x[ α2 − β 2  6 +63 63 α4 + 802 β 2 α2 + 415 β 4 α2 − β 2 x6 −  4 −315 315 α6 + 9743 β 2 α4 + 17201 β 4 α2 + 3461 β 6 α2 − β 2 x4 +  2 +2835 315 α8 + 21188 β 2 α6 + 81234 β 4 α4 + 55332 β 6 α2 + 5771 β 8 α2 − β 2 x2 − −166337955 β 2 α8 − 1728947430 β 6 α4 − 893025 α10 − 605485125 β 8 α2 − 1178220330 β 4 α6 − 36007335 β 10 ]  (0) U11 = −2835 19215 α10 + 217549 β 2 α8 + 555702 β 4 α6 + 423546 β 6 α4 + 91243 β 8 α2 + 3465 β 10 β  (0) V11 = 2835 α 315 α10 + 58673 β 2 α8 + 415598 β 4 α6 + 609858 β 6 α4 + 213575 β 8 α2 + 12701 β 10  8 x10 + 9 29 α2 + 11 β 2 α2 − β 2 x8 +  6 +63 387 α4 + 794 β 2 α2 + 99 β 4 α2 − β 2 x6 +  4 +945 1113 α6 + 5429 β 2 α4 + 3467 β 4 α2 + 231 β 6 α2 − β 2 x4 +  2 +2835 6195 α8 + 52196 β 2 α6 + 78882 β 4 α4 + 25412 β 6 α2 + 1155 β 8 α2 − β 2 x2 + (0) P¯11 = −β x[ α2 − β 2

10

+258673905 β 8 α2 + 54474525 α10 + 1575415170 β 4 α6 + 616751415 β 2 α8 + 1200752910 β 6 α4 + 9823275 β 10 ]     ¯ (0) = −x2 [ 9 α2 + 11 β 2 α2 − β 2 8 x8 + 9 63 α4 + 478 β 2 α2 + 99 β 4 α2 − β 2 6 x6 + Q 11  4 +63 315 α6 + 6719 β 2 α4 + 7633 β 4 α2 + 693 β 6 α2 − β 2 x4 +  2 +945 315 α8 + 15308 β 2 α6 + 44346 β 4 α4 + 20796 β 6 α2 + 1155 β 8 α2 − β 2 x2 + +893025 α10 + 674225370 β 4 α6 + 232489845 β 8 α2 + 9823275 β 10 + 112756455 β 2 α8 + 827757630 β 6 α4 ]    ¯ (0) = 4 β α x2 [ α2 − β 2 8 x8 + 9 81 α2 + 79 β 2 α2 − β 2 6 x6 + R 11  4 +252 189 α4 + 598 β 2 α2 + 173 β 4 α2 − β 2 x4 +  2 +1890 735 α6 + 4611 β 2 α4 + 4317 β 4 α2 + 577 β 6 α2 − β 2 x2 +

(0) S¯11

+93248820 β 6 α2 + 225297450 β 4 α4 + 125998740 β 2 α6 + 6546015 β 8 + 13395375 α8 ] 10 10  8  6 = α x[ α2 − β 2 x +9 9 α2 + 31 β 2 α2 − β 2 x8 +63 63 α4 + 802 β 2 α2 + 415 β 4 α2 − β 2 x6 +  4 +315 315 α6 + 9743 β 2 α4 + 17201 β 4 α2 + 3461 β 6 α2 − β 2 x4 +  2 +2835 315 α8 + 21188 β 2 α6 + 81234 β 4 α4 + 55332 β 6 α2 + 5771 β 8 α2 − β 2 x2 +

+893025 α10 + 1178220330 β 4 α6 + 166337955 β 2 α8 + 1728947430 β 6 α4 + 36007335 β 10 + 605485125 β 8 α2 ]  ¯ (0) = −2835 19215 α10 + 217549 β 2 α8 + 555702 β 4 α6 + 423546 β 6 α4 + 91243 β 8 α2 + 3465 β 10 β U 11  (0) V¯11 = −2835 α 315 α10 + 58673 β 2 α8 + 415598 β 4 α6 + 609858 β 6 α4 + 213575 β 8 α2 + 12701 β 10

297

2.2.5. Integrals of the type

R

x2n+1 · J0 (αx) · I0 (βx) dx

Z xJ0 (αx) · I0 (βx) dx =

 α2 − β 2 x2

=2

2

(α2 + β 2 )

+

αx βx J0 (αx) · I1 (βx) + 2 J1 (αx) · I0 (βx) α2 + β 2 α + β2 Z x3 J0 (αx) · I0 (βx) dx =

J0 (αx) · I0 (βx) +

 ! β −β 2 + α2 x β x3 −4 J0 (αx) · I1 (βx)+ 3 α2 + β 2 (α2 + β 2 )

 ! α α2 − β 2 x α x3 β α x2 −4 J1 (αx) · I0 (βx) − 4 3 2 J1 (αx) · I1 (βx) 2 2 α +β (α2 + β 2 ) (α2 + β 2 )

With

Z

xn · J0 (αx) · I0 (βx) dx =

= Pn (x)J0 (αx) · I0 (βx) + Qn (x)J0 (αx) · I1 (βx) + Rn (x)J1 (αx) · I0 (βx) + Sn (x)J1 (αx) · I1 (βx) holds P5 (x) = 4

 −β 2 + α2 x4 2

(α2 + β 2 )

− 32

 α4 − 4 α2 β 2 + β 4 x2 4

(α2 + β 2 )

  β 2 α2 − β 2 x3 β α4 − 4 α2 β 2 + β 4 x β x5 − 16 + 64 Q5 (x) = 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )   α α2 − 2 β 2 x3 α α4 − 4 α2 β 2 + β 4 x α x5 R5 (x) = 2 − 16 + 64 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α β −β 2 + α2 x2 α β x4 S5 (x) = −8 2 + 96 4 (α2 + β 2 ) (α2 + β 2 )

P7 (x) = 6

 −β 2 + α2 x6 2

(α2 + β 2 )

Q7 (x) =

 3 α4 − 14 α2 β 2 + 3 β 4 x4

− 48

4

β x7 − 12 α2 + β 2

(α2 + β 2 )  β 7 α2 − 3 β 2 x5

−2304

3

(α2 + β 2 )

+ 192

+ 1152

 α6 − 9 α4 β 2 + 9 α2 β 4 − β 6 x2 6

(α2 + β 2 )  β 8 α4 − 19 α2 β 2 + 3 β 4 x3 5

(α2 + β 2 )  β α6 − 9 α4 β 2 + 9 α2 β 4 − β 6 x



7

(α2 + β 2 )   α 3 α4 − 19 α2 β 2 + 8 β 4 x3 α 3 α2 − 7 β 2 x5 α x7 R7 (x) = 2 − 12 + 192 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α α6 − 9 α4 β 2 + 9 α2 β 4 − β 6 x −2304 7 (α2 + β 2 )   β α −β 2 + α2 x4 β α 11 α4 − 38 α2 β 2 + 11 β 4 x2 β α x6 S7 (x) = −12 − 384 2 + 480 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )

P9 (x) = 8

 −β 2 + α2 x8 2

(α2 + β 2 )

− 384

−73728

 α4 − 5 α2 β 2 + β 4 x6 4

(α2 + β 2 )

+ 3072

 3 α6 − 32 α4 β 2 + 32 α2 β 4 − 3 β 6 x4 6

(α2 + β 2 )

 α8 − 16 β 2 α6 + 36 β 4 α4 − 16 β 6 α2 + β 8 x2 8

(α2 + β 2 )

  β 5 α2 − 2 β 2 x7 β 10 α4 − 22 α2 β 2 + 3 β 4 x5 β x9 − 32 + 768 − Q9 (x) = 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 ) 298



−6144

 β 19 α6 − 108 α4 β 2 + 77 α2 β 4 − 6 β 6 x3 7

(α2 + β 2 )

+ 147456

 β α8 − 16 β 2 α6 + 36 β 4 α4 − 16 β 6 α2 + β 8 x 9

(α2 + β 2 )

  α 2 α2 − 5 β 2 x7 α 3 α4 − 22 α2 β 2 + 10 β 4 x5 α x9 − 32 R9 (x) = 2 + 768 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )   α 6 α6 − 77 α4 β 2 + 108 α2 β 4 − 19 β 6 x3 α α8 − 16 β 2 α6 + 36 β 4 α4 − 16 β 6 α2 + β 8 x −6144 + 147456 7 9 (α2 + β 2 ) (α2 + β 2 )   α β −β 2 + α2 x6 α β 13 α4 − 44 α2 β 2 + 13 β 4 x4 α β x8 S9 (x) = −16 + 1344 − 3072 + 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α β 5 α6 − 37 α4 β 2 + 37 α2 β 4 − 5 β 6 x2 +61440 8 (α2 + β 2 )

P11 (x) = 10

 −β 2 + α2 x10 2

(α2 + β 2 )

−160

−61440 +7372800

 5 α4 − 26 α2 β 2 + 5 β 4 x8

+7680

4

(α2 + β 2 )

 5 α6 − 58 α4 β 2 + 58 α2 β 4 − 5 β 6 x6

 15 α8 − 283 β 2 α6 + 664 β 4 α4 − 283 β 6 α2 + 15 β 8 x4 8

(α2 + β 2 )

6

(α2 + β 2 ) +

 α10 − 25 α8 β 2 + 100 α6 β 4 − 100 α4 β 6 + 25 α2 β 8 − β 10 x2 10

(α2 + β 2 )  2

 β 13 α2 − 5 β x9 β 37 α4 − 79 α2 β 2 + 10 β 4 x7 β x11 Q11 (x) = 2 − 20 + 640 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  β 62 α6 − 332 α4 β 2 + 221 α2 β 4 − 15 β 6 x5 + −15360 7 (α2 + β 2 )  β 107 α8 − 1119 β 2 α6 + 1881 β 4 α4 − 643 β 6 α2 + 30 β 8 x3 +122880 − 9 (α2 + β 2 )  β α10 − 25 α8 β 2 + 100 α6 β 4 − 100 α4 β 6 + 25 α2 β 8 − β 10 x −14745600 11 (α2 + β 2 )   α 5 α2 − 13 β 2 x9 α 10 α4 − 79 α2 β 2 + 37 β 4 x7 α x11 R11 (x) = 2 − 20 + 640 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α 15 α6 − 221 α4 β 2 + 332 α2 β 4 − 62 β 6 x5 −15360 + 7 (α2 + β 2 )  α 30 α8 − 643 β 2 α6 + 1881 β 4 α4 − 1119 β 6 α2 + 107 β 8 x3 − +122880 9 (α2 + β 2 )  α α10 − 25 α8 β 2 + 100 α6 β 4 − 100 α4 β 6 + 25 α2 β 8 − β 10 x −14745600 11 (α2 + β 2 )   β α −β 2 + α2 x8 β α 47 α4 − 158 α2 β 2 + 47 β 4 x6 β α x10 S11 (x) = −20 − 3840 + 2 + 2880 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  β α 11 α6 − 79 α4 β 2 + 79 α2 β 4 − 11 β 6 x4 +430080 − 8 (α2 + β 2 )  β α 137 α8 − 1762 β 2 α6 + 3762 β 4 α4 − 1762 β 6 α2 + 137 β 8 x2 −245760 10 (α2 + β 2 )

299



2.2.6. Integrals of the type

R

x2n · J0 (αx) · I1 (βx) dx Z

x2 J0 (αx) · I1 (βx) dx =

β x2 β2x βαx α x2 J0 (αx)·I0 (βx)−2 J0 (αx)·I1 (βx)−2 J1 (αx)·I0 (βx)+ 2 J1 (αx)·I1 (βx) 2 2 2 +β α + β2 (α2 + β 2 ) (α2 + β 2 )  ! Z β −β 2 + 2 α2 x2 β x4 4 x J0 (αx) · I1 (βx) dx = −8 J0 (αx) · I0 (βx)+ 3 α2 + β 2 (α2 + β 2 )   ! β 2 −β 2 + 2 α2 x α2 − 2 β 2 x3 + 16 + 2 J0 (αx) · I1 (βx)+ 2 4 (α2 + β 2 ) (α2 + β 2 )  !  ! β α 2 α2 − β 2 x α α2 − 5 β 2 x2 α x4 β α x3 J1 (αx)·I0 (βx)+ −4 J1 (αx)·I1 (βx) + −6 2 + 16 4 3 α2 + β 2 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 ) =

α2

With

Z

xn · J0 (αx) · I1 (βx) dx =

= Pn (x)J0 (αx) · I0 (βx) + Qn (x)J0 (αx) · I1 (βx) + Rn (x)J1 (αx) · I0 (βx) + Sn (x)J1 (αx) · I1 (βx) holds

  β 3 α4 − 6 β 2 α2 + β 4 x2 β 7 α2 − 3 β 2 x4 β x6 + 192 −8 P6 (x) = 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )    2 α2 − 3 β 2 x5 α4 − 11 β 2 α2 + 3 β 4 x3 β 2 3 α4 − 6 β 2 α2 + β 4 x Q6 (x) = 2 − 32 − 384 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )   α β 8 α2 − 7 β 2 x3 α β 3 α4 − 6 β 2 α2 + β 4 x α β x5 R6 (x) = −10 − 384 2 + 32 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )   α α2 − 4 β 2 x4 α α4 − 19 β 2 α2 + 10 β 4 x2 α x6 − 16 + 64 S6 (x) = 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )

  β 21 α4 − 43 β 2 α2 + 6 β 4 x4 β 5 α2 − 2 β 2 x6 β x8 + 192 − P8 (x) = 2 − 24 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  β 4 α6 − 18 α4 β 2 + 12 α2 β 4 − β 6 x2 −9216 7 (α2 + β 2 )    3 α2 − 4 β 2 x7 3 α4 − 26 β 2 α2 + 6 β 4 x5 3 α6 − 86 α4 β 2 + 109 α2 β 4 − 12 β 6 x3 −48 +384 + Q8 (x) = 2 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  β 2 4 α6 − 18 α4 β 2 + 12 α2 β 4 − β 6 x +18432 8 (α2 + β 2 )   α β 18 α2 − 17 β 2 x5 α β 9 α4 − 26 β 2 α2 + 7 β 4 x3 α β x7 R8 (x) = −14 − 1920 + 2 + 48 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α β 4 α6 − 18 α4 β 2 + 12 α2 β 4 − β 6 x +18432 8 (α2 + β 2 )   α 3 α2 − 11 β 2 x6 α 3 α4 − 44 β 2 α2 + 23 β 4 x4 α x8 S8 (x) = 2 − 12 + 192 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α 3 α6 − 131 α4 β 2 + 239 α2 β 4 − 47 β 6 x2 −768 7 (α2 + β 2 ) 300

  β 13 α2 − 5 β 2 x8 β 19 α4 − 39 β 2 α2 + 5 β 4 x6 β x10 − 16 + 768 − P10 (x) = 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  β 69 α6 − 332 α4 β 2 + 214 α2 β 4 − 15 β 6 x4 −6144 + 7 (α2 + β 2 )  β 5 α8 − 40 α6 β 2 + 60 α4 β 4 − 20 α2 β 6 + β 8 x2 +737280 9 (α2 + β 2 )    4 α2 − 5 β 2 x9 6 α4 − 47 β 2 α2 + 10 β 4 x7 6 α6 − 136 α4 β 2 + 158 α2 β 4 − 15 β 6 x5 Q10 (x) = 2 −64 +1536 − 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  6 α8 − 337 α6 β 2 + 1018 α4 β 4 − 499 α2 β 6 + 30 β 8 x3 − −12288 8 (α2 + β 2 )  β 2 5 α8 − 40 α6 β 2 + 60 α4 β 4 − 20 α2 β 6 + β 8 x −1474560 10 (α2 + β 2 )   α β 32 α2 − 31 β 2 x7 α β 9 α4 − 28 β 2 α2 + 8 β 4 x5 α β x9 R10 (x) = −18 + 64 − 10752 + 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α β 144 α6 − 863 α4 β 2 + 782 α2 β 4 − 101 β 6 x3 +12288 − 8 (α2 + β 2 )  α β 5 α8 − 40 α6 β 2 + 60 α4 β 4 − 20 α2 β 6 + β 8 x −1474560 10 (α2 + β 2 )   α 2 α2 − 7 β 2 x8 α 6 α4 − 79 β 2 α2 + 41 β 4 x6 α x10 S10 (x) = 2 − 32 + 384 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α 6 α6 − 199 α4 β 2 + 354 α2 β 4 − 71 β 6 x4 + −6144 7 (α2 + β 2 )  α 6 α8 − 481 α6 β 2 + 1881 α4 β 4 − 1281 α2 β 6 + 131 β 8 x2 + 24576 9 (α2 + β 2 )

301

2.2.7. Integrals of the type

R

x2n · J1 (αx) · I0 (βx) dx Z

x2 J1 (αx) · I0 (βx) dx =

α x2 α xβ α2 x β x2 J0 (αx)·I0 (βx)+2 J0 (αx)·I1 (βx)+2 J1 (αx)·I0 (βx)+ 2 J1 (αx)·I1 (βx) 2 2 2 +β α + β2 (α2 + β 2 ) (α2 + β 2 )  ! Z α −2 β 2 + α2 x2 α x4 4 x J1 (αx) · I0 (βx) dx = − 2 +8 J0 (αx) · I0 (βx) + 3 α + β2 (α2 + β 2 )  ! α β −2 β 2 + α2 x α β x3 + 6 J0 (αx) · I1 (βx) + 2 − 16 4 (α2 + β 2 ) (α2 + β 2 )  !  !  α2 α2 − 2 β 2 x β 5 α2 − β 2 x2 2 α2 − β 2 x3 β x4 − 16 J1 (αx)·I0 (βx)+ −4 J1 (αx)·I1 (βx) + 2 2 4 3 α2 + β 2 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 ) =−

α2

With

Z

xn · J1 (αx) · I0 (βx) dx =

= Pn (x)J0 (αx) · I0 (βx) + Qn (x)J0 (αx) · I1 (βx) + Rn (x)J1 (αx) · I0 (βx) + Sn (x)J1 (αx) · I1 (βx) holds

  α α4 − 6 α2 β 2 + 3 β 4 x2 α 3 α2 − 7 β 2 x4 α x6 − 192 +8 P6 (x) = − 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )   α β 7 α2 − 8 β 2 x3 α β α4 − 6 α2 β 2 + 3 β 4 x α β x5 Q6 (x) = 10 − 32 + 384 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )    3 α2 − 2 β 2 x5 3 α4 − 11 α2 β 2 + β 4 x3 α2 α4 − 6 α2 β 2 + 3 β 4 x R6 (x) = 2 − 32 + 384 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )   β 4 α2 − β 2 x4 β 10 α4 − 19 α2 β 2 + β 4 x2 β x6 − 16 + 64 S6 (x) = 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )

  α 6 α4 − 43 α2 β 2 + 21 β 4 x4 α 2 α2 − 5 β 2 x6 α x8 − 192 + P8 (x) = − 2 + 24 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α α6 − 12 α4 β 2 + 18 α2 β 4 − 4 β 6 x2 + 9216 7 (α2 + β 2 )   α β 17 α2 − 18 β 2 x5 α β 7 α4 − 26 α2 β 2 + 9 β 4 x3 α β x7 + 1920 − Q8 (x) = 14 2 − 48 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α β α6 − 12 α4 β 2 + 18 α2 β 4 − 4 β 6 x −18432 8 (α2 + β 2 )    4 α2 − 3 β 2 x7 6 α4 − 26 α2 β 2 + 3 β 4 x5 12 α6 − 109 α4 β 2 + 86 α2 β 4 − 3 β 6 x3 R8 (x) = 2 −48 +384 − 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α2 α6 − 12 α4 β 2 + 18 α2 β 4 − 4 β 6 x −18432 8 (α2 + β 2 )   β 11 α2 − 3 β 2 x6 β 23 α4 − 44 α2 β 2 + 3 β 4 x4 β x8 S8 (x) = 2 − 12 + 192 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  β 47 α6 − 239 α4 β 2 + 131 α2 β 4 − 3 β 6 x2 −768 7 (α2 + β 2 ) 302

  α 5 α2 − 13 β 2 x8 α 5 α4 − 39 α2 β 2 + 19 β 4 x6 α x10 + 16 − 768 + P10 (x) = − 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α 15 α6 − 214 α4 β 2 + 332 α2 β 4 − 69 β 6 x4 + 6144 − 7 (α2 + β 2 )  α α8 − 20 α6 β 2 + 60 β 4 α4 − 40 β 6 α2 + 5 β 8 x2 −737280 9 (α2 + β 2 )   α β 31 α2 − 32 β 2 x7 α β 8 α4 − 28 α2 β 2 + 9 β 4 x5 α β x9 Q10 (x) = 18 + 10752 − 2 − 64 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α β 101 α6 − 782 α4 β 2 + 863 α2 β 4 − 144 β 6 x3 + −12288 8 (α2 + β 2 )  α β α8 − 20 α6 β 2 + 60 β 4 α4 − 40 β 6 α2 + 5 β 8 x + 1474560 10 (α2 + β 2 )   5 α2 − 4 β 2 x9 10 α4 − 47 α2 β 2 + 6 β 4 x7 R10 (x) = 2 − 64 + 2 4 (α2 + β 2 ) (α2 + β 2 )  15 α6 − 158 α4 β 2 + 136 α2 β 4 − 6 β 6 x5 + 1536 − 6 (α2 + β 2 )  30 α8 − 499 α6 β 2 + 1018 β 4 α4 − 337 β 6 α2 + 6 β 8 x3 + −12288 8 (α2 + β 2 )  α2 α8 − 20 α6 β 2 + 60 β 4 α4 − 40 β 6 α2 + 5 β 8 x + 1474560 10 (α2 + β 2 )   β 41 α4 − 79 α2 β 2 + 6 β 4 x6 β 7 α2 − 2 β 2 x8 β x10 + 384 − S10 (x) = 2 − 32 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  β 71 α6 − 354 α4 β 2 + 199 α2 β 4 − 6 β 6 x4 − 6144 + 7 (α2 + β 2 )  β 131 α8 − 1281 α6 β 2 + 1881 β 4 α4 − 481 β 6 α2 + 6 β 8 x2 + 24576 9 (α2 + β 2 )

303

2.2.8. Integrals of the type

R

x2n+1 · J1 (αx) · I1 (βx) dx

Z

βx αx J0 (αx) · I1 (βx) + 2 J1 (αx) · I0 (βx) α2 + β 2 α + β2

xJ1 (αx) · I1 (βx) dx = − Z

x3 J1 (αx) · I1 (βx) dx = 4

α x3 β2α x + − 2 − 8 3 α + β2 (α2 + β 2 )

β α x2 2

(α2 + β 2 )

! J0 (αx) · I1 (βx) +  α2 − β 2 x2

+2 With

2

(α2 + β 2 )

Z

J0 (αx) · I0 (βx) +

α2 β x β x3 − 8 3 α2 + β 2 (α2 + β 2 )

! J1 (αx) · I0 (βx) +

J1 (αx) · I1 (βx)

xn · J1 (αx) · I1 (βx) dx =

= Pn (x)J0 (αx) · I0 (βx) + Qn (x)J0 (αx) · I1 (βx) + Rn (x)J1 (αx) · I0 (βx) + Sn (x)J1 (αx) · I1 (βx) holds

α β x4

P5 (x) = 8

2

(α2 + β 2 )

− 96

 α β α2 − β 2 x2 4

(α2 + β 2 )

  β 2 α α2 − β 2 x α α2 − 5 β 2 x3 α x5 + 8 + 192 3 5 α2 + β 2 (α2 + β 2 ) (α2 + β 2 )   β 5 α2 − β 2 x3 α2 β α2 − β 2 x β x5 R5 (x) = 2 −8 + 192 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )   α2 − β 2 x4 α4 − 10 β 2 α2 + β 4 x2 S5 (x) = 4 2 − 16 4 (α2 + β 2 ) (α2 + β 2 )

Q5 (x) = −

P7 (x) = 12

α β x6 2

(α2 + β 2 )

− 480

α x7 Q7 (x) = − 2 + 24 α + β2

 α β α2 − β 2 x4 4

(α2 + β 2 )  α α2 − 4 β 2 x5 3

(α2 + β 2 )

− 9216

+ 4608

− 192

 α β α4 − 3 β 2 α2 + β 4 x2 6

(α2 + β 2 )

 α α4 − 18 β 2 α2 + 11 β 4 x3 5

(α2 + β 2 )



 β 2 α α4 − 3 β 2 α2 + β 4 x 7

(α2 + β 2 )  2

 β 11 α4 − 18 β 2 α2 + β 4 x3 β 4 α2 − β x5 β x7 R7 (x) = 2 − 24 + 192 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α2 β α4 − 3 β 2 α2 + β 4 x − 9216 7 (α2 + β 2 )    α4 − 8 β 2 α2 + β 4 x4 α6 − 29 α4 β 2 + 29 β 4 α2 − β 6 x2 α2 − β 2 x6 + 384 S7 (x) = 6 2 − 96 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )

P9 (x) = 16

α β x8 2

(α2 + β 2 )

− 1344

 α β α2 − β 2 x6

− 368640

4

(α2 + β 2 )

+ 1536

 α β 27 α4 − 86 β 2 α2 + 27 β 4 x4 6

(α2 + β 2 )

 α β α6 − 6 α4 β 2 + 6 β 4 α2 − β 6 x2 8

(α2 + β 2 )   α 3 α2 − 11 β 2 x7 α 3 α4 − 43 β 2 α2 + 24 β 4 x5 α x9 Q9 (x) = − 2 + 16 − 384 + 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 ) 304



+ 3072

 α 3 α6 − 121 α4 β 2 + 239 β 4 α2 − 57 β 6 x3 7

(α2 + β 2 )

+ 737280

 α β 2 α6 − 6 α4 β 2 + 6 β 4 α2 − β 6 x 9

(α2 + β 2 )

  β 11 α2 − 3 β 2 x7 β 24 α4 − 43 β 2 α2 + 3 β 4 x5 β x9 − 16 R9 (x) = 2 + 384 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )   β 57 α6 − 239 α4 β 2 + 121 β 4 α2 − 3 β 6 x3 α2 β α6 − 6 α4 β 2 + 6 β 4 α2 − β 6 x − 3072 + 737280 7 9 (α2 + β 2 ) (α2 + β 2 )    α2 − β 2 x8 3 α4 − 22 β 2 α2 + 3 β 4 x6 3 α6 − 67 α4 β 2 + 67 β 4 α2 − 3 β 6 x4 S9 (x) = 8 − 96 + 1536 − 2 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  3 α8 − 178 α6 β 2 + 478 α4 β 4 − 178 α2 β 6 + 3 β 8 x2 − 6144 8 (α2 + β 2 )

P11 (x) = 20

α β x10 2

(α2 + β 2 )

− 2880

− 2580480 + 44236800

 α β α2 − β 2 x8 4

(α2 + β 2 )

+ 46080

 α β 4 α4 − 13 β 2 α2 + 4 β 4 x6

 α β 2 α6 − 13 α4 β 2 + 13 β 4 α2 − 2 β 6 x4 8

(α2 + β 2 )

6

(α2 + β 2 )



+

 α β α8 − 10 α6 β 2 + 20 α4 β 4 − 10 α2 β 6 + β 8 x2 10

(α2 + β 2 )   α α4 − 13 β 2 α2 + 7 β 4 x7 α 2 α2 − 7 β 2 x9 α x11 − 3840 + + 40 Q11 (x) = − 2 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  α α6 − 32 α4 β 2 + 59 β 4 α2 − 13 β 6 x5 + 92160 − 7 (α2 + β 2 )  α α8 − 73 α6 β 2 + 300 α4 β 4 − 227 α2 β 6 + 29 β 8 x3 − 737280 − 9 (α2 + β 2 )  β 2 α α8 − 10 α6 β 2 + 20 α4 β 4 − 10 α2 β 6 + β 8 x − 88473600 11 (α2 + β 2 )   β 7 α4 − 13 β 2 α2 + β 4 x7 β 7 α2 − 2 β 2 x9 β x11 R11 (x) = 2 − 40 + 3840 − 3 5 α + β2 (α2 + β 2 ) (α2 + β 2 )  β 13 α6 − 59 α4 β 2 + 32 β 4 α2 − β 6 x5 − 92160 + 7 (α2 + β 2 )  β 29 α8 − 227 α6 β 2 + 300 α4 β 4 − 73 α2 β 6 + β 8 x3 − + 737280 9 (α2 + β 2 )  α2 β α8 − 10 α6 β 2 + 20 α4 β 4 − 10 α2 β 6 + β 8 x − 88473600 11 (α2 + β 2 )    α2 − β 2 x10 α4 − 7 β 2 α2 + β 4 x8 α6 − 20 α4 β 2 + 20 β 4 α2 − β 6 x6 S11 (x) = 10 + 23040 − 2 − 640 4 6 (α2 + β 2 ) (α2 + β 2 ) (α2 + β 2 )  α8 − 45 α6 β 2 + 118 α4 β 4 − 45 α2 β 6 + β 8 x4 − 368640 + 8 (α2 + β 2 )  α10 − 102 α8 β 2 + 527 β 4 α6 − 527 β 6 α4 + 102 β 8 α2 − β 10 x2 + 1474560 10 (α2 + β 2 )

305

2.2.9. Integrals of the type

R

x2n+1 · Jν (αx) Yν (βx) dx

Compare with 2.2.1. . Z x J0 (αx) Y0 (βx) dx = Z x J1 (αx) Y1 (βx) dx = Z

Z



Z

x [α J1 (αx) Y0 (βx) − βJ0 (αx) Y1 (βx)] α2 − β 2 x [β J1 (αx) Y0 (βx) − αJ0 (αx) Y1 (βx)] α2 − β 2

2 (α2 + β 2 ) x2 4 α βx2 J (αx) Y (βx) + J1 (αx) Y1 (βx)+ 0 0 (α2 − β 2 )2 (α2 − β 2 )2  (α2 − β 2 )2 x3 − 4 α2 + β 2 x [α J1 (αx) Y0 (βx) − β J0 (αx) Y1 (βx)] + (α2 − β 2 )3

x3 J0 (αx) Y0 (βx) dx =

x3 J1 (αx) Y1 (βx) dx =

4 α β x2 2 (α2 + β 2 ) x2 J (αx) Y (βx) + J1 (αx) Y1 (βx)− 0 0 (α2 − β 2 )2 (α2 − β 2 )2

α[(α2 − β 2 )2 x3 − 8β 2 x] β[(α2 − β 2 )2 x3 − 8α2 x] J0 (αx) Y1 (βx) + J1 (αx) Y0 (βx) 2 2 3 (α − β ) (α2 − β 2 )3

5

x J0 (αx) Y0 (βx) dx =

4 α2 + β 2



α2 − β 2

2

x4 − 32( α4 + 4 α2 β 2 + β 4 )x2 J0 (αx) Y0 (βx)− (α2 − β 2 )4

 2  x5 − 16 2 α2 + β 2 α2 − β 2 x3 + 64 α4 + 4 α2 β 2 + β 4 x] J0 (αx) Y1 (βx)+ − (α2 − β 2 )5 4  2  α [ α2 − β 2 x5 − 16 α2 + 2 β 2 α2 − β 2 x3 + 64 α4 + 4 α2 β 2 + β 4 x] + J1 (αx) Y0 (βx)+ (α2 − β 2 )5 2  8 α β α2 − β 2 x4 − 96 α β α2 + β 2 x2 J1 (αx) Y1 (βx) + (α2 − β 2 )4 2  Z 8 α β α2 − β 2 x4 − 96 α β α2 + β 2 x2 5 x J1 (αx) Y1 (βx) dx = J0 (αx) Y0 (βx)− (α2 − β 2 )4  2  α[(α2 − β 2 )4 x5 − 8 α2 + 5 β 2 α2 − β 2 x3 + 192 β 2 α2 + β 2 x] − J0 (αx) Y1 (βx)]+ (α2 − β 2 )5  2  β[(α2 − β 2 )4 x5 − 8 5 α2 + β 2 α2 − β 2 x3 + 192 α2 α2 + β 2 x] + J1 (αx) Y0 (βx)+ (α2 − β 2 )5   2 2 4 α2 + β α2 − β 2 x4 − 16 (α4 + 10 α2 β 2 + β 4 ) x2 J1 (αx) Y1 (βx) + (α2 − β 2 )4 β [ α2 − β 2

4

306

2.3. Bessel Functions with different Arguments x and x + α : R R 2.3.1. Integrals of the type x−1 Zν (x + α)Z1 (x) dx and [x(x + α)]−1 Z1 (x + α)Z1 (x) dx Z

J1 (x)J0 (x + α) x+α dx = x α



 J0 (x)J1 (x + α) − J1 (x)J0 (x + α)

  I1 (x)I0 (x + α) x+α dx = I0 (x)I1 (x + α) − I1 (x)I0 (x + α) x α   Z x+α K1 (x)I0 (x + α) dx = K0 (x)K1 (x + α) − K1 (x)K0 (x + α) x α Z J1 (x)J1 (x + α) dx = x x+α x+α x x+α J0 (x)J1 (x + α) − =− J0 (x)J0 (x + α) − 2 J1 (x)J0 (x + α) + J1 (x)J1 (x + α) α α α2 α Z I1 (x)I1 (x + α) dx = x x+α x+α x x+α I0 (x)I1 (x + α) − I0 (x)I0 (x + α) + 2 I1 (x)I0 (x + α) − I1 (x)I1 (x + α) = α α α2 α Z K1 (x)K1 (x + α) dx = x x+α x x+α x+α = K0 (x)K0 (x + α) − 2 K1 (x)K0 (x + α) + K0 (x)K1 (x + α) − K1 (x)K1 (x + α) α α α2 α From this Z J1 (x) J1 (x + α) dx = x(x + α) Z

=

=

=

1 {2(x + α)J1 (x) J0 (x + α) − 2x J0 (x) J1 (x + α) − α(2x + α) [ J0 (x) J0 (x + α) + J1 (x) J1 (x + α)]} α3 Z I1 (x) I1 (x + α) dx = x(x + α) 1 { −2(x + α)I1 (x) I0 (x + α) + 2x I0 (x) I1 (x + α) + α(2x + α) [ I0 (x) I0 (x + α) − I1 (x) I1 (x + α)]} α3 Z K1 (x) K1 (x + α) dx = x(x + α)

1 {2(x + α)K1 (x) K0 (x + α) − 2x K0 (x) K1 (x + α) + α(2x + α) [ K0 (x) K0 (x + α) − K1 (x) K1 (x + α)]} α3

307

2.4. Elementary Function and two Bessel Functions: R R 2.4.1. Integrals of the type x2n+1 ln x Zν2 (x) dx and x2n ln x Z0 (x) Z1 (x) dx (1)

(2)

In the following integrals Jν (x) may be substituted by Yν (x), Hν (x) or Hν (x). Z x x2 (ln x − 1) 2 [J0 (x) + J12 (x)] + J0 (x) J1 (x) x ln x J02 (x) dx = 2 2 Z x2 (ln x − 1) 2 x x ln x I02 (x) dx = [I0 (x) − I12 (x)] + I0 (x) I1 (x) 2 2 Z 2 x x (ln x − 1) [K02 (x) − K12 (x)] − K0 (x) K1 (x) x ln x K02 (x) dx = 2 2 Z

Z Z

x ln x J12 (x) dx =

x(1 − 2 ln x) x2 (ln x − 1) 2 x2 (ln x − 1) − 1 2 J0 (x) + J0 (x) J1 (x) + J1 (x) 2 2 2

x ln x I12 (x) dx =

x2 (1 − ln x) − 1 2 x2 (ln x − 1) 2 x(2 ln x − 1) I0 (x) + I0 (x) I1 (x) + I1 (x) 2 2 2

x ln x K12 (x) dx = Z

x2 ln x J0 (x) J1 (x) dx = − Z

Z

=

=

=

x2 2 x x2 (2 ln x − 1) 2 J0 (x) + J0 (x) J1 (x) + J1 (x) 4 2 4

x2 2 x x2 (2 ln x − 1) 2 I0 (x) − I0 (x) I1 (x) + I1 (x) 4 2 4

x2 ln x I0 (x) I1 (x) dx =

x2 2 x2 (1 − 2 ln x) 2 x K0 (x) − K0 (x) K1 (x) + K1 (x) 4 2 4 Z x3 ln x J02 (x) dx =

x2 ln x K0 (x) K1 (x) dx = −

x3 − 6 x + 6 x3 ln x x2 + x4 + (6 x2 − 3 x4 ) ln x 2 3 x2 − x4 + 3 x4 ln x 2 J0 (x) + J0 (x) J1 (x) − J1 (x) 18 18 18 Z x3 ln x I02 (x) dx = −3 x2 − x4 + 3 x4 ln x 2 x3 + 6 x + 6 x3 ln x x2 − x4 + (6 x2 + 3 x4 ) ln x 2 I0 (x) + I0 (x) I1 (x) − I1 (x) 18 18 18 Z x3 ln x K02 (x) dx =

−3 x2 − x4 + 3 x4 ln x 2 x3 + 6 x + 6 x3 ln x x2 − x4 + (6 x2 + 3 x4 ) ln x 2 K0 (x) − K0 (x) K1 (x) − K1 (x) 18 18 18 Z x3 ln x J12 (x) dx =

=−

=

x(2 ln x − 1) x2 (ln x − 1) 2 x2 (ln x − 1) − 1 2 K0 (x) − K0 (x) K1 (x) + K1 (x) 2 2 2

6 x2 + x4 − 3 x4 ln x 2 12 x + x3 − 12 x3 ln x x2 + x4 − (12x2 + 3 x4 ) ln x 2 J0 (x) + J0 (x) J1 (x) − J1 (x) 18 18 18 Z x3 ln x I12 (x) dx =

12 x − x3 + 12 x3 ln x x2 − x4 − (12x2 − 3 x4 ) ln x 2 −6 x2 + x4 − 3 x4 ln x 2 I0 (x) + I0 (x) I1 (x) + I1 (x) 18 18 18 Z x3 ln x K12 (x) dx =

308

=

−6 x2 + x4 − 3 x4 ln x 2 12 x − x3 + 12 x3 ln x x2 − x4 − (12x2 − 3 x4 ) ln x 2 K0 (x) − K0 (x) K1 (x) + K1 (x) 18 18 18 Z 12 x2 − x4 − 6 x4 ln x 2 x4 ln x J0 (x) J1 (x) dx = J0 (x)+ 36 +

5 x3 − 12 x + 12 x3 ln x 10 x2 + x4 + (24x2 − 12 x4 ) ln x 2 J0 (x) J1 (x) − J1 (x) 18 36 Z 12 x2 + x4 + 6 x4 ln x 2 x4 ln x I0 (x) I1 (x) dx = I0 (x)− 36



− Let

=

10 x2 − x4 + (24x2 + 12 x4 ) ln x 2 5 x3 + 12 x + 12 x3 ln x I0 (x) I1 (x) + I1 (x) 18 36 Z 12 x2 + x4 + 6 x4 ln x 2 K0 (x)− x4 ln x K0 (x) K1 (x) dx = − 36

5 x3 + 12 x + 12 x3 ln x 10 x2 − x4 + (24x2 + 12 x4 ) ln x 2 K0 (x) K1 (x) − K1 (x) 18 36 Z x2n+1 ln x J02 (x) dx =

An (x) + Bn (x) ln x (20,20) Nn

J02 (x) +

Cn (x) + Dn (x) ln x (20,11) Nn

Z

=

Gn (x) + Hn (x) ln x (11,20) Nn

J02 (x) +

Pn (x) + Qn (x) ln x (02,20) Nn

J02 (x) +

En (x) + Fn (x) ln x (20,02)

Nn

J12 (x) ,

x2n ln x J0 (x) J1 (x) dx =

In (x) + Kn (x) ln x (11,11) Nn

Z

=

J0 (x) J1 (x) +

J0 (x) J1 (x) +

Ln (x) + Mn (x) ln x (11,02)

Nn

J12 (x) ,

x2n+1 ln x J12 (x) dx =

Rn (x) + Sn (x) ln x (02,11) Nn

J0 (x) J1 (x) +

Tn (x) + Un (x) ln x (02,02)

Nn

J12 (x) ,

and let the integrals with Iν (x) be described with the polynomials A∗n (x), . . . and such with Kν (x) written (µ,ν,λ,κ) are the same), then holds with A∗∗ n (x) . . . (the denominators Nn (20,20)

= 450 ,

A2 (x) = −9 x6 + 56 x4 − 240 x2 ,

(20,11)

= 450 ,

C2 (x) = 9 x5 − 344 x3 + 480 x ,

N2

N2

(20,02)

N2

= 450 ,

E2 (x) = −9 x6 − 52 x4 + 344 x2 ,

A∗2 (x) = −9 x6 − 56 x4 − 240 x2 , C2∗ (x) = 9 x5 + 344 x3 + 480 x , E2∗ (x) = 9 x6 − 52 x4 − 344 x2 ,

C2∗∗ (x) = −9 x5 − 344 x3 − 480 x , E2∗∗ (x) = 9 x6 − 52 x4 − 344 x2 ,

D2 (x) = 180 x5 − 480 x3 ,

F2 (x) = 45 x6 − 240 x4 + 480 x2 ,

B2∗ (x) = 45 x6 − 120 x4 , D2∗ (x) = 180 x5 + 480 x3 ,

F2∗ (x) = −45 x6 − 240 x4 − 480 x2 ,

6 4 2 A∗∗ 2 (x) = −9 x − 56 x − 240 x ,

R

B2 (x) = 45 x6 + 120 x4 ,

B2∗∗ (x) = 45 x6 − 120 x4 , D2∗∗ (x) = −180 x5 − 480 x3 ,

F2∗∗ (x) = −45 x6 − 240 x4 − 480 x2 ,

x4 ln x Z0 (x) Z1 (x) dx see before. (02,02)

N2

(02,11)

N2

= 150 ,

= 150 ,

P2 (x) = −3x6 − 23 x4 + 120 x2 , R2 (x) = 3 x5 + 152 x3 − 240 x , 309

Q2 (x) = 15 x6 − 60 x4 , S2 (x) = −90 x5 + 240 x3 ,

(02,02)

N2

T2 (x) = −3 x6 + 16 x4 − 152 x2 ,

= 150 ,

P2∗ (x) = 3 x6 − 23 x4 − 120 x2 ,

Q∗2 (x) = −15 x6 − 60 x4 ,

R2∗ (x) = −3 x5 + 152 x3 + 240 x , T2∗ (x) = −3 x6 − 16 x4 − 152 x2 ,

U2 (x) = 15 x6 + 120 x4 − 240 x2 ,

S2∗ (x) = 90 x5 + 240 x3 ,

U2∗ (x) = 15 x6 − 120 x4 − 240 x2 ,

P2∗∗ (x) = 3 x6 − 23 x4 − 120 x2 ,

6 4 Q∗∗ 2 (x) = −15 x − 60 x ,

R2∗∗ (x) = 3 x5 − 152 x3 − 240 x ,

S2∗∗ (x) = −90 x5 − 240 x3 ,

T2∗∗ (x) = −3 x6 − 16 x4 − 152 x2 ,

U2∗∗ (x) = 15 x6 − 120 x4 − 240 x2 ,

(20,20)

= 2450 ,

A3 (x) = −25 x8 + 303 x6 − 4152 x4 + 10080 x2 ,

(20,11)

= 2450 ,

C3 (x) = 25 x7 − 3078 x5 + 21648 x3 − 20160 x ,

(20,02)

= 2450 ,

E3 (x) = −25 x8 −297 x6 +5784 x4 −21648 x2 ,

N3 N3 N3

A∗3 (x) = −25 x8 − 303 x6 − 4152 x4 − 10080 x2 , C3∗ (x) = 25 x7 + 3078 x5 + 21648 x3 + 20160 x , E3∗ (x) = 25 x8 − 297 x6 − 5784 x4 − 21648 x2 ,

C3∗∗ (x) = −25 x7 − 3078 x5 − 21648 x3 − 20160 x , E3∗∗ (x) = 25 x8 − 297 x6 − 5784 x4 − 21648 x2 , (11,20)

= 300 ,

(11,11)

N3 (11,02)

N3

= 150 ,

= 300 ,

D3 (x) = 1050 x7 − 7560 x5 + 20160 x3 , F3 (x) = 175 x8 −1890 x6 +10080 x4 −20160 x2 ,

B3∗ (x) = 175 x8 − 1260 x6 − 5040 x4 , D3∗ (x) = 1050 x7 + 7560 x5 + 20160 x3 ,

F3∗ (x) = −175 x8 − 1890 x6 − 10080 x4 − 20160 x2 ,

8 6 4 2 A∗∗ 3 (x) = −25 x − 303 x − 4152 x − 10080 x ,

N3

B3∗∗ (x) = 175 x8 − 1260 x6 − 5040 x4 , D3∗∗ (x) = −1050 x7 − 7560 x5 − 20160 x3 ,

F3∗∗ (x) = −175 x8 − 1890 x6 − 10080 x4 − 20160 x2 ,

G3 (x) = −3 x6 + 152 x4 − 480 x2 , I3 (x) = 39 x5 − 424 x3 + 480 x ,

L3 (x) = −3 x6 − 184 x4 + 848 x2 ,

G∗3 (x) = 3 x6 + 152 x4 + 480 x2 , I3∗ (x) = −39 x5 − 424 x3 − 480 x , L∗3 (x) = −3 x6 + 184 x4 + 848 x2 ,

H3 (x) = −60 x6 + 240 x4 , K3 (x) = 180 x5 − 480 x3 ,

M3 (x) = 90 x6 − 480 x4 + 960 x2 ,

H3∗ (x) = 60 x6 + 240 x4 , K3∗ (x) = −180 x5 − 480 x3 ,

M3∗ (x) = 90 x6 + 480 x4 + 960 x2 ,

6 4 2 G∗∗ 3 (x) = −3 x − 152 x − 480 x ,

I3∗∗ (x) = −39 x5 − 424 x3 − 480 x , 6 4 2 L∗∗ 3 (x) = 3 x − 184 x − 848 x ,

B3 (x) = 175 x8 + 1260 x6 − 5040 x4 ,

H3∗∗ (x) = −60 x6 − 240 x4 , K3∗∗ (x) = −180 x5 − 480 x3 ,

M3∗∗ (x) = −90 x6 − 480 x4 − 960 x2 ,

(02,20)

= 2450 ,

P3 (x) = −25 x8 − 334 x6 + 5256 x4 − 13440 x2 ,

(02,11)

= 2450 ,

R3 (x) = 25 x7 +3684 x5 −27744 x3 +26880 x ,

S3 (x) = −1400 x7 +10080 x5 −26880 x3 ,

(02,02)

= 2450 ,

T3 (x) = −25 x8 +291 x6 −7152 x4 +27744 x2 ,

U3 (x) = 175 x8 +2520 x6 −13440 x4 +26880 x2 ,

N3 N3

N3

P3∗ (x) = 25 x8 − 334 x6 − 5256 x4 − 13440 x2 , R3∗ (x) = −25 x7 + 3684 x5 + 27744 x3 + 26880 x , 310

Q3 (x) = 175 x8 − 1680 x6 + 6720 x4 ,

Q∗3 (x) = −175 x8 − 1680 x6 − 6720 x4 , S3∗ (x) = 1400 x7 + 10080 x5 + 26880 x3 ,

T3∗ (x) = −25 x8 − 291 x6 − 7152 x4 − 27744 x2 ,

U3∗ (x) = 175 x8 − 2520 x6 − 13440 x4 − 26880 x2 ,

P3∗∗ (x) = 25 x8 − 334 x6 − 5256 x4 − 13440 x2 , R3∗∗ (x) = 25 x7 − 3684 x5 − 27744 x3 − 26880 x , T3∗∗ (x) = −25 x8 − 291 x6 − 7152 x4 − 27744 x2 ,

(20,20)

N4

= 198450 ,

8 6 4 Q∗∗ 3 (x) = −175 x − 1680 x − 6720 x ,

S3∗∗ (x) = −1400 x7 − 10080 x5 − 26880 x3 ,

U3∗∗ (x) = 175 x8 − 2520 x6 − 13440 x4 − 26880 x2 ,

A4 (x) = −1225 x10 + 24600 x8 − 732096 x6 + 6315264 x4 − 11612160 x2 ,

B4 (x) = 11025 x10 + 151200 x8 − 1451520 x6 + 5806080 x4 , (20,11)

N4

= 198450 ,

C4 (x) = 1225 x9 − 348000 x7 + 5844096 x5 − 31067136 x3 + 23224320 x ,

D4 (x) = 88200 x9 − 1209600 x7 + 8709120 x5 − 23224320 x3 , (20,02)

N4

= 198450 ,

E4 (x) = −1225 x10 − 24400 x8 + 916704 x6 − 9727488 x4 + 31067136 x2 ,

F4 (x) = 11025 x10 − 201600 x8 + 2177280 x6 − 11612160 x4 + 23224320 x2 , A∗4 (x) = −1225 x10 − 24600 x8 − 732096 x6 − 6315264 x4 − 11612160 x2 , B4∗ (x) = 11025 x10 − 151200 x8 − 1451520 x6 − 5806080 x4 , C4∗ (x) = 1225 x9 + 348000 x7 + 5844096 x5 + 31067136 x3 + 23224320 x , D4∗ (x) = 88200 x9 + 1209600 x7 + 8709120 x5 + 23224320 x3 , E4∗ (x) = 1225 x10 − 24400 x8 − 916704 x6 − 9727488 x4 − 31067136 x2 , F4∗ (x) = −11025 x10 − 201600 x8 − 2177280 x6 − 11612160 x4 − 23224320 x2 , 10 A∗∗ − 24600 x8 − 732096 x6 − 6315264 x4 − 11612160 x2 , 4 (x) = −1225 x

B4∗∗ (x) = 11025 x10 − 151200 x8 − 1451520 x6 − 5806080 x4 , C4∗∗ (x) = −1225 x9 − 348000 x7 − 5844096 x5 − 31067136 x3 − 23224320 x , D4∗∗ (x) = −88200 x9 − 1209600 x7 − 8709120 x5 − 23224320 x3 , E4∗∗ (x) = 1225 x10 − 24400 x8 − 916704 x6 − 9727488 x4 − 31067136 x2 , F4∗∗ (x) = −11025 x10 − 201600 x8 − 2177280 x6 − 11612160 x4 − 23224320 x2 ,

(11,20)

= 4900 ,

G4 (x) = −25 x8 +3684 x6 −38256 x4 +80640 x2 ,

(11,11)

= 2450 ,

I4 (x) = 625 x7 −16092 x5 +96672 x3 −80640 x ,

N4

N4

(11,02)

N4

= 4900 ,

H4 (x) = −1050 x8 +10080 x6 −40320 x4 , K4 (x) = 4200 x7 −30240 x5 +80640 x3 ,

L4 (x) = −25 x8 − 4266 x6 + 56352 x4 − 193344 x2 ,

M4 (x) = 1400 x8 − 15120 x6 + 80640 x4 − 161280 x2 ,

G∗4 (x) = 25 x8 + 3684 x6 + 38256 x4 + 80640 x2 , I4∗ (x) = −625 x7 − 16092 x5 − 96672 x3 − 80640 x , L∗4 (x) = −25 x8 + 4266 x6 + 56352 x4 + 193344 x2 ,

H4∗ (x) = 1050 x8 + 10080 x6 + 40320 x4 , K4∗ (x) = −4200 x7 − 30240 x5 − 80640 x3 ,

M4∗ (x) = 1400 x8 + 15120 x6 + 80640 x4 + 161280 x2 ,

8 6 4 2 G∗∗ 4 (x) = −25 x − 3684 x − 38256 x − 80640 x ,

H4∗∗ (x) = −1050 x8 − 10080 x6 − 40320 x4 ,

I4∗∗ (x) = −625 x7 − 16092 x5 − 96672 x3 − 80640 x ,

K4∗∗ (x) = −4200 x7 − 30240 x5 − 80640 x3 ,

311

8 6 4 2 L∗∗ 4 (x) = 25 x − 4266 x − 56352 x − 193344 x , (02,20)

N4

= 39690 ,

M4∗∗ (x) = −1400 x8 − 15120 x6 − 80640 x4 − 161280 x2 ,

P4 (x) = −245 x10 − 5205 x8 + 173952 x6 − 1542528 x4 + 2903040 x2 ,

Q4 (x) = 2205 x10 − 37800 x8 + 362880 x6 − 1451520 x4 , (02,11)

N4

= 39690 ,

R4 (x) = 245 x9 + 79440 x7 − 1406592 x5 + 7621632 x3 − 5806080 x ,

S4 (x) = −22050 x9 + 302400 x7 − 2177280 x5 + 5806080 x3 , (02,02)

N4

= 39690 ,

T4 (x) = −245 x10 + 4840 x8 − 215568 x6 + 2359296 x4 − 7621632 x2 ,

U4 (x) = 2205 x10 + 50400 x8 − 544320 x6 + 2903040 x4 − 5806080 x2 , P4∗ (x) = 245 x10 − 5205 x8 − 173952 x6 − 1542528 x4 − 2903040 x2 , Q∗4 (x) = −2205 x10 − 37800 x8 − 362880 x6 − 1451520 x4 , R4∗ (x) = −245 x9 + 79440 x7 + 1406592 x5 + 7621632 x3 + 5806080 x , S4∗ (x) = 22050 x9 + 302400 x7 + 2177280 x5 + 5806080 x3 , T4∗ (x) = −245 x10 − 4840 x8 − 215568 x6 − 2359296 x4 − 7621632 x2 , U4∗ (x) = 2205 x10 − 50400 x8 − 544320 x6 − 2903040 x4 − 5806080 x2 , P4∗∗ (x) = 245 x10 − 5205 x8 − 173952 x6 − 1542528 x4 − 2903040 x2 , 10 Q∗∗ − 37800 x8 − 362880 x6 − 1451520 x4 , 4 (x) = −2205 x

R4∗∗ (x) = 245 x9 − 79440 x7 − 1406592 x5 − 7621632 x3 − 5806080 x , S4∗∗ (x) = −22050 x9 − 302400 x7 − 2177280 x5 − 5806080 x3 , T4∗∗ (x) = −245 x10 − 4840 x8 − 215568 x6 − 2359296 x4 − 7621632 x2 , U4∗∗ (x) = 2205 x10 − 50400 x8 − 544320 x6 − 2903040 x4 − 5806080 x2 , (20,20)

N5

= 960498 ,

A5 (x) = −3969 x12 +119315 x10 −6183600 x8 +113915520 x6 −828218880 x4 +1277337600 x2 ,

B5 (x) = 43659 x12 + 970200 x10 − 16632000 x8 + 159667200 x6 − 638668800 x4 , (20,11)

N5

= 960498 ,

C5 (x) = 3969 x11 −2163350 x9 +66100800 x7 −843160320 x5 +3951544320 x3 −2554675200 x ,

D5 (x) = 436590 x11 − 9702000 x9 + 133056000 x7 − 958003200 x5 + 2554675200 x3 , (20,02)

N5

= 960498 ,

E5 (x) = −3969 x12 −118825 x10 +7320800 x8 −150914880 x6 +1337103360 x4 −3951544320 x2 ,

F5 (x) = 43659 x12 − 1212750 x10 + 22176000 x8 − 239500800 x6 + 1277337600 x4 − 2554675200 x2 ,

A∗5 (x) = −3969 x12 − 119315 x10 − 6183600 x8 − 113915520 x6 − 828218880 x4 − 1277337600 x2 , B5∗ (x) = 43659 x12 − 970200 x10 − 16632000 x8 − 159667200 x6 − 638668800 x4 , C5∗ (x) = 3969 x11 + 2163350 x9 + 66100800 x7 + 843160320 x5 + 3951544320 x3 + 2554675200 x , D5∗ (x) = 436590 x11 + 9702000 x9 + 133056000 x7 + 958003200 x5 + 2554675200 x3 , E5∗ (x) = 3969 x12 − 118825 x10 − 7320800 x8 − 150914880 x6 − 1337103360 x4 − 3951544320 x2 , F5∗ (x) = −43659 x12 − 1212750 x10 − 22176000 x8 − 239500800 x6 − 1277337600 x4 − 2554675200 x2 ,

12 A∗∗ − 119315 x10 − 6183600 x8 − 113915520 x6 − 828218880 x4 − 1277337600 x2 , 5 (x) = −3969 x

B5∗∗ (x) = 43659 x12 − 970200 x10 − 16632000 x8 − 159667200 x6 − 638668800 x4 , 312

C5∗∗ (x) = −3969 x11 − 2163350 x9 − 66100800 x7 − 843160320 x5 − 3951544320 x3 − 2554675200 x , D5∗∗ (x) = −436590 x11 − 9702000 x9 − 133056000 x7 − 958003200 x5 − 2554675200 x3 , E5∗∗ (x) = 3969 x12 − 118825 x10 − 7320800 x8 − 150914880 x6 − 1337103360 x4 − 3951544320 x2 , F5∗∗ (x) = −43659 x12 − 1212750 x10 − 22176000 x8 − 239500800 x6 − 1277337600 x4 − 2554675200 x2 ,

(11,20)

N5

= 79380 ,

G5 (x) = −245 x10 + 79440 x8 − 1754496 x6 + 13791744 x4 − 23224320 x2 ,

H5 (x) = −17640 x10 + 302400 x8 − 2903040 x6 + 11612160 x4 , (11,11)

N5

= 39690 ,

I5 (x) = 10045 x9 − 468960 x7 + 6715008 x5 − 33389568 x3 + 23224320 x ,

K5 (x) = 88200 x9 − 1209600 x7 + 8709120 x5 − 23224320 x3 , (11,02)

N5

= 79380 ,

L5 (x) = −245 x10 − 89120 x8 + 2268864 x6 − 21777408 x4 + 66779136 x2 ,

M5 (x) = 22050 x10 − 403200 x8 + 4354560 x6 − 23224320 x4 + 46448640 x2 , G∗5 (x) = 245 x10 + 79440 x8 + 1754496 x6 + 13791744 x4 + 23224320 x2 , H5∗ (x) = 17640 x10 + 302400 x8 + 2903040 x6 + 11612160 x4 , I5∗ (x) = −10045 x9 − 468960 x7 − 6715008 x5 − 33389568 x3 − 23224320 x , K5∗ (x) = −88200 x9 − 1209600 x7 − 8709120 x5 − 23224320 x3 , L∗5 (x) = −245 x10 + 89120 x8 + 2268864 x6 + 21777408 x4 + 66779136 x2 , M5∗ (x) = 22050 x10 + 403200 x8 + 4354560 x6 + 23224320 x4 + 46448640 x2 , 10 G∗∗ − 79440 x8 − 1754496 x6 − 13791744 x4 − 23224320 x2 , 5 (x) = −245 x

H5∗∗ (x) = −17640 x10 − 302400 x8 − 2903040 x6 − 11612160 x4 , I5∗∗ (x) = −10045 x9 − 468960 x7 − 6715008 x5 − 33389568 x3 − 23224320 x , K5∗∗ (x) = −88200 x9 − 1209600 x7 − 8709120 x5 − 23224320 x3 , 10 L∗∗ − 89120 x8 − 2268864 x6 − 21777408 x4 − 66779136 x2 , 5 (x) = 245 x

M5∗∗ (x) = −22050 x10 − 403200 x8 − 4354560 x6 − 23224320 x4 − 46448640 x2 ,

(02,20)

N5

= 320166 ,

P5 (x) = −1323 x12 −41258 x10 +2362560 x8 −44501760 x6 +327029760 x4 −510935040 x2 ,

Q5 (x) = 14553 x12 − 388080 x10 + 6652800 x8 − 63866880 x6 + 255467520 x4 , (02,11)

N5

= 320166 ,

R5 (x) = 1323 x11 +800660 x9 −25553280 x7 +330877440 x5 −1563586560 x3 +1021870080 x ,

S5 (x) = −174636 x11 + 3880800 x9 − 53222400 x7 + 383201280 x5 − 1021870080 x3 , (02,02)

N5

= 320166 ,

T5 (x) = −1323 x12 +39445 x10 −2780480 x8 +58769280 x6 −526325760 x4 +1563586560 x2 ,

U5 (x) = 14553 x12 + 485100 x10 − 8870400 x8 + 95800320 x6 − 510935040 x4 + 1021870080 x2 ,

P5∗ (x) = 1323 x12 − 41258 x10 − 2362560 x8 − 44501760 x6 − 327029760 x4 − 510935040 x2 , Q∗5 (x) = −14553 x12 − 388080 x10 − 6652800 x8 − 63866880 x6 − 255467520 x4 , R5∗ (x) = −1323 x11 + 800660 x9 + 25553280 x7 + 330877440 x5 + 1563586560 x3 + 1021870080 x , S5∗ (x) = 174636 x11 + 3880800 x9 + 53222400 x7 + 383201280 x5 + 1021870080 x3 , T5∗ (x) = −1323 x12 − 39445 x10 − 2780480 x8 − 58769280 x6 − 526325760 x4 − 1563586560 x2 , 313

U5∗ (x) = 14553 x12 − 485100 x10 − 8870400 x8 − 95800320 x6 − 510935040 x4 − 1021870080 x2 ,

P5∗∗ (x) = 1323 x12 − 41258 x10 − 2362560 x8 − 44501760 x6 − 327029760 x4 − 510935040 x2 , 12 Q∗∗ − 388080 x10 − 6652800 x8 − 63866880 x6 − 255467520 x4 , 5 (x) = −14553 x

R5∗∗ (x) = 1323 x11 − 800660 x9 − 25553280 x7 − 330877440 x5 − 1563586560 x3 − 1021870080 x , S5∗∗ (x) = −174636 x11 − 3880800 x9 − 53222400 x7 − 383201280 x5 − 1021870080 x3 , T5∗∗ (x) = −1323 x12 − 39445 x10 − 2780480 x8 − 58769280 x6 − 526325760 x4 − 1563586560 x2 , U5∗∗ (x) = 14553 x12 − 485100 x10 − 8870400 x8 − 95800320 x6 − 510935040 x4 − 1021870080 x2 , Recurrence relations: Z

=− −

x2n+1 ln x J02 (x) dx =

 2   x2n x + n 4 n2 + n − 2 − [(2n + 1)x2 + 2 n2 4 n2 + n − 2 ] ln x J02 (x)− 2 2(2n + 1)  2 x2n x + (4 n + 3) n2 − [(2n + 1)x2 + 2 (4 n + 3) (n − 1) n2 ] ln x J12 (x)+ 2 2(2n + 1)

x2n+1 [1 + 2n(2n + 1) ln x] J0 (x) J1 (x) − 2(2n + 1)2  Z Z 2 2 4 n2 + n − 2 n3 2 (4 n + 3) (n − 1) n2 2n−1 2 x ln x J (x) dx − x2n−1 ln x J12 (x) dx − 0 (2n + 1)2 (2n + 1)2 Z x2n  x2n ln x J0 (x) J1 (x) dx = (1 − 2n ln x) J02 (x) + [1 − 2(n − 1) ln x] J12 (x) + 4 Z Z +n2 x2n−1 ln x J02 (x) dx + (n − 1)2 x2n−1 ln x J12 (x) dx +

Z

= +

x2n+1 ln x J12 (x) dx =

 2  x2n −x + 4 n3 + 3 n2 − 1 + [(2n + 1)x2 − 2 n 4 n3 + 3 n2 − 1 ] ln x J02 (x)+ 2 2(2n + 1)

 2   x2n −x + 4 n2 + 5 n + 2 n + [(2n + 1)x2 − 2 (n − 1) 4 n2 + 5 n + 2 n] ln x J12 (x)+ 2(2n + 1)2

x2n+1 [1 − 2 (n + 1) (2 n + 1) ln x] J0 (x) J1 (x) + 2(2n + 1)2   Z Z 2 2 4 n3 + 3 n2 − 1 n2 2 4 n2 + 5 n + 2 (n − 1) n 2n−1 2 + x ln x J0 (x) dx + x2n−1 ln x J12 (x) dx (2n + 1)2 (2n + 1)2 +

Z

=−

x2n+1 ln x I02 (x) dx =

 2   x2n x − n 4 n2 + n − 2 + [−(2n + 1)x2 + 2 n2 4 n2 + n − 2 ] ln x I02 (x)+ 2(2n + 1)2

+

 2 x2n x − (4 n + 3) n2 − [(2n + 1)x2 − 2 (4 n + 3) (n − 1) n2 ] ln x I12 (x)+ 2 2(2n + 1) +

x2n+1 [1 + 2n(2n + 1) ln x] I0 (x) I1 (x) + 2(2n + 1)2 314

 Z Z 2 2 4 n2 + n − 2 n3 2 (4 n + 3) (n − 1) n2 2n−1 2 x x2n−1 ln x I12 (x) dx + ln x I (x) dx − 0 (2n + 1)2 (2n + 1)2 Z x2n  x2n ln x I0 (x) I1 (x) dx = − (1 − 2n ln x) I02 (x) − [1 − 2(n − 1) ln x] I12 (x) + 4 Z Z −n2 x2n−1 ln x I02 (x) dx + (n − 1)2 x2n−1 ln x I12 (x) dx Z

= −

x2n+1 ln x I12 (x) dx =

 2  x2n x + 4 n3 + 3 n2 − 1 − [(2n + 1)x2 + 2 n 4 n3 + 3 n2 − 1 ] ln x I02 (x)− 2 2(2n + 1)

 2   x2n x + 4 n2 + 5 n + 2 n − [(2n + 1)x2 + 2 (n − 1) 4 n2 + 5 n + 2 n] ln x I12 (x)+ 2 2(2n + 1)

x2n+1 [1 − 2 (n + 1) (2 n + 1) ln x] I0 (x) I1 (x) + 2(2n + 1)2   Z Z 2 2 4 n 3 + 3 n 2 − 1 n2 2 4 n2 + 5 n + 2 (n − 1) n 2n−1 2 + x x2n−1 ln x I12 (x) dx ln x I (x) dx − 0 (2n + 1)2 (2n + 1)2 −

Z

=− +

x2n+1 ln x K02 (x) dx =

 2   x2n x − n 4 n2 + n − 2 − [(2n + 1)x2 − 2 n2 4 n2 + n − 2 ] ln x K02 (x)+ 2(2n + 1)2  2 x2n x − (4 n + 3) n2 − [(2n + 1)x2 − 2 (4 n + 3) (n − 1) n2 ] ln x K12 (x)+ 2(2n + 1)2

x2n+1 [1 + 2n(2n + 1) ln x] K0 (x) K1 (x) + 2(2n + 1)2  Z Z 2 2 4 n2 + n − 2 n3 2 (4 n + 3) (n − 1) n2 2n−1 2 + x ln x K (x) dx − x2n−1 ln x K12 (x) dx 0 (2n + 1)2 (2n + 1)2 Z x2n  x2n ln x K0 (x) K1 (x) dx = (1 − 2n ln x) K02 (x) − [1 − 2(n − 1) ln x] K12 (x) + 4 Z Z 2 2n−1 2 2 +n x ln x K0 (x) dx − (n − 1) x2n−1 ln x K12 (x) dx −

Z

= −

x2n+1 ln x K12 (x) dx =

 2  x2n x + 4 n3 + 3 n2 − 1 − [(2n + 1)x2 + 2 n 4 n3 + 3 n2 − 1 ] ln x K02 (x)− 2 2(2n + 1)

 2   x2n x + 4 n2 + 5 n + 2 n − [(2n + 1)x2 + 2 (n − 1) 4 n2 + 5 n + 2 n] ln x K12 (x)+ 2 2(2n + 1)

x2n+1 [1 − 2 (n + 1) (2 n + 1) ln x] K0 (x) K1 (x) + 2(2n + 1)2   Z Z 2 2 4 n3 + 3 n 2 − 1 n 2 2 4 n2 + 5 n + 2 (n − 1) n 2n−1 2 + x ln x K (x) dx − x2n−1 ln x K12 (x) dx 0 (2n + 1)2 (2n + 1)2 +

315

2.4.2. Integrals of the Type

R

xn ln x Zµ (x) Zν∗ (x) dx:

Integrals were found in the following cases: n

J0 I0

J 0 K0

J1 I1

J 1 K1

I0 K0

*

*

*

1

I0 K1 *

*

*

*

*

*

*

*

*

*

*

*

*

*

6 7

*

*

8

*

9

*

*

4 5

I1 K1 *

2 3

I1 K0

*

*

*

*

*

10

*

Therefore one can expect, that integrals of the types Z x4n+3−2ν ln x Jν (x) Iν (x) dx and

Z

*

x4n+3−2ν ln x Jν (x) Kν (x) dx

may be expressed. R R For the integrals x2n+1 ln x Iν (x) Kν (x) dx and x2n ln x Iν (x) K1−ν (x) dx recurrence relations were found. Holds x[I0 (x)K1 (x) + I1 (x)K0 (x)] = 1 ([5], XIII B. 2.), so any multiple of this expression may be added to these antiderivatives. a) Integrals with J0 (x) Z0 (x): Z

x3 ln x J0 (x) I0 (x) dx =

x2 ln x [x J0 (x)I1 (x) + x J1 (x)I0 (x) − 2 J1 (x)I1 (x)] − 2

x − [J0 (x)I1 (x) − J1 (x)I0 (x) + x J1 (x)I1 (x)] 2 Z

x3 ln x J0 (x) K0 (x) dx = +

x2 ln x [ − x J0 (x)K1 (x) + x J1 (x)K0 (x) + 2 J1 (x)K1 (x)] + 2

x [J0 (x)K1 (x) + J1 (x)K0 (x) + x J1 (x)K1 (x)] 2

 x2 ln x  48x2 J0 (x) I0 (x) + x x4 − 12 x2 − 96 J0 (x) I1 (x)+ 2   x  +x x4 + 12 x2 − 96 J1 (x) I0 (x) + (192 − 6 x4 ) J1 (x) I1 (x) + 32x3 J0 (x) I0 (x)+ 2   +(96 − 88 x2 − 5 x4 ) J0 (x) I1 (x) + (5 x4 − 96 − 88 x2 ) J1 (x) I0 (x) + x 272 − x4 J1 (x) I1 (x) Z  x2 ln x  48x2 J0 (x) K0 (x) − x x4 − 12 x2 − 96 J0 (x) K1 (x)+ x7 ln x J0 (x) K0 (x) dx = 2   x  +x x4 + 12 x2 − 96 J1 (x) K0 (x) + (6 x4 − 192) J1 (x) K1 (x) + 32x3 J0 (x) K0 (x)+ 2   +(88 x2 + 5 x4 − 96) J0 (x) K1 (x) + (5 x4 − 96 − 88 x2 ) J1 (x) K0 (x) + x x4 − 272 J1 (x) K1 (x) Z

x7 ln x J0 (x) I0 (x) dx =

b) Integrals with J1 (x) Z1 (x): Z x ln x J1 (x) I1 (x) dx =

x ln x J0 (x)I0 (x) [J1 (x)I0 (x) − J0 (x)I1 (x)] + 2 2 316

Z x ln x J1 (x) K1 (x) dx = −

Z

=

=

x ln x J0 (x)K0 (x) [J1 (x)K0 (x) + J0 (x)K1 (x)] − 2 2

x5 ln x J1 (x) I1 (x) dx =

 x2 ln x  2 4x J0 (x) I0 (x) − x(x2 + 8) J0 (x) I1 (x) + x(x2 − 8) J1 (x) I1 (x) + 16 J1 (x) I1 (x) + 2  x  3 + x J0 (x) I0 (x) + (8 − 4x2 ) J0 (x) I1 (x) − (4x2 + 8) J1 (x) I0 (x) + 16x J1 (x) I1 (x) 2 Z x5 ln x J1 (x) K1 (x) dx =

 x2 ln x  −4x2 J0 (x) K0 (x) − x(x2 + 8) J0 (x) K1 (x) − x(x2 − 8) J1 (x) K0 (x) + 16 J1 (x) K1 (x) + 2  x  3 + −x J0 (x) K0 (x) + (8 − 4x2 ) J0 (x) K1 (x) + (8 + 4x2 ) J1 (x) K0 (x) + 16x J1 (x) K1 (x) 2  x2 ln x  2 4 8 x x − 192 J0 (x) I0 (x)+ 2   +x 3072 + 384 x2 − 32 x4 − x6 J0 (x) I1 (x) + x 3072 − 384 x2 − 32 x4 + x6 J1 (x) I0 (x)−   x  3 4 x x − 1408 J0 (x) I0 (x)+ −(6144 − 192 x4 ) J1 (x) I1 (x) + 2 Z

x9 ln x J1 (x) I1 (x) dx =

+(−3072 + 3584 x2 + 256 x4 − 8 x6 ) J0 (x) I1 (x) + (3072 + 3584 x2 − 256 x4 − 8 x6 ) J1 (x) I0 (x)+   +80 x x4 − 128 J1 (x) K1 (x) Z  x2 ln x  2 x9 ln x J1 (x) K1 (x) dx = 8 x 192 − x4 J0 (x) K0 (x)+ 2   +x 3072 + 384 x2 − 32 x4 − x6 J0 (x) K1 (x) − x 3072 − 384 x2 − 32 x4 + x6 J1 (x) K0 (x)−   x  3 x 1408 − x4 J0 (x) K0 (x)+ −(6144 − 192 x4 ) J1 (x) K1 (x) + 2 +(−3072 + 3584 x2 + 256 x4 − 8 x6 ) J0 (x) K1 (x) + (−3072 − 3584 x2 + 256 x4 + 8 x6 ) J1 (x) K0 (x)+   +80 x x4 − 128 J1 (x) K1 (x) c) Integrals with Iν (x) Kν (x): Z x ln x I0 (x) K0 (x) dx = x2 ln x x [I0 (x)K0 (x) + I1 (x)K1 (x)] − [x I0 (x)K0 (x) + I0 (x)K1 (x) + x I1 (x)K1 (x)] 2 2 Z x ln x x ln x I1 (x) K1 (x) dx = [x I0 (x)K0 (x) + I0 (x)K1 (x) − I1 (x)K0 (x) + x I1 (x)K1 (x)] + 2  1 + (1 − x2 ) I0 (x)K0 (x) − x I0 (x)K1 (x) − x2 I1 (x)K1 (x) 2 =

Z

= −

x3 ln x I0 (x) K0 (x) dx =

 x2 ln x  2 x I0 (x)K0 (x) − x I0 (x)K1 (x) + x I1 (x)K0 (x) + (x2 + 2) I1 (x)K1 (x) − 6

 x  2x(x2 + 3) I0 (x)K0 (x) + (x2 − 4) I0 (x)K1 (x) − (x2 + 16) I1 (x)K0 (x) + 2x(x2 − 1) I1 (x)K1 (x) 36 317

Z

= −

x3 ln x I1 (x) K1 (x) dx =

 x2 ln x  2 x I0 (x)K0 (x) + 2x I0 (x)K1 (x) − 2x I1 (x)K0 (x) + (x2 − 4) I1 (x)K1 (x) − 6

 x  2x(x2 − 6) I0 (x)K0 (x) + (x2 − 4) I0 (x)K1 (x) − (x2 − 20) I1 (x)K0 (x) + 2x(x2 − 1) I1 (x)K1 (x) 36 Z

x5 ln x I0 (x) K0 (x) dx =

  x2 ln x  2 x 3 x2 − 8 I0 (x) K0 (x) − 2 x 8 + 3 x2 I0 (x) K1 (x)+ 30   +2 x 8 + 3 x2 I1 (x) K0 (x) + (32 + 16 x2 + 3 x4 ) I1 (x) K1 (x) +  x  + −2 x 240 + 56 x2 + 9 x4 I0 (x) K0 (x) + (−9 x4 − 344 x2 + 1376) I1 (x) K0 (x)+ 900   +(9 x4 + 344 x2 + 2336) I0 (x) K1 (x) − 2 x 9 x4 − 52 x2 − 344 I1 (x) K1 (x) Z x5 ln x I1 (x) K1 (x) dx = =

=

x2 ln x  2 2 x (x + 4) I0 (x) K0 (x) + x(3x2 + 8) I0 (x) K1 (x) − x(3x2 + 8) I1 (x) K0 (x)+ 10   x  2 x 120 + 23 x2 − 3 x4 I0 (x) K0 (x)− +(x4 − 8x2 − 16) I1 (x) K1 (x) + 300

  −(3 x4 + 608 − 152 x2 ) I0 (x) K1 (x) + (3 x4 − 152 x2 − 1088) I1 (x) K0 (x) − 2x 152 + 16 x2 + 3x4 I1 (x) K1 (x)

 x2 ln x  2 x 5 x4 − 144 − 36 x2 I0 (x) K0 (x)− 70   2 4 −3 x 96 + 36 x + 5 x I0 (x) K1 (x) + 3 x 96 + 36 x2 + 5 x4 I1 (x) K0 (x)+   x  +(576 + 288 x2 + 54 x4 + 5 x6 ) I1 (x) K1 (x) + −2 x 10080 + 4152 x2 + 303 x4 + 25 x6 I0 (x) K0 (x)− 4900  −(86592 + 21648 x2 + 3078 x4 + 25 x6 ) I0 (x) K1 (x) + 126912 + 21648x2 + 3078 x+ 25 x6 I1 (x) K0 (x)+   +2 x 21648 + 5784 x2 + 297 x4 − 25 x6 I1 (x) K1 (x) Z  x2 ln x  2 x7 ln x I1 (x) K1 (x) dx = x 192 + 48 x2 + 5 x4 I0 (x) K0 (x)+ 70   2 4 +4 x 96 + 36 x + 5 x I0 (x) K1 (x) − 4 x 96 + 36 x2 + 5 x4 I1 (x) K0 (x)+   x  +(5 x6 − 768 − 384 x2 − 72 x4 ) I1 (x) K1 (x) + 2 x 13440 + 5256 x2 + 334 x4 − 25 x6 I0 (x) K0 (x)+ 4900  +(27744 x2 + 3684 x4 − 25 x6 − 110976) I0 (x) K1 (x) + 25 x6 − 3684 x4 − 27744x2 − 164736 I1 (x) K0 (x)−   −2 x 27744 + 7152 x2 + 291 x4 + 25 x6 I1 (x) K1 (x) Z

x7 ln x I0 (x) K0 (x) dx =

 x2 ln x  2 x 35 x6 − 18432 − 4608 x2 − 480 x4 I0 (x) K0 (x)− 630   −4 x 9216 + 3456 x2 + 480 x4 + 35 x6 I0 (x) K1 (x) + 4 x 9216 + 3456 x2 + 480 x4 + 35 x6 I1 (x) K0 (x)+  +(73728 + 36864 x2 + 6912 x4 + 640 x6 + 35 x8 ) I1 (x) K1 (x) +   x + −2 x 11612160 + 6315264 x2 + 732096 x4 + 24600 x6 + 1225 x8 I0 (x) K0 (x)− 396900 Z

x9 ln x I0 (x) K0 (x) dx =

−(31067136 x2 + 5844096 x4 + 348000 x6 + 1225 x8 − 124268544) I0 (x) K1 (x)+ 318

 + 170717184 + 31067136x2 + 5844096 x4 + 348000 x6 + 1225 x8 I1 (x) K0 (x)+   +2 x 31067136 + 9727488 x2 + 916704 x4 + 24400 x6 − 1225 x8 I1 (x) K1 (x)  x2 ln x  2 x 4608 + 1152 x2 + 120 x4 + 7 x6 I0 (x) K0 (x)+ 126   +x 9216 + 3456 x2 + 480 x4 + 35 x6 I0 (x) K1 (x) − x 9216 + 3456 x2 + 480 x4 + 35 x6 I1 (x) K0 (x)+  +(7 x8 − 18432 − 9216 x2 − 1728 x4 − 160 x6 ) I1 (x) K1 (x) +  x  2 x 2903040 + 1542528 x2 + 173952 x4 + 5205 x6 − 245 x8 I0 (x) K0 (x)+ + 79380 Z

x9 ln x I1 (x) K1 (x) dx =

+(7621632 x2 + 1406592 x4 + 79440 x6 − 245 x8 − 30486528) I0 (x) K1 (x)+  + 245 x8 − 7621632x2 − 1406592 x4 − 79440 x6 − 42098688 I1 (x) K0 (x)−   −2 x 7621632 + 2359296 x2 + 215568 x4 + 4840 x6 + 245 x8 I1 (x) K1 (x) About recurrence relations see page 321. d) Integrals with Iν (x) K1−ν (x): Z

x2 ln x I0 (x) K1 (x) dx =

x2 ln x [x I0 (x)K1 (x) + x I1 (x)K0 (x) + 2 I1 (x)K1 (x)] − 4

 x 2x I0 (x)K0 (x) + (x2 + 4) I0 (x)K1 (x) + x2 I1 (x)K0 (x) + 2x I1 (x)K1 (x) 8 Z x2 ln x [x I1 (x)K0 (x) + x I0 (x)K1 (x) − 2 I1 (x)K1 (x)] + x2 ln x I1 (x) K0 (x) dx = 4  x + 2x I0 (x)K0 (x) − (x2 + 4) I1 (x)K0 (x) − x2 I0 (x)K1 (x) + 2x I1 (x)K1 (x) 8 −

Z

=

=

x4 ln x I0 (x) K1 (x) dx =

 x2 ln x  −4x2 I0 (x)K0 (x) + x(3x2 − 8) I0 (x)K1 (x) + x(3x2 + 8) I1 (x)K0 (x) + 8(x2 + 2) I1 (x)K1 (x) − 24 x  − 8x(x2 + 12) I0 (x)K0 (x) + (9x4 + 40x2 − 160) I0 (x)K1 (x)+ 288  +(9x4 − 40x2 − 352) I1 (x)K0 (x) + 8x(x2 − 10) I1 (x)K1 (x) Z x4 ln x I1 (x) K0 (x) dx =  x2 ln x  2 4x I0 (x)K0 (x) + x(3x2 + 8) I0 (x)K1 (x) + x(3x2 − 8) I1 (x)K0 (x) − 8(x2 + 2) I1 (x)K1 (x) + 24 x  + 8x(x2 + 12) I0 (x)K0 (x) − (160 − 40x2 + 9x4 ) I0 (x)K1 (x)− 288  −(9x4 + 40x2 + 352) I1 (x)K0 (x) + 8x(x2 − 10) I1 (x)K1 (x)

Z

x6 ln x I0 (x) K1 (x) dx =

  x2 ln x  −12 x2 4 + x2 I0 (x) K0 (x) + x −96 − 36 x2 + 5 x4 I0 (x) K1 (x)+ 60   +x 96 + 36 x2 + 5 x4 I1 (x) K0 (x) + (192 + 96 x2 + 18 x4 ) I1 (x) K1 (x) +  x  + −6 x 480 + 152 x2 + 3 x4 I0 (x) K0 (x) − (25 x6 + 234 x4 + 2544 x2 − 10176) I1 (x) K0 (x)− 1800   −(25 x6 − 234 x4 − 2544 x2 − 15936) I0 (x) K1 (x) + 6 x 848 + 184 x2 − 3 x4 I1 (x) K1 (x) =

319

Z

x6 ln x I1 (x) K0 (x) dx =

  x2 ln x  12 x2 4 + x2 I0 (x) K0 (x) + x 5 x4 + 36 x2 + 96 I0 (x) K1 (x)+ 60   +x 5 x4 − 36 x2 − 96 I1 (x) K0 (x) − (192 + 96 x2 + 18 x4 ) I1 (x) K1 (x) +  x  6x 480 + 152 x2 + 3 x4 I0 (x) K0 (x) + (−10176 + 2544 x2 + 234 x4 − 25 x6 ) I0 (x) K1 (x)− + 1800   −(15936 + 2544 x2 + 234 x4 + 25 x6 ) I1 (x) K0 (x) + 6 x 3 x4 − 848 − 184 x2 I1 (x) K1 (x) =

 x2 ln x  −24 x2 192 + 48 x2 + 5 x4 I0 (x) K0 (x)+ 560   6 2 4 +x 35 x − 9216 − 3456 x − 480 x I0 (x) K1 (x) + x 9216 + 3456 x2 + 480 x4 + 35 x6 I1 (x) K0 (x)+  +(18432 + 9216 x2 + 1728 x4 + 160 x6 ) I1 (x) K1 (x) +   x −32 x 80640 + 38256 x2 + 3684 x4 + 25 x6 I0 (x) K0 (x)− + 156800 Z

x8 ln x I0 (x) K1 (x) dx =

−(3093504 x2 + 514944 x4 + 20000 x6 + 1225 x8 − 12374016) I0 (x) K1 (x)+  + 17534976 + 3093504x2 + 514944 x4 + 20000 x6 − 1225 x6 I1 (x) K0 (x)+   +32 x 193344 + 56352 x2 + 4266 x4 − 25 x6 I1 (x) K1 (x) Z  x2 ln x  24 x2 192 + 48 x2 + 5 x4 I0 (x) K0 (x)+ x8 ln x I1 (x) K0 (x) dx = 560   +x 9216 + 3456 x2 + 480 x4 + 35 x6 I0 (x) K1 (x) + x 35 x6 − 9216 − 3456 x2 − 480 x4 I1 (x) K0 (x)−  −(18432 + 9216 x2 + 1728 x4 + 160 x6 ) I1 (x) K1 (x) +   x 32 x 80640 + 38256 x2 + 3684 x4 + 25 x6 I0 (x) K0 (x)+ + 156800 +(3093504 x2 + 514944 x4 + 20000 x6 − 1225 x8 − 12374016) I0 (x) K1 (x)−  − 17534976 + 3093504x2 + 514944 x4 + 20000 x6 + 1225 x8 I1 (x) K0 (x)+   + +32 x −193344 − 56352 x2 − 4266 x4 + 25 x6 I1 (x) K1 (x)

Z

+

 x2 ln x  −40 x2 4608 + 1152 x2 + 120 x4 + 7 x6 I0 (x) K0 (x)+ 1260  8 +x 63 x − 368640 − 138240 x2 − 19200 x4 − 1400 x6 I0 (x) K1 (x)+  +x 368640 + 138240 x2 + 19200 x4 + 1400 x6 + 63 x8 I1 (x) K0 (x)+  +(737280 + 368640 x2 + 69120 x4 + 6400 x6 + 350 x8 ) I1 (x) K1 (x) +   −10 x 23224320 + 13791744 x2 + 1754496 x4 + 79440 x6 + 245 x8 I0 (x) K0 (x)−

x10 ln x I0 (x) K1 (x) dx =

x 793800

−(333895680 x2 + 67150080 x4 + 4689600 x6 + 100450 x8 + 3969 x10 − 1335582720) I0 (x) K1 (x)−  − 3969 x10 − 1800069120 − 333895680x2 − 67150080 x4 − 4689600 x6 − 100450 x8 I1 (x) K0 (x)−   −10 x 245 x8 − 66779136 − 21777408 x2 − 2268864 x4 − 89120 x6 I1 (x) K1 (x) Z  x2 ln x  x10 ln x I1 (x) K0 (x) dx = 40 x2 4608 + 1152 x2 + 120 x4 + 7 x6 I0 (x) K0 (x)+ 1260  +x 368640 + 138240 x2 + 19200 x4 + 1400 x6 + 63 x8 I0 (x) K1 (x)+  +x 63 x8 − 368640 − 138240 x2 − 19200 x4 − 1400 x6 I1 (x) K0 (x)− 320

+

x 793800

 −(737280 + 368640 x2 + 69120 x4 + 6400 x6 + 350 x8 ) I1 (x) K1 (x) +   10 x 23224320 + 13791744 x2 + 1754496 x4 + 79440 x6 + 245 x8 I0 (x) K0 (x)+

+(333895680 x2 + 67150080 x4 + 4689600 x6 + 100450 x8 − 3969 x10 − 1335582720) I0 (x) K1 (x)−  − 1800069120 + 333895680x2 + 67150080 x4 + 4689600 x6 + 100450 x8 + 3969 x10 I1 (x) K0 (x)+   +10 x 245 x8 − 66779136 − 21777408 x2 − 2268864 x4 − 89120 x6 I1 (x) K1 (x)

Recurrence Relations: Z x2n+1 ln x I0 (x) K0 (x) dx =

x2n−1 2(2n + 1)2

 ((2n + 1)x3 + 4n2 (n + 1)x) I0 (x) K0 (x) − 2n2 x2 I0 (x) K1 (x) +

 +2n(n + 1)x I1 (x) K0 (x) + (2n + 1)x I1 (x) K1 (x) ln x −x [x2 +2n(n+1)] I0 (x) K0 (x)−x2 I0 (x) K1 (x)− 2

3

 Z Z 4n3 (n + 1) 2n2 2n+1 − x I1 (x) K1 (x) − x ln x I0 (x) K0 (x) dx + x2n ln x I0 (x) K1 (x) dx− (2n − 1)2 2n + 1 Z 4n2 (n + 1) x2n ln x I1 (x) K0 (x) dx − (2n + 1)2  Z x2n−1 x2n+1 ln x I1 (x) K1 (x) dx = ((2n + 1)x3 − 2n(2n2 + 2n + 1)x) I0 (x) K0 (x)+ 2(2n + 1)2  2 2 2 2 3 +(2n + 4n + 1)x I0 (x) K1 (x) − (2n + 2n + 1)x I1 (x) K0 (x) + (2n + 1)x I1 (x) K1 (x) ln x− 3

 −[x − (2n + 2n + 1)x] I0 (x) K0 (x) −x I0 (x) K1 (x) − x I1 (x) K1 (x) + 3

+

2

2n2 (2n2 + 2n + 1) (2n + 1)2

2

Z

x2n−1 ln x I0 (x) K0 (x) dx −

3

2n(n + 1) 2n + 1

Z

x2n ln x I0 (x) K1 (x) dx+

Z 2n(2n2 + 2n + 1) x2n ln x I1 (x) K0 (x) dx (2n + 1)2  Z x2n−1 2n+2 x ln x I0 (x) K1 (x) dx = (2n2 (4n2 + 5n + 2)x − n(2n + 1)x3 ) I0 (x) K0 (x)+ 2(2n + 1)2     (2n + 1)2 x2 (2n + 1)2 x2 2 2 2 − n ) x I0 (x) K1 (x) + + n(4n + 5n + 2) x2 I1 (x) K0 (x)+ + 2(n + 1) 2(n + 1)  x3 + 2n(4n2 + 5n + 2)x 3 + (2n + 1)(n + 1)x I1 (x) K1 (x) ln x − I0 (x) K0 (x)− 2    (2n + 1)2 x2 (2n + 1)2 x4 x3 2 2 − + 2n + 2n + 1 x I (x) K (x) − I (x) K (x) − I (x) K (x) − 0 1 1 0 1 1 2(n + 1)2 4(n + 1)2 2 Z 2n3 (4n2 + 5n + 2) − x2n−1 ln x I0 (x) K0 (x) dx+ (2n + 1)2 Z Z 2n2 (n + 1) 2n2 (4n2 + 5n + 2) 2n + x ln x I0 (x) K1 (x) dx − x2n ln x I1 (x) K0 (x) dx 2n + 1 (2n + 1)2  Z x2n−1 2n+2 x ln x I1 (x) K0 (x) dx = ((2n + 1)nx3 − 2n2 (4n2 + 5n + 2)x) I0 (x) K0 (x)+ 2(2n + 1)2     (2n + 1)2 2 (2n + 1)2 2 x + n2 x2 I0 (x) K1 (x) + x − n(4n2 + 5n + 2) x2 I1 (x) K0 (x)− + 2(n + 1) 2(n + 1)   3  x − (2n + 1)(n + 1)x3 I1 (x) K1 (x) ln x + + n(4n2 + 5n + 2)x I0 (x) K0 (x)+ 2 +

321

 (2n + 1)2 x2 (2n + 1)2 x4 2 2n + 2n + 1 − x I1 (x) K0 (x)+ I (x) K (x) − 0 1 4(n + 1)2 (2n + 2)2  Z x3 2n3 (4n2 + 5n + 2) + x2n−1 ln x I0 (x) K0 (x) dx− I1 (x) K1 (x) + 2 (2n + 1)2 Z Z 2n2 (n + 1) 2n2 (4n2 + 5n + 2) x2n ln x I0 (x) K1 (x) dx + x2n ln x I1 (x) K0 (x) dx − 2n + 1 (2n + 1)2 

2

322

xn ln x Zµ (x) Zν∗ (αx) dx: R Some integrals of the type xn Z0 (αx) Z1∗ (βx) dx are already found. Then the integral Z Z x Zν∗ (x) dx may be expressed by xn ln x Zµ (x) Zν∗ (αx) dx , xn ln x Zµ α 2.4.3. Some Cases of

R

but nevertheless both integrals are given in the following. Numerical values of some α : p p √ √ √ √ √ √ ( 3 + 1)/ 2 = 2 + 3 = 1.93185 16526, ( 3 − 1)/ 2 = 2 − 3 = 0.51763 80902 p p √ √ 3 + 6 = 2.33441 42183, 3 − 6 = 0.74196 37843 n=4 Z

x4 ln x J1 (x) I0



x √ 2

 dx =

       √ √ x x x x √ + 4 2 x J0 (x) I1 √ + 4x J1 (x) I0 √ + 2 (x2 − 8) J1 (x) I1 √ − 2 2 2 2        √ x x x x 2 2 − 24x J0 (x) I0 √ + 4 2 (32 − 9x ) J0 (x) I1 √ − (18x + 176) J1 (x) I0 √ + 81 2 2 2   √ x +168 2 x J1 (x) I1 √ 2   Z x x4 ln x J1 (x) K0 √ dx = 2        √ x2 ln x x x x 2 =− 2x J0 (x) K0 √ + 4 2 x J0 (x) K1 √ − 4x J1 (x) K0 √ + 3 2 2 2        √ √ x x x x + 2 (x2 − 8) J1 (x) K1 √ − 24x J0 (x) K0 √ + 4 2 (9x2 − 32) J0 (x) K1 √ − 81 2 2 2     √ x x 2 −(18x + 176) J1 (x) K0 √ − 168 2 x J1 (x) K1 √ 2 2   Z x x4 ln x J0 √ I1 (x) dx = 2        √ x x2 ln x x x − 4 2 x I1 (x) J0 √ − 4x I0 (x) J1 √ + = 2x2 I0 (x) J0 √ 3 2 2 2        √ √ x x x x 2 2 + 2 (x + 8) I1 (x) J1 √ − + 4 2 (32 + 9x ) I1 (x) J0 √ + 24x I0 (x) J0 √ 81 2 2 2     √ x x +(18x2 − 176) I0 (x) J1 √ − 168 2 x I1 (x) J1 √ 2 2   Z x2 ln x x x4 ln x K1 (x) J0 √ dx = · 3 2          √ √ x x x x 2 2 · −2x K0 (x) J0 √ + 4 2 x K0 (x) J1 √ − 4x K1 (x) J0 √ + 2 (x + 8) K1 (x) J1 √ + 2 2 2 2        √ x x x x + 24x K0 (x) J0 √ + 4 2 (9x2 + 32) K0 (x) J1 √ + (176 − 18x2 ) K1 (x) J0 √ + 81 2 2 2   √ x + 168 2 x K1 (x) J1 √ 2 Z √  x4 ln x J0 (x) I1 2 x dx =

=

x2 ln x 3

=

√  √  √  √ i √ x2 ln x h √ 2 2 x J0 (x) I0 2 x − 2x J0 (x) I1 2 x − 2 2 x J1 (x) I0 2 x + (x2 + 4) J1 (x) I1 2x − 3



−2x2 J0 (x) I0



323



√  √  81 h √ 6 2 x J0 (x) I0 2 x + (9x2 − 44) J0 (x) I1 2x + x √  √ i √ +2 2 (9x2 + 16) J1 (x) I0 2 x − 84x J1 (x) I1 2x

 √  √  x2 ln x h √ 2 2 x dx = − 2 x J0 (x) K0 2 x − 2x J0 (x) K1 2x + 3 √  √ i √  √ x h √ + 2 2 x J1 (x) K0 2 x + (x2 + 4) J1 (x) K1 2x + 6 2 x J0 (x) K0 2x + 81 √     √ √ √ i + (44 − 9x2 ) J0 (x) K1 2 x + 2 2 (9x2 + 16) J1 (x) K0 2 x + 84x J1 (x) K1 2x Z √  √  x2 ln x h √ −2 2 x I0 (x) J0 x4 ln x I0 (x) J1 2 x dx = 2x + 3 √  √  √ i x h √ √  √ −6 2 x I0 (x) J0 + 2x I0 (x) J0 2 x + 2 2 x I1 (x) J0 2 x + (x2 − 4) I1 (x) J1 2x + 2x + 81 √     i √ √ √ + (9x2 + 44) I0 (x) J1 2 x + 2 2 (9x2 − 16) I1 (x) J0 2 x − 84x I1 (x) J1 2x Z √  √  √  x2 ln x h √ 2 − 2 x K0 (x) J0 2 x dx = 2 x + 2x K0 (x) J1 2x − x4 ln x K0 (x) J1 3 √  √ i √  √ x h √ −6 2 x K0 (x) J0 −2 2 x K1 (x) J0 2 x − (x2 − 4) K1 (x) J1 2x + 2x + 81 √     √ √ √ i +(9x2 + 44) K0 (x) J1 2 x − 2 2 (9x2 − 16) K1 (x) J0 2 x + 84x K1 (x) J1 2x Z

x4 ln x J0 (x) K1

√

m=5 Z

√ x5 ln x J0 (x) · I0

! "  √ 3+1 x2 ln x √ x dx = −12 x2 3 − 1 J0 (x) · I0 18 2 √



! 3+1 √ x + 2

! 3+1 √ x − 2 ! √  √ √ 2 3+1 2 √ −3 x 8 − 8 3 − 3 x + 3x J1 (x) · I0 x − 2 !# √  √ 2 √  √ 3+1 2 √ x + −12 2 −4 3 + 8 + 3x − x J1 (x) · I1 2 " ! √ √   √  x 3 + 1 √ + 33 3 − 1 x 4 3 − 4 − 3 x2 J0 (x) · I0 x − 594 2 ! √  √  √  √ 3+1 2 √ −2 2 8 3 − 15 4 3 − 64 + 33 x J0 (x) · I1 x − 2 ! √   √  √ 3+1 2 √ −2 −3 + 5 3 −116 + 56 3 − 33 x J1 (x) · I0 x − 2 !# √   √  √ √ 3+1 2 √ −33 2 3 − 1 x 26 3 − 26 + 3 x J1 (x) · I1 x 2 ! " ! √ √ Z √  3+1 x2 ln x 3+1 5 2 √ √ x ln x J0 (x) · K0 x dx = −12 x 3 − 1 J0 (x) · K0 x + 18 2 2 ! ! √ √     √  √ √  √ √ 3 + 1 3 + 1 √ √ − 2 3x 16 3 − 24 + 3 x2 J0 (x)·K1 x + 3 − 3 x 8 3 + 3 x2 J1 (x)·K0 x + 2 2  √  √ √ +3 x 2 −8 3 + 16 + 3x2 J0 (x) · I1

324



!# 3+1 √ x ln x+ 2 " ! √    √ √ x 3 + 1 √ + 3 − 1 x 4 3 − 4 − 3 x2 ) J0 (x) · K0 (33 x + 594 2 ! √  √  √  √ 3+1 2 √ x − +2 2 −15 + 8 3 4 3 − 64 + 33 x J0 (x) · K1 2 ! √   √  √ 3+1 2 √ −2 −3 + 5 3 −116 + 56 3 − 33 x J1 (x) · K0 x + 2 !# √    √ √ √ 3+1 2 √ +33 2 3 − 1 x −26 + 26 3 + 3 x J1 (x) · K1 x 2 ! ! " √ √ Z   2 √ 3 − 1 x ln x 3 − 1 √ √ x dx = x + x5 ln x J0 (x) · I0 12 x2 1 + 3 J0 (x) · I0 18 2 2 ! √ √ 2 √  √ 3−1 √ +3 x 2 −8 3 − 16 + 3x J0 (x) · I1 x + 2 ! √  √ √ 2 3−1 2 √ +3 x −8 − 8 3 + 3 x + 3x J1 (x) · I0 x − 2 !# √  √ 2 √  √ 3−1 2 √ x + −12 2 −4 3 − 8 + 3x + x J1 (x) · I1 2 " ! √   √  √ x 3−1 2 √ + 33 1 + 3 4 3 + 4 + 3 x x J0 (x) · I0 x + 594 2 ! √  √  √  √ 3 − 1 √ +2 2 15 + 8 3 4 3 + 64 − 33 x2 J0 (x) · I1 x − 2 ! √   √  √ 3−1 2 √ −2 3 + 5 3 116 + 56 3 + 33 x J1 (x) · I0 x + 2 !# √  √  √ √  3−1 2 √ x +33 2 1 + 3 26 + 26 3 − 3 x x J1 (x) · I1 2 ! " ! √ √ Z  √  3−1 x2 ln x 3−1 5 2 √ √ x ln x J0 (x) · K0 x dx = 12 x 1 + 3 J0 (x) · K0 x − 18 2 2 ! √ √ 2 √  √ 3−1 √ −3 x 2 −8 3 − 16 + 3x J0 (x) · K1 x + 2 ! √   √ √ 3 − 1 √ +3 x −8 − 8 3 + 3 x2 + 3x2 J1 (x) · K0 x + 2 !# √  √  √ √ 2 3−1 2 √ +12 2 −4 3 − 8 + 3x + x J1 (x) · K1 x ln x+ 2 " ! √   √  √ x 3−1 2 √ x − + 33 1 + 3 4 3 + 4 + 3 x x J0 (x) · K0 594 2 ! √  √  √  √ 3−1 2 √ −2 2 15 + 8 3 4 3 + 64 − 33 x J0 (x) · K1 x − 2   √ √ √ +12 2 3 − 1 x2 + 2 3 − 2 J1 (x) · K1

325



! 3−1 √ x − 2 !# √  √  √   √ 3 − 1 √ −33 2 1 + 3 x 26 + 26 3 − 3 x2 J1 (x) · K1 x 2 ! ! " √ √ Z √  x2 ln x 3+1 3+1 5 2 √ √ x dx = x + x ln x I0 (x) · J0 4 3 − 1 x I0 (x) · J0 6 2 2 ! ! √ √  √  √ √ 2 √ √ 2 3+1 3+1 2 √ √ + 2 8 3 − 16 + 3x x I0 (x)·J1 x − −8 + 8 3 − 3 x + 3x x I1 (x)·J0 x − 2 2 !# √  √  √ √ 2 3+1 2 √ −4 2 4 3 − 8 + 3x − x I1 (x) · J1 x + 2 ! " √  √   √ 3 + 1 x √ x − 33 3 − 1 x 4 3 − 4 + 3 x2 I0 (x) · J0 + 594 2 ! √   √ √  √ 3+1 2 √ −2 2 8 3 − 15 4 3 − 64 − 33 x I0 (x) · J1 x − 2 ! √   √  √ 3+1 2 √ −2 −3 + 5 3 −116 + 56 3 + 33 x I1 (x) · J0 x + 2 !# √   √ √ √ 3+1 2 √ 3 − 1 −26 + 26 3 − 3 x x I1 (x) · J1 x +33 2 2 ! " ! √ √ Z  √  x2 ln x 3−1 3−1 5 2 √ √ x ln x I0 (x) · J0 x dx = −12 x 1 + 3 I0 (x) · J0 x + 18 2 2 ! ! √ √    √  √  √ √ 3 − 1 3 − 1 √ √ + 6 x 24 + 16 3 + 3 x2 I0 (x) · J1 x + 3 + 3 8 3 + 3 x2 x I1 (x) · J0 x − 2 2 !# √  √  √  √ 3−1 2 √ − 12 2 1 + 3 2 + 2 3 + x I1 (x) · J1 x + 2 " ! √   √   √ 3−1 x 2 √ 33 1 + 3 x 4 3 + 4 − 3 x I0 (x) · J0 x + + 594 2 ! √  √  √  √ 3−1 2 √ x − +2 2 8 3 + 15 4 3 + 64 + 33 x I0 (x) · J1 2 ! √   √ √  3−1 2 √ −2 3 + 5 3 116 + 56 3 − 33 x I1 (x) · J0 x − 2 !# √  √  √  √ 3 − 1 √ −33 2 1 + 3 26 + 26 3 + 3 x2 x I1 (x) · J1 x 2 ! " ! √ √ Z √  3+1 x2 ln x 3+1 5 2 √ √ x ln x K0 (x) · J0 x dx = 12 3 − 1 x K0 (x) · J0 x − 18 2 2 ! ! √ √    √  √ √  √ 3+1 3+1 2 2 √ √ x − −3 + 3 8 3 − 3 x x K1 (x)·J0 x − − 6 −24 + 16 3 − 3 x x K0 (x)·J1 2 2 !# √   √ √ √ 3+1 2 √ −12 2 3 − 1 −2 + 2 3 − x K1 (x) · J1 x + 2  √  √ −2 3 + 5 3 116 + 56 3 + 33 x2 J1 (x) · K0 

326



! 3+1 √ x − 2 ! √  √  √  √ 3 + 1 √ −2 2 −15 + 8 3 4 3 − 64 − 33 x2 K0 (x) · J1 x + 2 ! √   √  √ 3+1 2 √ x − +2 −3 + 5 3 −116 + 56 3 + 33 x K1 (x) · J0 2 !# √   √ √ √ 3+1 2 √ −33 2 3 − 1 −26 + 26 3 − 3 x x K1 (x) · J1 x 2 " ! ! √ √ Z  √  3−1 3−1 x2 ln x 5 2 √ √ x ln x K0 (x) · J0 −12 x 1 + 3 K0 (x) · J0 x dx = x + 18 2 2 ! ! √ √      √ √ √ √  3 − 1 3 − 1 √ √ x − 3 + 3 x 8 3 + 3 x2 K1 (x) · J0 x + + 6 24 + 16 3 + 3 x2 x K0 (x) · J1 2 2 !# √  √  √ √  3−1 2 √ +12 2 1 + 3 2 + 2 3 + x K1 (x) · J1 x + 2 " ! √   √  √ x 3−1 2 √ 33 1 + 3 4 3 + 4 − 3 x x K0 (x) · J0 + x + 594 2 ! √  √  √ √  3−1 2 √ x + +2 2 15 + 8 3 4 3 + 64 + 33 x K0 (x) · J0 2 ! √   √  √ 3−1 2 √ +2 3 + 5 3 116 + 56 3 − 33 x K0 (x) · J0 x + 2 !# √  √  √   √ 3 − 1 √ +33 2 1 + 3 x 26 3 + 26 + 3 x2 K0 (x) · J0 x 2 "  √  √ x + 33 3 − 1 4 3 − 4 + 3 x2 x K0 (x) · J0 594

n=6 Z

=

 q √ x ln x J0 (x) · I1 3 + 6 x dx = 6

  q q √  √  √  √ x2 ln x √ 5 3 + 6 2 + 6 −8 + x2 + 4 6 x2 J0 (x) · I0 3 + 6x + 70 + 30 6  q  √   √  √ +10 5 + 2 6 x −40 − x2 + 16 6 J0 (x) · I1 3 + 6x −  q q  √  √   √ √ 2 −2 3 + 6 1 + 6 x −8 + 8 6 + 5 x J1 (x) · I0 3 + 6x + q  √  √  √ 2 4 +5 2 + 6 −32 + 8 x + x + 16 6 J1 (x) · I1 3 + 6x + 

x √ 3 √  √ · 625 4 + 6 2 + 6 11 + 4 6  q  q  √  √   √ √ 100 · − 3 + 6 331 + 134 6 x −1825 x2 + 436 6 + 176 J0 (x) · I0 3 + 6x + 73 q    √  √ √ √ +2 664 + 271 6 −18552 6 + 47168 + 11850 x2 6 − 30400 x2 − 625 x4 J0 (x) · I1 3 + 6x − +

q  q  √  √  √ √ √ 2 2 4 −4 3 + 6 149 + 61 6 5472 6 − 11448 − 2850 x + 3650 x 6 + 625 x J1 (x)·I0 3 + 6x + 327

q  √   √  √ 100  2 1672 + 683 6 x 1675 x − 21804 + 10706 6 J1 (x) · I1 + 3 + 6x 67 q  Z √ 6 x ln x J0 (x) · I1 3 − 6 x dx = =

 q q  √  √  √  √ x2 ln x √ 5 3 − 6 2 − 6 −8 + x2 + 4 6 x2 J0 (x) · I0 3 − 6x − 70 − 30 6 q   √  √ √   3 − 6x + −10 5 − 2 6 x 40 + x2 + 16 6 J0 (x) · I1 q   √  √   √ √ 2 3 − 6 1 − 6 x 8 + 8 6 − 5 x J1 (x) · I0 3 − 6x +

q +2

q  √  √ √  2 4 +5 2 − 6 −32 + 8 x + x − 16 6 J1 (x) · I1 3 − 6x + 

x √ 4 √ · 625 4 − 6 −2 + 6  q  q √  √   √  √ 100 · 3 − 6 −104 + 41 6 x 1825 x2 − 176 + 436 6 J0 (x) · I0 3 − 6x − 73 q    √  √ √ √ −4 −103 + 42 6 −18552 6 − 47168 + 11850 x2 6 + 30400 x2 + 625 x4 J0 (x) · I1 3 − 6x + +

 q q  √  √  √ √ √ 2 2 4 +4 3 − 6 −46 + 19 6 11448 + 5472 6 + 3650 x 6 + 2850 x − 625 x J1 (x)·I0 3 − 6x −  q  √ √ √   200  2 − 3 − 6x −259 + 106 6 x −1675 x + 10706 6 + 21804 J1 (x) · I1 67  q Z √ x6 ln x J0 (x) · K1 3 + 6 x dx = =

 q  q √  √  √  √ x2 ln x √ −5 3 + 6 2 + 6 −8 + x2 + 4 6 x2 J0 (x) · K0 3 + 6x + 70 + 30 6  q  √   √  √ 2 +10 5 + 2 6 x −40 − x + 16 6 J0 (x) · K1 3 + 6x +  q q   √  √ √ √ 2 +2 3 + 6 6 + 1 x 8 6 − 8 + 5 x J1 (x) · K0 3 + 6x + q  √  √  √ 2 4 +5 2 + 6 −32 + 8 x + x + 16 6 J1 (x) · K1 3 + 6x + 

 q  q  √  √   √ √ x · 670 3 + 6 −337 + 143 6 x 176 + 436 6 − 1825 x2 J0 (x) · K0 3 + 6x + 152843750 q   √   √ √ √ +4891 3 6 − 2 47168 − 18552 6 + 11850 x2 6 − 30400 x2 − 625 x4 J0 (x) · K1 3 + 6x −

+

q −9782

q    √  √ √ √ √ 2 2 4 3 + 6 4 6 − 11 −11448 + 5472 6 − 2850 x + 3650 x 6 + 625 x J1 (x)·K0 3 + 6x − 

−730 37



q     √ √ 2 6 − 158 x −21804 + 10706 6 + 1675 x J1 (x) · K1 3 + 6x Z

=

x6 ln x J0 (x) · K1

q  √ 3 − 6 x dx =

 q q  √  √  √  √ x2 ln x √ −5 3 − 6 −2 + 6 8 − x2 + 4 6 x2 J0 (x) · K0 3 − 6x + 70 − 30 6

328

q  √  √  √ 2 +10 −5 + 2 6 40 + x + 16 6 x J0 (x) · K1 3 − 6x + 

q  q √  √  √  √ 2 +2 3 − 6 −1 + 6 8 − 5 x + 8 6 x J1 (x) · K0 3 − 6x + q   √  √  √ +5 −2 + 6 32 − 8 x2 − x4 + 16 6 J1 (x) · K1 3 − 6x +

x √ · 61180296250 − 24977725625 6 q   q   √  √ √ √ · 1675 3 − 6 867 6 − 2128 436 6 − 176 + 1825 x2 x J0 (x) · K0 3 − 6x +

q    √ √ √ 2 2 4 +4891 874 6 − 2141 −47168 − 18552 6 + 30400 x + 11850 x 6 + 625 x J0 (x)·K1 3 − 6x + 

q +4891



q    √ √  √ √ √ 2 2 4 3 − 6 393 6 − 962 11448 + 5472 6 + 3650 x 6 + 2850 x − 625 x J1 (x)·K0 3 − 6x + q     √ √ √ 3 − 6x +3650 2202 6 − 5393 10706 6 + 21804 − 1675 x2 x J1 (x) · K1 Z

x6 ln x K0 (x) · J1

q  √ 3 + 6 x dx =

q   q √  √  √  2 √ x2 ln x 2 √ 5 3 + 6 2 + 6 −8 − x + 4 6 x K0 (x) · J0 = 3 + 6x − 70 + 30 6 q   √  √  √  √ −10 5 + 2 6 x − 4 + 2 6 −x − 4 + 2 6 x K0 (x) · J1 3 + 6x −  q q  √  √  √ √ 2 3 + 6x − −2 3 + 6 1 + 6 8 6 − 8 − 5 x x K1 (x) · J0  q  √  √  √ −5 2 + 6 −32 − 8 x2 + x4 + 16 6 K1 (x) · J1 3 + 6x +   q q  √  √  √ √ x 3 + 6x + 670 3 + 6 −337 + 143 6 176 + 436 6 + 1825 x2 x K0 (x) · J0 152843750  q  √   √ √ √ 2 2 4 +4891 3 6 − 2 −47168 + 18552 6 − 30400 x + 11850 x 6 + 625 x K0 (x) · J1 3 + 6x − +

 q q  √  √  √ √ √ 2 2 4 −9782 3 + 6 −11 + 4 6 −5472 6 + 11448 − 2850x + 3650x 6 − 625x K1 (x)·J0 3 + 6x +  q   √  √ √ 3 + 6x +730 37 6 − 158 −21804 + 10706 6 − 1675 x2 x K1 (x) · J1 Z

x6 ln x K0 (x) · J1

q  √ 3 − 6 x dx =

 q q  √  √  √  2 √ x2 ln x 2 √ 5 3 − 6 −2 + 6 8 + x + 4 6 x K0 (x) · J0 3 − 6x + = 70 − 30 6 q   √  √   √  √ +10 −5 + 2 6 −x + 4 + 2 6 x x + 4 + 2 6 K0 (x) · J1 3 − 6x + q  q √  √   √  √ 2 +2 3 − 6 −1 + 6 x 8 + 5 x + 8 6 K1 (x) · J0 3 − 6x − q   √  √  √ −5 −2 + 6 32 + 8 x2 − x4 + 16 6 K1 (x) · J1 3 − 6x + +

 q  q  √  √  √ √ x 670 3 − 6 337 + 143 6 436 6 − 176 − 1825 x2 x K0 (x) · J0 3 − 6x + 152843750

329

q    √  √ √ √ 2 2 4 +4891 3 6 + 2 47168 + 18552 6 + 30400 x + 11850 x 6 − 625 x K0 (x) · J1 3 − 6x − q −9782

q   √ √  √  √ √ 2 2 4 3 − 6 11 + 4 6 −11448 − 5472 6 + 3650x 6 + 2850x + 625 x K1 (x)·J0 3 − 6x + q    √   √ √ +730 158 + 37 6 x 10706 6 + 21804 + 1675 x2 K1 (x) · J1 3 − 6x

330

2.4.4. Integrals of the type

R

x−1 · exp/ sin / cos (2x) Zν (x) Z1 (x) dx

  e2x I0 (x) I1 (x) dx = e2x (1 − x) I02 (x) + (2x − 1)I0 (x)I1 (x) − x I12 (x) x Z 2x   e K0 (x) K1 (x) dx = e2x (x − 1) K02 (x) + (2x − 1)K0 (x)K1 (x) + x K12 (x) x Z −2x   e I0 (x) I1 (x) dx = − e−2x (1 + x) I02 (x) + (2x + 1)I0 (x)I1 (x) + x I12 (x) x Z −2x   e K0 (x) K1 (x) dx = e−2x (1 + x) K02 (x) − (2x + 1)K0 (x)K1 (x) + x K12 (x) x Z 2x 2  e I1 (x) dx e2x  = (1 − 2x) I02 (x) + 4xI0 (x)I1 (x) − (2x + 1) I12 (x) x 2 Z 2x 2  e K1 (x) dx e2x  = (1 − 2x) K02 (x) − 4xK0 (x)K1 (x) − (2x + 1) K12 (x) x 2 Z −2x 2  e I1 (x) dx e−2x  = (1 + 2x) I02 (x) + 4xI0 (x)I1 (x) + (2x − 1) I12 (x) x 2 Z −2x 2  e K1 (x) dx e−2x  = (1 + 2x) K02 (x) − 4xK0 (x)K1 (x) + (2x − 1) K12 (x) x 2 Z

Z Z

    sin 2x J0 (x) J1 (x) dx = sin 2x −x J02 (x) − J0 (x)J1 (x) + x J12 (x) + cos 2x 2x J0 (x)J1 (x) − J02 (x) x     cos 2x J0 (x) J1 (x) dx = sin 2x J02 (x) − 2x J0 (x)J1 (x) − cos 2x x J02 (x) + J0 (x)J1 (x) − x J12 (x) x Z

   sin 2x J12 (x) dx sin 2x  = −J02 (x) + 4x J0 (x)J1 (x) − J12 (x) + x cos 2x J02 (x) − J12 (x) x 2

Z

   cos 2x  cos 2x J12 (x) dx = −J02 (x) + 4x J0 (x)J1 (x) − J12 (x) − x sin 2x J02 (x) − J12 (x) x 2

From this:

sin2 x J0 (x) J1 (x) dx = x  sin 2x  2  1 2 = xJ0 (x) − J0 (x)J1 (x) + xJ12 (x) + J0 (x) − 2x J0 (x)J1 (x) + 2 2  cos 2x  2 + x J0 (x) + J0 (x)J1 (x) − x J12 (x) 2 Z cos2 x J0 (x) J1 (x) dx = x  sin 2x  2  1 2 = xJ0 (x) − J0 (x)J1 (x) + xJ12 (x) + J0 (x) − 2x J0 (x)J1 (x) − 2 2  cos 2x  − x J02 (x) + J0 (x)J1 (x) − x J02 (x) 2 Z sin2 x J12 (x) dx = x  x sin 2x  2  J 2 (x) + J12 (x) cos 2x  2 =− 0 + J0 (x) − 4x J0 (x)J1 (x) + J12 (x) + J0 (x) − J12 (x) 4 4 2 Z cos2 x J12 (x) dx = x  x sin 2x  2  J 2 (x) + J12 (x) cos 2x  2 =− 0 − J0 (x) − 4x J0 (x)J1 (x) + J12 (x) − J0 (x) − J12 (x) 4 4 2 Z

331

2.3.5. Some Cases of

R

xn · exp (αx) · Zµ (x) Zν (βx) dx

n=1: Z

=

=

  e4x −4x I0 (x) I0 (3x) + (4x + 3) I0 (x) I1 (3x) + (4x − 1) I0 (x) I1 (3x) − 4x I1 (x) I1 (3x) 16 Z x e−4x I0 (x) I1 (3x) dx =   e−4x 4x I0 (x) I0 (3x) + (4x − 3) I0 (x) I1 (3x) + (4x + 1) I0 (x) I1 (3x) + 4x I1 (x) I1 (3x) 16 Z x e4x K0 (x) K1 (3x) dx =

  e4x 4x K0 (x) K0 (3x) + (4x + 3) K0 (x) K1 (3x) + (4x − 1) K0 (x) K1 (3x) + 4x K1 (x) K1 (3x) 16 Z x e−4x K0 (x) K1 (3x) dx =

=

=

x e4x I0 (x) I1 (3x) dx =

  e−4x −4x K0 (x) K0 (3x) + (4x − 3) K0 (x) K1 (3x) + (4x + 1) K0 (x) K1 (3x) − 4x K1 (x) K1 (3x) 16 Z x e4x I0 (x) K1 (3x) dx = =

=

=

=

  e4x 4x I0 (x) K0 (3x) + (4x + 3) I0 (x) K1 (3x) − (4x − 1) I0 (x) K1 (3x) − 4x I1 (x) K1 (3x) 16 Z x e−4x I0 (x) K1 (3x) dx =

  e−4x −4x I0 (x) K0 (3x) + (4x − 3) I0 (x) K1 (3x) − (4x + 1) I0 (x) K1 (3x) + 4x I1 (x) K1 (3x) 16 Z x e4x K0 (x) I1 (3x) dx =   e4x −4x K0 (x) I0 (3x) + (4x + 3) K0 (x) I1 (3x) − (4x − 1) K0 (x) I1 (3x) + 4x K1 (x) I1 (3x) 16 Z x e−4x K0 (x) I1 (3x) dx =   e−4x 4x K0 (x) I0 (3x) + (4x − 3) K0 (x) I1 (3x) − (4x + 1) K0 (x) I1 (3x) − 4x K1 (x) I1 (3x) 16

n=2:      5x x 5x 5x 2 x exp · I0 (x) I1 dx = exp (−64 x + 24 x) I0 (x) I0 + 3 512 3 3       5x 5x 5x +(64 x2 + 120 x − 45) I0 (x) I1 + (64 x2 − 72 x + 27) I1 (x) I0 + (−64 x2 + 24 x) I1 (x) I1 3 3 3         Z 5x x 8x 5x 8x · I0 (x) I1 dx = exp − (64 x2 + 24 x) I0 (x) I0 + x2 exp − 3 3 512 3 3       5x 5x 5x 2 2 2 + (64 x + 72 x + 27) I1 (x) I0 + (64 x + 24 x) I1 (x) I1 +(64 x − 120 x − 45) I0 (x) I1 3 3 3         Z 8x 5x x 8x 5x x2 exp · I0 (x) K1 dx = exp (64 x2 − 24 x) I0 (x) K0 + 3 3 512 3 3 Z

2



8x 3





332



     5x 5x 5x 2 2 +(64 x + 120 x − 45) I0 (x) K1 − (64 x − 72 x + 27) I1 (x) K0 + (−64 x + 24 x) I1 (x) K1 3 3 3         Z 8x 5x x 8x 5x x2 exp − · I0 (x) K1 dx = exp − −(64 x2 + 24 x) I0 (x) K0 + 3 3 512 3 3       5x 5x 5x +(64 x2 − 120 x − 45) I0 (x) K1 − (64 x2 + 72 x + 27) I1 (x) K0 + (64 x2 + 24 x) I1 (x) K1 3 3 3         Z 8x 5x x 8x 5x x2 exp · K0 (x) I1 dx = exp (−64 x2 + 24 x) K0 (x) I0 + 3 3 512 3 3       5x 5x 5x 2 2 2 − (64 x − 72 x + 27) K1 (x) I0 + (64 x − 24 x) K1 (x) I1 +(64 x + 120 x − 45) K0 (x) I1 3 3 3         Z 8x 5x x 8x 5x x2 exp − · K0 (x) I1 dx = exp − (64 x2 + 24 x) K0 (x) I0 + 3 3 512 3 3       5x 5x 5x +(64 x2 − 120 x − 45) K0 (x) I1 − (64 x2 + 72 x + 27) K1 (x) I0 − (64 x2 + 24 x) K1 (x) I1 3 3 3         Z 8x 5x x 8x 5x x2 exp · K0 (x) K1 dx = exp (64 x2 − 24 x) K0 (x) K0 + 3 3 512 3 3     5x 5x 2 2 +(64 x + 120 x − 45) K0 (x) K1 + (64 x − 72 x + 27) K1 (x) K0 + 3 3   5x +(64 x2 − 24 x) K1 (x) K1 3         Z 8x 8x x 5x 5x 2 2 x exp − exp − · K0 (x) K1 dx = −(64 x + 24 x) K0 (x) K0 + 3 3 512 3 3     5x 5x 2 2 + (64 x + 72 x + 27) K1 (x) K0 − +(64 x − 120 x − 45) K0 (x) K1 3 3   5x −(64 x2 + 24 x) K1 (x) K1 3 2

n=3:

p √ 8/ 51 = 1.12022 40672, 35/51 = 0.82841 68696 ! r   Z 8x 35 3 x exp √ x dx = · J0 (x) J1 51 51 x exp = 20480



8x √ 51



"



35 (−64



51x + 408 x) J0 (x) J0 √

2

+(1600 51x − 14280 x + 1785 51) J0 (x) J1 √ √ + 35 (−1088 x2 + 408 51x − 2601 ) J1 (x) J0

n=4:

r

! 35 x + 51 !

r 2

r

35 x + 51

! √ 35 x +(5440 x2 − 680 51x) J1 (x) J1 51

√ √ 2 3 /5 = 0.69282 03230, 13 /5 = 0.72111 02551 ! √ ! √ Z 2 3x 13 x 4 x exp · J0 (x) J0 dx = 5 5 x = exp 96

√ !" √ √ 2 3x (40 3x3 − 180 x2 + 150 3x) J0 (x) J0 5 333



13 x 5

! +

r

!# 35 x 51

√ √ √ + 13 (20 3x2 − 150 x + 125 3) J0 (x) J1



13 x 5

! +



! 13 x +(48 x3 − 140 3x2 + 750 x − 625 3) J1 (x) J0 + 5 !# √ √ √ 3 √ 13 x 2 + 13 (8 3x − 60 x + 50 3x) J1 (x) J1 5 √



p √ 4/ 5 = 1.78885 43820, 7/15 = 0.68313 00511 Z

x = exp 7168



4x √ 5 √

x4 exp

"



3



4x √ 5

21 (−64

r





· J0 (x) J1

3

2

! 7 x dx = 15 √

5x + 240 x − 60 5x) J0 (x) J0 √

2

r

+(1344 5x − 3360 x + 1260 5x − 1575) J0 (x) J1 √ √ √ + 21 (−192 x3 + 288 5x2 − 900 x + 225 5) J1 (x) J0

3



r 2

+(1344 x − 1008 5x + 1260 x) J1 (x) J1

334

! 7 x + 15 !

r

7 x + 15 ! r 7 x + 15 !#

7 x 15

2.4.6. Some Cases of

R



n

x ·

sin / cos sinh / cosh

 αx · Zµ (x) Zν (βx) dx

Some integrals, where α and β are roots of cubic equations, are left out. R With the integral w(αx) Zν (x) Zν (βx) dx the integral     Z x α x Zν (x) Zν dx w β β may be found. So in the following tables only one of both integrals is given. Numerical values of the coefficients: α

√ 8/ p 51 2 3/13 √ 4/√5 2/ √ 7 2 √3/5 4/ 11 2.4.6 a)

R

β

1.12022 0.96076 1.78885 0.75592 0.69282 1.20604 n



x ·

sin cos

40672 89228 43820 89460 03230 53783

p 35/51 √ 5/ p 13 p7/15 √ 3/7 p13/5 3/11

0.82841 1.38675 0.68313 0.65465 0.72111 0.52223

α/β 68696 04906 00511 36707 02551 29679

1/β

1.35224 68076 0.69282 03230 2.61861 46828 1.15470 05384 .96076 89228 2.30940 10768

1.20712 0.72111 1.46385 1.52752 1.38675 1.91485

17242 02551 01094 52317 04906 42155

 αx · Zµ (x) Zν (βx) dx:

n=1: Z x sin 4x · J0 (x) J1 (3x) dx =

x2 sin 4x [J0 (x) J1 (3x) + J1 (x) J0 (3x)] + 4

x cos 4x [4x J0 (x) J0 (3x) − 3 J0 (x) J1 (3x) + J1 (x) J0 (3x) − 4x J1 (x) J1 (3x)] 16 Z x2 cos 4x x cos 4x · J0 (x) J1 (3x) dx = [J0 (x) J1 (3x) + J1 (x) J0 (3x)] + 4 x sin 4x − [4x J0 (x) J0 (3x) − 3 J0 (x) J1 (3x) + J1 (x) J0 (3x) − 4x J1 (x) J1 (3x)] 16

+

n=2:   8x 8x 5x x x sin · J0 (x) J1 · sin · dx = 3 3 512 3          5x 5x 5x 5x · −24x J0 (x) J0 + (64x2 + 45) J0 (x) J1 + (64x2 − 27) J1 (x) J0 + 24x J1 (x) J1 + 3 3 3 3          x2 8x 5x 5x 5x 5x + · cos 8x J0 (x) J0 − 15 J0 (x) J1 + 9 J1 (x) J0 − 8x J1 (x) J1 64 3 3 3 3 3   Z 8x x 8x 5x x2 cos · J0 (x) J1 dx = · cos · 3 3 512 3          5x 5x 5x 5x 2 2 · −24x J0 (x) J0 + (64x + 45) J0 (x) J1 + (64x − 27) J1 (x) J0 + 24x J1 (x) J1 − 3 3 3 3          x2 8x 5x 5x 5x 5x − · sin 8x J0 (x) J0 − 15 J0 (x) J1 + 9 J1 (x) J0 − 8x J1 (x) J1 64 3 3 3 3 3 Z

2

n=3: Z

x3 sin



 8x √ ·I0 (x) I1 51

r

! " √ 35 x2 x dx = 8 1785 x I0 (x) I0 51 2560

√ −51 1785 I1 (x) I0

r

! 35 x + 680x I1 (x) I1 51 335

r

r

! 35 x + 1785 I0 (x) I1 51

!#   35 8x x sin √ + 51 51

r

! 35 x − 51

! ! r √ 35 35 2 408 35 x I0 (x) I0 x + 51 (1785 − 1600 x ) I0 (x) I1 x + 51 51 ! !# r r   √ √ 35 35 8x 2 + 35 (1088 x − 2601)I1 (x) I0 x + 680 51 x I1 (x) I1 x cos √ 51 51 51 " ! ! r r   Z √ 35 35 8x x · I0 (x) I1 −408 35x I0 (x) I0 x3 cos √ x dx = x + 51 20480 51 51 ! ! r r √ √ 35 35 2 2 x + 35 (2601 − 1088 x ) I1 (x) I0 x − + 51 (1600 x − 1785) I0 (x) I1 51 51 !# " ! r r   √ √ 8x 35 x2 35 x sin √ 8 1785 x I0 (x) I0 x + −680 51 x I1 (x) I1 + 51 2560 51 51 ! ! !# r r r   √ 35 35 35 8x √ +1785 I0 (x) I1 x − 51 1785 I1 (x) I0 x + 680 x I1 (x) I1 x cos 51 51 51 51 ! " ! r r   Z √ 8x 35 35 x2 x3 sin √ · K0 (x) K1 x dx = − 8 1785 x K0 (x) K0 x − 51 2560 51 51 ! ! !# r r r   √ 35 35 35 8x −1785 K0 (x) K1 x + 51 1785 K1 (x) K0 x + 680x K1 (x) K1 x − sin √ 51 51 51 51 " ! ! r r √ √ 35 35 x 2 408 35 x K0 (x) K0 x − 51 (1785 − 1600 x )K0 (x) K1 x + − 20480 51 51 ! !# r r   √ √ 8x 35 35 2 x + 680 51 x K1 (x) K1 x cos √ − 35 (1088 x − 2601)K1 (x) K0 51 51 51 ! " ! r r   Z √ 8x 35 x 35 3 x cos √ · K0 (x) K1 x dx = 408 35x K0 (x) K0 x + 51 20480 51 51 ! ! r r √ √ 35 35 2 2 x + 35 (2601 − 1088 x ) K1 (x) K0 x + + 51 (1600 x − 1785) K0 (x) K1 51 51 !# " ! r r   √ √ 35 8x 35 x2 +680 51 x K1 (x) K1 x sin √ − 8 1785 x K0 (x) K0 x − 51 2560 51 51 ! ! !# r r r   √ 8x 35 35 35 −1785 K0 (x) K1 x + 51 1785 K1 (x) K0 x + 680 x K1 (x) K1 x cos √ 51 51 51 51 ! " ! r r   Z √ 8x 35 x2 35 3 √ x sin · I0 (x) K1 x dx = −8 1785 x I0 (x) K0 x + 51 2560 51 51 ! ! !# r r r   √ 35 35 35 8x +1785 I0 (x) K1 x + 51 1785 I1 (x) K0 x + 680x I1 (x) K1 x sin √ − 51 51 51 51 " ! ! r r √ √ x 35 35 2 − 408 35 x I0 (x) K0 x − 51 (1785 − 1600 x )I0 (x) K1 x + 20480 51 51 ! !# r r   √ √ 35 35 8x 2 + 35 (1088 x − 2601)I1 (x) K0 x − 680 51 x I1 (x) K1 x cos √ 51 51 51 ! " ! r r   Z √ 8x 35 x2 35 x3 cos √ · I0 (x) K1 x dx = −8 1785 x I0 (x) K0 x + 51 2560 51 51 x + 20480

"



r

336

! ! !# r r   √ 35 35 35 8x + +1785 I0 (x) K1 x + 51 1785 I1 (x) K0 x + 680x I1 (x) K1 x cos √ 51 51 51 51 " ! ! r r √ √ x 35 35 + 408 35 x I0 (x) K0 x − 51 (1785 − 1600 x2 )I0 (x) K1 x + 20480 51 51 ! !# r r   √ √ 35 35 8x 2 + 35 (1088 x − 2601)I1 (x) K0 x − 680 51 x I1 (x) K1 x sin √ 51 51 51 ! " ! r r   Z √ 8x 35 35 x2 x3 sin √ · K0 (x) I1 x dx = 8 1785 x K0 (x) I0 x + 51 2560 51 51 ! ! !# r r r   √ 8x 35 35 35 x + 51 1785 K1 (x) I0 x − 680x K1 (x) I1 x sin √ +1785 K0 (x) I1 + 51 51 51 51 " ! ! r r √ √ x 35 35 + 408 35 x K0 (x) I0 x + 51 (1785 − 1600 x2 )K0 (x) I1 x − 20480 51 51 ! !# r r   √ √ 35 35 8x 2 x − 680 51 x K1 (x) I1 x cos √ − 35 (1088 x − 2601) K1 (x) I0 51 51 51 " ! ! r r   Z √ 35 35 8x x2 8 1785 x K0 (x) I0 x3 cos √ · K0 (x) I1 x dx = x + 51 2560 51 51 ! ! !# r r r   √ 35 35 35 8x x + 51 1785 K1 (x) I0 x − 680x K1 (x) I1 x cos √ + +1785 K0 (x) I1 51 51 51 51 " ! ! r r √ √ x 35 35 2 −408 35 x K0 (x) I0 x − 51 (1785 − 1600 x ) K0 (x) I1 x + + 20480 51 51 ! !# r r   √ √ 35 35 8x 2 + 35 (1088 x − 2601)I1 (x) K0 x + 680 51 x I1 (x) K1 x sin √ 51 51 51 r

n=4: Z

r 4

x sin

2

!        √ 3 5x x2 5x 5x x I0 (x) I0 √ 78x I0 (x) I0 √ dx = + 13(8 x2 − 65) I0 (x) I1 √ + 13 80 13 13 13

! r     x √ 3 5x 5x +169 I1 (x) I0 x + − 26 13x I1 (x) I1 √ sin 2 39 x(78 − 40 x2 ) I0 (x) I0 √ + 13 480 13 13     √ √ 5x 5x 2 2 + 39(169 − 52 x ) I1 (x) I0 √ + + 3 (364 x − 845) I0 (x) I1 √ 13 13 ! r   √ 5x 3 2 + 3 x(104 x − 338) I1 (x) I1 √ cos 2 x 13 13 ! r        Z √ 3 5x x2 5x 5x 4 2 √ √ √ x cos 2 x I0 (x) I0 dx = 78x I0 (x) I0 + 13(8 x − 65) I0 (x) I1 + 13 80 13 13 13 ! r        √ 5x 5x 3 x √ 5x 2 +169 I1 (x) I0 √ − 26 13x I1 (x) I1 √ cos 2 x + 39 x(40 x − 78) I0 (x) I0 √ − 13 480 13 13 13     √ √ 5x 5x − 3 (364 x2 − 845) I0 (x) I1 √ − 39(169 − 52 x2 ) I1 (x) I0 √ − 13 13 

5x √ 13







337

√ − 3 x(104 x2 − 338) I1 (x) I1 Z

r x4 sin 2



5x √ 13

r

 sin

2

! 3 x 13

!      3 5x x2 5x x K0 (x) K0 √ x dx = 78x K0 (x) K0 √ x + 13 80 13 13

r !      √ 5x 5x 5x 3 √ x − 169 K1 (x) K0 √ x − 26 13 x K1 (x) K1 √ x sin 2 + 13 13 13 13      √ x √ 5x 5x + 39 x(78 − 40x2 ) K0 (x) K0 √ x + 3 (845 − 364x2 ) K0 (x) K1 √ x + 480 13 13 r !     √ √ 3 5x 5x 2 2 − 39 (169 − 52x ) K1 (x) K0 √ x − 3 x(338 − 104x ) K1 (x) K1 √ x cos 2 13 13 13 ! r      Z 5x x2 5x 3 x4 cos 2 x K0 (x) K0 √ x dx = 78x K0 (x) K0 √ x + 13 80 13 13 r !       √ √ 5x 5x 5x 3 2 + 13 (65 − 8x ) K0 (x) K1 √ x − 169 K1 (x) K0 √ x − 26 13 x K1 (x) K1 √ x cos 2 − 13 13 13 13      √ x √ 5x 5x 2 2 − 39 x(78 − 40x ) K0 (x) K0 √ x − 3 (845 − 364x ) K0 (x) K1 √ x − 480 13 13 r !     √ √ 3 5x 5x 2 2 sin 2 − 39 (169 − 52x ) K1 (x) K0 √ x − 3 x(338 − 104x ) K1 (x) K1 √ x 13 13 13 ! " ! r r Z √ 7 x 7 4x 3 4 105 (64 x − 60 x) I0 (x) I0 x dx = x + x sin √ · I0 (x) I1 15 7168 15 5 ! ! r r √ 7 7 +(3360 x2 − 1575) I0 (x) I1 x + 105 (225 − 288 x2 ) I1 (x) I0 x + 15 15 !# " ! r r √ 7 4x 7 x2 3 x sin √ + 60 21 x I0 (x) I0 x + +(1344 x − 1260 x) I1 (x) I1 15 15 5 1792 ! ! r r √ √ 7 7 2 2 + 5 (315 − 336 x ) I0 (x) I1 x + 21 (48 x − 225) I1 (x) I0 x + 15 15 !# r √ 7 4x +252 5 x I1 (x) I1 x cos √ 15 5 ! " ! r r Z √ 4x 7 x2 7 4 x cos √ · I0 (x) I1 x dx = −60 21 x I0 (x) I0 x + 15 1792 15 5 ! ! r r √ √ 7 7 + 5 (336 x2 − 315) I0 (x) I1 x + 21 (225 − 48 x2 ) I1 (x) I0 x − 15 15 !# " ! r r √ √ 7 7 4x x 2 −252 5 x I1 (x) I1 x sin √ + 105 x(64x − 60) I0 (x) I0 x + 15 15 5 7168 ! ! r r √ 7 7 2 2 x + 105 (225 − 288x ) I1 (x) I0 x + +(3360 x − 1575) I0 (x) I1 15 15 !# r 7 4x 3 +(1344 x − 1260 x) I1 (x) I1 x cos √ 15 5

√ + 13 (65 − 8x2 ) K0 (x) K1



338

! " ! r √ 7 7 x 3 x dx = − 105 (64 x − 60 x) K0 (x) K0 x + 15 7168 15 ! ! r r √ 7 7 +(3360 x2 − 1575) K0 (x) K1 x + 105 (225 − 288 x2 ) K1 (x) K0 x + 15 15 " !# ! r r √ x2 7 7 4x 3 −(1344 x − 1260 x) K1 (x) K1 60 21 x K0 (x) K0 x x + sin √ − 15 15 5 1792 ! ! r r √ √ 7 7 2 2 x − 21 (48 x − 225) K1 (x) K0 x + − 5 (315 − 336 x ) K0 (x) K1 15 15 !# r √ 4x 7 x cos √ +252 5 x K1 (x) K1 15 5 " ! ! r r Z 2 √ 4x 7 7 x x4 cos √ · K0 (x) K1 60 21 x K0 (x) K0 x dx = x + 15 1792 15 5 ! ! r r √ √ 7 7 2 2 x + 21 (225 − 48 x ) K1 (x) K0 x + + 5 (336 x − 315) K0 (x) K1 15 15 " !# ! r r √ √ 7 x 7 4x 2 − 105 x(64x − 60) K0 (x) K0 +252 5 x K1 (x) K1 x x + sin √ + 15 15 5 7168 ! ! r r √ 7 7 2 2 x + 105 (225 − 288x ) K1 (x) K0 x − +(3360 x − 1575) K0 (x) K1 15 15 !# r 4x 7 3 x cos √ −(1344 x − 1260 x) K1 (x) K1 15 5 ! " ! r r r ! Z 2 √ 2x 3 x 3 3 x4 sin √ · I1 (x) I1 x dx = −6 21 x I0 (x) I0 x + (8 x2 − 63) I0 (x) I1 x + 7 16 7 7 7 " r !# r ! r ! √ 2x 3 3 x √ 3 3 x + 14 x I1 (x) I1 x sin √ + x + +21 21 I1 (x) I0 3 (8 x − 42x) I0 (x) I0 7 7 7 7 32 r ! r ! √ √ 3 3 2 2 + 7 (20 x − 63) I0 (x) I1 x + 3 (147 − 28 x ) I1 (x) I0 x + 7 7 r !# √ 3 2x 3 x cos √ + 7 (14x − 8 x ) I1 (x) I1 7 7 ! " r r ! Z 2x 3 x √ 3 4 3 x cos √ · I1 (x) I1 x dx = 3 (42x − 8x ) I0 (x) I0 x + 7 32 7 7 r ! r ! √ √ 3 3 + 7 (63 − 20x2 ) I0 (x) I1 x + 3 (28x2 − 147) I1 (x) I0 x + 7 7 " r !# r ! √ √ 3 2x x2 3 3 + 7 (8x − 14x) I1 (x) I1 x sin √ + −6 21 x I0 (x) I0 x + 7 7 7 16 r ! r ! r !# √ 3 3 3 2x 2 +(8x − 63) I0 (x) I1 x + 21 21 I1 (x) I0 x + 14x I1 (x) I1 x cos √ 7 7 7 7 ! " ! r r r ! Z √ 2x 3 x2 3 3 4 2 x sin √ ·K1 (x) K1 x dx = −6 21 x K0 (x) K0 x − (8 x − 63) K0 (x) K1 x − 7 16 7 7 7 Z

4x x sin √ · K0 (x) K1 5

r

4

339

! " r !# r ! 3 3 3 2x x √ 3 −21 21 K1 (x) K0 x + 14 x K1 (x) K1 x sin √ + 3 (8 x − 42x) K0 (x) K0 x − 7 7 7 7 32 r ! r ! √ √ 3 3 − 7 (20 x2 − 63) K0 (x) K1 x − 3 (147 − 28 x2 ) K1 (x) K0 x + 7 7 r !# √ 3 2x 3 + 7 (14x − 8 x ) K1 (x) K1 x cos √ 7 7 ! " r r ! Z 2x 3 3 x √ 4 3 x cos √ · K1 (x) K1 x dx = 3 (42x − 8x ) K0 (x) K0 x + 7 32 7 7 r ! r ! √ √ 3 3 2 2 x − 3 (28x − 147) K1 (x) K0 x + − 7 (63 − 20x ) K0 (x) K1 7 7 " r !# r ! 2 √ √ x 3 3 2x + 7 (8x3 − 14x) K1 (x) K1 6 21 x K0 (x) K0 x x + sin √ − 7 16 7 7 r ! r !# r ! √ 3 3 3 2x 2 x + 21 21 K1 (x) K0 x − 14x K1 (x) K1 x cos √ +(8x − 63) K0 (x) K1 7 7 7 7 √

r

n=5: Z

4x x sin √ · I1 (x) I1 11 5

r

! " √ x 3 x dx = 33 x(7260 − 4224 x2 ) I0 (x) I0 11 24576

r

! 3 x + 11

! ! r √ 3 3 4 2 +(8448 x − 52272 x + 59895) I0 (x) I1 x + 33 (256 x + 11088x − 19965x) I1 (x) I0 x + 11 11 !# " ! r r 2 √ 3 4x x 3 +(12672 x3 − 4356 x) I1 (x) I1 x sin √ + 3 (704 x3 − 7260x) I0 (x) I0 x + 11 11 11 6144 ! ! r r √ √ 3 3 2 2 + 11 (2112 x − 5445) I0 (x) I1 x + 3 (19965 − 1408 x ) I1 (x) I0 x + 11 11 !# r √ 4x 3 3 x cos √ + 11 (396x − 960 x ) I1 (x) I1 11 11 ! " ! r r Z √ x2 4x 3 3 5 3 x cos √ · I1 (x) I1 x dx = x + 3 (7260x − 704 x )I0 (x) I0 11 6144 11 11 ! ! r r √ √ 3 3 + 11 (5445 − 2112 x2 ) I0 (x) I1 x + 3 (1408 x2 − 19965) I1 (x) I0 x + 11 11 !# " ! r r √ √ 3 4x x 3 3 3 + 11 (960 x − 396x) I1 (x) I1 x sin √ + 33 (7260x − 4224 x )I0 (x) I0 x + 11 11 11 24576 ! ! r r √ 3 3 4 2 4 2 +(8448 x − 52272 x + 59895) I0 (x) I1 x + 33 (256x + 11088x − 19965) I1 (x) I0 x + 11 11 !# r 3 4x 3 +(12672 x − 4356 x) I1 (x) I1 x cos √ 11 11 ! " ! r r Z √ 4x 3 x 3 2 5 x sin √ · K1 (x) K1 x dx = − 33 x(4224 x − 7260) K0 (x) K0 x − 11 24576 11 11 r

4

2

340

! ! r √ 3 3 4 2 −(8448 x −52272 x +59895) K0 (x) K1 x − 33 (256 x +11088x −19965x) K1 (x) K0 x + 11 11 !# " ! r r 2 √ 3 4x x 3 +(12672 x3 − 4356 x) K1 (x) K1 x sin √ + 3 (704 x3 − 7260x) K0 (x) K0 x − 11 11 11 6144 ! ! r r √ √ 3 3 2 2 − 11 (2112 x − 5445) K0 (x) K1 x − 3 (19965 − 1408 x ) K1 (x) K0 x + 11 11 !# r √ 3 4x 3 + 11 (396x − 960 x ) K1 (x) K1 x cos √ 11 11 ! " ! r r Z √ 3 3 4x x 2 5 33 x(7260 − 4224 x ) K0 (x) K0 x cos √ · K1 (x) K1 x dx = x − 11 24576 11 11 ! ! r r √ 3 3 4 2 4 2 x − 33 (256 x +11088x −19965x) K1 (x) K0 x + −(8448 x −52272 x +59895) K0 (x) K1 11 11 " !# ! r r x2 √ 3 4x 3 3 3 +(12672 x − 4356 x) K1 (x) K1 x x − cos √ − 3 (704 x − 7260x) K0 (x) K0 11 11 11 6144 ! ! r r √ √ 3 3 x − 3 (19965 − 1408 x2 ) K1 (x) K0 x + − 11 (2112 x2 − 5445) K0 (x) K1 11 11 !# r √ 3 4x 3 + 11 (396x − 960 x ) K1 (x) K1 x sin √ 11 11 r

4

2.4.6 b)

R

2

n



x ·

sinh cosh

 αx · Zµ (x) Zν (βx) dx:

n=1: Z x sinh 4x · I0 (x) I1 (3x) dx =

x2 [I0 (x) I1 (3x) + I1 (x) I0 (3x)] sinh 4x− 4

x [4x I0 (x) I0 (3x) − 3 I0 (x) I1 (3x) + I1 (x) I0 (3x) + 4x I1 (x) I1 (3x)] cosh 4x 16 Z x2 x cosh 4x · I0 (x) I1 (3x) dx = [I0 (x) I1 (3x) + I1 (x) I0 (3x)] cosh 4x− 4 x − [4x I0 (x) I0 (3x) − 3 I0 (x) I1 (3x) + I1 (x) I0 (3x) + 4x I1 (x) I1 (3x)] sinh 4x 16 Z x2 x sinh 4x · K0 (x) K1 (3x) dx = [K0 (x) K1 (3x) + K1 (x) K0 (3x)] sinh 4x+ 4 x + [4x K0 (x) K0 (3x) + 3 K0 (x) K1 (3x) − K1 (x) K0 (3x) + 4x K1 (x) K1 (3x)] cosh 4x 16 Z x2 [K0 (x) K1 (3x) + K1 (x) K0 (3x)] cosh 4x+ x cosh 4x · K0 (x) K1 (3x) dx = 4 x + [4x K0 (x) K0 (3x) + 3 K0 (x) K1 (3x) − K1 (x) K0 (3x) + 4x K1 (x) K1 (3x)] sinh 4x 16 −

n=2: Z

     x 5x 5x 2 dx = 24x I0 (x) I0 + (64 x − 45) I0 (x) I1 + 512 3 3     5x 5x 8x +(64 x2 + 27) I1 (x) I0 + 24x I1 (x) I1 sinh − 3 3 3

8x x sinh · I0 (x) I1 3 2



5x 3



341

         x2 5x 5x 5x 5x 8x − 8x I0 (x) I0 − 15 I0 (x) I1 + 9 I1 (x) I0 + 8x I1 (x) I1 cosh 64 3 3 3 3 3        Z 8x 5x x 5x 5x x2 cosh · I0 (x) I1 dx = 24x I0 (x) I0 + (64 x2 − 45) J0 (x) J1 + 3 3 512 3 3     5x 5x 8x +(64 x2 + 27) I1 (x) I0 + 24x I1 (x) I1 cosh − 3 3 3          5x 5x 5x 5x 8x x2 8x I0 (x) I0 − 15 I0 (x) I1 + 9 I1 (x) I0 + 8x I1 (x) I1 sinh − 64 3 3 3 3 3        Z 8x 5x x 5x 5x x2 sinh · K0 (x) K1 dx = −24x K0 (x) K0 + (64 x2 − 45) K0 (x) K1 + 3 3 512 3 3     5x 8x 5x − 24x K1 (x) K1 sinh + +(64 x2 + 27) K1 (x) K0 3 3 3          x2 5x 5x 5x 5x 8x + 8x K0 (x) K0 + 15 K0 (x) K1 − 9 K1 (x) K0 + 8x K1 (x) K1 cosh 64 3 3 3 3 3        Z 8x 5x x 5x 5x x2 cosh · K0 (x) K1 dx = −24x K0 (x) K0 + (64 x2 − 45) K0 (x) K1 + 3 3 512 3 3     5x 5x 8x +(64 x2 + 27) K1 (x) K0 − 24x K1 (x) K1 cosh + 3 3 3          5x 5x 5x 5x 8x x2 8x K0 (x) K0 + 15 K0 (x) K1 − 9 K1 (x) K0 + 8x K1 (x) K1 sinh + 64 3 3 3 3 3 n=3: Z

8x x sinh √ ·J0 (x) J1 51

r

3

! " √ 35 x2 x dx = −8 1785 x J0 (x) J0 51 2560

r

! 35 x − 1785 J0 (x) J1 51

r

! 35 x + 51

! !# r 8x 35 35 x + 680x J1 (x) J1 x sinh √ + +51 1785 J1 (x) J0 51 51 51 " ! ! r r √ √ x 35 35 2 408 35 x J0 (x) J0 x + 51 (1600x + 1785) J0 (x) J1 x − + 20480 51 51 ! !# r r √ √ 35 35 8x 2 − 35 (1088x + 2601) J1 (x) J0 x − 680 51 x J1 (x) J1 x cosh √ 51 51 51 ! " ! r r Z √ 8x 35 x 35 3 x cosh √ · J0 (x) J1 x dx = 408 35 x J0 (x) J0 x + 51 20480 51 51 ! ! r r √ √ 35 35 2 2 + 51 (1600 x + 1785) J0 (x) J1 x − 35 (1088 x + 2601) J1 (x) J0 x − 51 51 !# " ! r r √ √ 35 8x x2 35 −680 51 x J1 (x) J1 x sinh √ + −8 1785 x J0 (x) J0 x − 1785 J0 (x) J1 51 51 51 2560 ! !# r r √ 35 35 8x x + 680 x J1 (x) J1 x cosh √ +51 1785 J1 (x) J0 51 51 51 √

r

r

! 35 x + 51

n=4: Z

√ 2 3x x sinh J0 (x) J0 5 4



13 x 5

!

"

15x3 dx = − J0 (x) J0 8 342



13 x 5

!

√ 25 13 x2 − J0 (x) J1 16



13 x 5

! +

! !# √ √ √ √ 13 x 13 x 8x4 + 125x2 5 13 x3 2 3x + J1 (x) J0 − J1 (x) J1 sinh + 16 5 8 5 5 " √ ! ! √ √ √ 5 3 (4x4 + 15x2 ) 13 x 5 39 (4x3 + 25x) 13 x + J0 (x) J0 + J0 (x) J1 − 48 5 96 5 ! √ !# √ √ √ √ 5 3 (28x3 + 125x 13 x 39 (4x4 + 25x2 ) 13 x 2 3x − + cosh J1 (x) J0 J1 (x) J1 96 5 48 5 5 ! " ! √ √ √ √ Z 13 x 3x 13 x 2 3x x4 cosh J0 (x) J0 dx = (40x3 + 150x) J0 (x) J0 + 5 5 96 5 ! ! √ √ √ 13 x 13 x 2 2 − (140 x + 625) J1 (x) J0 + + 13 (20x + 125) J0 (x) J1 5 5 !# " ! ! √ √ √ √ 2 √ √ 13 x 2 3 x 13 x 13 x x + 13 (8 x3 + 50 x) J1 (x) J1 sinh 30 x J0 (x) J0 + 25 13 J0 (x) J1 − − 5 5 16 5 5 ! !# √ √ √ √ 13 x 13 x 2 3x 2 −(8 x + 125) J1 (x) J0 + 10 13x J1 (x) J1 cosh 5 5 5 " ! ! r r Z √ 4x 7 7 x 4 3 x sinh √ · J0 (x) J1 − 105 (64x + 60 x)J0 (x) J0 x dx = x − 15 7168 15 5 ! ! r r √ 7 7 2 2 x + 105 (288x + 225) J1 (x) J0 x + −(3360 x + 1575) J0 (x) J1 15 15 !# " ! r r √ 4x x2 7 7 3 x sinh √ + 60 21x J0 (x) J0 x + +(1344 x + 1260 x) J1 (x) J1 15 15 5 1792 ! ! r r √ √ 7 7 + 5 (336 x2 + 315) J0 (x) J1 x − 21 (48 x2 + 225) J1 (x) J0 x − 15 15 !# r √ 4x 7 x cosh √ −252 5x J1 (x) J1 15 5 ! " ! r r Z √ 7 7 4x x2 4 x cosh √ · J0 (x) J1 x dx = 60 21 x J0 (x) J0 x + 15 1792 15 5 ! ! r r √ √ 7 7 2 2 x − 21 (48 x + 225) J1 (x) J0 x − + 5 (336 x + 315) J0 (x) J1 15 15 !# " ! r r √ √ 7 4x x 7 3 −252 5 x J1 (x) J1 x sinh √ + − 105 (64 x + 60x) J0 (x) J0 x − 15 15 5 7168 ! ! r r √ 7 7 −(3360 x2 + 1575) J0 (x) J1 x + 105 (288 x2 + 225) J1 (x) J0 x + 15 15 !# r 7 4x 3 +(1344 x + 1260 x) J1 (x) J1 x cosh √ 15 5 ! " r r ! Z √ 2x 3 x2 3 4 x sinh √ · J1 (x) J1 x dx = −6 21 x J0 (x) J0 x − 7 16 7 7 r ! r ! r !# √ 3 3 3 2x 2 −(8 x + 63) J0 (x) J1 x + 21 21 J1 (x) J0 x − 14 x J1 (x) J1 x sinh √ + 7 7 7 7 343

! r ! √ 3 3 2 3 (8 x + 42 x) J0 (x) J0 x + 7 (20x + 63 ) J0 (x) J1 x − 7 7 r ! r !# √ √ 3 3 2x − 3 (28 x2 + 147 ) J1 (x) J0 x + 7 (8 x3 + 14 x) J1 (x) J1 x cosh √ 7 7 7 " ! ! r r Z √ 3 3 2x x2 −6 21 x J0 (x) J0 x4 cosh √ · J1 (x) J1 x dx = x − 7 16 7 7 r ! r !# r ! √ 3 3 3 2x 2 x + 21 21 J1 (x) J0 x − 14 x J1 (x) J1 x cosh √ + −(8 x + 63) J0 (x) J1 7 7 7 7 " r ! r ! √ x √ 3 3 x + 7 (20 x2 + 63 ) J0 (x) J1 x − + 3 (8 x3 + 42 x) J0 (x) J0 32 7 7 r ! r !# √ √ 3 3 2x − 3 (28x2 + 147) J1 (x) J0 x + 7 (8x3 + 14 x) J1 (x) J1 x sinh √ 7 7 7 x + 32

"



r

3

n=5: Z

4x x sinh √ · J1 (x) J1 11 5

r

! " √ 3 x x dx = − 33 (4224 x3 + 7260x) J0 (x) J0 11 24 576 r 4

2

−(8448 x + 52272 x + 59895) J0 (x) J1 √ + 33 (−256 x4 + 11088 x2 + 19965) J1 (x) J0 r −(12672 x3 + 4356 x) J1 (x) J1

r

! 3 x − 11

! 3 x + 11 ! r 3 x − 11

!# 3 4x x sinh √ + 11 11

" ! ! r r √ x2 √ 3 3 3 2 3 (704 x + 7260 x) J0 (x) J0 + x + 11 (2112 x + 5445) J0 (x) J1 x − 6144 11 11 ! !# r r √ √ 4x 3 3 2 3 x + 11 (960 x + 396 x) J1 (x) J1 x cosh √ − 3 (1408 x + 19965) J1 (x) J0 11 11 11 ! " ! r r Z √ x2 4x 3 3 x5 cosh √ x dx = x + · J1 (x) J1 3 (704 x3 + 7260 x) J0 (x) J0 11 6144 11 11 ! ! r r √ √ 3 3 + 11 (2112 x2 + 5445) J0 (x) J1 x − 3 (1408 x2 + 19965) J1 (x) J0 x + 11 11 !# r √ 3 4x 3 + 11 (960 x + 396 x) J1 (x) J1 x sinh √ − 11 11 " ! ! r r √ x 3 3 3 4 2 − 33 (4224 x + 7260 x) J0 (x) J0 x + (8448 x + 52272 x + 59895) J0 (x) J1 x − 24576 11 11 ! !# r r √ 3 3 4x 4 2 3 − 33 (−256 x + 11088 x + 19965) J1 (x) J0 x + (12672 x + 4356 x) J1 (x) J1 x cosh √ 11 11 11

344

3. Products of three Bessel Functions 3.1. Integrals of the type

R

xn Z0m (x) Z13−m (x) dx

These integrals are expressed by three basic integrals with m = 0, 1, 3. One has obviously Z Z 1 3 1 2 J0 (x) J1 (x) dx = − J0 (x) , I02 (x) I1 (x) dx = I03 (x) . 3 3 a) Basic integral

R

Z03 (x) dx:

.. 1.0 ...... .R.x. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... J 3 (t) dt ........................................................................................... .................. .... 0 0 . . . . ...................................................................................................................................................................................................... .... .. . . .... .. .... .. . 0.75 .... . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. .... . . .... .. .... . .... .. . 0.50 ..... . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... ... .... .. .... .. .... .. 0.25 .... . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. .... .. .... .. ...... ...... x .............................................................................................................................................................................................................................................................................................................................................................................. 8 6 4 2   1 Z ∞ Γ 2π 6   =   = 0.89644 07887 76762 86423 . . .     J03 (x) dx = 2 2 5 5 0 2 2 2 ·Γ ·Γ 3Γ 3Γ 6 3 6 3 √ Formula 2.12.42.4 from [4] gives 2 3/3π = 0.36755 . . .. This does not fit to the result of computations. The formula 2.12.42.18 offers 2 Γ(1/6)/[3 Γ(5/6) · Γ2 (2/3)] = 2 · 0.896 . . . . With −8 ≤ x ≤ 8 the following expansion in series of Chebyshev polynomials (based on [2], 9.7.) holds: Z x ∞ x X (30) . J03 (t) dt = ck T2k+1 8 0 k=0

The first coefficients are (30)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ck 1.14145 -0.37698 0.24193 -0.15672 0.09593 -0.06183 0.04061 -0.02860 0.02158 -0.01457 0.00781 -0.00326 0.00107 -0.00028 0.00006

15823 69057 82520 12348 25955 39745 90786 28881 63885 50343 65287 40051 89280 89222 40382

43066 03625 26895 70401 24494 85568 50027 71908 61883 38917 61390 49421 58820 57879 21736

(30)

k 65430 95863 89401 19757 24624 16834 57290 58991 43325 46000 63536 93383 94395 12574 47959

15 16 17 18 19 20 21 22 23 24 25 26 27 28 -

ck -0.00001 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000

345

19647 19134 02652 00322 00034 00003 00000 00000 00000 00000 00000 00000 00000 00000

92899 34477 90698 34936 64486 31986 28561 02219 00156 00010 00000 00000 00000 00000

04163 76782 65709 59711 68661 30964 98591 71843 67592 09261 59593 03238 00162 00008 -

The given approximation differs from the true function as shown in the following figure: ¯ (30) (x) ... 1020 ∆ 4..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .... ...... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ... .. .. .... ... ..... ..... .... . .... .. .. ... 2 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . ...... . . . . . . . . ........ .. ..... .. ... .. .... .... .... . ... .......... ...... .. .... .. ..... .. .... .. ..... ... .... .... . . . . 1 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . ..... . . . . . . . . ............ . . . . . . . . . . . . . . . . .. . .... . . ... . . ... . . . . . . . . .... .... ... . . . ... . . .... .... ..... .. .... ... .... ....... .... ..... ... ... ......... ... . .. .............. ... . .... ........................ . . . . . . . . . . . . . . . . . .. .. .. ... . x ... .. . . . 2 . .. 4 6 . ... .................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ... ... ... . ... ... ... ... .... . .. . . . . .... ........... .. ......... ..... ... ... ... ..... .. .... .... ..... ...8 ... .. . .... . . . . . . . .. . .. . . . . . . . . . . . . . . . . . .. . .. . . .... .... .. .... .... . . . . . . . . . . . . . . . . . . . . . . . . . ...................... . . . . . . . . . .... . . . ....... ..... ..... . ... . ...... ..... .... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... . ... .. ... .. -1 ... ... ... .. ... .. ... .. ... ... ...... ... .. ..... .. ... .... .. ... .. .... ... . .... . . . .. -2 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ..... . . . ........ .... ... ... .. R ...... ¯ (30) (x) = P28 c(30) T2k+1 (x/8) − x J 3 (t) dt .... ∆ . . . ..... 0 . k=0 k .... 0 .... ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. -3 ... ... . Asymptotic formula: Z

x

J03 (t) dt ∼ 0.89644 07887 76762 86423 . . . +

0

r +

     ∞ X 1 7 − 2k 1 − 2k (30) (30) a sin 3x + π + b sin x + π k k π3 x xk 4 4 2

k=1

with the first values k 1 2 3 4 5 6 7 8 9 10 k 1 2 3 4 5 6 7 8 9 10

(30)

(30)

ak

ak

1/6 7/48 379/2304 13141/55296 250513/589824 12913841/14155776 1565082415/679477248 36535718855/5435817984 23344744269635/1043677052928 2103860629922855/25048249270272 (30)

0.16666 0.14583 0.16449 0.23764 0.42472 0.91226 2.30336 6.72129 22.36778 83.99232

66666 33333 65277 82928 50027 65546 25034 18023 53260 24662

66666 33333 77777 24074 12673 55852 63839 63631 66262 16381

66667 33333 77778 07407 61111 14120 30724 16606 13087 92796

(30)

bk

bk

3/2 39/16 1635/256 46053/2048 6664257/65536 293433849/524288 30538511055/8388608 1832502818925/67108864 996997642437465/4294967296 75773171001327165/34359738368

346

1.50000 00000 00000 00000 2.43750 00000 00000 00000 6.38671 87500 00000 00000 22.48681 64062 50000 00000 101.68849 18212 89062 5000 559.68065 07110 595703 125 3640.47420 68052 2918 70 27306.41989 29816 48445 1 2 32131.60281 01055 41721 22 05289.52199 17166 1050

The first consecutive maxima and minima of r      Z x n 2 X 1 7 − 2k 1 − 2k (30) (30) a sin 3x + ∆(30) (x) = 0.896 . . .+ π + b sin x + π − J03 (t) dt : n k k π3 x xk 4 4 0 k=1

i

xi

1 2 3 4 5 6 7 8 9 10

3.953 7.084 10.221 13.360 16.500 19.641 22.781 25.922 29.064 32.205

i

xi

1 2 3 4 5 6 7 8 9 10

5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631 33.772

(30)

∆1

(xi )

xi

-1.551E-02 4.314E-03 -1.832E-03 9.631E-04 -5.762E-04 3.758E-04 -2.607E-04 1.894E-04 -1.427E-04 1.106E-04

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(30)

∆6

(xi )

xi

-1.017E-03 5.162E-05 -6.116E-06 1.154E-06 -2.934E-07 9.182E-08 -3.349E-08 1.374E-08 -6.192E-09 3.009E-09

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(30)

∆2

(xi )

xi

3.014E-02 -2.889E-03 7.036E-04 -2.547E-04 1.153E-04 -6.022E-05 3.478E-05 -2.161E-05 1.421E-05 -9.769E-06

3.933 7.072 10.213 13.354 16.495 19.636 22.778 25.919 29.061 32.202

(30)

∆7

(30)

(xi )

xi

1.332E-02 -1.853E-04 1.115E-05 -1.345E-06 2.458E-07 -5.934E-08 1.750E-08 -6.004E-09 2.317E-09 -9.833E-10

5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631 33.772 (30)

(30)

≤ ∆n (x) ≤ Gn

In the case x ≥ 8 one has gn

(30)

(30)

(30)

∆3

(xi )

xi

5.971E-03 -6.255E-04 1.380E-04 -4.417E-05 1.771E-05 -8.262E-06 4.297E-06 -2.426E-06 1.460E-06 -9.244E-07

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(30)

∆8

(xi )

xi

1.579E-03 -3.588E-05 2.431E-06 -2.973E-07 5.293E-08 -1.224E-08 3.429E-09 -1.114E-09 4.071E-10 -1.636E-10

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(30)

∆4

(30)

(xi )

xi

-4.857E-02 1.167E-03 -1.302E-04 2.690E-05 -7.843E-06 2.852E-06 -1.211E-06 5.757E-07 -2.988E-07 1.662E-07

3.928 7.069 10.211 13.352 16.494 19.635 22.777 25.918 29.060 32.202

-6.275E-03 2.440E-04 -2.818E-05 5.533E-06 -1.496E-06 5.014E-07 -1.962E-07 8.626E-08 -4.154E-08 2.152E-08

(xi )

xi

∆10 (xi )

-4.858E-02 2.333E-04 -7.235E-06 5.351E-07 -6.616E-08 1.152E-08 -2.565E-09 6.874E-10 -2.129E-10 7.404E-11

5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631 33.772

-3.900E-03 3.891E-05 -1.498E-06 1.186E-07 -1.479E-08 2.528E-09 -5.448E-10 1.403E-10 -4.162E-11 1.384E-11

(30)

∆9

∆5

(xi )

(30)

with such values: (30)

(30)

n

gn

Gn

n

gn

Gn

1 2 3 4 5

-1.832E-03 -2.547E-04 -3.729E-04 -1.302E-04 1.404E-04

2.384E-03 7.036E-04 1.380E-04 2.690E-05 -2.818E-05

6 7 8 9 10

5.162E-05 -9.887E-05 -3.588E-05 1.129E-04 3.891E-05

-6.116E-06 1.115E-05 2.431E-06 -7.235E-06 -1.498E-06

The following sum gives on the interval 8 ≤ x ≤ 30 a better aproximation than the asymptotic formula:      10 X 1 7 − 2k (30) ˜b(30) sin x + 1 − 2k π F30 (x) = 0.896 . . . + a ˜ sin 3x + π + . k k 4 4 xk+1/2 k=1

The values of the coefficients are k 1 2 3 4 5 6 7 8 9 10

(30)

˜b(30) k

0.042328861175 0.037041314549 0.041506694202 0.063280735888 0.009657085591 0.955932046063 -12.477953789465 57.157092072696 -530.170189213242 649.179657827779

0.380959694283 0.619046345961 1.619134748282 5.687020985444 24.391624641402 129.687141434225 581.699380578201 3774.819577903598 9530.689591084210 65374.322605554143

a ˜k

With 8 ≤ x ≤ 30 holds −9

−1.8 · 10

Z

x

≤ F30 (x) − 0

347

J03 (t) dt ≤ 1.1 · 10−9

.

Power series for the modified Bessel function: Z x ∞ X 3 31 7 71 47 11723 1 (30) I03 (t) dt = x + x9 + x11 + x13 +. . . dk x2k+1 = x+ x3 + x5 + 4 64 5376 147456 1638400 9201254400 0 k=0

With n ≥ 1 the following recurrence relation holds: (30)

(30)

dn+1 = with (30)

σ1

(n, d) =

n X

4 σ1

(30)

(n, d) + 9 σ2 (n, d) 12(2n + 3)(n + 1)2

(30)

(2k + 1)k(2n − 2k + 3)(2n − 5k + 2) · dk

(30)

· dn−k+1

k=1

and (30)

σ2

n X

(n, d) =

(30)

(2k + 1)(2n − 2k + 1) · dk

(30)

· dn−k .

k=0

Asymptotic formula for the modified Bessel function: x

Z

I03 (t) dt

0

√ 3x ∞ (30) 2 e X ck ∼ √ π 3 x k=1 xk

with the first values (30)

ck

1/12 7/96 379/4608 13141/110592 250513/1179648 12913841/28311552 1565082415/1358954496 36535718855/10871635968 23344744269635/2087354105856 2103860629922855/50096498540544

0.08333 33333 33333 3 0.07291 66666 66666 7 0.08224 82638 88888 9 0.11882 41464 12037 0.21236 25013 56337 0.45613 32773 27926 1.15168 12517 3192 3.36064 59011 8182 11.18389 26630 331 41.99616 12331 082

k 1 2 3 4 5 6 7 8 9 10

(30)

ck

Let

"√ δn(30) (x)

=

# Z −1 n (30) x 2 e3x X ck 3 √ I0 (t) dt −1 · π 3 x k=1 xk 0 (30)

be the relative error, then one has the following values of δn

(x):

n

x=5

x = 10

x = 15

x = 20

x = 25

1 2 3 4 5 6 7 8 9 10

-1.897E-01 -4.794E-02 -1.595E-02 -6.704E-03 -3.400E-03 -1.981E-03 -1.264E-03 -8.462E-04 -5.678E-04 -3.588E-04

-9.019E-02 -1.058E-02 -1.597E-03 -3.000E-04 -6.813E-05 -1.833E-05 -5.756E-06 -2.087E-06 -8.660E-07 -4.075E-07

-5.944E-02 -4.579E-03 -4.529E-04 -5.555E-05 -8.209E-06 -1.430E-06 -2.887E-07 -6.672E-08 -1.747E-08 -5.140E-09

-4.435E-02 -2.545E-03 -1.874E-04 -1.710E-05 -1.877E-06 -2.427E-07 -3.632E-08 -6.211E-09 -1.201E-09 -2.603E-10

-3.538E-02 -1.618E-03 -9.492E-05 -6.896E-06 -6.026E-07 -6.198E-08 -7.376E-09 -1.002E-09 -1.539E-10 -2.647E-11

348

R b) Basic integral Z0 (x) Z12 (x) dx: R ....... x J0 (t) J 2 (t) dt . . 0.25 .. . 0. . . . . . . .1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ........................... ... . ........ 0.20 .... . . . . . . . . . . . . . . ......... . . . . . . . .............................................................................. . . . . . . . . . . . . . . . . . . . . . . ................................................................................................................ .................................................................................................. . .... . . .... ... . . 0.15 .... . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . .... ... . 0.10 .... . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ... .... . . 0.05 .... . . . . . . ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .... .... ........... ....................................................................................................................................................................................................................................................................................................................................................................x .... 2 4 6 8 Z ∞ J0 (x) J12 (x) dx = 0.18578 75214 63065 82253 . . . 0

It differs from formula 2.12.42.4 in [4]. With −8 ≤ x ≤ 8 the following expansion in series of Chebyshev polynomials (based on [2], 9.7.) holds: Z x ∞ x X (12) J0 (t) J12 (t) dt = ck T2k+1 . 8 0 k=0

The first coefficients are (12)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ck 0.23402 -0.07444 0.04383 -0.02088 0.00418 0.00544 -0.00771 0.00909 -0.01063 0.00922 -0.00564 0.00254 -0.00087 0.00024 -0.00005

35970 03661 45295 20217 98619 25004 94350 15741 96487 86127 70826 11445 99927 31559 51197

33006 88704 19423 52543 72133 57533 97286 08442 30041 36398 05794 11845 23272 72294 58270

35445 59538 05343 47233 53415 63387 08113 81722 15062 55548 70935 57857 67696 70777 08008

(12)

k

ck

15 16 17 18 19 20 21 22 23 24 25 26 27 28 -

0.00001 04741 31410 16206 -0.00000 16973 09596 00078 0.00000 02378 37605 87389 -0.00000 00291 52869 89193 0.00000 00031 56305 17549 -0.00000 00003 04352 15694 0.00000 00000 26326 39770 -0.00000 00000 02055 66180 0.00000 00000 00145 70197 -0.00000 00000 00009 42056 0.00000 00000 00000 55809 -0.00000 00000 00000 03042 0.00000 00000 00000 00153 -0.00000 00000 00000 00007 -

The given approximation differs from the true function as shown in the following figure: ¯. (12) ... . .20. .∆ . . . (x) ............................................................................. 4...... .10 .... ... 3 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . . ...... . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . ... 2 .... . . .. ........ ... .. ..... .. ... ...... .... .... ... . . . ... .. . . .. ... .. ... . ... ..... 1 ..... ..... . ...... . . . . . ..... . . . ...... . . . . . . . . . . ................ ....... . . . . . ...... . . . . . . . . . . . . ...... . . . . ..... . . .... . . . ..... . ........... . . . . . . . . . . . . .. . ... ... ... ... . .. . ... . .... ...... ... 2 ... ...... x ...6 ... .. ... .. .... .. ... 4 ... ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................................................................................................................................................................................................................................................................................................................................... ................................................... ... ... .. . 8 ... . ... . ... ... . ... ... . . .... . ... .. ... .... ..... ... .. ... .... ... ... ... .. .... .. .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . ....... .... . . . . . . . . . . . . . . . ..... . . . . . . . ...... . . . . . ....... . . . . . . . . . . . . . . . ..... . .. . . . . . .... ... ...... ....... . -1 ... ........ ... .. ... .... ... ... .. ......... .. . ........ ...... ... .... .... . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... ............ ... . .... -2 .... ... .. ..... .... . R . P . . . x .... (12) 28 (12) 2 ¯ .... ∆ (x) = . . . .ck. . . T . .2k+1 . . . (x/8) . . . . . .−. . .0 . J. 0. (t) . . .J.1.(t) . . .dt. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... -3 .... . . . . . . . . . . . . . . . . k=0 ... .. 349

Asymptotic formula: Z

r

x

J0 (t) J12 (t) dt ∼ 0.18578 75214 63065 82253 . . . +

 h (12)   a0 sin 3x + π4 + b(12) sin x + 0

2

π3 x 

0

7π 4

i +

x

    ) ∞ X 7 − 2k 1 − 2k 1 (12) (12) ak sin 3x + + π + bk sin x + π xk 4 4 k=2

with the first values (12)

k 1 2 3 4 5 6 7 8 9 10

ak

1/6 1/48 85/2304 3379/55296 69967/589824 3833063/14155776 487468417/679477248 11835711665/5435817984 7811427811325/1043677052928 722951995177505/25048249270272

0.16666 66666 66666 66667 0.02083 33333 33333 33333 0.03689 23611 11111 11111 0.06110 74942 12962 96296 0.11862 35215 92881 94444 0.27077 73137 97562 21065 0.71741 68354 19925 64260 2.17735 61402 97136 1890 7.48452 57825 78345 0049 28.86237 62633 79242 299

(12)

k 1 2 3 4 5 6 7 8 9 10

(12)

ak

(12)

bk

bk

1/2 21/16 753/256 21375/2048 3061323/65536 134966187/524288 14029169013/8388608 842027324535/67108864 458031686444595/4294967296 34812460139616855/34359738368

0.50000 00000 00000 00000 1.31250 00000 00000 00000 2.94140 62500 00000 00000 10.43701 17187 50000 0000 46.71208 19091 79687 5000 257.42757 22503 66210 938 1672.40727 10275 65002 44 12547.18489 25203 08494 6 1 06643.81236 87624 46567 10 13175.93768 52090 6451

The first consecutive maxima and minima of r n i Z x 2 X 1 h (12) (12) (12) a sin (3x + . . .) + b sin (x + . . .) − ∆n (x) = 0.185 . . . + J0 (t) J12 (t) dt k k π3 x xk 0

:

k=1

i

xi

1 2 3 4 5 6 7 8 9 10

3.880 7.042 10.192 13.338 16.482 19.625 22.768 25.911 29.053 32.196

i

xi

1 2 3 4 5 6 7 8 9 10

2.356 5.498 8.640 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(12)

∆1

(xi )

xi

-8.324E-03 2.261E-03 -9.530E-04 4.995E-04 -2.984E-04 1.944E-04 -1.348E-04 9.790E-05 -7.371E-05 5.712E-05

2.365 5.503 8.643 11.784 14.925 18.066 21.207 24.349 27.490 30.632

(12)

∆6

(xi )

xi

8.374E-02 -4.673E-04 2.372E-05 -2.810E-06 5.304E-07 -1.348E-07 4.219E-08 -1.539E-08 6.316E-09 -2.845E-09

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(12)

∆2

(xi )

xi

1.432E-02 -1.356E-03 3.293E-04 -1.191E-04 5.386E-05 -2.813E-05 1.624E-05 -1.009E-05 6.636E-06 -4.561E-06

3.923 7.066 10.209 13.351 16.492 19.634 22.776 25.918 29.059 32.201

(12)

∆7

(xi )

xi

6.119E-03 -8.515E-05 5.122E-06 -6.178E-07 1.129E-07 -2.726E-08 8.042E-09 -2.759E-09 1.065E-09 -4.518E-10

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(12)

∆3

(xi )

xi

2.771E-03 -2.895E-04 6.382E-05 -2.042E-05 8.184E-06 -3.818E-06 1.986E-06 -1.121E-06 6.745E-07 -4.271E-07

2.358 5.499 8.640 11.782 14.923 18.065 21.206 24.348 27.489 30.631

(12)

∆8

(xi )

xi

-6.023E-01 7.255E-04 -1.649E-05 1.117E-06 -1.366E-07 2.432E-08 -5.621E-09 1.575E-09 -5.119E-10 1.871E-10

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

350

(12)

∆4

(12)

(xi )

xi

-2.242E-02 5.375E-04 -5.993E-05 1.238E-05 -3.609E-06 1.313E-06 -5.571E-07 2.649E-07 -1.375E-07 7.645E-08

3.927 7.068 10.210 13.352 16.493 19.635 22.776 25.918 29.060 32.201

-2.887E-03 1.122E-04 -1.296E-05 2.544E-06 -6.876E-07 2.305E-07 -9.018E-08 3.965E-08 -1.910E-08 9.893E-09

(xi )

xi

∆10 (xi )

-2.232E-02 1.072E-04 -3.324E-06 2.458E-07 -3.040E-08 5.293E-09 -1.179E-09 3.158E-10 -9.780E-11 3.402E-11

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

7.281E+00 -1.792E-03 1.788E-05 -6.882E-07 5.448E-08 -6.794E-09 1.161E-09 -2.503E-10 6.446E-11 -1.912E-11

(12)

∆9

∆5

(xi )

(12)

(12)

In the case x ≥ 8 one has gn

(12)

(12)

n

(12)

n

1.314E-03 3.293E-04 6.382E-05 1.238E-05 1.238E-05

6 7 8 9 10

gn

1 2 3 4 5

(12)

≤ ∆n (x) ≤ Gn Gn

-9.530E-04 -1.191E-04 -1.735E-04 -5.993E-05 6.457E-05

with such values: (12)

(12)

gn

Gn

-2.810E-06 -4.543E-05 -1.649E-05 -3.324E-06 1.788E-05

2.372E-05 5.122E-06 1.117E-06 5.189E-05 -6.882E-07

The following sum gives on the interval 8 ≤ x ≤ 30 a better aproximation than the asymptotic formula:      10 X 7 − 2k + 4δ1k 1 1 − 2k (12) (12) ˜ a ˜k sin 3x + F12 (x) = 0.18578 75214 63+ π + bk sin x + π . 4 4 xk+1/2 k=1 Here δkl denotes the Kronecker symbol. The values of the coefficients are ˜b(12) k

(12)

k

a ˜k

1 2 3 4 5 6 7 8 9 10

0.042329196006 0.005292679875 0.009245148401 0.016862928651 -0.014976122776 0.401440149083 -5.815950738680 26.023951772804 -244.011181624276 296.167068374575

0.126986297337 0.333333960255 0.745696621275 2.639682546435 11.204590967086 59.656792209975 267.223468914520 1734.742283706764 4378.452764670006 30038.714778003193

With 8 ≤ x ≤ 30 holds −8.1 · 10−10 ≤ F12 (x) −

x

Z

J0 (t) J12 (t) dx ≤ 5.5 · 10−10

.

0

Power series for the modified Bessel functions: Z x ∞ X 5 19 707 581 x3 x5 (12) − + x7 − x9 + x11 − x13 + . . . I0 (t) I12 (t) dt = dk x2k+1 = 12 40 1344 55296 32440320 575078400 0 k=1

(12)

With n ≥ 1 the coefficients dk

(03)

are represented bei dk

(see page 355):

4(k + 1)(k + 2) (03) dk+1 . 6k + 3 Asymptotic formula for the modified Bessel function: √ 3x ∞ (12) Z x 2 e X ck 2 I0 (t) I1 (t) dt ∼ √ xk π3 x 0 (12)

dk

=

k=1

with the first values k 1 2 3 4 5 6 7 8 9 10

(12)

ck

(12)

1/12 -1/96 -85/4608 -3379/110592 -69967/1179648 -3833063/28311552 -487468417/1358954496 -11835711665/10871635968 -7811427811325/2087354105856 -722951995177505/50096498540544

0.08333 33333 33333 3 -0.010416666666667 -0.018446180555556 -0.030553747106481 -0.059311760796441 -0.135388656898781 -0.358708417709963 -1.088678070148568 -3.742262891289173 -14.431188131689621

ck

351

Let

"√ δn(12) (x)

=

# Z −1 n (12) x 2 e3x X ck 2 √ I (t) I (t) dt −1 · 0 1 π 3 x k=1 xk 0 (12)

be the relative error, then one has the following values of δn

(x):

n

x=5

x = 10

x = 15

x = 20

x = 25

1 2 3 4 5 6 7 8 9 10

4.085E-02 1.483E-02 5.617E-03 2.564E-03 1.379E-03 8.376E-04 5.508E-04 3.768E-04 2.571E-04 1.648E-04

1.541E-02 2.715E-03 4.676E-04 9.526E-05 2.299E-05 6.492E-06 2.121E-06 7.943E-07 3.383E-07 1.624E-07

9.532E-03 1.120E-03 1.265E-04 1.684E-05 2.643E-06 4.829E-07 1.014E-07 2.419E-08 6.500E-09 1.952E-09

6.902E-03 6.084E-04 5.122E-05 5.070E-06 5.914E-07 8.020E-08 1.248E-08 2.204E-09 4.374E-10 9.679E-11

5.409E-03 3.817E-04 2.561E-05 2.019E-06 1.875E-07 2.023E-08 2.503E-09 3.513E-10 5.537E-11 9.724E-12

c) Basic integral

R

Z13 (x) dx:

.......R x 3 .... 0 J1 (t) dt . ................................................................... 0.30 ..... . . . . . . . . . . . . . . . . . . . . . .............. . . . . . . . . . . . . . . . ............................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...................................... ... ............. . .... .................................................................................................................... .... ... .... . . .... ... .... ... . . 0.20 .... . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .. .... .. . .... .. .... .. . . . 0.10 ..... . . . . . . . . . . . ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... . ... .... ... . . . .... ... ... ........ ...........................................................................................................................................................................................................................................................................................................................................................................x .... 8 6 4 2 √ Z ∞ 3 3 J1 (x) dx = = 0.27566 44477 10896 02476 . . . 2π 0 Formula 2.12.42.18 from [4] gives 2 · 0.27566 . . . . With −8 ≤ x ≤ 8 the following expansion in series of Chebyshev polynomials (based on [2], 9.7.) holds: Z x ∞ x X (03) J13 (t) dt = ck T2k+1 . 8 0 k=0

Using 30 items of the series, the given approximation differs from the true function as shown in the following figure: ¯. (03) .. . .20. .∆ . . . (x) ............................................................................. 4....... .10 ... .... 3 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ....... .. ... .. 2 .... . . . . . . . . . . . . . . . . . . . . . .... ....... . . . . . . . . . . . . . . ........... . . . . .... . . .... . . . . . . . . . . .............. . . . . . . . . . . . . . . . . . . . . . . . . . .. .. ... .. .. .. . . . . . . . . . . . . . . . . . . . . ..... . . . .... . . . . . . . . . . . . .... . ...... . . . ... . . . ..... . . . . . . . . ..... . . ..... . . . . . . . . . . . . . . . . . . . . . ... ... ... 1 ... ... .. .... . .... ... .. ... ... ... ... ... ...... ..... x ... . ..2 . .... .......... .............. . . . . 4 6 . . . . . . . . . . . . . . . .................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ..... ... ... . ... ......... .. .... .. . . .. ... . ........ .. . .... . . . . . . . . . . . ...... . . . ... . . . . . . . . . . . . . .............. . . . . . . . . . . . . . . . ..... . . . .... . . . . . . . . . . . . . . . . . . ........... . . ..... ......... .......... 8 . ... . ... -1 ... . ... . ... .. .. .. . . . . ........ . . . . . . . . . . . . . . ..... . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... . . . . . . . . . . . . . . . . . . . . . ...... . .... . . . . . ... .. -2 ... Rx P29 ......(03) ... ∆ ... ... ¯ (03) = k=0 ck T2k (x/8) − 0 J13 (t) dt ... . . . . . . ... . . . . . . .(x) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3 .. . 352

The first coefficients of the series are (03)

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

ck 0.23821 0.05565 -0.07298 0.06987 -0.04171 0.01717 -0.00484 -0.00029 0.00492 -0.00739 0.00611 -0.00338 0.00137 -0.00043 0.00010

24114 99710 97702 40694 62455 16060 82605 03839 11828 18550 65128 52693 35573 18988 92654

(03)

k

31419 46458 38741 66707 49522 47354 99791 52557 87493 17718 72946 70801 01229 45664 18291

64234 43436 38530 70829 66601 59698 99458 94438 16152 86749 06394 23544 79344 76700 14430

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

ck -0.00002 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

28518 40330 06104 00802 00092 00009 00000 00000 00000 00000 00000 00000 00000 00000 00000

02498 04736 34965 87294 76147 50125 86955 07159 00533 00036 00002 00000 00000 00000 00000

15054 70912 75114 38422 24624 56893 13371 24024 44393 16224 24086 12747 00668 00032 00001

Asymptotic formula: Z



x

J13 (t) dt

0

3 ∼ + 2π

r

2

(

π3 x

(03)

a1

(03)

sin(3x − π4 ) + b1 x

sin(x +

5π 4 )

+

    ) ∞ X 1 5 − 2k 7 − 2k (03) (03) + ak sin 3x + π + bk sin x + π xk 4 4 with



k=2

3/2π = 0.27566 44477 10896 02476 . . . (see [8], 13.46) and the first values k

1 2 3 4 5 6 7 8 9 10 k 1 2 3 4 5 6 7 8 9 10

(03)

(03)

ak

1/6 5/48 173/2304 5735/55296 112415/589824 6113875/14155776 790059305/679477248 19738125085/5435817984 13496143234525/13496143234525 1298437733131525/25048249270272

ak

0.16666 66666 66666 66667 0.10416 66666 66666 66667 0.07508 68055 55555 55556 0.10371 45543 98148 14815 0.19059 07524 95659 72222 0.43189 96712 01352 71991 1.16274 57833 58444 40225 3.63112 32537 76703 35181 12.93134 03956 34871 2675 51.83746 45318 04589 8562

(03)

(03)

bk

3/2 27/16 891/256 25065/2048 3564945/65536 156773205/156773205 16277745015/8388608 976536193185/67108864 531096920069625/4294967296 40362305845577625/34359738368

bk

1.50000 00000 00000 00000 1.68750 00000 00000 00000 3.48046 87500 00000 00000 12.23876 95312 50000 0000 54.39674 37744 14062 5000 299.02115 82183 83789 063 1940.45841 87269 21081 54 14551.52322 62760 40077 2 1 23655.63774 23985 39558 11 74697.70617 25228 8503

353

The first consecutive maxima and minima of ( (03) r √ (03) a1 sin(3x − π4 ) + b1 sin(x + 5π 3 2 (03) 4 ) ∆n (x) = + + 3 2π π x x     ) Z x n X 7 − 2k 1 − 2k 1 (03) (03) ak sin 3x + π + bk sin x + π − J03 (t) dt + xk 4 4 0

:

k=1

i

xi

1 2 3 4 5 6 7 8 9 10

2.023 5.336 8.533 11.702 14.860 18.013 21.162 24.309 27.455 30.600

i

xi

1 2 3 4 5 6 7 8 9 10

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(03)

∆1

(xi )

xi

2.977E-02 -4.810E-03 1.690E-03 -8.051E-04 4.533E-04 -2.838E-04 1.911E-04 -1.358E-04 1.005E-04 -7.684E-05

3.933 7.072 10.213 13.354 16.495 19.636 22.778 25.919 29.061 32.202

(03)

∆6

(xi )

xi

4.522E-03 -1.056E-04 8.813E-06 -1.356E-06 3.014E-07 -8.572E-08 2.911E-08 -1.130E-08 4.873E-09 -2.284E-09

2.356 5.497 8.639 11.781 14.922 18.064 21.206 24.347 27.489 30.630 (03)

In the case x ≥ 8 one has gn n 1 2 3 4 5

(03)

∆2

(xi )

xi

4.556E-03 -7.718E-04 2.352E-04 -9.624E-05 4.706E-05 -2.593E-05 1.557E-05 -9.966E-06 6.707E-06 -4.698E-06

2.338 5.487 8.632 11.775 14.918 18.060 21.203 24.345 27.486 30.628

(03)

∆7

(xi )

xi

-2.426E-01 6.337E-04 -2.157E-05 1.933E-06 -2.937E-07 6.248E-08 -1.680E-08 5.371E-09 -1.961E-09 7.955E-10

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(03)

gn -8.051E-04 -4.559E-04 -1.477E-04 -3.029E-05 -6.330E-06

(03)

≤ ∆n (x) ≤ Gn Gn

n

1.690E-03 2.352E-04 4.028E-05 1.120E-04 4.048E-05

6 7 8 9 10

(03)

∆3

(xi )

xi

-1.901E-02 9.013E-04 -1.477E-04 4.028E-05 -1.461E-05 6.359E-06 -3.145E-06 1.709E-06 -9.979E-07 6.168E-07

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(03)

∆8

(xi )

xi

-1.276E-02 1.047E-04 -4.529E-06 4.279E-07 -6.433E-08 1.319E-08 -3.380E-09 1.025E-09 -3.542E-10 1.361E-10

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(03)

∆4

(03)

(xi )

xi

-2.969E-03 1.899E-04 -3.029E-05 7.586E-06 -2.496E-06 9.863E-07 -4.448E-07 2.215E-07 -1.192E-07 6.828E-08

2.354 5.496 8.638 11.780 14.922 18.063 21.205 24.347 27.488 30.630

4.614E-02 -5.376E-04 4.048E-05 -6.330E-06 1.484E-06 -4.510E-07 1.643E-07 -6.841E-08 3.156E-08 -1.579E-08

(xi )

xi

∆10 (xi )

2.291E+00 -1.254E-03 1.893E-05 -9.676E-07 9.523E-08 -1.419E-08 2.820E-09 -6.931E-10 2.005E-10 -6.600E-11

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

5.861E-02 -1.634E-04 3.623E-06 -2.095E-07 2.130E-08 -3.150E-09 6.096E-10 -1.444E-10 4.007E-11 -1.262E-11

(03)

∆9

∆5

(xi )

(03)

with such values: gn -5.870E-05 -2.157E-05 -4.529E-06 -9.676E-07 -7.485E-05

Gn 8.813E-06 1.933E-06 5.333E-05 1.893E-05 3.623E-06

The following sum gives on the interval 8 ≤ x ≤ 30 a better aproximation than the asymptotic formula: √      10 3 X 1 5 − 2k + 4δ1k (03) ˜b(03) sin x + 7 − 2k π F03 (x) = + a ˜ sin 3x + π + . k k 2π 4 4 xk+1/2 k=1

Here δkl denotes the Kronecker symbol. The values of the coefficients are k 1 2 3 4 5 6 7 8 9 10

(12)

a ˜k 0.042329125987 0.026455529094 0.019031312665 0.026093503230 0.036754295203 -0.015099663650 -0.742020898226 -21.408004618587 -6.362414618305 -1177.354351044844

˜b(12) k 0.380960729687 0.428583324556 0.882368927951 3.106884244014 13.006466163819 73.274117576600 297.966084182852 2526.040556452494 4245.043677286622 55725.065225312970

With 8 ≤ x ≤ 30 holds −1.0 · 10−9 ≤ F03 (x) ≤ 4.5 · 10−10 354

.

Power series for the modified Bessel function: Z x ∞ X x6 x8 19 101 83 x4 (03) I13 (t) dt = + + + x10 + x12 + x14 + . . . dk x2k = 32 128 1024 245760 23592960 471859200 0 k=2

With n ≥ 3 the following recurrence relation holds: (03)

dn(03) = with (03)

σ1

(n, d) =

n−1 X

16 σ1

(03)

(n, d) + 36 σ2 (n, d) 3n(n − 1)(n − 2)

(03)

k(n − k + 2)(2nk − n + 7k − 5k 2 ) · dk

k=3

and (03)

σ2

(n, d) =

n−1 X

(03)

k(n − k + 1) · dk

(03)

· dn−k+1 .

k=2

Asymptotic formula for the modified Bessel function: x

Z

I13 (t) dt

0

√ 3x ∞ (03) 2 e X ck ∼ √ π 3 x k=1 xk

with the first values (03)

ck

1/12 -5/96 -173/4608 -5735/110592 -112415/1179648 -6113875/28311552 -790059305/1358954496 -19738125085/10871635968 -13496143234525/2087354105856 -1298437733131525/50096498540544

0.08333 33333 33333 3 -0.052083333333333 -0.037543402777778 -0.051857277199074 -0.095295376247830 -0.215949835600676 -0.581372891679222 -1.815561626888352 -6.465670197817436 -25.918732265902295

k 1 2 3 4 5 6 7 8 9 10

(03)

ck

Let

"√ δn(03) (x)

=

# Z −1 n (03) x 2 e3x X ck 3 √ · I1 (t) dt −1 π 3 x k=1 xk 0 (03)

be the relative error, then one has the following values of δn

(x):

n

x=5

x = 10

x = 15

x = 20

x = 25

1 2 3 4 5 6 7 8 9 10

1.791E-01 3.170E-02 1.046E-02 4.587E-03 2.429E-03 1.451E-03 9.250E-04 5.962E-04 3.620E-04 1.742E-04

7.271E-02 5.662E-03 8.293E-04 1.618E-04 3.912E-05 1.132E-05 3.840E-06 1.503E-06 6.710E-07 3.374E-07

4.589E-02 2.315E-03 2.209E-04 2.801E-05 4.387E-06 8.179E-07 1.774E-07 4.399E-08 1.232E-08 3.863E-09

3.355E-02 1.253E-03 8.875E-05 8.358E-06 9.712E-07 1.342E-07 2.154E-08 3.949E-09 8.161E-10 1.882E-10

2.645E-02 7.841E-04 4.419E-05 3.311E-06 3.060E-07 3.362E-08 4.288E-09 6.244E-10 1.024E-10 1.874E-11

355

(03)

· dn−k+2

d) Basic integral

R

x−1 · Z03 (x) dx: Z

Z03 (x) dx x

x

Z =

ln |x| + 0

Z03 (t) − 1 dt t

... .......... ................................................................................2.........................................................................4.........................................................................6.........................................................................8...............................................................................x .... ....... ... ...... .... ..... ..... .... ..... .... . -0.5 .... . . . . . . . . . . ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... .... ..... .... ..... ... .... .. . . . . . . . . . . . . . . . . .............. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... -1.0 ... ........ .... R ......... .... ......... 0x t−1 [J03 (t) − 1] dt ......... .... ........ . -1.5 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........... .... ............ ............. .... .............. .... ....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -2.0 ... .................. ... .................... ..................... .... ...................... .... .... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................... -2.5 ...

x

Z 0

+

J03 (t) − 1 1 3 31 7 71 47 11723 2021 dt = − x3 + x5 − x + x9 − x11 + x13 − x15 + t 4 64 5376 147456 1638400 9201254400 46242201600

5773279 3125957 1114457 1567 x17 − x19 + x21 − x23 +. . . 1315333734400 218624250662092800 6443662124777472000 148511069923442688000 = −0.25x3 + 0.046875x5 − 0.00576 63690 47619x7 + 0.00048 14995 65972x9 −

−0.00002 86865 23438x11 + 0.00000 12740 65414x13 − 0.00000 00437 04667x15 + 0.00000 00011 91333x17 − −0.00000 00000 26407x19 + 0.00000 00000 00485x21 − 0.00000 00000 00008x23 + . . . With −8 ≤ x ≤ 8 the following expansion in series of Chebyshev polynomials (based on [2], 9.7.) holds: Z 0

x



x X (−) J03 (t) − 1 dt = ck T2k . t 8 k=0

The first coefficients are k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(−)

k

-1.66487772839693011416 -0.85731855220711666821 0.35797423128412846686 -0.18824568501714899999 0.10690149363496148802 -0.06393636091495798502 0.03911001491993894893 -0.02409344095904841252 0.01437795892387628520 -0.00768362174411199843 0.00345368891420790184 -0.00127440919485714551 0.00038620719490337840 -0.00009714124269423777 0.00002055168104878868

15 16 17 18 19 20 21 22 23 24 25 26 27 28 -

ck

(−)

ck

-0.00000370566539255354 0.00000057633802528230 -0.00000007814654021909 0.00000000932468761665 -0.00000000098725238622 0.00000000009342113704 -0.00000000000795204305 0.00000000000061237408 -0.00000000000004288320 0.00000000000000274344 -0.00000000000000016101 0.00000000000000000870 -0.00000000000000000043 0.00000000000000000002 356

The given approximation differs from the true function as shown in the following figure: ¯ (−) (x) ... 1020 ∆ 3..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . . . . . .. ... ... ..... .... . . . .... .. ... 2 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . ...... . . . . ... . .. .... .. .... ....... . . . . .... . ... .. ............ .. .. 1 .... . . . . . . . . . . . . . . . . . . . . . . ........... . . . . . . . ............ . . . . . . ..... . . .... . . . . . . . . . . . ..... . . ........... . . . . . . . . . . . . .... . . .... . .. . ........ ... ... ... .... ... ... . .. . .. . ... .. .. ... ... .. ... ..... .... .. ..... .. .. .... .......... . . . ... .. .. ...... x . . . . . . . . . . . . 2. . 4 6 . . . . .... .. .... . . . . . . .......................................................................................................................................................................................................................................................................................................................................................................................................................................... ... ... ... ... ... ... ..... ... . .. .. .. .... ... .. .. ..... ... ... ... ... ...8 ... ... . .. . . . . .... . . . . . . . . ... ... .. . . . ........... ... ... ... . .. . ... ... . . . . .... ........ . . . . . . . . . . . . . . . . . ............ . ..... . . . . . . . . . . . . ... . . .. . . . . . . ... . . .. . . . . . . ..... . .. . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . ... . .. . . . . . . . .... ......... . ... ... .. -1 ... ... .. ... . . . . . . . . . . . . . . . . . . . . . . ...... ... . ... ... . .. . ... ... . .... ..... .. ... ... ... ... ....... .... .... . . . . . . . . ... . . . . . . .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ .. -2 ... .. ... R x −1 3 P28 (−) .. (−) ¯ .... ∆ (x) = c T (x/8) − t [J (t) − 1] dt . 2k 0 k=0 k 0 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -3 ... ... . Asymptotic formula: Z x 3 J0 (t) dt ∼ 0.11548 77825 09057 98226 . . . + t 1 r      ∞ 1 − 2k 2 X 1 7 − 2k (01) (01) π + bk sin x + π + ak sin 3x + π3 x xk+1 4 4 k=1

with the first values k 1 2 3 4 5 6 7 8 9 k 1 2 3 4 5 6 7 8 9

(01)

(01)

ak

1/6 29/144 1921/6912 8527/18432 1621523/1769472 89993003/42467328 3821763071/679477248 275582100493/16307453952 177961856737289/3131031158784

ak

0.16666 66666 66666 66667 0.20138 88888 88888 88889 0.27792245370370370370 0.46261 93576 38888 88889 0.91638 80524 81192 12963 2.11911 14967 25200 13503 5.62456 37101 89160 00555 16.89914 93892 39986 24700 56.83809 82852 95930 27586

(01)

(01)

bk

3/2 63/16 3603/256 129981/2048 22909281/65536 1191489153/524288 143000089119/8388608 9724198215717/67108864 5912428624098201/4294967296

bk

1.50000 00000 00000 00000 3.93750 00000 00000 00000 14.07421 87500 00000 00000 63.46728 51562 50000 00000 349.56788 63525 39062 5000 2272.58520 69854 73632 813 17046.93902 95743 94226 07 1 44901.84509 33247 80464 2 13 76594.56210 63469 44347

357

The first consecutive maxima and minima of r n i Z x 2 X 1 h (−1) (−1) (−1) ak sin (3x + . . .) + bk sin (x + . . .) − t−1 · J03 (t) dt ∆n (x) = 0.115 . . . + π3 x xk+1 1 k=1

i

xi

1 2 3 4 5 6 7 8 9 10

3.944 7.079 10.217 13.357 16.498 19.639 22.780 25.921 29.062 32.204

(−1)

∆1

(xi )

xi

-5.284E-03 8.972E-04 -2.736E-04 1.120E-04 -5.477E-05 3.018E-05 -1.812E-05 1.160E-05 -7.806E-06 5.468E-06

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

i

xi

1 2 3 4 5 6 7 8 9 10

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(−1)

∆6

(−1)

∆2

(xi )

xi

2.066E-02 -1.010E-03 1.668E-04 -4.561E-05 1.656E-05 -7.216E-06 3.571E-06 -1.941E-06 1.134E-06 -7.008E-07

3.929 7.070 10.211 13.353 16.494 19.635 22.777 25.919 29.060 32.202

(−1)

(xi )

xi

2.837E-01 -7.418E-04 2.526E-05 -2.264E-06 3.441E-07 -7.318E-08 1.968E-08 -6.291E-09 2.297E-09 -9.319E-10

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201 (−1)

∆7

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(−1)

2.356 5.498 8.639 11.781 14.923 18.064 21.206 24.347 27.489 30.631

(−1)

Gn

-2.736E-04 -4.561E-05 -1.301E-04 -4.719E-05 -1.032E-05

3.477E-03 -2.223E-04 3.547E-05 -8.883E-06 2.923E-06 -1.155E-06 5.209E-07 -2.594E-07 1.396E-07 -7.996E-08

1.495E-02 -1.227E-04 5.307E-06 -5.014E-07 7.538E-08 -1.546E-08 3.961E-09 -1.201E-09 4.150E-10 -1.594E-10

(−1)

1 2 3 4 5

xi

xi

≤ ∆n

gn

(xi )

(xi )

In the case x ≥ 8 one has gn n

(−1)

∆3

(−1)

(x) ≤ Gn

(−1)

n

4.984E-04 1.668E-04 3.547E-05 7.385E-06 6.871E-05

6 7 8 9 -

∆8

(−1)

∆4

(xi )

xi

-5.340E-02 6.258E-04 -4.719E-05 7.385E-06 -1.732E-06 5.264E-07 -1.918E-07 7.986E-08 -3.685E-08 1.844E-08

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(xi )

xi

-2.685E+00 1.470E-03 -2.218E-05 1.134E-06 -1.116E-07 1.663E-08 -3.305E-09 8.122E-10 -2.350E-10 7.734E-11

3.927 7.069 10.210 13.352 16.493 19.635 22.777 25.918 29.060 32.201

(−1)

∆9

(−1)

∆5

(xi )

-5.296E-03 1.237E-04 -1.032E-05 1.589E-06 -3.531E-07 1.004E-07 -3.411E-08 1.324E-08 -5.709E-09 2.676E-09

(xi )

-6.868E-02 1.915E-04 -4.245E-06 2.455E-07 -2.496E-08 3.692E-09 -7.143E-10 1.692E-10 -4.695E-11 1.479E-11

with the following values: (−1)

gn

-2.264E-06 -6.249E-05 -2.218E-05 -4.245E-06 -

(−1)

Gn

2.526E-05 5.307E-06 1.134E-06 8.772E-05 -

The following sum gives on the interval 8 ≤ x ≤ 30 a better aproximation than the asymptotic formula:      9 X 7 − 2k 1 (−1) ˜b(−1) sin x + 1 − 2k π π + . F−1 (x) = 0.115 . . . + a ˜ sin 3x + k k 4 4 xk+3/2 k=1 The values of the coefficients are k 1 2 3 4 5 6 7 8 9

(−1)

˜b(−1) k

0.042328265593 0.051124895140 0.069839136706 0.108172780150 -0.035881146333 -0.183965343668 -39.511920554495 23.037919369082 -1996.507320270070

0.380960857219 0.999204230732 3.573795779326 15.423626931601 86.734624679653 370.667415902952 3145.668270195769 5512.467112432406 73698.065312438298

a ˜k

With 8 ≤ x ≤ 30 holds −2.0 · 10−9 ≤ F−1 (x) −

x

Z

t−1 · J03 (t) dt ≤ 3.2 · 10−9

1

358

.

:

Power series for the modified Bessel function: Z x 3 ∞ X I0 (t) − 1 15 4 31 6 71 517 11723 3 (−1) 2k dt = x + x + x8 + x10 + x12 +. . . dk x = x2 + t 8 256 4608 131072 16384000 8493465600 0 k=1

From this: Z

x

I03 (t) dt

= ln |x| − 0.44089 58511 01198 85318 +

1

∞ X

(−1)

dk

x2k

k=1

With n ≥ 1 the following recurrence relation holds: " n−1 X 1 (−1) (−1) (−1) 16 dn+1 = k(n + 1 − k)(3n2 + 5k 2 − 8kn + 5n − 6k + 2)dk dn+1−k − 3 24(n + 1) k=1

−36

n−1 X

# k(n −

(−1) (−1) k)dk dn−k



36n dn(−1)

k=1

Asymptotic formula for the modified Bessel function: √ 3x ∞ Z x 3 I0 (t) dt 2 e X ck ∼ √ t π 3 x k=1 xk+1 1 with the first values k

ck

1 2 3 4 5 6 7 8 9 10

1/12 29/288 1921/13824 8527/36864 1621523/3538944 89993003/84934656 3821763071/1358954496 275582100493/32614907904 177961856737289/6262062317568 5312592054074687/50096498540544

Let

ck 0.08333 33333 33333 3 0.10069 44444 44444 4 0.13896 12268 51851 9 0.2313 09678 81944 4 0.45819 40262 40596 1 1.05955 57483 62600 1 2.81228 18550 94580 0 8.44957 46946 19993 1 28.41904 91426 47965 106.04717 31327 7115

"√ δn (x) =

# Z √ 3 n −1 n x 2 e3x X ck 2e X −1 3 √ √ c · − t I (t) dt −1, k 0 π 3 x k=1 xk+1 π 3 k=1 1

then one has the following values of δn (x): n

x=5

x = 10

x = 15

x = 20

x = 25

1 2 3 4 5 6 7 8 9 10

-2.591E-01 -8.036E-02 -3.135E-02 -1.560E-02 -1.048E-02 -1.070E-02 -1.769E-02 -4.254E-02 -1.287E-01 -4.521E-01

-1.236E-01 -1.768E-02 -3.069E-03 -6.368E-04 -1.549E-04 -4.350E-05 -1.394E-05 -5.103E-06 -2.292E-06 -1.839E-06

-8.166E-02 -7.680E-03 -8.738E-04 -1.185E-04 -1.881E-05 -3.431E-06 -7.097E-07 -1.647E-07 -4.254E-08 -1.214E-08

-6.101E-02 -4.277E-03 -3.624E-04 -3.658E-05 -4.316E-06 -5.850E-07 -8.985E-08 -1.547E-08 -2.958E-09 -6.242E-10

-4.870E-02 -2.722E-03 -1.838E-04 -1.478E-05 -1.388E-06 -1.498E-07 -1.831E-08 -2.507E-09 -3.813E-10 -6.393E-11

359

e) Integrals of the type

R

xn Z03 (x) dx :

Z

x J03 (x) dx

Z

2x 3 4 + J (x) + 3 1 3

Z

=

x J02 (x) J1 (x)

2x 3 4 − I1 (x) − 3 3

Z

=

x I02 (x) I1 (x)

x I03 (x) dx

Z

Let

Z

J03 (x) dx

2 − 3

Z

J0 (x) J12 (x) dx

Z Z x 3 2x 2x2 3 1 2 I0 (x) + x2 I02 (x) I1 (x) − I0 (x) I12 (x) − I1 (x) − I03 (x) dx − I0 (x) I12 (x) dx 9 3 3 9 3 Z Z 2x2 3 3x3 − 4x 2 6x3 − 8x 3 16 3 3 J13 (x) dx x J0 (x) dx = J (x) + J0 (x) J1 (x) + J1 (x) − 3 0 3 9 9 Z Z 2x2 3 3x3 + 4x 2 6x3 + 8x 3 16 x3 I03 (x) dx = − I13 (x) dx I0 (x) + I0 (x) I1 (x) − I1 (x) − 3 3 9 9 Z

xn J03 (x) dx = Pn (x) J03 (x) + Qn (x) J02 (x) J1 (x) + Rn (x) J0 (x) J12 (x) + Sn (x) J13 (x)+ Z +Un

and

I13 (x) dx

x2 J03 (x) dx =

x 2x 2x2 3 1 = − J03 (x) + x2 J02 (x) J1 (x) − J0 (x) J12 (x) + J (x) + 9 3 3 1 9 Z x2 I03 (x) dx = =

J13 (x) dx

Z

J03 (x) dx

Z + Vn

Z

2

J0 (x) J1 (x) dx + Wn

J13 (x) dx

Z + Xn

J03 (x) dx x

xn I03 (x) dx = Pn∗ (x) I03 (x) + Q∗n (x) I02 (x) I1 (x) + R∗n (x) I0 (x) I12 (x) + Sn∗ (x) I13 (x)+ +Un∗

Z

I03 (x) dx

+

Vn∗

Z

2

I0 (x) I1 (x) dx +

Wn∗

Z

I13 (x) dx

+

Xn∗

Z

I03 (x) dx . x

If Xn = 0 or Xn∗ = 0, then they are omitted from the following table. 3 x4 − 13 x2 6 x3 + 28 x 6 x4 − 28 x2 , R4 (x) = , S4 (x) = , 3 9 9 28 17 , W4 = 0 . U4 = − , V4 = 24 9 −39 x3 + 17 x 3 x4 + 13 x2 6 x3 − 28 x 6 x4 + 28 x2 P4∗ (x) = , Q∗4 (x) = , R∗4 (x) = , S4∗ (x) = − , 27 3 9 9 17 28 U4∗ = − , V4∗ = − , W0∗ = 0 27 9 4 2 5 60 x − 160 x 27 x − 240 x3 + 320 x 4x4 P5 (x) = , Q5 (x) = , R5 (x) = , 27 27 3 1280 54 x5 − 552 x3 + 640 x S5 (x) = , U5 = 0 , V5 = 0 , W5 = 81 81 4 2 5 3 60 x + 160 x 27 x + 240 x + 320 x 4 x4 P5∗ (x) = − , Q∗5 (x) = , R∗5 (x) = , 27 27 3 1280 54 x5 + 552 x3 + 640 x S5∗ (x) = − , U5∗ = 0 , V5∗ = 0 , W5∗ = − 81 81 5 3 9 x − 69 x − 31 x P6 (x) = , Q6 (x) = x6 − 15 x4 + 69 x2 , R6 (x) = 2 x5 − 12 x3 − 50 x , 3 31 2 x6 − 36 x4 + 150 x2 S6 (x) = , U6 = , V6 = −50 , W6 = 0 3 3 P4 (x) =

39 x3 + 17 x , 27

Q4 (x) =

360

P6∗ (x) =

−9 x5 − 69 x3 + 31 x , 3 S6∗ (x) = −

P7 (x) =

Q∗6 (x) = x6 + 15 x4 + 69 x2 ,

2 x6 + 36 x4 + 150 x2 , 3

102 x6 − 1488 x4 + 3968 x2 , 27

R7 (x) =

8 x6 − 112 x4 , 3

8 x6 + 112 x4 , 3

P8∗ (x) = R∗8 (x) =

54 x7 + 1512 x5 + 13920 x3 + 15872 x , 81 31744 V7∗ = 0 , W7∗ = − , 81 Q8 (x) =

−1107 x7 − 25947 x5 − 200427 x3 + 90373 x , 243

27 x8 − 861 x6 + 14415 x4 − 66809 x2 , 27

Q∗8 (x) =

27 x8 + 861 x6 + 14415 x4 + 66809 x2 , 27

270 x7 + 6516 x5 + 35346 x3 − 145400 x 54 x8 + 2172 x6 + 35346 x4 + 145400 x2 , S8∗ (x) = − 81 81 90373 145400 U8∗ = − , V8∗ = − , W8∗ = 0 243 81

Z

Z

27 x7 + 612 x5 + 5952 x3 + 7936 x , 27

54 x8 − 2172 x6 + 35346 x4 − 145400 x2 270 x7 − 6516 x5 + 35346 x3 + 145400 x , S8 (x) = 81 81 90373 145400 U8 = − , V8 = , W8 = 0 243 81

Z

Z

27 x7 − 612 x5 + 5952 x3 − 7936 x , 27

Q∗7 (x) =

1107 x7 − 25947 x5 + 200427 x3 + 90373 x , 243

R8 (x) =

W6∗ = 0

S7∗ (x) = −

U7∗ = 0 , P8 (x) =

V6∗ = −50 ,

54 x7 − 1512 x5 + 13920 x3 − 15872 x , 81 31744 V7 = 0 , W7 = − 81

102 x6 + 1488 x4 + 3968 x2 , 27

R∗7 (x) =

Q7 (x) =

31 , 3

S7 (x) =

U7 = 0 , P7∗ (x) = −

U6∗ = −

R∗6 (x) = 2 x5 + 12 x3 − 50 x ,

J03 (x) J03 (x) dx = − + 3J02 (x) J1 (x) + 6 x2 x

Z

I03 (x) dx I 3 (x) =− 0 − 3I02 (x) I1 (x) + 6 2 x x

Z

J0 (x) J12 (x) dx

Z −3

I0 (x) I12 (x) dx + 3

J03 (x) dx x2 + 1 3 3 2 3 3 = − J0 (x) + J0 (x)J1 (x) − J0 (x)J12 (x) − 3 2 x 2x 4x 4 4

Z

Z

J03 (x) dx I03 (x) dx

J03 (x) dx 3 − x 4

Z

J13 (x) dx

Z 3 Z I03 (x) dx x2 − 1 3 3 2 3 3 I0 (x) dx 3 2 =− I (x) − I (x)I1 (x) − I0 (x)i1 (x) + + I13 (x) dx x3 2x2 0 4x 0 4 4 x 4 Z 3 2 3 J0 (x) dx x2 − 1 3 13 x2 − 3 2 2 J0 (x) J12 (x) + J (x)+ = J0 (x) − J0 (x) J1 (x) − 4 3 x 3x 9x2 9x 27 1 Z Z 28 13 3 J0 (x) dx − J0 (x) J12 (x) dx + 9 9 Z 3 I0 (x) dx x2 + 1 3 13 x2 + 3 2 2 2 3 =− J0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x) − I (x)+ 4 3 2 x 3x 9x 9x 27 1 Z Z 13 28 + I03 (x) dx + I0 (x) I12 (x) dx 9 9

P−5 (x) =

23 x4 + 12 x2 − 32 , 128 x4

Q−5 (x) =

−15 x2 + 12 , 64 x3 361

R−5 (x) =

69 x2 − 24 , 256 x2

S−5 (x) =

3 128x

U−5 = ∗ P−5 (x) =

23 x4 − 12 x2 − 32 , 128 x4

∗ P−6 (x) = −

15 , 64

−9 x4 + 5 x2 − 25 , 125 x5 S−6 (x) =

∗ S−6 (x) = −

W−5 = 0 ,

−15 x2 − 12 , 64 x3

∗ V−5 = 0,

U−6 = −

∗ X−5

207 , 625

18 , 25

V−6 =

207 x4 + 45 x2 + 75 , 625 x4

∗ U−6 =

207 , 625

−145 x6 − 68 x4 + 96 x2 − 768 , 4608 x6

69 256

−69 x2 − 24 , 256 x2 69 = 256

207 x4 − 45 x2 + 75 , 625 x4

Q∗−6 (x) = −

12 x2 + 6 , 625 x2

X−5 =

R∗−5 (x) =

∗ W−5 = 0,

Q−6 (x) =

−12 x2 + 6 , 625 x2

9 x4 + 5 x2 + 25 , 125 x5

P−7 (x) =

V−5 = 0 ,

Q∗−5 (x) =

∗ U−5 =

P−6 (x) =

15 , 64

∗ V−6 =

18 , 25

Q−7 (x) =

R−6 (x) =

∗ S−5 (x) =

−3 128x

36 x2 − 30 , 625 x3

W−6 = 0 R∗−6 (x) = −

36 x2 + 30 , 625 x3

∗ W−6 =0

93 x4 − 68 x2 + 192 , 2304 x5

−435 x4 + 168 x2 − 256 −63 x2 + 64 , S−7 (x) = 4 9216 x 13824 x3 31 145 =− , V−7 = 0 , W−7 = 0 , X−7 = − 768 3072

R−7 (x) = U−7 ∗ P−7 (x) =

145 x6 − 68 x4 − 96 x2 − 768 , 4608 x6

Q∗−7 (x) =

−93 x4 − 68 x2 − 192 , 2304 x5

−435 x4 − 168 x2 − 256 −63 x2 − 64 ∗ , S−7 (x) = 4 9216 x 13824 x3 31 145 ∗ ∗ ∗ = , V−7 = 0 , W−7 = 0 , X−7 = 768 3072

R∗−7 (x) = ∗ U−7

P−8 (x) =

2883 x6 − 1435 x4 + 3675 x2 − 42875 , 300125 x7 R−8 (x) =

∗ P−8 (x) = −

Q−8 (x) =

−66809 x6 + 14415 x4 − 21525 x2 + 91875 , 1500625 x6

11782 x4 − 6516 x2 + 11250 −11782 x4 + 10860 x2 − 26250 , S−8 (x) = , 5 1500625 x 4501875 x4 66809 5816 U−8 = , V−8 = , W−8 = 0 1500625 60025

2883 x6 + 1435 x4 + 3675 x2 + 42875 , 300125 x7

R∗−8 (x) = −

Q∗−8 (x) = −

66809 x6 + 14415 x4 + 21525 x2 + 91875 , 1500625 x6

11782 x4 + 6516 x2 + 11250 11782 x4 + 10860 x2 + 26250 ∗ , S (x) = − , −8 1500625 x5 4501875 x4 66809 5816 ∗ ∗ ∗ U−8 = , V−8 =− , W−8 =0 1500625 60025

362

f) Integrals of the type

R

xn Z02 (x) Z1 (x) dx : Z

Z

1 J02 (x) J1 (x) dx = − J03 (x) 3

1 3 I (x) 3 0 Z Z x 1 x J02 (x) J1 (x) dx = − J03 (x) + J03 (x) dx 3 3 Z Z x 3 1 2 x I0 (x) I1 (x) dx = I0 (x) − I03 (x) dx 3 3 Z

Z

I02 (x) I1 (x) dx =

Z x2 3 2x 2 4x 3 8 J0 (x) + J0 (x) J1 (x) + J1 (x) + J13 (x) dx 3 3 9 9 Z Z x2 3 2x 2 4x 3 8 x2 I02 (x) I1 (x) dx = I0 (x) − I0 (x) I1 (x) + I1 (x) + I13 (x) dx 3 3 9 9 x2 J02 (x) J1 (x) dx = −

x3 J02 (x) J1 (x) dx = −

3x3 + x 3 2x 2x2 3 J0 (x) + x2 J02 (x) J1 (x) − J0 (x) J12 (x) + J (x)+ 9 3 3 1 Z Z 2 1 3 J0 (x) dx − J0 (x) J12 (x) dx + 9 3

2x 2x2 3 3x3 − x 3 I0 (x) − x2 I02 (x) I1 (x) + I0 (x) I12 (x) + I (x)+ 9 3 3 1 Z Z 1 2 3 + I0 (x) dx + I0 (x) I12 (x) dx 9 3 Z Z 12x3 − 16x 2 24x3 − 32x 3 64 −3x4 + 8x2 3 J0 (x) + J0 (x) J1 (x) + J1 (x) − J13 (x) dx x4 J02 (x) J1 (x) dx = 9 9 27 27 Z Z 3x4 + 8x2 3 12x3 + 16x 2 24x3 + 32x 3 64 4 2 x I0 (x) I1 (x) dx = I0 (x) − I0 (x) I1 (x) + I1 (x) + I13 (x) dx 9 9 27 27 Z

x3 I02 (x) I1 (x) dx =

Let Z

xn J02 (x) J1 (x) dx = Pn (x) J03 (x) + Qn (x) J02 (x) J1 (x) + Rn (x) J0 (x) J12 (x) + Sn (x) J13 (x)+ Z +Un

J03 (x) dx + Vn

Z

J0 (x) J1 (x)2 dx + Wn

Z

J1 (x)3 dx + Xn

Z

J03 (x) dx x

and Z

xn I02 (x) I1 (x) dx = Pn∗ (x) I03 (x) + Q∗n (x) I02 (x) I1 (x) + R∗n (x) I0 (x) I12 (x) + Sn∗ (x) I13 (x)+ +Un∗

Z

I03 (x) dx

+

Vn∗

Z

2

I0 (x) I1 (x) dx +

Wn∗

Z

3

I1 (x) dx +

Xn∗

Z

I03 (x) dx . x

If Xn = 0 or Xn∗ = 0, then they are omitted from the following table. P5 (x) =

−27 x5 + 195 x3 + 85 x , 81 S5 (x) =

P5∗ (x) =

30 x4 − 140 x2 , 27

27 x5 + 195 x3 − 85 x , 81 S5∗ (x) =

15 x4 − 65 x2 , 9

Q5 (x) =

U5 = −

Q∗5 (x) = −

30 x4 + 140 x2 , 27

85 , 81

140 , 27

V5 =

15 x4 + 65 x2 , 9

U5∗ =

363

85 , 81

V5∗ =

R5 (x) =

W5 = 0

R∗5 (x) =

140 , 27

30 x3 + 140 x , 27

−30 x3 + 140 x , 27

W5∗ = 0

P6 (x) =

−9 x6 + 120 x4 − 320 x2 , 27

9 x6 + 120 x4 + 320 x2 , 27 S6∗ (x) =

P7 (x) =

Q∗6 (x) = −

3 x7 + 63 x5 + 483 x3 − 217 x , 9

W6 =

V6∗ = 0 ,

Q7 (x) =

8 x4 , 3

2560 81

R∗6 (x) = −

W6∗ =

8x4 , 3

2560 81

7 x6 − 105 x4 + 483 x2 , 3

Q∗7 (x) = −

7 x6 + 105 x4 + 483 x2 , 3

−14 x5 − 84 x3 + 350 x 14 x6 + 252 x4 + 1050 x2 , S7∗ (x) = , 3 9 217 350 U7∗ = , V7∗ = , W7∗ = 0 9 3

64 x6 − 896 x4 , 9

216 x7 − 4896 x5 + 47616 x3 − 63488 x , 81

432 x7 − 12096 x5 + 111360 x3 − 126976 x , 243 253952 V8 = 0 , W8 = − 243

27 x8 + 816 x6 + 11904 x4 + 31744 x2 , 81

Q∗8 (x) = −

216 x7 + 4896 x5 + 47616 x3 + 63488 x , 81

432 x7 + 12096 x5 + 111360 x3 + 126976 x , 243 253952 U8∗ = 0 , V8∗ = 0 , W8∗ = 243 Z 2 Z Z J0 (x) J1 (x) dx 2 3 = −J0 (x) J1 (x) + J0 (x) dx − 2 J0 (x) J12 (x) dx x Z 2 Z Z I0 (x) I1 (x) dx = −I02 (x) I1 (x) + I03 (x) dx + 2 I0 (x) I12 (x) dx x Z Z Z 2 J0 (x)J1 (x) dx 1 3 1 2 1 1 1 J03 (x) dx 2 3 = J (x) − J (x)J (x) + J (x)J (x) + J (x) dx + 1 0 1 1 x2 3 0 2x 0 2 2 2 x Z 2 Z Z 3 I0 (x)I1 (x) dx 1 2 1 1 1 I0 (x) dx 1 I (x)I1 (x) − I0 (x)I12 (x) + I13 (x) dx + = I03 (x) − x2 3 2x 0 2 2 2 x Z 2 J0 (x) J1 (x) dx 1 13x2 − 3 2 2 2 3 = − J03 (x) + J0 (x) J1 (x) + J0 (x) J12 (x) − J (x)− 3 2 x 3x 9x 9x 27 1 Z Z 13 28 − J03 (x) dx + J0 (x) J12 (x) dx 9 9 Z 2 I0 (x) I1 (x) dx 1 3 13x2 + 3 2 2 2 3 = − I (x) − I0 (x) I1 (x) − I0 (x) I12 (x) − I (x)+ 0 3 2 x 3x 9x 9x 27 1 Z Z 13 28 + I03 (x) dx + I0 (x) I12 (x) dx 9 9 R∗8 (x) = −

64 x6 + 896 x4 , 9

Q8 (x) =

S8 (x) =

U8 = 0 , P8∗ (x) =

U6∗ = 0 ,

R6 (x) =

14 x5 − 84 x3 − 350 x 14 x6 − 252 x4 + 1050 x2 , S7 (x) = , 3 9 217 350 U7 = , V7 = − , W7 = 0 9 3

−27 x8 + 816 x6 − 11904 x4 + 31744 x2 , 81 R8 (x) =

V6 = 0 ,

54 x5 + 480 x3 + 640 x , 9

−3 x7 + 63 x5 − 483 x3 − 217 x , 9

R∗7 (x) =

P8 (x) =

U6 = 0 ,

108 x5 + 1104 x3 + 1280 x , 81

R7 (x) =

P7∗ (x) =

54 x5 − 480 x3 + 640 x , 27

108 x5 − 1104 x3 + 1280 x , 81

S6 (x) = P6∗ (x) =

Q6 (x) =

S8∗ (x) =

364

P−4 (x) =

−23 x2 − 12 , 96 x2

Q−4 (x) =

U−4 = 0 , ∗ P−4 (x) =

23 x2 − 12 , 96 x2

V−4 = 0 ,

Q∗−4 (x) =

∗ U−4 =0,

9 x2 − 5 , 75 x3

P−5 (x) =

S−5 (x) = ∗ P−5 (x) = −

145 x4 + 68 x2 − 96 , 2304 x4 S−6 (x) =

∗ P−6 (x) =

145 x4 − 68 x2 − 96 , 2304 x4 ∗ S−6 (x) =

P−7 (x) =

∗ P−7 (x) = −

69 , 125

6 , 5

6 , 5

∗ U−6 =0,

∗ V−6 =0,

∗ S−4 (x) = −

1 , 32x

−12 x2 + 10 , 125 x3

W−5 = 0

145 , 1536

R∗−6 (x) =

∗ W−6 =

12 x2 + 10 , 125 x3

∗ W−5 =0

R−6 (x) =

W−6 =

−93 x4 − 68 x2 − 192 , 1152 x5

1 , 32x

R∗−5 (x) = −

∗ V−5 =

V−6 = 0 ,

145 , 1536

435 x4 − 168 x2 + 256 , 4608 x4

X−6 =

31 384

−435 x4 − 168 x2 − 256 , 4608 x4 ∗ X−6 =

31 384

66809 x6 − 14415 x4 + 21525 x2 − 91875 , 643125 x6

Q−7 (x) =

Q∗−7 (x) = −

66809 x6 + 14415 x4 + 21525 x2 + 91875 , 643125 x6

11782 x4 + 10860 x2 + 26250 11782 x4 + 6516 x2 + 11250 ∗ , S−7 (x) = − , 5 643125 x 1929375 x4 5816 66809 ∗ ∗ ∗ , V−7 = , W−7 =0 U−7 = 643125 25725

−1331 x6 − 616 x4 + 768 x2 − 3072 , 147456 x6

Q−8 (x) =

−3993 x6 + 1560 x4 − 2624 x2 + 9216 , 294912 x6 U−8 = 0 ,

V−8 = 0 ,

W−8 = −

1331 x6 − 616 x4 − 768 x2 − 3072 , 147456 x6

R∗−8 (x) =

V−5 = −

S−4 (x) = −

11782 x4 − 10860 x2 + 26250 −11782 x4 + 6516 x2 − 11250 , S−7 (x) = , 5 643125 x 1929375 x4 66809 5816 U−7 = − , V−7 = , W−7 = 0 643125 25725

R∗−7 (x) = −

∗ P−8 (x) =

R−5 (x) =

69 x4 + 15 x2 + 25 , 125 x4

U−6 = 0 ,

2883 x4 + 1435 x2 + 3675 , 128625 x5

R−8 (x) =

23 , 64

−93 x4 + 68 x2 − 192 , 1152 x5

Q−6 (x) =

−63 x2 − 64 , 6912 x3

69 , 125

∗ U−5 =

−2883 x4 + 1435 x2 − 3675 , 128625 x5

R−7 (x) =

P−8 (x) =

4 x2 + 2 , 125 x2

Q∗−6 (x) =

−23 x2 − 8 , 64 x2 5 ∗ X−4 = 16

R∗−4 (x) =

∗ W−4 =

U−5 =

Q∗−5 (x) = −

63 x2 − 64 , 6912 x3

23 , 64

−69 x4 + 15 x2 − 25 , 125 x4

4 x2 − 2 , 125 x2

9 x2 + 5 , 75 x3

W−4 = −

∗ V−4 =0,

−23 x2 + 8 , 64 x2 5 X−4 = − 16

R−4 (x) =

−5 x2 − 4 , 16 x3

Q−5 (x) =

∗ S−5 (x) = −

P−6 (x) =

5 x2 − 4 , 16 x3

∗ U−8 =0,

∗ V−8 =0,

Q∗−8 (x) =

∗ W−8 =

365

−585 x4 + 656 x2 − 1728 , 442368 x5 71 X−8 = − 6144

S−8 (x) =

1331 , 98304

−3993 x6 − 1560 x4 − 2624 x2 − 9216 , 294912 x6

213 x6 − 154 x4 + 384 x2 − 2304 , 18432 x7

−213 x6 − 154 x4 − 384 x2 − 2304 , 18432 x7 −585 x4 − 656 x2 − 1728 , 442368 x5 71 ∗ X−8 = 6144

∗ S−8 (x) =

1331 , 98304

xn Z0 (x) Z12 (x) dx : Z Z 2 x 3 2 J13 (x) dx x J0 (x) J1 (x) dx = J1 (x) + 3 3 Z Z x 3 2 2 x I0 (x) I1 (x) dx = I1 (x) + I13 (x) dx 3 3 Z Z Z 2x x x2 3 2 1 x2 J0 (x) J12 (x) dx = − J03 (x) − J0 (x) J12 (x) + J0 (x) + J03 (x) dx − J0 (x) J12 (x) dx 9 3 3 9 3 Z Z Z 2x 3 x x2 3 2 1 2 2 2 3 x I0 (x) I1 (x) dx = − I0 (x) + I0 (x) I1 (x) + I0 (x) dx + I0 (x) I12 (x) dx I (x) + 9 3 3 0 9 3 Z x3 3 x3 J0 (x) J12 (x) dx = J (x) 3 1 Z x3 3 I (x) x3 I0 (x) I12 (x) dx = 3 1

g) Integrals of the type

Z

Z

x4 J0 (x) J12 (x) dx =

x4 I0 (x) I12 (x) dx =

R

6 x3 + 4 x 3 2x2 2 3 x3 + 5 x 3 x4 − 5 x2 3 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) + J1 (x)− 27 3 9 9 Z Z 4 5 − J03 (x) dx + J0 (x) J12 (x) dx 27 9 2x2 2 −3 x3 + 5 x 3 x4 + 5 x2 3 6 x3 − 4 x 3 I0 (x) − I0 (x) I1 (x) + I0 (x) I12 (x) + I1 (x)+ 27 3 9 9 Z Z 4 5 + I03 (x) dx + I0 (x) I12 (x) dx 27 9

Let Z

xn J0 (x) J12 (x) dx = Pn (x) J03 (x) + Qn (x) J02 (x) J1 (x) + Rn (x) J0 (x) J12 (x) + Sn (x) J13 (x)+ Z +Un

J03 (x) dx + Vn

Z

J0 (x) J1 (x)2 dx + Wn

Z

J1 (x)3 dx + Xn

Z

J03 (x) dx x

and Z

xn I0 (x) I12 (x) dx = Pn∗ (x) I03 (x) + Q∗n (x) I02 (x) I1 (x) + R∗n (x) I0 (x) I12 (x) + Sn∗ (x) I13 (x)+ +Un∗

Z

I03 (x) dx

+

Vn∗

Z

2

I0 (x) I1 (x) dx +

Wn∗

Z

3

I1 (x) dx +

Xn∗

Z

I03 (x) dx x

If Xn = 0 or Xn∗ = 0, then they are omitted from the following table. 6 x4 27 x5 − 132 x3 + 128 x , S5 (x) = , 9 81 256 U5 = 0 , V5 = 0 , W5 = 81 4 2 3 12 x + 32 x 48 x + 64 x 6 x4 27 x5 + 132 x3 + 128 x P5∗ (x) = , Q∗5 (x) = − , R∗5 (x) = − , S5∗ (x) = , 27 27 9 81 256 U5∗ = 0 , V5∗ = 0 , W5∗ = 81 5 3 4 2 54 x − 444 x − 206 x −30 x + 148 x 27 x5 − 87 x3 − 325 x P6 (x) = , Q6 (x) = , R6 (x) = , 81 9 27 9 x6 − 87 x4 + 325 x2 206 325 S6 (x) = , U6 = , V6 = − , W6 = 0 27 81 27 30 x4 + 148 x2 −27 x5 − 87 x3 + 325 x 54 x5 + 444 x3 − 206 x P6∗ (x) = , Q∗6 (x) = − , R∗6 (x) = , 81 9 27 P5 (x) =

12 x4 − 32 x2 , 27

Q5 (x) =

−48 x3 + 64 x , 27

366

R5 (x) =

S6∗ (x) = P7 (x) =

24 x6 − 384 x4 + 1024 x2 , 27 S7 (x) =

P7∗ (x) =

9 x6 + 87 x4 + 325 x2 , 27

P8 (x) = R8 (x) =

206 , 81

V6∗ =

325 , 27

W6∗ = 0

−144 x5 + 1536 x3 − 2048 x , 27

27 x7 − 432 x5 + 3648 x3 − 4096 x , 81

24 x6 + 384 x4 + 1024 x2 , 27 S7∗ (x) =

Q7 (x) =

U6∗ =

Q∗7 (x) = −

U7 = 0 ,

V7 = 0 ,

144 x5 + 1536 x3 + 2048 x , 27

27 x7 + 432 x5 + 3648 x3 + 4096 x , 81

270 x7 − 7020 x5 + 54570 x3 + 24680 x , 243

U7∗ = 0 , Q8 (x) =

R7 (x) = W7 = −

4 x6 − 32 x4 , 3

8192 81

R∗7 (x) = −

V7∗ = 0 ,

W7∗ =

4 x6 + 32 x4 , 3

8192 81

−210 x6 + 3900 x4 − 18190 x2 , 27

27 x8 − 645 x6 + 9735 x4 − 39625 x2 135 x7 − 1935 x5 + 9735 x3 + 39625 x , S8 (x) = , 81 81 24680 39625 U8 = − , V8 = , W8 = 0 243 81

P8∗ (x) =

270 x7 + 7020 x5 + 54570 x3 − 24680 x , 243

Q∗8 (x) = −

210 x6 + 3900 x4 + 18190 x2 , 27

135 x7 + 1935 x5 + 9735 x3 − 39625 x 27 x8 + 645 x6 + 9735 x4 + 39625 x2 , S8∗ (x) = , 81 81 24680 39625 U8∗ = , Vn∗ = , W8∗ = 0 243 81 Z Z 1 1 3 1 J0 (x) J12 (x) dx 2 = − J0 (x) J1 (x) − J0 (x) − J13 (x) dx x 2 3 2 Z Z I0 (x) I12 (x) dx 1 1 1 = − I0 (x) I12 (x) + I03 (x) + I13 (x) dx x 2 3 2 Z Z Z J0 (x) J12 (x) dx 2 2 1 1 3 5 2 2 2 = − J0 (x) J1 (x) − J0 (x) J1 (x) + J1 (x) − J0 (x) J1 (x) dx + J03 (x) dx x2 3 3x 9 3 3 Z Z Z 2 2 1 1 3 5 2 I0 (x) I12 (x) dx 2 2 = − I (x) I (x) − I (x) I (x) − I (x) + I (x) I (x) dx + I03 (x) dx 1 0 0 1 1 x2 3 0 3x 9 1 3 3 Z J0 (x)J12 (x) dx = x3 Z Z 11 3 1 2 11 x2 − 8 11 1 1 J03 (x) dx 2 3 3 = J0 (x) − J0 (x)J1 (x) + J (x)J (x) + J (x) dx + J (x)J (x) + 0 0 1 1 1 2 48 4x 32 x 16 32 4 x Z 2 I0 (x)I1 (x) dx = x3 Z Z 3 1 2 11 x2 + 8 1 11 1 I0 (x) dx 11 3 3 2 3 I (x) − I (x)I1 (x) − I0 (x)I1 (x) − I0 (x)I1 (x) + I3 (x) dx + = 48 0 4x 0 32x2 16x 32 4 x Z J0 (x) J12 (x) dx 148 x2 − 30 2 2 3 29 x2 − 45 −29 x2 + 27 3 J0 (x) + =− J0 (x) J1 (x) + J0 (x) J12 (x) + J1 (x)− 4 2 3 x 15x 225 x 225 x 675 x2 Z Z 148 13 − J03 (x) dx + J0 (x) J12 (x) dx 225 9 Z 148 x2 + 30 2 I0 (x) I12 (x) dx 2 3 29 x2 + 45 29 x2 + 27 3 2 I (x) − = − I (x) I (x) − I (x) I (x) − I1 (x)+ 1 0 0 1 x4 15x 0 225 x2 225 x3 675 x2 Z Z 148 13 + I03 (x) dx + I0 (x) I12 (x) dx 225 9 R∗8 (x) = −

P−5 (x) =

−19 x2 − 8 , 192 x2

Q−5 (x) =

3 x2 − 2 , 24 x3

R−5 (x) = 367

−57 x4 + 24 x2 − 64 , 384 x4

S−5 (x) =

−9 x2 + 16 , 576 x3

U−5 = 0 , ∗ P−5 (x) =

19 x2 − 8 , 192 x2

Q∗−5 (x) =

V−5 = 0 ,

−3 x2 − 2 , 24 x3

∗ U−5 =0,

P−6 (x) =

156 x2 − 70 , 3675 x3 S−6 (x) =

Q−6 (x) =

∗ S−6 (x) = −

R−7 (x) =

R−8 (x) =

3638 , 18375

V−6 = −

3638 , 18375

∗ U−6 =

Q−7 (x) =

V−7 = 0 ,

W−7 =

751 x4 − 344 x2 − 384 , 36864 x4

Q−8 (x) =

317 , 735

W−6 = 0 649 x4 + 645 x2 + 2625 , 18375 x5 ∗ W−6 =0

−60 x4 + 43 x2 − 96 , 2304 x5

751 , 24576

Q∗−7 (x) =

∗ W−7 =

317 , 735

333 x4 − 400 x2 + 1728 , 110592 x5 5 X−7 = 192

S−7 (x) =

−2253 x6 − 888 x4 − 1600 x2 − 9216 , 73728 x6 ∗ V−7 =0,

−9 x2 − 16 , 576 x3

−649 x4 + 645 x2 − 2625 , 18375 x5

R∗−6 (x) = − ∗ V−6 =

∗ S−5 (x) =

−60 x4 − 43 x2 − 96 , 2304 x5 −333 x4 − 400 x2 − 1728 , 110592 x5 5 ∗ X−7 = 192

∗ S−7 (x) =

751 , 24576

528184 x6 − 113790 x4 + 165900 x2 − 551250 , 17364375 x6

−93407 x6 + 52641 x4 − 106875 x2 + 643125 93407 x6 − 87735 x4 + 249375 x2 − 1929375 , S−8 (x) = , 7 17364375 x 52093125 x6 528184 45991 U−8 = − , V−8 = , W−8 = 0 17364375 694575 22758 x4 + 11060 x2 + 22050 , 3472875 x5

Q∗−8 (x) = −

528184 x6 + 113790 x4 + 165900 x2 + 551250 , 17364375 x6

93407 x6 + 52641 x4 + 106875 x2 + 643125 93407 x6 + 87735 x4 + 249375 x2 + 1929375 ∗ , S (x) = − , −8 17364375 x7 52093125 x6 528184 45991 ∗ ∗ ∗ U−8 = , V−8 = , W−8 =0 17364375 694575

R∗−8 (x) = −

h) Integrals of the type Z

Z

Z

1 8

R−6 (x) =

3638 x4 + 780 x2 + 1050 , 18375 x4

−22758 x4 + 11060 x2 − 22050 , 3472875 x5

∗ P−8 (x) = −

Z

U−6 =

751 x4 + 344 x2 − 384 , 36864 x4

∗ U−7 =0,

P−8 (x) =

∗ W−5

2253 x6 − 888 x4 + 1600 x2 − 9216 , 73728 x6

∗ P−7 (x) =

X−5 = −

−57 x4 − 24 x2 − 64 , 384 x4 19 1 ∗ = , X−5 = 128 8

−3638 x4 + 780 x2 − 1050 , 18375 x4

649 x4 + 387 x2 + 1125 , 55125 x4

U−7 = 0 ,

R∗−7 (x) =

∗ V−5 =0,

Q∗−6 (x) = −

P−7 (x) =

19 , 128

R∗−5 (x) =

649 x4 − 387 x2 + 1125 , 55125 x4

156 x2 + 70 , 3675 x3

∗ P−6 (x) = −

W−5 = −

R

xn Z13 (x) dx :

x J13 (x) dx = −

x

Z

2x 3 2 I (x) + x I0 (x) I12 (x) + 3 0 3

Z

x I13 (x) dx = −

I13 (x) dx

J03 (x) dx − I03 (x) dx +

Z

Z

J0 (x) J12 (x) dx I0 (x) I12 (x) dx

2x2 3 4x 2 8x 3 16 J0 (x) + J0 J1 (x) − x2 J0 (x) J12 (x) + J1 (x) + 3 3 9 9

Z

2x2 3 4x 2 8x 3 16 I (x) + I I1 (x) + x2 I0 (x) I12 (x) − I (x) − =− 3 0 3 0 9 1 9

Z

x2 J13 (x) dx = − 2

2x 3 2 J0 (x) − x J0 (x) J12 (x) + 3 3

368

J13 (x) dx I13 (x) dx

Z

x3 J13 (x) dx = −

Z

=

Z

6 x4 + 16 x2 3 24 x3 + 32 x 2 66 x3 + 64 x 3 128 I0 (x) + I0 I1 (x) + x4 I0 (x) I12 (x) − I1 (x) − 9 9 27 27

Z

Z

J13 (x) dx

I13 (x) dx

xn J13 (x) dx = Pn (x) J03 (x) + Qn (x) J02 (x) J1 (x) + Rn (x) J0 (x) J12 (x) + Sn (x) J13 (x)+ Z +Un

and

3 x3 − 5 x 5x2 3 −6 x3 + 4 x 3 I0 (x) + 2x2 I02 I1 (x) + I0 (x) I12 (x) − I (x)− 9 3 3 1 Z Z 4 5 3 − I0 (x) dx − I0 (x) I12 (x) dx 9 3 Z x4 J13 (x) dx =

−6 x4 + 16 x2 3 24 x3 − 32 x 2 66 x3 − 64 x 3 128 J0 (x) + J0 J1 (x) − x4 J0 (x) J12 (x) + J1 (x) − 9 9 27 27 Z x4 I13 (x) dx =

=− Let

x3 I13 (x) dx =

6 x3 + 4 x 3 3 x3 + 5 x 5x2 3 J0 (x) + 2x2 J02 J1 (x) − J0 (x) J12 (x) + J (x)+ 9 3 3 1 Z Z 4 5 + J03 (x) dx − J0 (x) J12 (x) dx 9 3

Z

J03 (x) dx

Z + Vn

2

Z

J0 (x) J1 (x) dx + Wn

J13 (x) dx

Z + Xn

I03 (x) dx x

xn I13 (x) dx = Pn∗ (x) I03 (x) + Q∗n (x) I02 (x) I1 (x) + R∗n (x) I0 (x) I12 (x) + Sn∗ (x) I13 (x)+ +Un∗

Z

I03 (x) dx + Vn∗

Z

I0 (x) I1 (x)2 dx + Wn∗

Z

I13 (x) dx + Xn∗

Z

I03 (x) dx x

If Xn = 0 or Xn∗ = 0, then they are omitted from the following table. 30 x4 − 148 x2 −27 x5 + 87 x3 + 325 x −54 x5 + 444 x3 + 206 x , Q5 (x) = , R5 (x) = , 81 9 27 87 x4 − 325 x2 206 325 S5 (x) = , U5 = − , V5 = , W5 = 0 27 81 27 −54 x5 − 444 x3 + 206 x 30 x4 + 148 x2 27 x5 + 87 x3 − 325 x P5∗ (x) = , Q∗5 (x) = , R∗5 (x) = , 81 9 27 87 x4 + 325 x2 206 325 S5∗ (x) = − , U5∗ = − , V5∗ = − , W5∗ = 0 27 81 27 36 x5 − 384 x3 + 512 x −6 x6 + 96 x4 − 256 x2 , Q6 (x) = , R6 (x) = −x6 + 8 x4 , P6 (x) = 9 9 108 x5 − 912 x3 + 1024 x 2048 S6 (x) = , U6 = 0 , V6 = 0 , W6 = 27 27 6 4 2 5 3 6 x + 96 x + 256 x 36 x + 384 x + 512 x P6∗ (x) = − , Q∗6 (x) = , R∗6 (x) = x6 + 8 x4 , 9 9 108 x5 + 912 x3 + 1024 x 2048 S6∗ (x) = − , U6∗ = 0 , V6∗ = 0 , W6∗ = − 27 27 −54 x7 + 1404 x5 − 10914 x3 − 4936 x 42 x6 − 780 x4 + 3638 x2 P7 (x) = , Q7 (x) = , 81 9 −27 x7 + 387 x5 − 1947 x3 − 7925 x 129 x6 − 1947 x4 + 7925 x2 R7 (x) = , S7 (x) = , 27 27 4936 7925 U7 = , V7 = − , W7 = 0 81 27

P5 (x) =

369

P7∗ (x) = − R∗7 (x) =

P8 (x) =

54 x7 + 1404 x5 + 10914 x3 − 4936 x , 81

−9 x8 + 200 x6 − 2368 x4 , 9 U8 = 0 ,

P8∗ (x) = −

42 x6 + 780 x4 + 3638 x2 , 9

27 x7 + 387 x5 + 1947 x3 − 7925 x 129 x6 + 1947 x4 + 7925 x2 , S7∗ (x) = − , 27 27 4936 7925 U7∗ = , V7∗ = , W7∗ = 0 81 27

−54 x8 + 2064 x6 − 30720 x4 + 81920 x2 , 81

R8 (x) =

Q∗7 (x) =

Q8 (x) =

432 x7 − 12384 x5 + 122880 x3 − 163840 x , 81

1350 x7 − 31968 x5 + 288384 x3 − 327680 x , 243 655360 V8 = 0 , W8 = − 243 S8 (x) =

54 x8 + 2064 x6 + 30720 x4 + 81920 x2 , 81

Q∗8 (x) =

432 x7 + 12384 x5 + 122880 x3 + 163840 x , 81

1350 x7 + 31968 x5 + 288384 x3 + 327680 x , 243 655360 U8∗ = 0 , V8∗ = 0 , W8∗ = − 243 Z 3 Z J1 (x) dx 1 3 = − J1 (x) + J0 (x) J12 (x) dx x 3 Z Z 3 1 3 I1 (x) dx = − I1 (x) + I0 (x) I12 (x) dx x 3 Z 3 Z Z 3 1 3 3 3 J1 (x) dx 1 3 2 2 J (x) − J (x) J (x) − J (x) + J (x) J (x) dx − J13 (x) dx = − 0 0 1 1 x2 8 0 8 4x 1 4 8 Z 3 Z Z I1 (x) dx 1 3 3 1 3 3 3 2 2 = I0 (x) − I0 (x) I1 (x) − I (x) + I0 (x) I1 (x) dx + I13 (x) dx x2 4 8 4x 1 4 8 Z 3 Z Z 2 2 1 x2 − 3 3 2 J1 (x) dx 2 3 = − J (x) J (x) − J (x) J (x) + J (x) + J (x) dx − J0 (x) J12 (x) dx 1 0 0 1 x3 5 0 5x 15x2 1 5 R∗8 (x) =

*E* : Z

9 x8 + 200 x6 + 2368 x4 , 9

S8∗ (x) = −

2 2 1 x2 + 3 3 2 I13 (x) dx 2 = − I (x) I (x) − I (x) I (x) − I (x) + 1 0 0 1 x3 5 5x 15x2 1 5 Z J13 (x) dx = x4

Z

3

I0 (x) dx +

11 3 1 11 x2 − 8 3 x2 − 16 11 2 = J0 (x)− J02 (x)J1 (x)+ J (x)J (x)+ J0 (x)J13 (x)+ 0 1 2 3 96 8x 64 x 96 x 64 Z 3 I1 (x) dx = x4

Z

11 3 1 2 11 x2 + 8 3 x2 + 16 11 2 I0 (x)− I0 (x)I1 (x)− I (x)I (x)− I0 (x)I13 (x)+ 0 1 2 3 96 8x 64 x 96 x 64

Z

=

P−5 (x) = −

∗ P−5 (x) = −

2 , 35x

2 , 35x

Q−5 (x) =

Z

I0 (x) I12 (x) dx

1 J13 (x) dx+

Z

J03 (x) dx x

1 8

Z

I03 (x) dx x

8

I13 (x) dx+

148 x2 − 30 29 x2 − 45 −29 x4 + 27 x2 − 225 , R (x) = , S (x) = , −5 −5 525 x2 525 x3 1575 x4 148 13 U−5 = − , V−5 = , W−5 = 0 525 21

Q∗−5 (x) = −

148 x2 + 30 29 x2 + 45 ∗ , R (x) = − , −5 525x2 525x3 148 13 ∗ ∗ ∗ U−5 = , V−5 = , W−5 =0 525 21 370

∗ S−5 (x) = −

29 x4 + 27 x2 + 225 , 1575 x4

P−6 (x) = S−6 (x) =

∗ S−6 (x) =

19 x2 − 8 , 512 x2

∗ P−7 (x) = −

∗ S−7 (x) = −

U−7 =

751 x4 + 344 x2 − 384 , 122880 x4

V−8 = 0 ,

Q−8 (x) =

751 x4 − 344 x2 − 384 , 122880 x4

∗ U−8 =0,

∗ V−8 =0,

3 64

∗ X−6 =

3 64

−649 x4 + 645 x2 − 2625 , 55125 x5

V−7 = −

317 , 2205

∗ V−7 =

W−7 = 0

649 x4 + 645 x2 + 2625 , 55125 x5 317 , 2205

∗ W−7 =0

−60 x4 + 43 x2 − 96 , 7680 x5

333 x6 − 400 x4 + 1728 x2 − 36864 , 368640 x7 751 1 = , X−8 = 81920 128

S−8 (x) =

W−8

−2253 x6 − 888 x4 − 1600 x2 − 9216 , 245760 x6

57 , 1024

R∗−7 (x) = −

3638 , 55125

X−6 = −

−57 x4 − 24 x2 − 64 , 1024 x4

∗ W−6 =

3638 , 55125

∗ U−7 =

57 , 1024

R−7 (x) =

3638 x4 + 780 x2 + 1050 , 55125 x4

2253 x6 − 888 x4 + 1600 x2 − 9216 , 245760 x6

∗ P−8 (x) =

R∗−6 (x) =

∗ V−6 =0,

649 x6 + 387 x4 + 1125 x2 + 18375 , 165375 x6

U−8 = 0 ,

R∗−8 (x) =

∗ U−6 =0,

−57 x4 + 24 x2 − 64 , 1024 x4

W−6 = −

−3638 x4 + 780 x2 − 1050 , 55125 x4

Q∗−7 (x) = −

P−8 (x) =

R−6 (x) =

V−6 = 0 ,

−3 x2 − 2 , 64 x3

649x6 − 387x4 + 1125x2 − 18375 , 165375 x6

156 x2 + 70 , 11025 x3

R−8 (x) =

Q∗−6 (x) =

Q−7 (x) =

3 x2 − 2 , 64 x3

U−6 = 0 ,

−9 x4 − 16 x2 − 192 , 1536 x5

156 x2 − 70 , 11025 x3

S−7 (x) =

Q−6 (x) =

−9 x4 + 16 x2 − 192 , 1536 x5

∗ P−6 (x) =

P−7 (x) =

−19 x2 − 8 , 512 x2

Q∗−8 (x) =

−333 x6 − 400 x4 − 1728 x2 − 36864 , 368640 x7 1 751 ∗ , X−8 = = 81920 128

∗ S−8 (x) =

∗ W−8

371

−60 x4 − 43 x2 − 96 , 7680 x5

i) Recurrence Relations: Let

Z

Jn(kl) =

xn J0k (x) J1l (x) dx

In(kl) =

and

Z

xn I0k (x) I1l (x) dx

with k + l = 3, k, l ≥ 0. Then the following formulas hold: Ascending recurrence: (30) Jn+1

n+1

=x

  2 3 2 2 J0 (x) J1 (x) + J1 (x) − n Jn(21) − (n − 2) Jn(03) 3 3 (21)

Jn+1 =

n + 1 (30) xn+1 3 Jn J0 (x) − 3 3

n − 2 (03) xn+1 3 J1 (x) − Jn 3 3   2 2 J0 (x) J12 (x) + J03 (x) + (n − 1)Jn(12) + (n + 1)Jn(30) 3 3 (12)

Jn+1 =

(03)

Jn+1 = −xn+1

  2 2 (30) In+1 = xn+1 I02 (x) I1 (x) − I13 (x) − n In(21) + (n − 2) In(03) 3 3 (21)

In+1 = −

n + 1 (30) xn+1 3 In + I0 (x) 3 3

xn+1 3 n − 2 (03) I1 (x) − In 3 3   2 2 I0 (x) I12 (x) − I03 (x) − (n − 1)In(12) + (n + 1)In(30) 3 3 (12)

In+1 =

(03)

In+1 = xn+1 Descending recurrence:

(12)

(21)

Jn(30) =

xn+1 J03 (x) + 3Jn+1 n+1

Jn(12) =

2Jn+1 − xn+1 J0 (x) J12 (x) − Jn+1 n−1

(21)

(30)

xn+1 J02 (x) J1 (x) + 2J n+1 − Jn+1 n

Jn(21) =

,

(03)

(12)

Jn(03) =

,

xn+1 J13 (x) − 3Jn+1 n−2

Holds (21)

J03 (x) + 3J0

(12)

(30)

= xJ02 (x) J1 (x) + 2J1

− J1

(21)

= 2J2

(12)

= x3 J13 (x) − 3J3

=0.

(12)

(21)

In(30) =

xn+1 I03 (x) − 3In+1 n+1

In(12) =

2In+1 + In+1 − xn+1 I0 (x) I12 (x) n−1

(21)

(03)

− x2 J0 (x) J12 (x) − J2

In(21) =

,

(30)

xn+1 I02 (x) I1 (x) − 2I n+1 − In+1 n

(12)

(03)

In(03) =

,

xn+1 I13 (x) − 3In+1 n−2

Holds (21)

I03 (x) − 3I0

(12)

= xI02 (x) I1 (x) − 2I1

(30)

− I1

(12)

= x3 I13 (x) − 3I3

372

(21)

= x2 I0 (x) I12 (x) − 2I2 =0.

(03)

− I2

=

=

j) x3 Z12 (x) Z0∗ (x) Z

=

=

=

x3 J12 (x)Y0 (x) dx =

 1 3 2 2 x J0 (x)Y1 (x) + 4 x2 J12 (x)Y0 (x) + x3 J12 (x)Y1 (x) − 2x3 J0 (x)J1 (x)Y0 (x) − 4x2 J0 (x)J1 (x)Y1 (x) 3 Z x3 I12 (x)K0 (x) dx =

 1 −4x2 I0 (x)I1 (x)K1 (x) + 2 I0 (x)I1 (x)K0 (x)x3 − x3 I12 (x)K1 (x) + 2 x3 I02 (x)K1 (x) − 4 x2 I12 (x)K0 (x) 3 Z x3 K12 (x)I0 (x) =  1 −2x3 I0 (x)K0 (x)K1 (x) − 4x2 I1 (x)K0 (x)K1 (x) + x3 I1 (x)K12 (x) − 4 x2 I0 (x)K12 (x) − 2 x3 I1 (x)K02 (x) 3

373

3.2. Integrals of the type

R

xn Zκ (αx) Zµ (βx) Zν (γx) dx

The general case is discussed in [12]. In the following some special solutions are given. a) xn Zκ (x) Zµ (x) Zν (2x) With κ, µ, ν ∈ {0, 1} the following integrals may be expressed by functions of the same kind: Z Z Z 2n+1 2 2n+1 x Z0 (x) Z0 (2x) dx , x Z0 (x) Z1 (x) Z1 (2x) dx , x2n+1 Z12 (x) Z0 (2x) dx ,

n ≥ 0,

and Z

x2n Z0 (x) Z1 (x) Z0 (2x) dx ,

Z

Z

x2n Z02 (x) Z1 (2x) dx ,

Z

x2n Z12 (x) Z1 (x) Z1 (2x) dx ,

n ≥ 1.

 x  2 J (x)J1 (2x) − J12 (x)J1 (2x) − 2J0 (x)J1 (x)J0 (2x) 2 0 Z  x  2 I0 (x)I1 (2x) + I12 (x)I1 (2x) − 2I0 (x)I1 (x)I0 (2x) I12 (x)I1 (2x) dx = − 2 Z   x K12 (x)K1 (2x) dx = − K02 (x)K1 (2x) + K12 (x)K1 (2x) − 2K0 (x)K1 (x)K0 (2x) 2 Z  x2  2 xJ02 (x)J0 (2x) dx = J0 (x)J0 (2x) − J12 (x)J0 (2x) + 2J0 (x)J1 (x)J1 (2x) 2 Z  x2  2 xI02 (x)I0 (2x) dx = I0 (x)I0 (2x) + I12 (x)I0 (2x) − 2I0 (x)I1 (x)I1 (2x) 2 Z 2   x xK02 (x)K0 (2x) dx = K02 (x)K0 (2x) + K12 (x)K0 (2x) − 2K0 (x)K1 (x)K1 (2x) 2 J12 (x)J1 (2x) dx =

Z xJ0 (x)J1 (x)J1 (2x) dx = Z xI0 (x)I1 (x)I1 (2x) dx =

=

=

 x  −x I02 (x)I0 (2x) + I02 (x)I1 (2x) − x I12 (x)I0 (2x) + 2 xI0 (x)I1 (x)I1 (2x) 2 Z xK0 (x)K1 (x)K1 (2x) dx =

 x  −x K02 (x)K0 (2x) − K02 (x)K1 (2x) − x K12 (x)K0 (2x) + 2 xK0 (x)K1 (x)K1 (2x) 2 Z x J12 (x)J0 (2x) dx =

 x  −x J02 (x)J0 (2x) + 2J02 (x)J1 (2x) + x J12 (x)J0 (2x) − 2J0 (x)J1 (x)J0 (2x) − 2 xJ0 (x)J1 (x)J1 (2x) 2 Z x I12 (x)I0 (2x) dx = =

=

 x  x J02 (x)J0 (2x) − J02 (x)J1 (2x) − x J12 (x)J0 (2x) + 2 xJ0 (x)J1 (x)J1 (2x) 2

 x  2 x I0 (x)I0 (2x) − 2I02 (x)I1 (2x) + x I12 (x)I0 (2x) + 2I0 (x)I1 (x)I0 (2x) − 2 xI0 (x)I1 (x)I1 (2x) 2 Z x K12 (x)K0 (2x) dx =

 x  x K02 (x)K0 (2x) + 2K02 (x)K1 (2x) + x K12 (x)K0 (2x) − 2K0 (x)K1 (x)K0 (2x) − 2 xK0 (x)K1 (x)K1 (2x) 2

374

Z

=

 x2  −x J02 (x)J1 (2x) − J12 (x)J0 (2x) + x J12 (x)J1 (2x) + 2 xJ0 (x)J1 (x)J0 (2x) + 2J0 (x)J1 (x)J1 (2x) 6 Z x2 I0 (x) I1 (x) I0 (2x) dx =

=

=

 x2  x J02 (x)J1 (2x) − 2 J12 (x)J0 (2x) − x J12 (x)J1 (2x) − 2 xJ0 (x)J1 (x)J0 (2x) + 4J0 (x)J1 (x)J1 (2x) 6 Z x2 I02 (x) I1 (2x) dx =

=

 x2  −xJ02 (x)J1 (2x) − 4 J12 (x) J0 (2x) + x J12 (x) J1 (2x) + 2 xJ0 (x) J1 (x)J0 (2x) + 2J0 (x) J1 (x)J1 (2x) 6 Z x2 I12 (x) I1 (2x) dx = =

Z

 x2  2 x I0 (x)I1 (2x) − 2 I12 (x)I0 (2x) + x I12 (x)I1 (2x) − 2 xI0 (x)I1 (x)I0 (2x) + 4I0 (x)I1 (x)I1 (2x) 6 Z x2 K02 (x) K1 (2x) dx =

 x2  x K02 (x)K1 (2x) + 2 K12 (x)K0 (2x) + x K12 (x)K1 (2x) − 2 xK0 (x)K1 (x)K0 (2x) − 4K0 (x)K1 (x)K1 (2x) 6 Z x2 J12 (x) J1 (2x) dx =

=

=

 x2  −x I02 (x)I1 (2x) − I12 (x)I0 (2x) − x I12 (x)I1 (2x) + 2 xI0 (x)I1 (x)I0 (2x) + 2I0 (x)I1 (x)I1 (2x) 6 Z x2 K0 (x) K1 (x) K0 (2x) dx =

 x2  −x K02 (x)K1 (2x) + K12 (x)K0 (2x) − x K12 (x)K1 (2x) + 2 xK0 (x)K1 (x)K0 (2x) − 2K0 (x)K1 (x)K1 (2x) 6 Z x2 J02 (x) J1 (2x) dx = =

=

x2 J0 (x) J1 (x) J0 (2x) dx =

 x2  2 xI0 (x)I1 (2x) + 4 I12 (x) I0 (2x) + x I12 (x) I1 (2x) − 2 xI0 (x) I1 (x)I0 (2x) − 2I0 (x) I1 (x)I1 (2x) 6 Z x2 K12 (x) K1 (2x) dx =

x2 [xK02 (x)K1 (2x)−4 K12 (x) K0 (2x)+x K12 (x) K1 (2x)−2 xK0 (x) K1 (x)K0 (2x)+2K0 (x) K1 (x)K1 (2x)] 6

x3 J02 (x) J0 (2x) dx =

x2 2 2 [x J0 (x) J0 (2x)+2x J0 (x) J1 (x) J0 (2x)+(2−x2 ) J12 (x) J0 (2x)+2x J02 (x) J1 (2x)+ 10 +(2x2 − 4) J0 (x) J1 (x) J1 (2x) + 2x J12 (x) J1 (2x)]

Z

x3 I02 (x) I0 (2x) dx =

x2 2 2 [x I0 (x) I0 (2x)+2x I0 (x) I1 (x) I0 (2x)+(x2 +2) I12 (x) I0 (2x)+2x I02 (x) I1 (2x)− 10 −(2x2 + 4) I0 (x) I1 (x) I1 (2x) − 2x I12 (x) I1 (2x)]

Z

x3 K02 (x) K0 (2x) dx =

x2 2 2 [x K0 (x) K0 (2x) − 2x K0 (x) K1 (x) K0 (2x) + (x2 + 2) K12 (x) K0 (2x)− 10

−2x K02 (x) K1 (2x) − (2x2 + 4) K0 (x) K1 (x) K1 (2x) + 2x K12 (x) K1 (2x)] 375

Z

x3 J12 (x) J0 (2x) dx =

x2 [−x2 J02 (x) J0 (2x) + 2x J0 (x) J1 (x) J0 (2x) + (2 − x2 ) J12 (x) J0 (2x)+ 10

+2x J02 (x) J1 (2x) + (2x2 − 4) J0 (x) J1 (x) J1 (2x) + 2x J12 (x) J1 (2x)] Z

x3 I12 (x) I0 (2x) dx =

x2 2 2 [x I0 (x) I0 (2x) + 2x I0 (x) I1 (x) I0 (2x) + (x2 + 2) I12 (x) I0 (2x)+ 10

+2x I02 (x) I1 (2x) − (2x2 + 4) I0 (x) I1 (x) I1 (2x) − 2x I12 (x) I1 (2x)] Z

x3 K12 (x) K0 (2x) dx =

x2 2 2 [x K0 (x) K0 (2x) − 2x K0 (x) K1 (x) K0 (2x) + (x2 + 2) K12 (x) K0 (2x)− 10

−2x K02 (x) K1 (2x) − (2x2 + 4) K0 (x) K1 (x) K1 (2x) + 2x K12 (x) K1 (2x)]

Z

x2 [3x2 J02 (x) J0 (2x) − 4x J0 (x) J1 (x) J0 (2x) − (3x2 + 4) J12 (x) J0 (2x)− 30

x3 J0 (x) J1 (x) J1 (2x) dx =

−4x J02 (x) J1 (2x) + (6x2 + 8) J0 (x) J1 (x) J1 (2x) + x J12 (x) J1 (2x)] Z

x2 [−3x2 I02 (x) I0 (2x) + 4x I0 (x) I1 (x) I0 (2x) + (4 − 3x2 ) I12 (x) I0 (2x)+ 30

x3 I0 (x) I1 (x) I1 (2x) dx =

+4x I02 (x) I1 (2x) + (6x2 − 8) I0 (x) I1 (x) I1 (2x) + x I12 (x) I1 (2x)] Z

x3 K0 (x) K1 (x) K1 (2x) dx =

x2 [−3x2 K02 (x) K0 (2x)−4x K0 (x) K1 (x) K0 (2x)+(4−3x2 ) K12 (x) K0 (2x)− 30

−4x K02 (x) K1 (2x) + (6x2 − 8) K0 (x) K1 (x) K1 (2x) − x K12 (x) K1 (2x)]

Z

x4 J0 (x) J1 (x) J0 (2x) dx =

x2 [−3x2 J02 (x) J0 (2x) + (6x3 + 4x) J0 (x) J1 (x) J0 (2x) + 4 J12 (x) J0 (2x)+ 42

+(4x − 3x3 ) J02 (x) J1 (2x) + (6x2 − 8) J0 (x) J1 (x) J1 (2x) + (3x3 + 2x) J12 (x) J1 (2x)] Z

x4 I0 (x) I1 (x) I0 (2x) dx =

x2 [3x2 I02 (x) I0 (2x) + (6x3 − 4x) I0 (x) I1 (x) I0 (2x) − 4 I12 (x) I0 (2x)− 42

−(3x3 + 4x) I02 (x) I1 (2x) + (6x2 + 8) I0 (x) I1 (x) I1 (2x) + (2x − 3x3 ) I12 (x) I1 (2x)] Z

x4 K0 (x) K1 (x) K0 (2x) dx =

x2 [−3x2 K02 (x) K0 (2x)+(6x3 −4x) K0 (x) K1 (x) K0 (2x)+4 K12 (x) K0 (2x)− 42

−(3x3 + 4x) K02 (x) K1 (2x) − (6x2 + 8) K0 (x) K1 (x) K1 (2x) + (2x − 3x3 ) K12 (x) K1 (2x)] Z

x4 J02 (x) J1 (2x) dx =

x2 [−48x2 J02 (x) J0 (2x) + (−30 x3 + 64 x) J0 (x) J1 (x) J0 (2x)+ 210

+(−42 x2 + 64) J12 (x) J0 (2x) + (15 x3 + 64 x) J02 (x) J1 (2x) + (54 x2 − 128) J0 (x) J1 (x) J1 (2x)+ +(−15 x3 + 74 x) J12 (x) J1 (2x)] Z

x4 I02 (x) I1 (2x) dx =

x2 [48x2 I02 (x) I0 (2x)−(30 x3 +64 x) I0 (x) I1 (x) I0 (2x)−(42 x2 +64) I12 (x) I0 (2x)+ 210

+(15 x3 − 64 x) I02 (x) I1 (2x) + (54 x2 + 128) I0 (x) I1 (x) I1 (2x) + (15 x3 + 74 x) I12 (x) I1 (2x)] Z x2 x4 K02 (x) K1 (2x) dx = [−48x2 K02 (x) K0 (2x) − (30 x3 + 64 x) K0 (x) K1 (x) K0 (2x)+ 210 +(42 x2 + 64) K12 (x) K0 (2x) + (15 x3 − 64 x) K02 (x) K1 (2x) − (54 x2 + 128) K0 (x) K1 (x) K1 (2x)+ +(15 x3 + 74 x) K12 (x) K1 (2x)] 376

Z

x4 J12 (x) J1 (2x) dx =

x2 [ −12x2 J02 (x) J0 (2x)+(10 x3 +16 x) J0 (x) J1 (x) J0 (2x)+(−28 x2 +16) J12 (x) J0 (2x)+ 70

+(−5 x3 + 16 x) J02 (x) J1 (2x) − (4 x2 + 32) J0 (x) J1 (x) J1 (2x) + (5 x3 + 36 x) J12 (x) J1 (2x)] Z

x4 I12 (x) I1 (2x) dx =

x2 [ −12x2 I02 (x) I0 (2x)+(−10 x3 +16 x) I0 (x) I1 (x) I0 (2x)+(28 x2 +16) I12 (x) I0 (2x)+ 70

+(5 x3 + 16 x) I02 (x) I1 (2x) + (4 x2 − 32) I0 (x) I1 (x) I1 (2x) + (5 x3 − 36 x) I12 (x) I1 (2x)] Z x2 [ 12x2 K02 (x) K0 (2x) + (−10 x3 + 16 x) K0 (x) K1 (x) K0 (2x)− x4 K12 (x) K1 (2x) dx = 70 −(28 x2 + 16) K12 (x) K0 (2x) + (5 x3 + 16 x) K02 (x) K1 (2x) + (−4 x2 + 32) K0 (x) K1 (x) K1 (2x)+ +(5 x3 − 36 x) K12 (x) K1 (2x)]

Z

x2 [(35 x4 + 216 x2 ) J02 (x) J0 (2x) + (100 x3 − 288 x) J0 (x) J1 (x) J0 (2x)+ 630

x5 J02 (x) J0 (2x) dx =

+(−35 x4 +224 x2 −288) J12 (x) J0 (2x)+(160 x3 −288 x) J02 (x) J1 (2x)+(70 x4 −208 x2 +576) J0 (x) J1 (x) J1 (2x)+ +(120 x3 − 368 x) J12 (x) J1 (2x)] Z

x5 I02 (x) I0 (2x) dx =

x2 [(35 x4 − 216 x2 ) I02 (x) I0 (2x) + (100 x3 + 288 x) I0 (x) I1 (x) I0 (2x)+ 630

+(35 x4 +224 x2 +288) I12 (x) I0 (2x)+(160x3 +288x) I02 (x) I1 (2x)−(70 x4 +208 x2 +576) I0 (x) I1 (x) I1 (2x)− −(120 x3 + 368 x) I12 (x) I1 (2x)] Z

x5 K02 (x) K0 (2x) dx =

x2 [(35 x4 − 216 x2 ) K02 (x) K0 (2x) − (100 x3 + 288 x) K0 (x) K1 (x) K0 (2x)+ 630

+(35 x4 + 224 x2 + 288) K12 (x) K0 (2x) − (160 x3 + 288 x) K02 (x) K1 (2x)− −(70 x4 + 208 x2 + 576) K0 (x) K1 (x) K1 (2x) + (120 x3 + 368 x) K12 (x) K1 (2x)]

Z

x5 J12 (x) J0 (2x) dx =

x2 [(−35 x4 + 180 x2 ) J02 (x) J0 (2x) + (100 x3 − 288 x) J0 (x) J1 (x) J0 (2x)+ 630

+(−35 x4 +244 x2 −288) J12 (x) J0 (2x)+(160 x3 −288 x) J02 (x) J1 (2x)+(70 x4 −208 x2 +576) J0 (x) J1 (x) J1 (2x)+ +(120 x3 − 368 x) J12 (x) J1 (2x)] Z

x5 I12 (x) I0 (2x) dx =

x2 [(35x4 + 180x2 ) I02 (x) I0 (2x) + (100 x3 + 288 x) I0 (x) I1 (x) I0 (2x)+ 630

+(35 x4 +224 x2 +288) I12 (x) I0 (2x)+(160 x3 +288 x) I02 (x) I1 (2x)−(70 x4 +208 x2 +576) I0 (x) I1 (x) I1 (2x)− −(120 x3 + 368 x) I12 (x) I1 (2x)] Z

x5 K12 (x) K0 (2x) dx =

x2 [(35 x4 + 180 x2 ) K02 (x) K0 (2x) − (100 x3 + 288 x) K0 (x) K1 (x) K0 (2x)+ 630

+(35 x4 + 224 x2 + 288) K12 (x) K0 (2x) − (160 x3 + 288 x) K02 (x) K1 (2x)− −(70 x4 + 208 x2 + 576) K0 (x) K1 (x) K1 (2x) + (120 x3 + 368 x) K12 (x) K1 (2x)]

Z

x5 J0 (x) J1 (x) J1 (2x) dx =

x2 [(35 x4 − 72 x2 ) J02 (x) J0 (2x) + (−80 x3 + 96 x) J0 (x) J1 (x) J0 (2x)+ 630

+(−35 x4 −28 x2 +96) J12 (x) J0 (2x)+(−65 x3 +96 x) J02 (x) J1 (2x)+(70 x4 +116 x2 −192) J0 (x) J1 (x) J1 (2x)+ 377

+(30 x3 + 76 x) J12 (x) J1 (2x)] Z

x5 I0 (x) I1 (x) I1 (2x) dx =

x2 [−(35 x4 + 72 x2 ) I02 (x) I0 (2x) + (80 x3 + 96 x) I0 (x) I1 (x) I0 (2x)+ 630

+(−35 x4 + 28 x2 + 96) I12 (x) I0 (2x) + (65 x3 + 96 x) I02 (x) I1 (2x) + (70 x4 − 116 x2 − 192) I0 (x) I1 (x) I1 (2x)+ +(30 x3 − 76 x) I12 (x) I1 (2x)] Z

x5 K0 (x) K1 (x) K1 (2x) dx =

x2 [−(35 x4 + 72 x2 ) K02 (x) K0 (2x) − (80 x3 + 96 x) K0 (x) K1 (x) K0 (2x)+ 630

+(−35 x4 + 28 x2 + 96) K12 (x) K0 (2x) − (65 x3 + 96 x) K02 (x) K1 (2x)+ +(70 x4 − 116 x2 − 192) K0 (x) K1 (x) K1 (2x) + (−30 x3 + 76 x) K12 (x) K1 (2x)] Z

=

x6 J0 (x) J1 (x) J0 (2x) dx =

x2 [(−490 x4 + 1224 x2 ) J02 (x) J0 (2x) + (630 x5 + 940 x3 − 1632 x) J0 (x) J1 (x) J0 (2x)+ 6930 +(175 x4 + 896 x2 − 1632) J12 (x) J0 (2x) + (−315 x5 + 1000 x3 − 1632 x) J02 (x) J1 (2x)+

+(910 x4 − 1552 x2 + 3264) J0 (x) J1 (x) J1 (2x) + (315 x5 + 120 x3 − 1712 x) J12 (x) J1 (2x)] Z x6 I0 (x) I1 (x) I0 (2x) dx = =

x2 [(490 x4 + 1224 x2 ) I02 (x) I0 (2x) + (630 x5 − 940 x3 − 1632 x) I0 (x) I1 (x) I0 (2x)+ 6930 +(175 x4 − 896 x2 − 1632) I12 (x) I0 (2x) − (315 x5 + 1000 x3 + 1632 x) I02 (x) I1 (2x)+

+(910 x4 + 1552 x2 + 3264) I0 (x) I1 (x) I1 (2x) + (−315 x5 + 120 x3 + 1712 x) I12 (x) I1 (2x)] Z x6 K0 (x) K1 (x) K0 (2x) dx = =

x2 [−(490 x4 + 1224 x2 ) K02 (x) K0 (2x) + (630 x5 − 940 x3 − 1632 x) K0 (x) K1 (x) K0 (2x)+ 6930 +(−175 x4 + 896 x2 + 1632) K12 (x) K0 (2x) − (315 x5 + 1000 x3 + 1632 x) K02 (x) K1 (2x)−

−(910 x4 + 1552 x2 + 3264) K0 (x) K1 (x) K1 (2x) + (−315 x5 + 120 x3 + 1712 x) K12 (x) K1 (2x)] Z

x6 J02 (x) J1 (2x) dx =

x2 [(−1820 x4 + 5904 x2 ) J02 (x) J0 (2x)+ 6930

+(−630 x5 + 2360 x3 − 7872 x) J0 (x) J1 (x) J0 (2x) + (−1330 x4 + 6496 x2 − 7872) J12 (x) J0 (2x)+ +(315 x5 + 4280 x3 − 7872 x) J02 (x) J1 (2x) + (1400 x4 − 5312 x2 + 15744) J0 (x) J1 (x) J1 (2x)+ +(−315 x5 + 3840 x3 − 10432 x) J12 (x) J1 (2x)] Z

x6 I02 (x) I1 (2x) dx =

x2 [(1820 x4 + 5904 x2 ) I02 (x) I0 (2x)− 6930

−(630 x5 + 2360 x3 + 7872 x) I0 (x) I1 (x) I0 (2x) − (1330 x4 + 6496 x2 + 7872) I12 (x) I0 (2x)+ +(315 x5 − 4280 x3 − 7872 x) I02 (x) I1 (2x) + (1400 x4 + 5312 x2 + 15744) I0 (x) I1 (x) I1 (2x)+ +(315 x5 + 3840 x3 + 10432 x) I12 (x) I1 (2x)] Z

x6 K02 (x) K1 (2x) dx =

x2 [−(1820 x4 + 5904 x2 ) K02 (x) K0 (2x)− 6930

−(630 x5 + 2360 x3 + 7872 x) K0 (x) K1 (x) I0 (2x) + (1330 x4 + 6496 x2 + 7872) K12 (x) K0 (2x)+ +(315 x5 − 4280 x3 − 7872 x) K02 (x) K1 (2x) − (1400 x4 + 5312 x2 + 15744) K0 (x) K1 (x) K1 (2x)+ 378

+(315 x5 + 3840 x3 + 10432 x) K12 (x) K1 (2x)] Z

x6 J12 (x) J1 (2x) dx =

x2 [(−140 x4 + 576 x2 ) J02 (x) J0 (2x)+ 770

+(70 x5 + 80 x3 − 768 x) J0 (x) J1 (x) J0 (2x) + (−280 x4 + 784 x2 − 768) J12 (x) J0 (2x)+ +(−35 x5 + 380 x3 − 768 x) J02 (x) J1 (2x) + (−70 x4 − 368 x2 + 1536) J0 (x) J1 (x) J1 (2x)+ +(35 x5 + 600 x3 − 1168 x) J12 (x) J1 (2x)] Z

x6 I12 (x) I1 (2x) dx =

x2 [−(140 x4 + 576 x2 ) I02 (x) I0 (2x)+ 770

+(−70 x5 + 80 x3 + 768 x) I0 (x) I1 (x) I0 (2x) + (280 x4 + 784 x2 + 768) I12 (x) I0 (2x)+ +(35 x5 + 380 x3 + 768 x) I02 (x) I1 (2x) + (70 x4 − 368 x2 − 1536) I0 (x) I1 (x) I1 (2x)+ +(35 x5 − 600 x3 − 1168 x) I12 (x) I1 (2x)] Z

x6 K12 (x) K1 (2x) dx =

x2 [(140 x4 + 576 x2 ) K02 (x) K0 (2x)+ 770

+(−70 x5 + 80 x3 + 768 x) K0 (x) K1 (x) K0 (2x) − (280 x4 + 784 x2 + 768) K12 (x) K0 (2x)+ +(35 x5 + 380 x3 + 768 x) K02 (x) K1 (2x) + (−70 x4 + 368 x2 + 1536) K0 (x) K1 (x) K1 (2x)+ +(35 x5 − 600 x3 − 1168 x) K12 (x) K1 (2x)] Z

x7 J02 (x) J0 (2x) dx =

x2 [(55 x6 + 900 x4 − 3024 x2 ) J02 (x) J0 (2x)+ 1430

+(210 x5 − 1080 x3 + 4032 x) J0 (x) J1 (x) J0 (2x) + (−55 x6 + 810 x4 − 3456 x2 + 4032) J12 (x) J0 (2x)+ +(390 x5 − 2160 x3 + 4032 x) J02 (x) J1 (2x) + (110 x6 − 540 x4 + 2592 x2 − 8064) J0 (x) J1 (x) J1 (2x)+ +(270 x5 − 2160 x3 + 5472 x) J12 (x) J1 (2x)] Z

x7 I02 (x) I0 (2x) dx =

x2 [(55 x6 − 900 x4 − 3024 x2 ) I02 (x) I0 (2x)+ 1430

+(210 x5 + 1080 x3 + 4032 x) I0 (x) I1 (x) I0 (2x) + (55 x6 + 810 x4 + 3456 x2 + 4032) I12 (x) I0 (2x)+ +(390 x5 + 2160 x3 + 4032 x) I02 (x) I1 (2x) − (110 x6 + 540 x4 + 2592 x2 + 8064) I0 (x) I1 (x) I1 (2x)− −(270 x5 + 2160 x3 + 5472 x) I12 (x) I1 (2x)] Z

x7 K02 (x) K0 (2x) dx =

x2 [(55 x6 − 900 x4 − 3024 x2 ) K02 (x) K0 (2x)− 1430

−(210 x5 + 1080 x3 + 4032 x) K0 (x) K1 (x) K0 (2x) + (55 x6 + 810 x4 + 3456 x2 + 4032) K12 (x) K0 (2x)− −(390 x5 + 2160 x3 + 4032 x) K02 (x) K1 (2x) − (110 x6 + 540 x4 + 2592 x2 + 8064) K0 (x) K1 (x) K1 (2x)+ +(270 x5 + 2160 x3 + 5472 x) K12 (x) K1 (2x)] Z

x7 J12 (x) J0 (2x) dx =

x2 [(−1155 x6 + 15680 x4 − 58176 x2 ) J02 (x) J0 (2x)+ 30030

+(4410 x5 −22680 x3 +84672 x) J0 (x) J1 (x) J0 (2x)+(−1155 x6 +17010 x4 −72576 x2 +84672) J12 (x) J0 (2x)+ +(8190 x5 −45360 x3 +84672 x) J02 (x) J1 (2x)+(2310 x6 −11340 x4 +54432 x2 −169344) J0 (x) J1 (x) J1 (2x)+ +(5670 x5 − 45360 x3 + 114912 x) J12 (x) J1 (2x)] Z

x7 I12 (x) I0 (2x) dx =

x2 [(1155 x6 + 15680 x4 + 58176 x2 ) I02 (x) I0 (2x)+ 30030

+(4410 x5 + 22680 x3 + 84672 x) I0 (x) I1 (x) I0 (2x) + (1155 x6 + 17010 x4 + 72576 x2 + 84672) I12 (x) I0 (2x)+ +(8190 x5 + 45360 x3 + 84672 x) I02 (x) I1 (2x) − (2310 x6 + 11340 x4 + 54432 x2 + 169344) I0 (x) I1 (x) I1 (2x)− 379

−(5670 x5 + 45360 x3 + 114912 x) I12 (x) I1 (2x)] Z

x7 K12 (x) K0 (2x) dx =

x2 [(1155 x6 + 15680 x4 + 58176 x2 ) K02 (x) K0 (2x)− 30030

−(4410 x5 +22680 x3 +84672 x) K0 (x) K1 (x) K0 (2x)+(1155 x6 +17010 x4 +72576 x2 +84672) K12 (x) K0 (2x)− −(8190 x5 +45360 x3 +84672 x) K02 (x) K1 (2x)−(2310 x6 +11340 x4 +54432 x2 +169344) K0 (x) K1 (x) K1 (2x)+ +(5670 x5 + 45360 x3 + 114912 x) K12 (x) K1 (2x)] Z

x7 J0 (x) J1 (x) J1 (2x) dx =

x2 [(1155 x6 − 4760 x4 + 13248 x2 ) J02 (x) J0 (2x)+ 30030

+(−3780 x5 + 8000 x3 − 17664 x) J0 (x) J1 (x) J0 (2x) + (−1155 x6 − 280 x4 + 11872 x2 − 17664) J12 (x) J0 (2x)+ +(−2730 x5 +10280 x3 −17664 x) J02 (x) J1 (2x)+(2310 x6 +6860 x4 −14624 x2 +35328) J0 (x) J1 (x) J1 (2x)+ +(1575 x5 + 4560 x3 − 20704 x) J12 (x) J1 (2x)] Z

x2 [−(1155 x6 + 4760 x4 + 13248 x2 ) I02 (x) I0 (2x)+ 30030

x7 I0 (x) I1 (x) I1 (2x) dx =

+(3780 x5 + 8000 x3 + 17664 x) I0 (x) I1 (x) I0 (2x) + (−1155 x6 + 280 x4 + 11872 x2 + 17664) I12 (x) I0 (2x)+ +(2730 x5 + 10280 x3 + 17664 x) I02 (x) I1 (2x) + (2310 x6 − 6860 x4 − 14624 x2 − 35328) I0 (x) I1 (x) I1 (2x)+ +(1575 x5 − 4560 x3 − 20704 x) I12 (x) I1 (2x)] Z

x7 K0 (x) K1 (x) K1 (2x) dx =

x2 [−(1155 x6 + 4760 x4 + 13248 x2 ) K02 (x) K0 (2x)− 30030

−(3780 x5 +8000 x3 +17664 x) K0 (x) K1 (x) K0 (2x)+(−1155 x6 +280 x4 +11872 x2 +17664) K12 (x) K0 (2x)− −(2730 x5 +10280 x3 +17664 x) K02 (x) K1 (2x)+(2310 x6 −6860 x4 −14624 x2 −35328) K0 (x) K1 (x) K1 (2x)+ +(−1575 x5 + 4560 x3 + 20704 x) K12 (x) K1 (2x)] Z

x8 J0 (x) J1 (x) J0 (2x) dx =

x2 [(−2079 x6 + 10752 x4 − 32832 x2 ) J02 (x) J0 (2x)+ 30030

+(2002 x7 +5712 x5 −15648 x3 +43776 x) J0 (x) J1 (x) J0 (2x)+(1078 x6 +4872 x4 −33600 x2 +43776) J12 (x) J0 (2x)+ +(−1001 x7 + 5460 x5 − 24432 x3 + 43776 x) J02 (x) J1 (2x)+ +(3850 x6 − 11256 x4 + 32064 x2 − 87552) J0 (x) J1 (x) J1 (2x)+ +(1001 x7 − 378 x5 − 17568 x3 + 55488 x) J12 (x) J1 (2x)] Z

x8 I0 (x) I1 (x) I0 (2x) dx =

x2 [(2079 x6 + 10752 x4 + 32832 x2 ) I02 (x) I0 (2x)+ 30030

+(2002 x7 −5712 x5 −15648 x3 −43776 x) I0 (x) I1 (x) I0 (2x)+(1078 x6 −4872 x4 −33600 x2 −43776) I12 (x) I0 (2x)− −(1001 x7 +5460 x5 +24432 x3 +43776 x) I02 (x) I1 (2x)+(3850 x6 +11256 x4 +32064 x2 +87552) I0 (x) I1 (x) I1 (2x)+ +(−1001 x7 − 378 x5 + 17568 x3 + 55488 x) I12 (x) I1 (2x)] Z

x8 K0 (x) K1 (x) K0 (2x) dx =

x2 [−(2079 x6 + 10752 x4 + 32832 x2 ) K02 (x) K0 (2x)+ 30030

+(2002 x7 − 5712 x5 − 15648 x3 − 43776 x) K0 (x) K1 (x) K0 (2x)+ +(−1078 x6 + 4872 x4 + 33600 x2 + 43776) K12 (x) K0 (2x)− −(1001 x7 + 5460 x5 + 24432 x3 + 43776 x) K02 (x) K1 (2x)− −(3850 x6 + 11256 x4 + 32064 x2 + 87552) K0 (x) K1 (x) K1 (2x)+ +(−1001 x7 − 378 x5 + 17568 x3 + 55488 x) K12 (x) K1 (2x)] 380

Z

x8 J02 (x) J1 (2x) dx =

x2 [(−8316 x6 + 64848 x4 − 221184 x2 ) J02 (x) J0 (2x)+ 30030

+(−2002 x7 + 11928 x5 − 75072 x3 + 294912 x) J0 (x) J1 (x) J0 (2x)+ +(−5698 x6 + 63168 x4 − 256704 x2 + 294912) J12 (x) J0 (2x)+ +(1001 x7 + 27300 x5 − 157008 x3 + 294912 x) J02 (x) J1 (2x)+ +(5390 x6 − 34104 x4 + 185664 x2 − 589824) J0 (x) J1 (x) J1 (2x)+ +(−1001 x7 + 23058 x5 − 163872 x3 + 404160 x) J12 (x) J1 (2x)] Z

x2 [(8316 x6 + 64848 x4 + 221184 x2 ) I02 (x) I0 (2x)− 30030

x8 I02 (x) I1 (2x) dx =

−(2002 x7 + 11928 x5 + 75072 x3 + 294912 x) I0 (x) I1 (x) I0 (2x)− −(5698 x6 + 63168 x4 + 256704 x2 + 294912) I12 (x) I0 (2x)+ +(1001 x7 − 27300 x5 − 157008 x3 − 294912 x) I02 (x) I1 (2x)+ +(5390 x6 + 34104 x4 + 185664 x2 + 589824) I0 (x) I1 (x) I1 (2x)+ +(1001 x7 + 23058 x5 + 163872 x3 + 404160 x) I12 (x) I1 (2x)] Z

x8 K02 (x) K1 (2x) dx =

x2 [−(8316 x6 + 64848 x4 + 221184 x2 ) K02 (x) K0 (2x)− 30030

−(2002 x7 + 11928 x5 + 75072 x3 + 294912 x) K0 (x) K1 (x) K0 (2x)+ +(5698 x6 + 63168 x4 + 256704 x2 + 294912) K12 (x) K0 (2x)+ +(1001 x7 − 27300 x5 − 157008 x3 − 294912 x) K02 (x) K1 (2x)− −(5390 x6 + 34104 x4 + 185664 x2 + 589824) K0 (x) K1 (x) K1 (2x)+ +(1001 x7 + 23058 x5 + 163872 x3 + 404160 x) K12 (x) K1 (2x)] Z

x8 J12 (x) J1 (2x) dx =

x2 [(−5544 x6 + 57792 x4 − 207360 x2 ) J02 (x) J0 (2x)+ 30030

+(2002 x7 + 672 x5 − 58368 x3 + 276480 x) J0 (x) J1 (x) J0 (2x)+ +(−10472 x6 + 71232 x4 − 252672 x2 + 276480) J12 (x) J0 (2x)+ +(−1001 x7 + 21840 x5 − 144192 x3 + 276480 x) J02 (x) J1 (2x)+ +(−3080 x6 − 15456 x4 + 162048 x2 − 552960) J0 (x) J1 (x) J1 (2x)+ +(1001 x7 + 31752 x5 − 171648 x3 + 390912 x) J12 (x) J1 (2x)] Z

x8 I12 (x) I1 (2x) dx =

x2 [−(5544 x6 + 57792 x4 + 207360 x2 ) I02 (x) I0 (2x)+ 30030

+(−2002 x7 + 672 x5 + 58368 x3 + 276480 x) I0 (x) I1 (x) I0 (2x)+ +(10472 x6 + 71232 x4 + 252672 x2 + 276480) I12 (x) I0 (2x)+ +(1001 x7 + 21840 x5 + 144192 x3 + 276480 x) I02 (x) I1 (2x)+ +(3080 x6 − 15456 x4 − 162048 x2 − 552960) I0 (x) I1 (x) I1 (2x)+ +(1001 x7 − 31752 x5 − 171648 x3 − 390912 x) I12 (x) I1 (2x)] Z

x8 K12 (x) K1 (2x) dx =

x2 [(5544 x6 + 57792 x4 + 207360 x2 ) K02 (x) K0 (2x)+ 30030

+(−2002 x7 + 672 x5 + 58368 x3 + 276480 x) K0 (x) K1 (x) K0 (2x)− −(10472 x6 + 71232 x4 + 252672 x2 + 276480) K12 (x) K0 (2x)+ +(1001 x7 + 21840 x5 + 144192 x3 + 276480 x) K02 (x) K1 (2x)+ +(−3080 x6 + 15456 x4 + 162048 x2 + 552960) K0 (x) K1 (x) K1 (2x)+ +(1001 x7 − 31752 x5 − 171648 x3 − 390912 x) K12 (x) K1 (2x)] 381

Recurrence relations: Z

+

x2n+1 J02 (x) J0 (2x) dx = −

n 4n + 1

Z

  x2n J1 (2x) 3n J02 (x) + (n − 1) J12 (x) dx+

x2n+1 [xJ02 (x) J0 (2x) − xJ12 (x) J0 (2x) + 3nJ02 (x) J1 (2x) + 2xJ0 (x) J1 (x) J1 (2x) + nJ12 (x) J1 (2x)] 2(4n + 1)

Z Z

x2n+1 J0 (x) J1 (x) J1 (2x) dx =

=

1 2(4n + 1)

+

x2n+1 [(2n − 1)J02 (x) J1 (2x) − 2(4n + 1) J0 (x)J1 (x)J0 (2x) − (2n + 1)J12 (x) J1 (2x) + 2xJ02 (x) J0 (2x)+ 4(4n + 1)

  x2n −n(2n − 1) J02 (x)J1 (2x) + 2n(4n + 1) J0 (x)J1 (x)J0 (2x) + (n − 1)(2n + 1)J12 (x)J1 (2x) dx+

+4xJ0 (x)J1 (x)J1 (2x) − 2xJ12 (x)J0 (2x)]

Z

2n+1

x +

J12 (x) J0 (2x) dx

1 =− 4n + 1

Z

  x2n n (n + 1)J02 (x)J1 (2x) + (3n + 1)(n − 1) J12 (x) J1 (2x) dx+

x2n+1 [(n+1)J02 (x)J1 (2x)+(3n+1)J12 (x)J1 (2x)−xJ02 (x) J0 (2x)−2xJ0 (x)J1 (x)J1 (2x)+xJ12 (x)J0 (2x)] 2(4n + 1)

Z

x2n+2 J0 (x) J1 (x) J0 (2x) dx =

 Z Z 1 2n+1 2 = −2(n + 1)(2n + 1) x J0 (x) J0 (2x) dx − 4(4n + 3) x2n+1 J0 (x) J1 (x) J1 (2x) dx+ 4(4n + 3) Z +2n(2n+3) x2n+1 J12 (x) J0 (2x) dx+x2n+2 [(2n+1)J02 (x)J0 (2x)−2xJ02 (x)J1 (2x)+4xJ0 (x)J1 (x)J0 (2x)− −(2n +

3)J12 (x)J0 (2x)



+ 2(4n + 3)J0 (x)J1 (x)J1 (2x) +

Z 1 = 2(4n + 3)

2xJ12 (x)J1 (2x)]

x2n+2 J02 (x) J1 (2x) dx =

 Z Z 2n+1 2 2 2(n + 1)(3n + 2) x J0 (x)J0 (2x) dx + 2n x2n+1 J12 (x)J0 (2x) dx+

 +x2n+2 [−(3n + 2)J02 (x)J0 (2x) + xJ02 (x)J1 − 2xJ0 (x)J1 (x)J0 (2x) − nJ12 (x)J0 (2x) − xJ12 (x)J1 (2x)]

Z 1 = 2(4n + 3) 2n+2

+x

x2n+2 J12 (x) J1 (2x) dx =

 Z Z 2(n + 1)2 x2n+1 J02 (x) J0 (2x) dx + 6n(n + 1) x2n+1 J12 (x) J0 (2x) dx+

[−(n+1)J02 (x)J0 (2x)−xJ02 (x)J1 (2x)+2xJ0 (x)J1 (x)J0 (2x)−3(n+1)J12 (x)J0 (2x)+xJ0 (x)J1 (x)J0 (2x)]

382



Z

2n+1

x +

I02 (x) I0 (2x) dx

1 = 4n + 1

Z

x2n [−3n2 I02 (x)I1 (2x) + n(n − 1)I12 (x)I1 (2x)] dx+

x2n+1 [xI 2 (x) I0 (2x) + xI12 (x) I0 (2x) − 2xI0 (x) I1 (x) I1 (2x) + 3nI02 (x) I1 (2x) − nI12 (x) I1 (2x)] 2(4n + 1) 0

Z 1 = 2(4n + 1) +

Z

x2n+1 I0 (x) I1 (x) I1 (2x) dx =

x2n [n(2n − 1) I02 (x)I1 (2x) − 2n(4n + 1) I0 (x)I1 (x)I0 (2x) + (n − 1)(2n + 1)I12 (x)I1 (2x)] dx+

x2n+1 [−(2n − 1)I02 (x) I1 (2x) + 2(4n + 1)I0 (x)I1 (x)I0 (2x) − (2n + 1)I12 (x) I1 (2x)− 4(4n + 1) −2xI02 (x) I0 (2x) + 4xI0 (x)I1 (x)I1 (2x) − 2xI12 (x) I0 (2x)]

Z

2n+1

x +

I12 (x) I0 (2x) dx

1 = 4n + 1

Z

  x2n n (n + 1)I02 (x)I1 (2x) − (3n + 1)(n − 1) I12 (x) I1 (2x) dx+

x2n+1 [−(n+1)I02 (x)I1 (2x)+(3n+1)I12 (x)I1 (2x)+xI02 (x) I0 (2x)−2xI0 (x)I1 (x)I1 (2x)+xI12 (x)I0 (2x)] 2(4n + 1)

Z 1 = 2(4n + 3)

Z

x2n+2 I0 (x) I1 (x) I0 (2x) dx =

x2n+1 [(n+1)(2n+1)I02 (x) I0 (2x)−2n(4n+3) I0 (x) I1 (x) I1 (2x)+n(2n+3)I12 (x)I0 (2x)] dx+

+x2n+2 [−(2n + 1) I02 (x) I0 (2x) + 2(4n + 3) I0 (x) I1 (x) I1 (2x) − (2n + 3)x I12 (x) I0 (2x)− −2x I02 (x) I1 (2x) + 4xI0 (x) I1 (x) I0 (2x) − 3x I12 (x) I1 (2x)}

Z

=

1 4n + 3

Z

x2n+2 I02 (x) I1 (2x) dx =

x2n+1 [−(n + 1)(3n + 2)I02 (x)I0 (2x) + n2 I12 (x)I0 (2x)] dx+

+x2n+2 [(3n + 2) I02 (x) I0 (2x) − n I12 (x) I0 (2x) + x I02 (x) I1 (2x) − 2x I0 (x)I1 (x) I0 (2x) + x I12 (x) I1 (2x)]

Z 1 = 4n + 3

Z

x2n+2 I12 (x) I1 (2x) dx =

x2n+1 [(n + 1)2 I02 (x) I0 (2x) − 3n(n + 1) I12 (x) I0 (2x)] dx+

+x2n+2 [−(n+1) I02 (x) I0 (2x)+3(n+1) I12 (x) I0 (2x)+x I02 (x) I1 (2x)−2x I0 (x) I1 (x) I0 (2x)+x I12 (x) I1 (2x)]

383

Z

2n+1

x +

K02 (x) K0 (2x) dx

1 = 4n + 1

Z

x2n [3n2 K02 (x)K1 (2x) − n(n − 1)K12 (x)K1 (2x)] dx+

x2n+1 [xK02 (x) K0 (2x)+xK12 (x) K0 (2x)−2xK0 (x) K1 (x) K1 (2x)−3nK02 (x) K1 (2x)+nK12 (x) K1 (2x)] 2(4n + 1)

Z 1 2(4n + 1)

=

+

Z

x2n+1 K0 (x) K1 (x) K1 (2x) dx =

x2n [−n(2n−1) K02 (x)K1 (2x)+2n(4n+1) K0 (x)K1 (x)K0 (2x)−(n−1)(2n+1)K12 (x)K1 (2x)] dx+

x2n+1 [(2n − 1)K02 (x) K1 (2x) − 2(4n + 1)K0 (x)K1 (x)K0 (2x) + (2n + 1)K12 (x) K1 (2x)− 4(4n + 1) −2xK02 (x) K0 (2x) + 4xK0 (x)K1 (x)K1 (2x) − 2xK12 (x) K0 (2x)]

Z

2n+1

x +

K12 (x) K0 (2x) dx

1 = 4n + 1

Z

  x2n −n (n + 1)K02 (x)K1 (2x) + (3n + 1)(n − 1) K12 (x) K1 (2x) dx+

x2n+1 h (n + 1)K02 (x)K1 (2x) − (3n + 1)K12 (x)K1 (2x) + xK02 (x) K0 (2x) − 2xK0 (x)K1 (x)K1 (2x)+ 2(4n + 1) i + xK12 (x)K0 (2x)

Z Z ·

x2n+2 K0 (x) K1 (x) K0 (2x) dx =

1 · 2(4n + 3)

x2n+1 [(n + 1)(2n + 1)K02 (x) K0 (2x) − 2n(4n + 3) K0 (x) K1 (x) K1 (2x) + n(2n + 3)K12 (x)K0 (2x)] dx+ +

x2n+2 [−(2n + 1) K02 (x) K0 (2x) + 2(4n + 3) K0 (x) K1 (x) K1 (2x) − (3n + 2)x K12 (x) K0 (2x)− 4(4n + 3) −2x K02 (x) K1 (2x) + 4xK0 (x) K1 (x) K0 (2x) − 3x K12 (x) K1 (2x)

Z 1 = 4n + 3 +

Z

x2n+1 [(n + 1)(3n + 2)K02 (x)K0 (2x) − n2 K12 (x)K0 (2x)] dx+

x2n+2 h −(3n + 2) K02 (x) K0 (2x) + n K12 (x) K0 (2x) + x K02 (x) K1 (2x) − 2x K0 (x)K1 (x) K0 (2x)+ 2(4n + 3) i +x K12 (x) K1 (2x)

Z

= +

x2n+2 K02 (x) K1 (2x) dx =

1 4n + 3

Z

x2n+2 K12 (x) K1 (2x) dx =

x2n+1 [−(n + 1)2 K02 (x) K0 (2x) + 3n(n + 1) K12 (x) K0 (2x)] dx+

x2n+2 h (n + 1) K02 (x) K0 (2x) − 3(n + 1) K12 (x) K0 (2x) + x K02 (x) K1 (2x) − 2x K0 (x) K1 (x) K0 (2x) + 2(4n + 3) i +x K12 (x) K1 (2x) 384

b) xn Zκ (αx) Zµ (βx) Zν ((α + β)x) Formulas were found for the following integrals only: Z Z x2n+1 Z0 (αx) Z0 (βx) Z0 ((α + β)x) dx , x2n+1 Z0 (αx) Z1 (βx) Z1 ((α + β)x) dx , Z and

Z

x2n+1 Z1 (αx) Z1 (βx) Z0 ((α + β)x) dx , Z

2n

x

Z0 (αx) Z0 (βx) Z1 ((α + β)x) dx , Z

n ≥ 0,

x2n Z0 (αx) Z1 (βx) Z0 ((α + β)x) dx ,

x2n Z1 (αx) Z1 (βx) Z1 ((α + β)x) dx ,

n ≥ 1.

R R The integrals xn Zν (αx) Zν (βx) Z1−ν ((α + β)x) dx and xn Z1−ν (αx) Zν (βx) Zν ((α + β)x) dx may be expressed by each other. Nevertheless, they are both listed. Z x J1 (αx) J1 (βx) J1 ((α + β)x) dx = [ J0 (αx)J0 (βx)J1 ((α + β)x)− 2 −J0 (αx)J1 (βx)J0 ((α + β)x) − J1 (αx)J0 (βx)J0 ((α + β)x) − J1 (αx)J1 (βx)J1 ((α + β)x)] Z I1 (αx) I1 (βx) I1 ((α + β)x) dx =

x [−I0 (αx)I0 (βx)I1 ((α + β)x)+ 2

+I0 (αx)I1 (βx)I0 ((α + β)x) + I1 (αx)I0 (βx)I0 ((α + β)x) − I1 (αx)I1 (βx)I1 ((α + β)x)] Z K1 (αx) K1 (βx) K1 ((α + β)x) dx =

x [−K0 (αx)K0 (βx)K1 ((α + β)x)+ 2

+K0 (αx)K1 (βx)K0 ((α + β)x) + K1 (αx)K0 (βx)K0 ((α + β)x) − K1 (αx)K1 (βx)K1 ((α + β)x)] Z x J0 (αx) J0 (βx) J0 ((α + β)x) dx =

x2 [J0 (αx)J0 (βx)J0 ((α + β)x)+ 2

+J0 (αx)J1 (βx)J1 ((α + β)x) + J1 (αx)J0 (βx)J1 ((α + β)x) − J1 (αx)J1 (βx)J0 ((α + β)x)] Z x I0 (αx) I0 (βx) I0 ((α + β)x) dx =

x2 [ I0 (αx)I0 (βx)I0 ((α + β)x)− 2

−I0 (αx)I1 (βx)I1 ((α + β)x) − I1 (αx)I0 (βx)I1 ((α + β)x) + I1 (αx)I1 (βx)I0 ((α + β)x)] Z x K0 (αx) K0 (βx) K0 ((α + β)x) dx =

x2 [ K0 (αx)K0 (βx)K0 ((α + β)x)− 2

−K0 (αx)K1 (βx)K1 ((α + β)x) − K1 (αx)K0 (βx)K1 ((α + β)x) + K1 (αx)K1 (βx)K0 ((α + β)x)]

Z x J0 (αx) J1 (βx) J1 ((α + β)x) dx =

 x (β α x + β 2 x) J0 (αx)J0 (βx)J0 ((α + β)x)− 2β(α + β)

−(α + β) J0 (αx)J0 (βx)J1 ((α + β)x) − β J0 (αx)J1 (βx)J0 ((α + β)x)+ +(β α x + β 2 x) J0 (αx)J1 (βx)J1 ((α + β)x) + α J1 (αx)J0 (βx)J0 ((α + β)x)+  +(β α x + β 2 x) J1 (αx)J0 (βx)J1 ((α + β)x) − (β α x + β 2 x) J1 (αx)J1 (βx)J0 ((α + β)x)

Z x I0 (αx) I1 (βx) I1 ((α + β)x) dx =

 x −(β α x + β 2 x) I0 (αx)I0 (βx)I0 ((α + β)x)+ 2β(α + β)

+(α + β) I0 (αx)I0 (βx)I1 ((α + β)x) + β I0 (αx)I1 (βx)I0 ((α + β)x)+ 385

+(β α x + β 2 x) I0 (αx)I1 (βx)I1 ((α + β)x) − α I1 (αx)I0 (βx)I0 ((α + β)x)+  +(β α x + β 2 x) I1 (αx)I0 (βx)I1 ((α + β)x) − (β α x + β 2 x) I1 (αx)I1 (βx)I0 ((α + β)x)

Z x K0 (αx) K1 (βx) K1 ((α + β)x) dx =

 x −(β α x + β 2 x) K0 (αx)K0 (βx)K0 ((α + β)x)− 2β(α + β)

−(α + β)K0 (αx)K0 (βx)K1 ((α + β)x) − βK0 (αx)K1 (βx)K0 ((α + β)x)+ +(β α x + β 2 x)K0 (αx)K1 (βx)K1 ((α + β)x) + αK1 (αx)K0 (βx)K0 ((α + β)x)+  +(β α x + β 2 x)K1 (αx)K0 (βx)K1 ((α + β)x) − (β α x + β 2 x)K1 (αx)K1 (βx)K0 ((α + β)x) Z

x [−αβx J0 (αx)J0 (βx)J0 ((α + β)x)+ 2αβ

x J1 (αx) J1 (βx) J0 ((α + β)x) dx =

+(α + β) J0 (αx)J0 (βx)J1 ((α + β)x) − β J0 (αx)J1 (βx)J0 ((α + β)x)− −αβx J0 (αx)J1 (βx)J1 ((α + β)x) − α J1 (αx)J0 (βx)J0 ((α + β)x)− −αβx J1 (αx)J0 (βx)J1 ((α + β)x) + αβx J1 (αx)J1 (βx)J0 ((α + β)x)] Z x I1 (αx) I1 (βx) I0 ((α + β)x) dx =

x [αβx I0 (αx)I0 (βx)I0 ((α + β)x)− 2αβ

−(α + β) I0 (αx)I0 (βx)I1 ((α + β)x) + β I0 (αx)I1 (βx)I0 ((α + β)x)− −αβx I0 (αx)I1 (βx)I1 ((α + β)x) + α I1 (αx)I0 (βx)I0 ((α + β)x)− −αβx I1 (αx)I0 (βx)I1 ((α + β)x) + αβx I1 (αx)I1 (βx)I0 ((α + β)x)] Z x K1 (αx) K1 (βx) K0 ((α + β)x) dx =

x [αβx K0 (αx)K0 (βx)K0 ((α + β)x)+ 2αβ

+(α + β) K0 (αx)K0 (βx)K1 ((α + β)x) − β K0 (αx)K1 (βx)K0 ((α + β)x)− −αβx K0 (αx)K1 (βx)K1 ((α + β)x) − α K1 (αx)K0 (βx)K0 ((α + β)x)− −αβx K1 (αx)K0 (βx)K1 ((α + β)x) + αβx K1 (αx)K1 (βx)K0 ((α + β)x)]

Z

x2 J0 (αx) J0 (βx) J1 ((α + β)x) dx =

x2 [αβ x (α + β) J0 (αx)J0 (βx)J1 ((α + β)x)− 6αβ(α + β)

−αβ x (α + β) J0 (αx)J1 (βx)J0 ((α + β)x) + α (α + 3 β) J0 (αx)J1 (βx)J1 ((α + β)x)− −αβ (α + β) x J1 (αx)J0 (βx)J0 ((α + β)x) + β (3 α + β) J1 (αx)J0 (βx) J1 ((α + β)x)− i 2 − (α + β) J1 (αx)J1 (βx)J0 ((α + β)x) − αβ (α + β) x J1 (αx)J1 (βx)J1 ((α + β)x)

Z

x2 I0 (αx) I0 (βx) I1 ((α + β)x) dx =

x2 [αβ(α + β)x I0 (αx)I0 (βx)I1 ((α + β)x)− 6αβ(α + β)

−αβ(α + β)x I0 (αx)I1 (βx)I0 ((α + β)x) + α(α + 3β) I0 (αx)I1 (βx)I1 ((α + β)x)− −αβ(α + β)x I1 (αx)I0 (βx)I0 ((α + β)x) + β(3α + β) I1 (αx)I0 (βx)I1 ((α + β)x)−  −(α + β)2 I1 (αx)I1 (βx)I0 ((α + β)x) + αβ(α + β)x I1 (αx)I1 (βx)I1 ((α + β)x)

Z

x2 K0 (αx) K0 (βx) K1 ((α + β)x) dx =

x2 [αβ(α + β)x K0 (αx)K0 (βx)K1 ((α + β)x)− 6αβ(α + β)

−αβ(α + β)x K0 (αx)K1 (βx)K0 ((α + β)x) − α(α + 3β) K0 (αx)K1 (βx)K1 ((α + β)x)− 386

−αβ(α + β)x K1 (αx)K0 (βx)K0 ((α + β)x) − β(3α + β) K1 (αx)K0 (βx)K1 ((α + β)x)+  +(α + β)2 K1 (αx)K1 (βx)K0 ((α + β)x) + αβ(α + β)x K1 (αx)K1 (βx)K1 ((α + β)x)

Z

x2 J0 (αx) J1 (βx) J0 ((α + β)x) dx =

x2 [−αβ(α + β)x J0 (αx)J0 (βx)J1 ((α + β)x)+ 6αβ(α + β)

+αβ(α + β)x J0 (αx)J1 (βx)J0 ((α + β)x) + α(2α + 3β) J0 (αx)J1 (βx)J1 ((α + β)x)+ +αβ(α + β)x J1 (αx)J0 (βx)J0 ((α + β)x) − β 2 J1 (αx)J0 (βx)J1 ((α + β)x)− −(α + β)(2α − β) J1 (αx)J1 (βx)J0 ((α + β)x) + αβ(α + β)x J1 (αx)J1 (βx)J1 ((α + β)x)]

Z

x2 I0 (αx) I1 (βx) I0 ((α + β)x) dx =

x2 [−αβ(α + β)x I0 (αx)I0 (βx)I1 ((α + β)x)+ 6αβ(α + β)

+αβ(α + β)x I0 (αx)I1 (βx)I0 ((α + β)x) + α(2α + 3β) I0 (αx)I1 (βx)I1 ((α + β)x)+ +αβ(α + β)x I1 (αx)I0 (βx)I0 ((α + β)x) − β 2 I1 (αx)I0 (βx)I1 ((α + β)x)− −(α + β)(2α − β) I1 (αx)I1 (βx)I0 ((α + β)x) − αβ(α + β)x I1 (αx)I1 (βx)I1 ((α + β)x)]

Z

x2 K0 (αx) K1 (βx) K0 ((α + β)x) dx =

x2 [−αβ(α + β)x K0 (αx)K0 (βx)K1 ((α + β)x)+ 6αβ(α + β)

+αβ(α + β)x K0 (αx)K1 (βx)K0 ((α + β)x) − α(2α + 3β) K0 (αx)K1 (βx)K1 ((α + β)x)+ +αβ(α + β)x K1 (αx)K0 (βx)K0 ((α + β)x) + β 2 K1 (αx)K0 (βx)K1 ((α + β)x)+ +(α + β)(2α − β) K1 (αx)K1 (βx)K0 ((α + β)x) − αβ(α + β)x K1 (αx)K1 (βx)K1 ((α + β)x)]

Z

x2 J1 (αx) J1 (βx) J1 ((α + β)x) dx =

x2 [−αβ(α + β)x J0 (αx)J0 (βx)J1 ((α + β)x)+ 6αβ(α + β)

+αβ(α + β)x J0 (αx)J1 (βx)J0 ((α + β)x) + 2α2 J0 (αx)J1 (βx)J1 ((α + β)x)+ +αβ(α + β)x J1 (αx)J0 (βx)J0 ((α + β)x) + 2β 2 J1 (αx)J0 (βx)J1 ((α + β)x)−  −2(α + β)2 J1 (αx)J1 (βx)J0 ((α + β)x) + αβ(α + β)x J1 (αx)J1 (βx)J1 ((α + β)x)

Z

x2 I1 (αx) I1 (βx) I1 ((α + β)x) dx =

x2 [αβ(α + β)x I0 (αx)I0 (βx)I1 ((α + β)x)− 6αβ(α + β)

−αβ(α + β)x I0 (αx)I1 (βx)I0 ((α + β)x) − 2α2 I0 (αx)I1 (βx)I1 ((α + β)x)− −αβ(α + β)x I1 (αx)I0 (βx)I0 ((α + β)x) − 2β 2 I1 (αx)I0 (βx)I1 ((α + β)x)+  + 2(α + β)2 I1 (αx)I1 (βx)I0 ((α + β)x) + αβ(α + β)x I1 (αx)I1 (βx)I1 ((α + β)x)

Z

x2 K1 (αx) K1 (βx) K1 ((α + β)x) dx =

x2 [αβ(α + β)x K0 (αx)K0 (βx)K1 ((α + β)x)− 6αβ(α + β)

−αβ(α + β)x K0 (αx)K1 (βx)K0 ((α + β)x) + 2α2 K0 (αx)K1 (βx)K1 ((α + β)x)− −αβ(α + β)x K1 (αx)K0 (βx)K0 ((α + β)x) + 2β 2 K1 (αx)K0 (βx)K1 ((α + β)x)− −2(α + β)2 K1 (αx)K1 (βx)K0 ((α + β)x) + αβ(α + β)x K1 (αx)K1 (βx)K1 ((α + β)x)]

387

Let Z

1 X

xn Zκ (αx) Zµ (βx) Zν ((α + β)x) dx = κµν Vn

κµν

0

0 0

κµν Pn,Z (x) Zκ0 (αx) Zµ0 (βx) Zν 0 ((α + β)x) ,

κ0 ,µ0 ,ν 0 =0

then holds 000

000

V3 =

x2 2

30 α2 β 2 (α + β)

2

000 P3,J (x) = 3 α2 β 2 (α + β) x2

000

 001 P3,J (x) = 2 α β (α + β) α2 + 4 α β + β 2 x  000 010 P3,J (x) = 2 α β (α + β) 2 α2 + 2 α β − β 2 x 2

000

011 P3,J (x) = α2 [3 β 2 (α + β) x2 − 4 α2 − 10 α β − 10 β 2 ]  000 100 P3,J (x) = −2 α β (α + β) α2 − 2 α β − 2 β 2 x

000

101 P3,J (x) = β 2 [3 α2 (α + β) x2 − 4 β 2 − 10 α β − 10 α2 ]

000

2

2

110 P3,J (x) = − (α + β) [3 α2 β 2 x2 − 4 α2 + 2 α β − 4 β 2 ]  000 111 P3,J (x) = 4 α β (α + β) α2 + α β + β 2 x 000

2

000 P3,I (x) = 3 α2 β 2 (α + β) x2

000

 001 P3,I (x) = 2 α β (α + β) α2 + 4 α β + β 2 x  000 010 P3,I (x) = 2 α β (α + β) 2 α2 + 2 α β − β 2 x 2

000

011 P3,I (x) = −α2 [3 β 2 (α + β) x2 + 4 α2 + 10 α β + 10 β 2 ]  000 100 P3,I (x) = −2 α β (α + β) α2 − 2 α β − 2 β 2 x

000

101 P3,I (x) = −β 2 [3 α2 (α + β) x2 + 10 α2 + 10 α β + 4 β 2 ]

2

000

2

110 P3,I (x) = (α + β) [3 α2 β 2 x2 + 4 α2 − 2 α β + 4 β 2 ]  000 111 P3,I (x) = −4 α β (α + β) α2 + α β + β 2 x 000

2

2

000 P3,K (x) = 3 α2 β (α + β) x2

000

 001 P3,K (x) = −2 α β (α + β) α2 + 4 α β + β 2 x  000 010 P3,K (x) = −2 α β (α + β) 2 α2 + 2 α β − β 2 x 2

000

011 P3,K (x) = −α2 [3 β 2 (α + β) x2 + 4 α2 + 10 α β + 10 β 2 ]  000 100 P3,K (x) = 2 α β (α + β) α2 − 2 α β − 2 β 2 x

000

101 P3,K (x) = −β 2 [3 α2 (α + β) x2 + 10 α2 + 10 α β + 4 β 2 ]

2

000

2

110 P3,K (x) = (α + β) [3 α2 β 2 x2 + 4 α2 − 2 α β + 4 β 2 ]  000 111 P3,K (x) = 4 α β (α + β) α2 + α β + β 2 x

011

011 011

V3 =

x2 2

30α2 β 2 (α + β)

2

000 P3,J (x) = 3 β 2 α2 (α + β) x2

 001 P3,J (x) = −α β (α + β) 3 α2 + 7 α β − 2 β 2 x 388

011 011

 010 P3,J (x) = −α β (α + β) 6 α2 + 11 α β + 2 β 2 x 2

011 P3,J (x) = α2 [3 β 2 (α + β) x2 + 6 α2 + 20 α β + 20 β 2 ]  011 100 P3,J (x) = α β (α + β) 3 α2 + 4 α β + 4 β 2 x 011

011

2

101 P3,J (x) = β 2 [3 α2 (α + β) x2 − 2 β (5 α + 2 β)] 2

110 P3,J (x) = − (α + β) [3 α2 β 2 x2 + 2 (α + β) (3 α − 2 β)]  011 111 P3,J (x) = −2 α β (α + β) 3 α2 − 2 α β − 2 β 2 x 011

2

000 P3,I (x) = −3 β 2 α2 (α + β) x2

011

 001 P3,I (x) = α β (α + β) 3 α2 + 7 α β − 2 β 2 x  011 010 P3,I (x) = α β (α + β) 6 α2 + 11 α β + 2 β 2 x 011

2

011 P3,I (x) = α2 [3 β 2 (α + β) x2 − 6 α2 − 20 α β − 20 β 2 ]  011 100 P3,I (x) = −α β (α + β) 3 α2 + 4 α β + 4 β 2 011

011

2

101 P3,I (x) = β 2 [3 α2 (α + β) x2 + 2 β (5 α + 2 β)] 2

110 P3,I (x) = − (α + β) [3 α2 β 2 x2 − 2 (α + β) (3 α − 2 β)]  011 111 P3,I (x) = −2 α β (α + β) 3 α2 − 2 α β − 2 β 2 x 011

2

000 P3,K (x) = −3 β 2 α2 (α + β) x2

011

 001 P3,K (x) = −α β (α + β) 3 α2 + 7 α β − 2 β 2 x  011 010 P3,K (x) = −α β (α + β) 6 α2 + 11 α β + 2 β 2 x 011

2

011 P3,K (x) = α2 [3 β 2 (α + β) x2 − 6 α2 − 20 α β − 20 β 2 ]  011 100 P3,K (x) = α β (α + β) 3 α2 + 4 α β + 4 β 2 x 011

011

2

101 P3,K (x) = β 2 [3 α2 (α + β) x2 + 2 β (5 α + 2 β)] 2

110 P3,K (x) = − (α + β) [3 α2 β 2 x2 − 2 (α + β) (3 α − 2 β)]  011 111 P3,K (x) = 2 α β (α + β) 3 α2 − 2 α β − 2 β 2 x

110

110

V3 =

x2 2

30 α2 β 2 (α + β)

2

000 P3,J (x) = −3 β 2 α2 (α + β) x2

110

 001 P3,J (x) = α β (α + β) 3 α2 + 2 α β + 3 β 2 x  110 010 P3,J (x) = α β (α + β) 6 α2 + α β − 3 β 2 x 2

110

011 P3,J (x) = −α2 [3 β 2 (α + β) x2 + 2 α (3 α + 5 β)]  110 100 P3,J (x) = −α β (α + β) 3 α2 − α β − 6 β 2 x

110

2

101 P3,J (x) = −β 2 [3 α2 (α + β) x2 + 2 β (5 α + 3 β)] 2

110

110 P3,J (x) = (α + β) [3 α2 β 2 x2 + 6 α2 − 8 α β + 6 β 2 ]  110 111 P3,J (x) = 2 α β (α + β) 3 α2 + 8 α β + 3 β 2 x 110

2

000 P3,I (x) = 3 β 2 α2 (α + β) x2

389

110

 001 P3,I (x) = −α β (α + β) 3 α2 + 2 α β + 3 β 2 x  110 010 P3,I (x) = −α β (α + β) 6 α2 + α β − 3 β 2 x 2

110

011 P3,I (x) = −α2 [3 β 2 (α + β) x2 − 2 α (3 α + 5 β)]  110 100 P3,I (x) = α β (α + β) 3 α2 − α β − 6 β 2 x

110

101 P3,I (x) = −β 2 [3 α2 (α + β) x2 − 2 β (5 α + 3 β)]

2

2

110

110 P3,I (x) = (α + β) [3 α2 β 2 x2 − 6 α2 + 8 α β − 6 β 2 ]  110 111 P3,I (x) = 2 α β (α + β) 3 α2 + 8 α β + 3 β 2 x 110

2

000 P3,K (x) = 3 β 2 α2 (α + β) x2

110

 001 P3,K (x) = α β (α + β) 3 α2 + 2 α β + 3 β 2 x  110 010 P3,K (x) = α β (α + β) 6 α2 + α β − 3 β 2 x 2

110

011 P3,K (x) = −α2 [3 β 2 (α + β) x2 − 2 α (3 α + 5 β)]  110 100 P3,K (x) = −α β (α + β) 3 α2 − α β − 6 β 2 x

110

2

101 P3,K (x) = −β 2 [3 α2 (α + β) x2 − 2 β (5 α + 3 β)] 2

110

110 P3,K (x) = (α + β) [3 α2 β 2 x2 − 6 α2 + 8 α β − 6 β 2 ]  110 111 P3,K (x) = −2 α β (α + β) 3 α2 + 8 α β + 3 β 2 x

001

001 001

V4 =

x2 3

210 α3 β 3 (α + β)

2

000 P4,J (x) = −6 α2 β 2 (α + 3 β) (3 α + β) (α + β) x2 2

001 P4,J (x) = αβ (α + β) x [15 α2 β 2 (α + β) x2 + 18 α4 + 52 α3 β + 116 α2 β 2 + 52 α β 3 + 18 β 4 ]

001

2

001

2

001

2

010 P4,J (x) = −αβ (α + β) x [15 α2 β 2 (α + β) x2 − 36 α4 − 86 α3 β − 58 α2 β 2 + 34 α β 3 + 18 β 4 ]  2 001 011 P4,J (x) = α2 [9 β 2 (α + 2 β) (3 α − β) (α + β) x2 − 4 α 9 α3 + 35 β α2 + 49 α β 2 + 35 β 3 ]

100 P4,J (x) = −αβ (α + β) x [15 α2 β 2 (α + β) x2 + 18 α4 + 34 α3 β − 58 α2 β 2 − 86 α β 3 − 36 β 4 ]  2 001 101 P4,J (x) = −β 2 [9 α2 (2 α + β) (α − 3 β) (α + β) x2 + 4 β 35 α3 + 49 β α2 + 35 α β 2 + 9 β 3 ]   2 2 001 110 P4,J (x) = − (α + β) [3 α2 β 2 9 α2 + 10 α β + 9 β 2 x2 − 4 9 α2 − 10 α β + 9 β 2 (α + β) ] 111 P4,J (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 − 36 α4 − 86 α3 β − 52 α2 β 2 − 86 α β 3 − 36 β 4 ] 001

001

2

000 P4,I (x) = 6 α2 β 2 (α + 3 β) (3 α + β) (α + β) x2 2

001 P4,I (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 − 18 α4 − 52 α3 β − 116 α2 β 2 − 52 α β 3 − 18 β 4 ]

001

2

001

2

010 P4,I (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 + 36 α4 + 86 α3 β + 58 α2 β 2 − 34 α β 3 − 18 β 4 ]  2 001 011 P4,I (x) = α2 [9 β 2 (α + 2 β) (3 α − β) (α + β) x2 + 4 α 9 α3 + 35 β α2 + 49 α β 2 + 35 β 3 ]

100 P4,I (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 − 18 α4 − 34 α3 β + 58 α2 β 2 + 86 α β 3 + 36 β 4 ]  2 001 101 P4,I (x) = −β 2 [9 α2 (2 α + β) (α − 3 β) (α + β) x2 − 4 β 35 α3 + 49 β α2 + 35 α β 2 + 9 β 3 ]   2 2 001 110 P4,I (x) = − (α + β) [3 α2 β 2 9 α2 + 10 α β + 9 β 2 x2 + 4 9 α2 − 10 α β + 9 β 2 (α + β) ] 001

2

111 P4,I (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 + 36 α4 + 86 α3 β + 52 α2 β 2 + 86 α β 3 + 36 β 4 ]

390

001 001

2

000 P4,K (x) = −6 α2 β 2 (α + 3 β) (3 α + β) (α + β) x2 2

001 P4,K (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 − 18 α4 − 52 α3 β − 116 α2 β 2 − 52 α β 3 − 18 β 4 ]

001

2

001

2

010 P4,K (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 + 36 α4 + 86 α3 β + 58 α2 β 2 − 34 α β 3 − 18 β 4 ]  2 001 011 P4,K (x) = −α2 [9 β 2 (α + 2 β) (3 α − β) (α + β) x2 + 4 α 9 α3 + 35 β α2 + 49 α β 2 + 35 β 3 ] 100 P4,K (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 − 18 α4 − 34 α3 β + 58 α2 β 2 + 86 α β 3 + 36 β 4 ]  2 001 101 P4,K (x) = β 2 [9 α2 (2 α + β) (α − 3 β) (α + β) x2 − 4 β 35 α3 + 49 β α2 + 35 α β 2 + 9 β 3 ]   2 2 001 110 P4,K (x) = (α + β) [3 α2 β 2 9 α2 + 10 α β + 9 β 2 x2 + 4 9 α2 − 10 α β + 9 β 2 (α + β) ]

001

2

111 P4,K (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 + 36 α4 + 86 α3 β + 52 α2 β 2 + 86 α β 3 + 36 β 4 ]

010

010 010

V4 =

x2 3

210 α3 β 3 (α + β)

2

000 P4,J (x) = −6 α2 β 2 (2 α + 3 β) (2 α − β) (α + β) x2 2

001 P4,J (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 − 24 α4 − 60 α3 β − 52 α2 β 2 + 38 α β 3 + 18 β 4 ] 2

010

010 P4,J (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 + 48 α4 + 96 α3 β + 68 α2 β 2 + 20 α β 3 + 18 β 4 ]  2 010 011 P4,J (x) = α2 [9 β 2 (α + 2 β) (4 α + β) (α + β) x2 − 4 α 12 α3 + 42 β α2 + 56 α β 2 + 35 β 3 ]

010

2

100 P4,J (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 − 24 α4 − 36 α3 β − 16 α2 β 2 − 58 α β 3 − 36 β 4 ]   2 010 101 P4,J (x) = −β 2 [3 α2 8 α2 + 8 α β + 9 β 2 (α + β) x2 − 4 β 2 28 α2 + 28 α β + 9 β 2 ] 010

110 P4,J (x) =

 2 = − (α + β) [9 α2 β 2 (4 α + 3 β) (α − β) x2 − 4 (α + β) 12 α3 − 6 β α2 + 8 α β 2 − 9 β 3 ] 010

2

111 P4,J (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 + 48 α4 + 96 α3 β − 10 α2 β 2 − 58 α β 3 − 36 β 4 ] 010

010

2

000 P4,I (x) = 6 α2 β 2 (2 α + 3 β) (2 α − β) (α + β) x2 2

001 P4,I (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 + 24 α4 + 60 α3 β + 52 α2 β 2 − 38 α β 3 − 18 β 4 ] 2

010

010 P4,I (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 − 48 α4 − 96 α3 β − 68 α2 β 2 − 20 α β 3 − 18 β 4 ]  2 010 011 P4,I (x) = α2 [9 β 2 (α + 2 β) (4 α + β) (α + β) x2 + 4 α 12 α3 + 42 β α2 + 56 α β 2 + 35 β 3 ]

010

2

100 P4,I (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 + 24 α4 + 36 α3 β + 16 α2 β 2 + 58 α β 3 + 36 β 4 ]   2 010 101 P4,I (x) = −β 2 [3 α2 8 α2 + 8 α β + 9 β 2 (α + β) x2 + 4 β 2 28 α2 + 28 α β + 9 β 2 ] 010

110 P4,I (x) =

 2 = − (α + β) [9 α2 β 2 (4 α + 3 β) (α − β) x2 + 4 (α + β) 12 α3 − 6 β α2 + 8 α β 2 − 9 β 3 ] 010

2

111 P4,I (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 − 48 α4 − 96 α3 β + 10 α2 β 2 + 58 α β 3 + 36 β 4 ] 010

010

2

000 P4,K (x) = −6 α2 β 2 (2 α + 3 β) (2 α − β) (α + β) x2 2

001 P4,K (x) = −α β (α + β) x [15 α2 β 2 (α + β) x2 + 24 α4 + 60 α3 β + 52 α2 β 2 − 38 α β 3 − 18 β 4 ]

010

2

010 P4,K (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 − 48 α4 − 96 α3 β − 68 α2 β 2 − 20 α β 3 − 18 β 4 ] 010

011 P4,K (x) =

 2 = −α2 [9 β 2 (α + 2 β) (4 α + β) (α + β) x2 + 4 α 12 α3 + 42 β α2 + 56 α β 2 + 35 β 3 ] 391

010

2

100 P4,K (x) = α β (α + β) x [15 α2 β 2 (α + β) x2 + 24 α4 + 36 α3 β + 16 α2 β 2 + 58 α β 3 + 36 β 4 ]   2 010 101 P4,K (x) = β 2 [3 α2 8 α2 + 8 α β + 9 β 2 (α + β) x2 + 4 β 2 28 α2 + 28 α β + 9 β 2 ] 010

110 P4,K (x) =

 2 = (α + β) [9 α2 β 2 (4 α + 3 β) (α − β) x2 + 4 (α + β) 12 α3 − 6 β α2 + 8 α β 2 − 9 β 3 ] 010

2

111 P4,K (x) = α β (α + β) x [−15 α2 β 2 (α + β) x2 + 48 α4 + 96 α3 β − 10 α2 β 2 − 58 α β 3 − 36 β 4 ]

111

111 111

V4 =

x2 3

70 α3 β 3 (α + β)

 2 000 P4,J (x) = −8 α2 β 2 α2 + α β + β 2 (α + β) x2 2

001 P4,J (x) = −α xβ (α + β) [5 α2 β 2 (α + β) x2 − 8 α4 − 20 α3 β − 8 α2 β 2 − 20 β 3 α − 8 β 4 ]

111

2

010 P4,J (x) = αβ (α + β) x [5 α2 β 2 (α + β) x2 + 16 α4 + 32 α3 β + 4 α2 β 2 − 12 β 3 α − 8 β 4 ]   2 111 011 P4,J (x) = 4α2 [β 2 3 α2 − 2 α β − 2 β 2 (α + β) x2 − 2 α2 2 α2 + 7 α β + 7 β 2 ] 2

111

100 P4,J (x) = α xβ (α + β) [5 α2 β 2 (α + β) x2 − 8 α4 − 12 α3 β + 4 α2 β 2 + 32 β 3 α + 16 β 4 ]   2 111 101 P4,J (x) = −4 β 2 [α2 2 α2 + 2 α β − 3 β 2 (α + β) x2 + 2 β 2 7 α2 + 7 α β + 2 β 2 ]   2 2 111 110 P4,J (x) = −4 (α + β) [α2 β 2 3 α2 + 8 α β + 3 β 2 x2 − 2 2 α2 − 3 α β + 2 β 2 (α + β) ] 2 2 111 111 P4,J (x) = α β (α + β) x [5 α2 β 2 (α + β) x2 + 16 α2 + α β + β 2 ] 111 111 111

 2 000 P4,I (x) = −8 α2 β 2 α2 + α β + β 2 (α + β) x2 2

001 P4,I (x) = α β (α + β) x [5 α2 β 2 (α + β) x2 + 8 α4 + 20 α3 β + 8 α2 β 2 + 20 β 3 α + 8 β 4 ] 2

010 P4,I (x) = −α β (α + β) x [5 α2 β 2 (α + β) x2 − 16 α4 − 32 α3 β − 4 α2 β 2 + 12 β 3 α + 8 β 4 ]   2 111 011 P4,I (x) = −4 α2 [β 2 3 α2 − 2 α β − 2 β 2 (α + β) x2 + 2 α2 2 α2 + 7 α β + 7 β 2 ] 2

111

100 P4,I (x) = −α β (α + β) x [5 α2 β 2 (α + β) x2 + 8 α4 + 12 α3 β − 4 α2 β 2 − 32 β 3 α − 16 β 4 ]   2 111 101 P4,I (x) = 4 β 2 [α2 2 α2 + 2 α β − 3 β 2 (α + β) x2 − 2 β 2 7 α2 + 7 α β + 2 β 2 ]   2 2 111 110 P4,I (x) = 4 (α + β) [α2 β 2 3 α2 + 8 α β + 3 β 2 x2 + 2 2 α2 − 3 α β + 2 β 2 (α + β) ] 2 2 111 111 P4,I (x) = α β (α + β) x [5 α2 β 2 (α + β) x2 − 16 α2 + α β + β 2 ] 111 111

111

111

 2 000 P4,K (x) = 8 α2 β 2 α2 + α β + β 2 (α + β) x2 2

001 P4,K (x) = α β (α + β) x [5 α2 β 2 (α + β) x2 + 8 α4 + 20 α3 β + 8 α2 β 2 + 20 β 3 α + 8 β 4 ] 2

010 P4,K (x) = −α β (α + β) x [5 α2 β 2 (α + β) x2 − 16 α4 − 32 α3 β − 4 α2 β 2 + 12 β 3 α + 8 β 4 ]   2 111 011 P4,K (x) = 4 α2 [β 2 3 α2 − 2 α β − 2 β 2 (α + β) x2 + 2 α2 2 α2 + 7 α β + 7 β 2 ] 2

100 P4,K (x) = −α β (α + β) x [5 α2 β 2 (α + β) x2 + 8 α4 + 12 α3 β − 4 α2 β 2 − 32 β 3 α − 16 β 4 ]   2 111 101 P4,K (x) = −4 β 2 [α2 2 α2 + 2 α β − 3 β 2 (α + β) x2 − 2 β 2 7 α2 + 7 α β + 2 β 2 ]   2 2 111 110 P4,K (x) = −4 (α + β) [α2 β 2 3 α2 + 8 α β + 3 β 2 x2 + 2 2 α2 − 3 α β + 2 β 2 (α + β) ] 2 2 111 111 P4,K (x) = α β (α + β) x [5 α2 β 2 (α + β) x2 − 16 α2 + α β + β 2 ]

392

000

000

V5 =

x2 4

630 α4 β 4 (α + β)

4

2

000 P5,J (x) = [35 α4 β 4 (α + β) x2 + 96 α2 β 2 (α + β)

000

000

2 α2 + α β + β 2 ] x2 2

001 P5,J (x) = 4 α β (α + β) x [5 α2 β 2 (α + 3 β) (3 α + β) (α + β) x2 −   −12 α2 + α β + β 2 2 β 4 + 5 β 3 α + 2 α2 β 2 + 5 α3 β + 2 α4 ] 2

010 P5,J (x) = 4 α β (α + β) x [5 α2 β 2 (2 α + 3 β) (2 α − β) (α + β) x2 −   −12 α2 + α β + β 2 −2 β 4 − 3 β 3 α + α2 β 2 + 8 α3 β + 4 α4 ] 000

011 P5,J (x) =

 4 2 = α2 [35 β 4 α2 (α + β) x4 − 8 β 2 18 α4 + 41 α3 β + 29 α2 β 2 − 24 β 3 α − 12 β 4 (α + β) x2 +   +96 α2 7 β 2 + 7 α β + 2 α2 α2 + α β + β 2 ] 000

2

100 P5,J (x) = −4 α β (α + β) x [5 α2 β 2 (3 α + 2 β) (α − 2 β) (α + β) x2 −   −12 α2 + α β + β 2 −4 β 4 − 8 β 3 α − α2 β 2 + 3 α3 β + 2 α4 ] 000

101 P5,J (x) =

 4 2 = β 2 [35 β 2 α4 (α + β) x4 + 8 α2 12 α4 + 24 α3 β − 29 α2 β 2 − 41 β 3 α − 18 β 4 (α + β) x2 +   +96 β 2 α2 + α β + β 2 2 β 2 + 7 α β + 7 α2 ] 000

110 P5,J (x) =

 2 2 = − (α + β) [35 α4 β 4 (α + β) x4 − 8 α2 β 2 18 α4 + 31 α3 β + 14 α2 β 2 + 31 β 3 α + 18 β 4 x2 +   2 +96 2 β 2 − 3 α β + 2 α2 α2 + α β + β 2 (α + β) ]  2 000 111 P5,J (x) = 16 α β (α + β) x [5 α2 β 2 α2 + α β + β 2 (α + β) x2 − −12 α6 − 36 α5 β − 37 β 2 α4 − 14 α3 β 3 − 37 β 4 α2 − 36 β 5 α − 12 β 6 ] 000

4

2

000 P5,I (x) = 35 α4 β 4 (α + β) x2 − 96 α2 β 2 (α + β)

000

000

2

x2

2

001 P5,I (x) = 4 α β (α + β) x [5 α2 β 2 (α + 3 β) (3 α + β) (α + β) x2 +   +12 α2 + α β + β 2 2 β 4 + 5 β 3 α + 2 α2 β 2 + 5 α3 β + 2 α4 ] 2

010 P5,I (x) = 4 α β (α + β) x [5 α2 β 2 (2 α + 3 β) (2 α − β) (α + β) x2 +   +12 α2 + α β + β 2 −2 β 4 − 3 β 3 α + α2 β 2 + 8 α3 β + 4 α4 ] 4

000

+8 β 2

000

α2 + α β + β 2

011 P5,I (x) = −α2 [35 β 4 α2 (α + β) x4 +  2 18 α4 + 41 α3 β + 29 α2 β 2 − 24 β 3 α − 12 β 4 (α + β) x2 +   +96 α2 7 β 2 + 7 α β + 2 α2 α2 + α β + β 2 ] 2

100 P5,I (x) = −4 α β (α + β) x [5 α2 β 2 (3 α + 2 β) (α − 2 β) (α + β) x2 +   +12 α2 + α β + β 2 −4 β 4 − 8 β 3 α − α2 β 2 + 3 α3 β + 2 α4 ] 4

000

−8 α2

101 P5,I (x) = −β 2 [35 β 2 α4 (α + β) x4 −  2 12 α4 + 24 α3 β − 29 α2 β 2 − 41 β 3 α − 18 β 4 (α + β) x2 +   +96 β 2 α2 + α β + β 2 2 β 2 + 7 α β + 7 α2 ] 000

2

2

110 P5,I (x) = (α + β) [35 α4 β 4 (α + β) x4 +

 +8 α2 β 2 18 α4 + 31 α3 β + 14 α2 β 2 + 31 β 3 α + 18 β 4 x2 + 393

 2 2 β 2 − 3 α β + 2 α2 (α + β) ]  2 000 111 P5,I (x) = −16 α β (α + β) x [5 α2 β 2 α2 + α β + β 2 (α + β) x2 + +96 α2 + α β + β 2



+12 α6 + 36 α5 β + 37 β 2 α4 + 14 α3 β 3 + 37 β 4 α2 + 36 β 5 α + 12 β 6 ] 000

4

2

000 P5,K (x) = 35 α4 β 4 (α + β) x4 − 96 α2 β 2 (α + β)

000

000

β α + α2 + β 2

2

x2

2

001 P5,K (x) = −4 α β (α + β) x [5 β 2 α2 (α + 3 β) (3 α + β) (α + β) x2 +   +12 β α + α2 + β 2 2 β 4 + 5 α β 3 + 2 β 2 α2 + 5 β α3 + 2 α4 ] 2

010 P5,K (x) = −4 α β (α + β) x [5 β 2 α2 (2 α + 3 β) (2 α − β) (α + β) x2 +   +12 β α + α2 + β 2 −2 β 4 − 3 α β 3 + β 2 α2 + 8 β α3 + 4 α4 ] 4

000

+8 β 2

000

011 P5,K (x) = −α2 [35 β 4 α2 (α + β) x4 +  2 18 α4 + 41 β α3 + 29 β 2 α2 − 24 α β 3 − 12 β 4 (α + β) x2 +   +96 α2 7 β 2 + 7 β α + 2 α2 β α + α2 + β 2 ] 2

100 P5,K (x) = 4 α β (α + β) x [5 β 2 α2 (3 α + 2 β) (α − 2 β) (α + β) x2 +   +12 β α + α2 + β 2 −4 β 4 − 8 α β 3 − β 2 α2 + 3 β α3 + 2 α4 ] 4

000

−8 α2

101 P5,K (x) = −β 2 [35 β 2 α4 (α + β) x4 −  2 12 α4 + 24 β α3 − 29 β 2 α2 − 41 α β 3 − 18 β 4 (α + β) x2 +   +96 β 2 2 β 2 + 7 β α + 7 α2 β α + α2 + β 2 ] 000

110 P5,K (x) =

 2 2 = (α + β) [35 α4 β 4 (α + β) x4 + 8 β 2 α2 18 α4 + 31 β α3 + 14 β 2 α2 + 31 α β 3 + 18 β 4 x2 +   2 +96 2 β 2 − 3 β α + 2 α2 β α + α2 + β 2 (α + β) ]  2 000 111 P5,K (x) = 16 α β (α + β) x [5 β 2 α2 β α + α2 + β 2 (α + β) x2 + +12 α6 + 36 α5 β + 37 β 2 α4 + 14 β 3 α3 + 37 β 4 α2 + 36 β 5 α + 12 β 6 ]

011

011

V5 =

x2 630α4 β 4 (α + β)4 2

2

000 P5,J (x) = α2 β 2 (α + β) x2 [35 α2 β 2 (α + β) x2 −

−120 α4 − 276 α3 β − 180 α2 β 2 + 192 β 3 α + 96 β 4 ]  2 011 001 P5,J (x) = −αβ (α + β) x [5 α2 β 2 15 α2 + 23 α β − 12 β 2 (α + β) x2 − −120 α6 − 456 α5 β − 624 α4 β 2 − 384 β 3 α3 + 384 β 4 α2 + 336 β 5 α + 96 β 6 ]  2 011 010 P5,J (x) = −α β (α + β) x [5 α2 β 2 20 α2 + 47 α β + 12 β 2 (α + β) x2 − −240 α6 − 792 α5 β − 912 α4 β 2 − 480 β 3 α3 − 144 β 4 α2 − 240 β 5 α − 96 β 6 ] 4

011

+4 β 2

011 P5,J (x) = α2 [35 β 4 α2 (α + β) x4 +  2 45 α4 + 116 α3 β + 140 α2 β 2 + 48 β 3 α + 24 β 4 (α + β) x2 −  −48 α2 5 α4 + 24 α3 β + 45 α2 β 2 + 42 β 3 α + 21 β 4 ] 011

100 P5,J (x) =

 2 = α β (α + β) x [5 α2 β 2 15 α2 + 16 α β + 16 β 2 (α + β) x2 − −120 α6 − 336 α5 β − 288 α4 β 2 − 96 β 3 α3 − 528 β 4 α2 − 576 β 5 α − 192 β 6 ] 394

4

011

−4 α2

101 P5,J (x) = β 2 [35 α4 β 2 (α + β) x4 −  2 30 α4 + 69 α3 β + 40 α2 β 2 + 82 β 3 α + 36 β 4 (α + β) x2 +  +48 β 3 4 β 3 + 21 α3 + 30 α2 β + 18 β 2 α ] 011

110 P5,J (x) =

 2 2 = − (α + β) [35 α4 β 4 (α + β) x4 + 4 α2 β 2 45 α4 + 91 α3 β − 10 α2 β 2 − 62 β 3 α − 36 β 4 x2 −  3 −48 5 α3 − 6 α2 β + 6 β 2 α − 4 β 3 (α + β) ]  2 011 111 P5,J (x) = −4 α β (α + β) x [5 α2 β 2 5 α2 − 4 α β − 4 β 2 (α + β) x2 − −60 α6 − 198 α5 β − 218 α4 β 2 + 8 β 3 α3 + 124 β 4 α2 + 144 β 5 α + 48 β 6 ] 011

2

2

000 P5,I (x) = −α2 β 2 (α + β) x2 [35 α2 β 2 (α + β) x2 +

+120 α4 + 276 α3 β + 180 α2 β 2 − 192 β 3 α − 96 β 4 ]  2 011 001 P5,I (x) = α β (α + β) x [5 α2 β 2 15 α2 + 23 α β − 12 β 2 (α + β) x2 + +120 α6 + 456 α5 β + 624 β 2 α4 + 384 β 3 α3 − 384 β 4 α2 − 336 β 5 α − 96 β 6 ]  2 011 010 P5,I (x) = α β (α + β) x [5 α2 β 2 20 α2 + 47 α β + 12 β 2 (α + β) x2 + +240 α6 + 792 α5 β + 912 β 2 α4 + 480 β 3 α3 + 144 β 4 α2 + 240 β 5 α + 96 β 6 ] 4

011

011 P5,I (x) = α2 [35 β 4 α2 (α + β) x4 −  2 −4 β 2 45 α4 + 116 α3 β + 140 α2 β 2 + 48 β 3 α + 24 β 4 (α + β) x2 −  −48 α2 21 β 4 + 45 α2 β 2 + 24 α3 β + 42 β 3 α + 5 α4 ]  2 011 100 P5,I (x) = −α β (α + β) x [5 α2 β 2 15 α2 + 16 α β + 16 β 2 (α + β) x2 +

+120 α6 + 336 α5 β + 288 β 2 α4 + 96 β 3 α3 + 528 β 4 α2 + 576 β 5 α + 192 β 6 ] 011

101 P5,I (x) =

 4 2 = β 2 [35 β 2 α4 (α + β) x4 + 4 α2 30 α4 + 69 α3 β + 40 α2 β 2 + 82 β 3 α + 36 β 4 (α + β) x2 +  +48 β 3 21 α3 + 30 α2 β + 18 β 2 α + 4 β 3 ] 011

110 P5,I (x) =

 2 2 = − (α + β) [35 α4 β 4 (α + β) x4 − 4 α2 β 2 45 α4 + 91 α3 β − 10 α2 β 2 − 62 β 3 α − 36 β 4 x2 −  3 −48 5 α3 − 6 α2 β + 6 β 2 α − 4 β 3 (α + β) ]  2 011 111 P5,I (x) = −4 α β (α + β) x [5 α2 β 2 5 α2 − 4 α β − 4 β 2 (α + β) x2 + +60 α6 + 198 α5 β + 218 β 2 α4 − 8 β 3 α3 − 124 β 4 α2 − 144 β 5 α − 48 β 6 ] 011 2

000 P5,K (x) =

2

= −α2 β 2 (α + β) x2 [35 α2 β 2 (α + β) x2 + 120 α4 + 276 α3 β + 180 α2 β 2 − 192 β 3 α − 96 β 4 ]  2 011 001 P5,K (x) = −α β (α + β) x [5 α2 β 2 15 α2 + 23 α β − 12 β 2 (α + β) x2 + +120 α6 + 456 α5 β + 624 β 2 α4 + 384 β 3 α3 − 384 β 4 α2 − 336 β 5 α − 96 β 6 ]  2 011 010 P5,K (x) = −α β (α + β) x [5 α2 β 2 20 α2 + 47 α β + 12 β 2 (α + β) x2 + +240 α6 + 792 α5 β + 912 β 2 α4 + 480 β 3 α3 + 144 β 4 α2 + 240 β 5 α + 96 β 6 ] 011

011 P5,K (x) =

 4 2 = α2 [35 β 4 α2 (α + β) x4 − 4 β 2 45 α4 + 116 α3 β + 140 α2 β 2 + 48 β 3 α + 24 β 4 (α + β) x2 − 395

 −48 α2 21 β 4 + 45 α2 β 2 + 24 α3 β + 42 β 3 α + 5 α4 ]  2 011 100 P5,K (x) = α β (α + β) x [5 α2 β 2 15 α2 + 16 α β + 16 β 2 (α + β) x2 + +120 α6 + 336 α5 β + 288 β 2 α4 + 96 β 3 α3 + 528 β 4 α2 + 576 β 5 α + 192 β 6 ] 4

011

+4 α2

101 P5,K (x) = β 2 [35 β 2 α4 (α + β) x4 +  2 30 α4 + 69 α3 β + 40 α2 β 2 + 82 β 3 α + 36 β 4 (α + β) x2 +  +48 β 3 21 α3 + 30 α2 β + 18 β 2 α + 4 β 3 ] 011

2

2

110 P5,K (x) − (α + β) [35 α4 β 4 (α + β) x4 −

 −4 α2 β 2 45 α4 + 91 α3 β − 10 α2 β 2 − 62 β 3 α − 36 β 4 x2 −  3 −48 5 α3 − 6 α2 β + 6 β 2 α − 4 β 3 (α + β) ]  2 011 111 P5,K (x) = 4 α β (α + β) x [5 α2 β 2 5 α2 − 4 α β − 4 β 2 (α + β) x2 + +60 α6 + 198 α5 β + 218 β 2 α4 − 8 β 3 α3 − 124 β 4 α2 − 144 β 5 α − 48 β 6 ]

110

110

V5 =

x2 630α4 β 4 (α

+ β)4

2

2

000 P5,J (x) = −α2 β 2 (α + β) x2 [35 α2 β 2 (α + β) x2 −

−120 α4 − 204 β α3 − 72 α2 β 2 − 204 α β 3 − 120 β 4 ]  2 110 001 P5,J (x) = α β (α + β) x [5 α2 β 2 15 α2 + 14 α β + 15 β 2 (α + β) x2 − −120 α6 − 384 α5 β − 408 α4 β 2 − 96 α3 β 3 − 408 β 4 α2 − 384 β 5 α − 120 β 6 ]  2 110 010 P5,J (x) = α β (α + β) x [5 α2 β 2 20 α2 − 7 α β − 15 β 2 (α + β) x2 − −240 α6 − 648 α5 β − 552 α4 β 2 − 48 α3 β 3 + 144 β 4 α2 + 264 β 5 α + 120 β 6 ] 4

110

011 P5,J (x) = −α2 [35 β 4 α2 (α + β) x4 +  2 +4 β 2 45 α4 + 89 β α3 − 13 α2 β 2 − 51 α β 3 − 30 β 4 (α + β) x2 −  −48 α3 21 β 3 + 5 α3 + 21 β α2 + 33 α β 2 ]  2 110 100 P5,J (x) = −α β (α + β) x [5 α2 β 2 15 α2 + 7 α β − 20 β 2 (α + β) x2 −

−120 α6 − 264 α5 β − 144 α4 β 2 + 48 α3 β 3 + 552 β 4 α2 + 648 β 5 α + 240 β 6 ] 4

110

−4 α2

101 P5,J (x) = −β 2 [35 α4 β 2 (α + β) x4 −  2 30 α4 + 51 β α3 + 13 α2 β 2 − 89 α β 3 − 45 β 4 (α + β) x2 −  −48 β 3 21 α3 + 33 β α2 + 21 α β 2 + 5 β 3 ] 110

2

2

110 P5,J (x) = (α + β) [35 α4 β 4 (α + β) x4 +

 +4 α2 β 2 45 α4 + 64 β α3 + 62 α2 β 2 + 64 α β 3 + 45 β 4 x2 −  2 −48 5 α4 − 4 β α3 + 3 α2 β 2 − 4 α β 3 + 5 β 4 (α + β) ]  2 110 111 P5,J (x) = 4 α β (α + β) x [5 α2 β 2 5 α2 + 14 α β + 5 β 2 (α + β) x2 − −60 α6 − 162 α5 β − 128 α4 β 2 − 100 α3 β 3 − 128 β 4 α2 − 162 β 5 α − 60 β 6 ] 110

2

2

000 P5,I (x) = α2 β 2 (α + β) x2 [35 α2 β 2 (α + β) x2 +

+120 α4 + 204 β α3 + 72 α2 β 2 + 204 α β 3 + 120 β 4 ]  2 110 001 P5,I (x) = −α β (α + β) x [5 α2 β 2 15 α2 + 14 α β + 15 β 2 (α + β) x2 + 396

+120 α6 + 384 α5 β + 408 α4 β 2 + 96 α3 β 3 + 408 β 4 α2 + 384 β 5 α + 120 β 6 ]  2 110 010 P5,I (x) = −α β (α + β) x [5 α2 β 2 20 α2 − 7 α β − 15 β 2 (α + β) x2 + +240 α6 + 648 α5 β + 552 α4 β 2 + 48 α3 β 3 − 144 β 4 α2 − 264 β 5 α − 120 β 6 ] 4

110

011 P5,I (x) = −α2 [35 β 4 α2 (α + β) x4 −  2 −4 β 2 45 α4 + 89 β α3 − 13 α2 β 2 − 51 α β 3 − 30 β 4 (α + β) x2 −  −48 α3 21 β 3 + 5 α3 + 21 β α2 + 33 α β 2 ]  2 110 100 P5,I (x) = α β (α + β) x [5 α2 β 2 15 α2 + 7 α β − 20 β 2 (α + β) x2 +

+120 α6 + 264 α5 β + 144 α4 β 2 − 48 α3 β 3 − 552 β 4 α2 − 648 β 5 α − 240 β 6 ] 4

110

+4 α2

101 P5,I (x) = −β 2 [35 α4 β 2 (α + β) x4 +  2 30 α4 + 51 β α3 + 13 α2 β 2 − 89 α β 3 − 45 β 4 (α + β) x2 −  −48 β 3 21 α3 + 33 β α2 + 21 α β 2 + 5 β 3 ] 110

2

2

110 P5,I (x) = (α + β) [35 α4 β 4 (α + β) x4 −

 −4 α2 β 2 45 α4 + 64 β α3 + 62 α2 β 2 + 64 α β 3 + 45 β 4 x2 −  2 −48 5 α4 − 4 β α3 + 3 α2 β 2 − 4 α β 3 + 5 β 4 (α + β) ]  2 110 111 P5,I (x) = 4 α β (α + β) x [5 α2 β 2 5 α2 + 14 α β + 5 β 2 (α + β) x2 + +60 α6 + 162 α5 β + 128 α4 β 2 + 100 α3 β 3 + 128 β 4 α2 + 162 β 5 α + 60 β 6 ] 110

2

2

000 P5,K (x) = α2 β 2 (α + β) x2 [35 α2 β 2 (α + β) x2 +

+120 α4 + 204 β α3 + 72 α2 β 2 + 204 α β 3 + 120 β 4 ]  2 110 001 P5,K (x) = α β (α + β) x [5 α2 β 2 15 α2 + 14 α β + 15 β 2 (α + β) x2 + +120 α6 + 384 α5 β + 408 α4 β 2 + 96 α3 β 3 + 408 β 4 α2 + 384 β 5 α + 120 β 6 ]  2 110 010 P5,K (x) = α β (α + β) x [5 α2 β 2 20 α2 − 7 α β − 15 β 2 (α + β) x2 + +240 α6 + 648 α5 β + 552 α4 β 2 + 48 α3 β 3 − 144 β 4 α2 − 264 β 5 α − 120 β 6 ] 4

110

011 P5,K (x) = −α2 [35 β 4 α2 (α + β) x4 −  2 −4 β 2 45 α4 + 89 β α3 − 13 α2 β 2 − 51 α β 3 − 30 β 4 (α + β) x2 −  −48 α3 21 β 3 + 5 α3 + 21 β α2 + 33 α β 2 ]  2 110 100 P5,K (x) = −α β (α + β) x [5 α2 β 2 15 α2 + 7 α β − 20 β 2 (α + β) x2 +

+120 α6 + 264 α5 β + 144 α4 β 2 − 48 α3 β 3 − 552 β 4 α2 − 648 β 5 α − 240 β 6 ] 4

110

+4 α2

101 P5,K (x) = −β 2 [35 α4 β 2 (α + β) x4 +  2 30 α4 + 51 β α3 + 13 α2 β 2 − 89 α β 3 − 45 β 4 (α + β) x2 −  −48 β 3 21 α3 + 33 β α2 + 21 α β 2 + 5 β 3 ] 110

2

2

110 P5,K (x) = (α + β) [35 α4 β 4 (α + β) x4 −

 −4 α2 β 2 45 α4 + 64 β α3 + 62 α2 β 2 + 64 α β 3 + 45 β 4 x2 −  2 −48 5 α4 − 4 β α3 + 3 α2 β 2 − 4 α β 3 + 5 β 4 (α + β) ]  2 110 111 P5,K (x) = −4 α β (α + β) x [5 α2 β 2 5 α2 + 14 α β + 5 β 2 (α + β) x2 + +60 α6 + 162 α5 β + 128 α4 β 2 + 100 α3 β 3 + 128 β 4 α2 + 162 β 5 α + 60 β 6 ]

397

001

001

V6 =

x2 6930 α5 β 5 (α + β)5

 2 2 000 P6,J (x) = −4 α2 β 2 (α + β) x2 [35 α2 β 2 5 α2 + 16 α β + 5 β 2 (α + β) x2 −

−600 α6 − 1932 α5 β − 2172 α4 β 2 − 2400 α3 β 3 − 2172 β 4 α2 − 1932 β 5 α − 600 β 6 ] 4

001

001 P6,J (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 75 α4 + 184 β α3 + 338 α2 β 2 + 184 α β 3 + 75 β 4 (α + β) x2 −

+20 α2 β 2

−2400 α8 − 11328 β α7 − 20880 β 2 α6 − 18720 α5 β 3 − 19296 α4 β 4 − 18720 α3 β 5 − 20880 α2 β 6 − −11328 α β 7 − 2400 β 8 ] 4

001

010 P6,J (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 100 α4 + 222 β α3 + 138 α2 β 2 − 149 α β 3 − 75 β 4 (α + β) x2 +

−20 α2 β 2

+4800 α8 + 20256 β α7 + 32832 β 2 α6 + 25488 α5 β 3 + 9648 α4 β 4 − 6768 α3 β 5 − 11952 α2 β 6 − −8928 α β 7 − 2400 β 8 ] 001

 4 011 P6,J (x) = α2 [175 β 4 α2 5 α2 + 7 α β − 4 β 2 (α + β) x4 −

 2 −16 β 2 225 α6 + 787 α5 β + 972 α4 β 2 + 495 α3 β 3 − 518 β 4 α2 − 483 β 5 α − 150 β 6 (α + β) x2 +  +96 α3 671 β 2 α3 + 286 β α4 + 825 α2 β 3 + 561 β 4 α + 50 α5 + 231 β 5 ] 4

001

100 P6,J (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 75 α4 + 149 β α3 − 138 α2 β 2 − 222 α β 3 − 100 β 4 (α + β) x2 −

+20 α2 β 2

−2400 α8 − 8928 β α7 − 11952 β 2 α6 − 6768 α5 β 3 + 9648 α4 β 4 + 25488 α3 β 5 + 32832 α2 β 6 + +20256 α β 7 + 4800 β 8 ] 001

 4 101 P6,J (x) = −β 2 [175 α4 β 2 4 α2 − 7 α β − 5 β 2 (α + β) x4 −

 2 −16 α2 150 α6 + 483 α5 β + 518 α4 β 2 − 495 α3 β 3 − 972 β 4 α2 − 787 β 5 α − 225 β 6 (α + β) x2 −  −96 β 3 825 β 2 α3 + 671 α2 β 3 + 231 α5 + 561 β α4 + 286 β 4 α + 50 β 5 ]  2 2 001 110 P6,J (x) = − (α + β) [35 α4 β 4 25 α2 + 26 α β + 25 β 2 (α + β) x4 −  −16 α2 β 2 225 α6 + 662 α5 β + 632 α4 β 2 + 210 α3 β 3 + 632 β 4 α2 + 662 β 5 α + 225 β 6 x2 +  4 +96 50 α4 − 64 β α3 + 69 α2 β 2 − 64 α β 3 + 50 β 4 (α + β) ] 4

001

−40 α2 β 2

111 P6,J (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 50 α4 + 111 β α3 + 62 α2 β 2 + 111 α β 3 + 50 β 4 (α + β) x2 +

+4800 α8 + 20256 β α7 + 32032 β 2 α6 + 22912 α5 β 3 + 6912 α4 β 4 + 22912 α3 β 5 + 32032 α2 β 6 + +20256 α β 7 + 4800 β 8 ] 001

 2 2 000 P6,I (x) = 4 α2 β 2 (α + β) x2 [35 α2 β 2 5 α2 + 16 α β + 5 β 2 (α + β) x2 +

+600 α6 + 1932 α5 β + 2172 α4 β 2 + 2400 β 3 α3 + 2172 β 4 α2 + 1932 α β 5 + 600 β 6 ] 4

001

−20 α2 β 2

001 P6,I (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 75 α4 + 184 α3 β + 338 α2 β 2 + 184 β 3 α + 75 β 4 (α + β) x2 −

−2400 α8 − 11328 β α7 − 20880 β 2 α6 − 18720 α5 β 3 − 19296 α4 β 4 − 18720 β 5 α3 − 20880 β 6 α2 − −11328 β 7 α − 2400 β 8 ] 001

4

010 P6,I (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 +

398

 2 +20 α2 β 2 100 α4 + 222 α3 β + 138 α2 β 2 − 149 β 3 α − 75 β 4 (α + β) x2 + +4800 α8 + 20256 β α7 + 32832 β 2 α6 + 25488 α5 β 3 + 9648 α4 β 4 − 6768 β 5 α3 − 11952 β 6 α2 − −8928 β 7 α − 2400 β 8 ] 001

 4 011 P6,I (x) = α2 [175 β 4 α2 5 α2 + 7 α β − 4 β 2 (α + β) x4 +

 2 +16 β 2 225 α6 + 787 α5 β + 972 α4 β 2 + 495 β 3 α3 − 518 β 4 α2 − 483 α β 5 − 150 β 6 (α + β) x2 +  +96 α3 825 β 3 α2 + 231 β 5 + 286 α4 β + 561 β 4 α + 671 α3 β 2 + 50 α5 ] 4

001

100 P6,I (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 75 α4 + 149 α3 β − 138 α2 β 2 − 222 β 3 α − 100 β 4 (α + β) x2 −

−20 α2 β 2

−2400 α8 − 8928 β α7 − 11952 β 2 α6 − 6768 α5 β 3 + 9648 α4 β 4 + 25488 β 5 α3 + 32832 β 6 α2 + +20256 β 7 α + 4800 β 8 ] 001

 4 101 P6,I (x) = −β 2 [175 α4 β 2 4 α2 − 7 α β − 5 β 2 (α + β) x4 +

 2 +16 α2 150 α6 + 483 α5 β + 518 α4 β 2 − 495 β 3 α3 − 972 β 4 α2 − 787 α β 5 − 225 β 6 (α + β) x2 −  −96 β 3 825 α3 β 2 + 231 α5 + 286 β 4 α + 561 α4 β + 671 β 3 α2 + 50 β 5 ]  2 2 001 110 P6,I (x) = − (α + β) [35 α4 β 4 25 α2 + 26 α β + 25 β 2 (α + β) x4 +  +16 α2 β 2 225 α6 + 662 α5 β + 632 α4 β 2 + 210 β 3 α3 + 632 β 4 α2 + 662 α β 5 + 225 β 6 x2 +  4 +96 50 α4 − 64 α3 β + 69 α2 β 2 − 64 β 3 α + 50 β 4 (α + β) ] 4

001

+40 α2 β 2

111 P6,I (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 50 α4 + 111 α3 β + 62 α2 β 2 + 111 β 3 α + 50 β 4 (α + β) x2 +

+4800 α8 + 20256 β α7 + 32032 β 2 α6 + 22912 α5 β 3 + 6912 α4 β 4 + 22912 β 5 α3 + 32032 β 6 α2 + +20256 β 7 α + 4800 β 8 ] 001

 2 2 000 P6,K (x) = −4 α2 β 2 (α + β) x2 [35 α2 β 2 5 α2 + 16 α β + 5 β 2 (α + β) x2 +

+600 α6 + 1932 α5 β + 2172 α4 β 2 + 2400 β 3 α3 + 2172 β 4 α2 + 1932 α β 5 + 600 β 6 ] 4

001

−20 α2 β 2

001 P6,K (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 75 α4 + 184 α3 β + 338 α2 β 2 + 184 β 3 α + 75 β 4 (α + β) x2 −

−2400 α8 − 11328 β α7 − 20880 β 2 α6 − 18720 α5 β 3 − 19296 α4 β 4 − 18720 β 5 α3 − 20880 β 6 α2 − −11328 β 7 α − 2400 β 8 ] 4

001

+20 α2 β 2

010 P6,K (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 100 α4 + 222 α3 β + 138 α2 β 2 − 149 β 3 α − 75 β 4 (α + β) x2 +

+4800 α8 + 20256 β α7 + 32832 β 2 α6 + 25488 α5 β 3 + 9648 α4 β 4 − 6768 β 5 α3 − 11952 β 6 α2 − −8928 β 7 α − 2400 β 8 ] 001

 4 011 P6,K (x) = −α2 [175 β 4 α2 5 α2 + 7 α β − 4 β 2 (α + β) x4 +

 2 +16 β 2 225 α6 + 787 α5 β + 972 α4 β 2 + 495 β 3 α3 − 518 β 4 α2 − 483 α β 5 − 150 β 6 (α + β) x2 +  +96 α3 825 β 3 α2 + 231 β 5 + 286 α4 β + 561 β 4 α + 671 α3 β 2 + 50 α5 ] 4

001

−20 α2 β 2

100 P6,K (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 75 α4 + 149 α3 β − 138 α2 β 2 − 222 β 3 α − 100 β 4 (α + β) x2 −

−2400 α8 − 8928 β α7 − 11952 β 2 α6 − 6768 α5 β 3 + 9648 α4 β 4 + 25488 β 5 α3 + 32832 β 6 α2 + 399

+20256 β 7 α + 4800 β 8 001

 4 101 P6,K (x) = β 2 [175 α4 β 2 4 α2 − 7 α β − 5 β 2 (α + β) x4 +

 2 +16 α2 150 α6 + 483 α5 β + 518 α4 β 2 − 495 β 3 α3 − 972 β 4 α2 − 787 α β 5 − 225 β 6 (α + β) x2 −  −96 β 3 825 α3 β 2 + 231 α5 + 286 β 4 α + 561 α4 β + 671 β 3 α2 + 50 β 5 ]  2 2 001 110 P6,K (x) = (α + β) [35 α4 β 4 25 α2 + 26 α β + 25 β 2 (α + β) x4 +  +16 α2 β 2 225 α6 + 662 α5 β + 632 α4 β 2 + 210 β 3 α3 + 632 β 4 α2 + 662 α β 5 + 225 β 6 x2 +  4 +96 50 α4 − 64 α3 β + 69 α2 β 2 − 64 β 3 α + 50 β 4 (α + β) ] 4

001

+40 α2 β 2

111 P6,K (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 50 α4 + 111 α3 β + 62 α2 β 2 + 111 β 3 α + 50 β 4 (α + β) x2 +

+4800 α8 + 20256 β α7 + 32032 β 2 α6 + 22912 α5 β 3 + 6912 α4 β 4 + 22912 β 5 α3 + 32032 β 6 α2 + +20256 β 7 α + 4800 β 8 ]

010

010

V6 =

x2 6930 α5 β 5 (α + β)5

 2 2 000 P6,J (x) = −4 α2 β 2 (α + β) x2 [35 α2 β 2 6 α2 + 6 α β − 5 β 2 (α + β) x2 −

−720 α6 − 2160 β α5 − 2316 β 2 α4 − 1032 β 3 α3 + 1512 β 4 α2 + 1668 β 5 α + 600 β 6 ] 4

010

−20 α2 β 2

001 P6,J (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 90 α4 + 201 α3 β + 135 α2 β 2 − 151 β 3 α − 75 β 4 (α + β) x2 +

+2880 α8 + 12960 α7 β + 22944 α6 β 2 + 19824 α5 β 3 + 8688 α4 β 4 − 11856 α3 β 5 − 16656 α2 β 6 − −10272 β 7 α − 2400 β 8 ] 4

010

+20 α2 β 2

010 P6,J (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 120 α4 + 240 α3 β + 236 α2 β 2 + 116 β 3 α + 75 β 4 (α + β) x2 −

−5760 α8 − 23040 α7 β − 35808 α6 β 2 − 26784 α5 β 3 − 10416 α4 β 4 − 3072 α3 β 5 − −8784 α2 β 6 − 7872 β 7 α − 2400 β 8 ]  4 010 011 P6,J (x) = α2 [175 β 4 α2 6 α2 + 15 α β + 4 β 2 (α + β) x4 −  2 −16 β 2 270 α6 + 885 β α5 + 1041 β 2 α4 + 737 β 3 α3 + 353 β 4 α2 + 417 β 5 α + 150 β 6 (α + β) x2 +  +96 α3 60 α5 + 748 α3 β 2 + 330 α4 β + 594 α β 4 + 891 β 3 α2 + 231 β 5 ] 4

010

−20 α2 β 2

100 P6,J (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 90 α4 + 159 α3 β + 72 α2 β 2 + 178 β 3 α + 100 β 4 (α + β) x2 +

+2880 α8 + 10080 α7 β + 12864 α6 β 2 + 6960 α5 β 3 + 1728 α4 β 4 + 14928 α3 β 5 + 25440 α2 β 6 + +18144 β 7 α + 4800 β 8 ] 010

 4 101 P6,J (x) = −β 2 [35 β 2 α4 24 α2 + 24 α β + 25 β 2 (α + β) x4 −

 2 −16 α2 180 α6 + 540 β α5 + 549 β 2 α4 + 198 β 3 α3 + 697 β 4 α2 + 688 β 5 α + 225 β 6 (α + β) x2 +  +96 β 4 561 α2 β 2 + 264 β 3 α + 297 α4 + 594 α3 β + 50 β 4 ]  2 2 010 110 P6,J (x) = − (α + β) [175 α4 β 4 6 α2 − 3 α β − 5 β 2 (α + β) x4 −  −16 α2 β 2 270 α6 + 735 β α5 + 666 β 2 α4 − 23 β 3 α3 − 412 β 4 α2 − 563 β 5 α − 225 β 6 x2 +  3 +96 60 α5 − 30 α4 β + 28 α3 β 2 − 27 β 3 α2 + 36 α β 4 − 50 β 5 (α + β) ] 400

4

010

+40 α2 β 2

111 P6,J (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 60 α4 + 120 α3 β − 29 α2 β 2 − 89 β 3 α − 50 β 4 (α + β) x2 −

−5760 α8 − 23040 α7 β − 34848 α6 β 2 − 23904 α5 β 3 − 128 α4 β 4 + 12704 α3 β 5 + 24640 α2 β 6 + +18144 β 7 α + 4800 β 8 ] 010

 2 2 000 P6,I (x) = 4 α2 β 2 (α + β) x2 [35 α2 β 2 6 α2 + 6 α β − 5 β 2 (α + β) x2 +

+720 α6 + 2160 α5 β + 2316 α4 β 2 + 1032 β 3 α3 − 1512 β 4 α2 − 1668 β 5 α − 600 β 6 ] 4

010

001 P6,I (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 90 α4 + 201 α3 β + 135 α2 β 2 − 151 β 3 α − 75 β 4 (α + β) x2 +

+20 α2 β 2

+2880 α8 + 12960 α7 β + 22944 β 2 α6 + 19824 α5 β 3 + 8688 α4 β 4 − 11856 β 5 α3 − 16656 β 6 α2 − −10272 β 7 α − 2400 β 8 ] 4

010

010 P6,I (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 120 α4 + 240 α3 β + 236 α2 β 2 + 116 β 3 α + 75 β 4 (α + β) x2 −

−20 α2 β 2

−5760 α8 − 23040 α7 β − 35808 β 2 α6 − 26784 α5 β 3 − 10416 α4 β 4 − 3072 β 5 α3 − 8784 β 6 α2 − −7872 β 7 α − 2400 β 8 ] 010

 4 011 P6,I (x) = α2 [175 β 4 α2 6 α2 + 15 α β + 4 β 2 (α + β) x4 +

 2 +16 β 2 270 α6 + 885 α5 β + 1041 α4 β 2 + 737 β 3 α3 + 353 β 4 α2 + 417 β 5 α + 150 β 6 (α + β) x2 +  +96 α3 594 α β 4 + 330 α4 β + 891 β 3 α2 + 748 α3 β 2 + 231 β 5 + 60 α5 ] 4

010

+20 α2 β 2

100 P6,I (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 90 α4 + 159 α3 β + 72 α2 β 2 + 178 β 3 α + 100 β 4 (α + β) x2 +

+2880 α8 + 10080 α7 β + 12864 β 2 α6 + 6960 α5 β 3 + 1728 α4 β 4 + 14928 β 5 α3 + 25440 β 6 α2 + +18144 β 7 α + 4800 β 8 ] 010

 4 101 P6,I (x) = −β 2 [35 α4 β 2 24 α2 + 24 α β + 25 β 2 (α + β) x4 +

 2 +16 α2 180 α6 + 540 α5 β + 549 α4 β 2 + 198 β 3 α3 + 697 β 4 α2 + 688 β 5 α + 225 β 6 (α + β) x2 +  +96 β 4 561 α2 β 2 + 264 β 3 α + 297 α4 + 594 α3 β + 50 β 4 ]  2 2 010 110 P6,I (x) = − (α + β) [175 α4 β 4 6 α2 − 3 α β − 5 β 2 (α + β) x4 +  +16 α2 β 2 270 α6 + 735 α5 β + 666 α4 β 2 − 23 β 3 α3 − 412 β 4 α2 − 563 β 5 α − 225 β 6 x2 +  3 +96 60 α5 − 30 α4 β + 28 α3 β 2 − 27 β 3 α2 + 36 α β 4 − 50 β 5 (α + β) ] 4

010

−40 α2 β 2

111 P6,I (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 60 α4 + 120 α3 β − 29 α2 β 2 − 89 β 3 α − 50 β 4 (α + β) x2 −

−5760 α8 − 23040 α7 β − 34848 β 2 α6 − 23904 α5 β 3 − 128 α4 β 4 + 12704 β 5 α3 + 24640 β 6 α2 + +18144 β 7 α + 4800 β 8 ] 010

 2 2 000 P6,K (x) = −4 α2 β 2 (α + β) x2 [35 α2 β 2 6 α2 + 6 α β − 5 β 2 (α + β) x2 +

+720 α6 + 2160 α5 β + 2316 α4 β 2 + 1032 β 3 α3 − 1512 β 4 α2 − 1668 β 5 α − 600 β 6 ] 4

010

+20 α2 β 2

001 P6,K (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 90 α4 + 201 α3 β + 135 α2 β 2 − 151 β 3 α − 75 β 4 (α + β) x2 +

401

+2880 α8 + 12960 α7 β + 22944 β 2 α6 + 19824 α5 β 3 + 8688 α4 β 4 − 11856 β 5 α3 − 16656 β 6 α2 − −10272 β 7 α − 2400 β 8 4

010

010 P6,K (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 120 α4 + 240 α3 β + 236 α2 β 2 + 116 β 3 α + 75 β 4 (α + β) x2 −

−20 α2 β 2

−5760 α8 − 23040 α7 β − 35808 β 2 α6 − 26784 α5 β 3 − 10416 α4 β 4 − 3072 β 5 α3 − 8784 β 6 α2 − −7872 β 7 α − 2400 β 8 ] 010

 4 011 P6,K (x) = −α2 [175 β 4 α2 6 α2 + 15 α β + 4 β 2 (α + β) x4 +

 2 +16 β 2 270 α6 + 885 α5 β + 1041 α4 β 2 + 737 β 3 α3 + 353 β 4 α2 + 417 β 5 α + 150 β 6 (α + β) x2 +  +96 α3 594 α β 4 + 330 α4 β + 891 β 3 α2 + 748 α3 β 2 + 231 β 5 + 60 α5 ] 4

010

100 P6,K (x) = α β (α + β) x [315 α4 β 4 (α + β) x4 +  2 90 α4 + 159 α3 β + 72 α2 β 2 + 178 β 3 α + 100 β 4 (α + β) x2 +

+20 α2 β 2

+2880 α8 + 10080 α7 β + 12864 β 2 α6 + 6960 α5 β 3 + 1728 α4 β 4 + 14928 β 5 α3 + 25440 β 6 α2 + +18144 β 7 α + 4800 β 8 ] 010

 4 101 P6,K (x) = β 2 [35 α4 β 2 24 α2 + 24 α β + 25 β 2 (α + β) x4 +

 2 +16 α2 180 α6 + 540 α5 β + 549 α4 β 2 + 198 β 3 α3 + 697 β 4 α2 + 688 β 5 α + 225 β 6 (α + β) x2 +  +96 β 4 561 α2 β 2 + 264 β 3 α + 297 α4 + 594 α3 β + 50 β 4 ]  2 2 010 110 P6,K (x) = (α + β) [175 α4 β 4 6 α2 − 3 α β − 5 β 2 (α + β) x4 +  +16 α2 β 2 270 α6 + 735 α5 β + 666 α4 β 2 − 23 β 3 α3 − 412 β 4 α2 − 563 β 5 α − 225 β 6 x2 +  3 +96 60 α5 − 30 α4 β + 28 α3 β 2 − 27 β 3 α2 + 36 α β 4 − 50 β 5 (α + β) ] 4

010

−40 α2 β 2

111 P6,K (x) = −α β (α + β) x [315 α4 β 4 (α + β) x4 −  2 60 α4 + 120 α3 β − 29 α2 β 2 − 89 β 3 α − 50 β 4 (α + β) x2 −

−5760 α8 − 23040 α7 β − 34848 β 2 α6 − 23904 α5 β 3 − 128 α4 β 4 + 12704 β 5 α3 + 24640 β 6 α2 + +18144 β 7 α + 4800 β 8

111

111

V6 =

x2 2310 α5 β 5 (α + β)5

 2 2 000 P6,I (x) = −8 α2 β 2 (α + β) x2 [35 α2 β 2 α2 + α β + β 2 (α + β) x2 −

−120 α6 − 360 α5 β − 342 α4 β 2 − 84 β 3 α3 − 342 β 4 α2 − 360 β 5 α − 120 β 6 4

111

001 P6,J (x) = −α β (α + β) x [105 α4 β 4 (α + β) x4 −  2 −20 β 2 α2 30 α4 + 67 α3 β + 34 β 2 α2 + 67 α β 3 + 30 β 4 (α + β) x2 +

+960 α8 + 4320 α7 β + 7296 α6 β 2 + 5376 α5 β 3 + 960 α4 β 4 + 5376 β 5 α3 + 7296 β 6 α2 + +4320 β 7 α + 960 β 8 ] 4

111

+20 β 2 α2

010 P6,J (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 +  2 40 α4 + 80 α3 β − 13 β 2 α2 − 53 α β 3 − 30 β 4 (α + β) x2 −

−1920 α8 − 7680 α7 β − 11232 α6 β 2 − 6816 α5 β 3 − 480 α4 β 4 + 1440 β 5 α3 + 3936 β 6 α2 + +3360 β 7 α + 960 β 8 ] 111

 4 011 P6,J (x) = 2 α2 [35 β 4 α2 5 α2 − 4 α β − 4 β 2 (α + β) x4 − 402

 2 −8 β 2 90 α6 + 295 α5 β + 314 β 2 α4 − 22 α3 β 3 − 161 β 4 α2 − 180 α β 5 − 60 β 6 (α + β) x2 +  +96 α4 10 α4 + 121 β 2 α2 + 55 α3 β + 132 α β 3 + 66 β 4 ] 4

111

−20 β 2 α2

100 P6,J (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 −  2 30 α4 + 53 α3 β + 13 β 2 α2 − 80 α β 3 − 40 β 4 (α + β) x2 +

+960 α8 + 3360 α7 β + 3936 α6 β 2 + 1440 α5 β 3 − 480 α4 β 4 − 6816 β 5 α3 − 11232 β 6 α2 − −7680 β 7 α − 1920 β 8 ]  4 101 P6,J (x) = −2 β 2 [35 β 2 α4 4 α2 + 4 α β − 5 β 2 (α + β) x4 −  2 −8 α2 60 α6 + 180 α5 β + 161 β 2 α4 + 22 α3 β 3 − 314 β 4 α2 − 295 α β 5 − 90 β 6 (α + β) x2 −  −96 β 4 66 α4 + 132 α3 β + 121 β 2 α2 + 55 α β 3 + 10 β 4 ]  2 2 111 110 P6,J (x) = −2 (α + β) [35 α4 β 4 5 α2 + 14 α β + 5 β 2 (α + β) x4 −  −8 β 2 α2 90 α6 + 245 α5 β + 189 β 2 α4 + 128 α3 β 3 + 189 β 4 α2 + 245 α β 5 + 90 β 6 x2 +  4 +96 10 α4 − 15 α3 β + 16 β 2 α2 − 15 α β 3 + 10 β 4 (α + β) ] 2 4 2 111 111 P6,J (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 + 800 β 2 α2 (α + β) α2 + α β + β 2 x2 −   −32 α2 + α β + β 2 60 β 6 + 180 α β 5 + 101 β 4 α2 − 98 α3 β 3 + 101 β 2 α4 + 180 α5 β + 60 α6 ] 111

111

 2 2 000 P6,I (x) = −8 α2 β 2 (α + β) x2 [35 β 2 α2 α2 + α β + β 2 (α + β) x2 +

+120 α6 + 360 α5 β + 342 β 2 α4 + 84 α3 β 3 + 342 β 4 α2 + 360 α β 5 + 120 β 6 ] 4

111

+20 β 2 α2

001 P6,I (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 +  2 30 α4 + 67 α3 β + 34 β 2 α2 + 67 α β 3 + 30 β 4 (α + β) x2 +

+960 α8 + 4320 α7 β + 7296 α6 β 2 + 5376 α5 β 3 + 960 α4 β 4 + 5376 β 5 α3 + 7296 β 6 α2 + +4320 β 7 α + 960 β 8 ] 4

111

010 P6,I (x) = −α β (α + β) x [105 α4 β 4 (α + β) x4 −  2 −20 β 2 α2 40 α4 + 80 α3 β − 13 β 2 α2 − 53 α β 3 − 30 β 4 (α + β) x2 −

−1920 α8 − 7680 α7 β − 11232 α6 β 2 − 6816 α5 β 3 − 480 α4 β 4 + 1440 β 5 α3 + 3936 β 6 α2 + +3360 β 7 α + 960 β 8 ]  4 011 P6,I (x) = −2 α2 [35 β 4 α2 5 α2 − 4 α β − 4 β 2 (α + β) x4 +  2 90 α6 + 295 α5 β + 314 β 2 α4 − 22 α3 β 3 − 161 β 4 α2 − 180 α β 5 − 60 β 6 (α + β) x2 +  +96 α4 10 α4 + 121 β 2 α2 + 55 α3 β + 132 α β 3 + 66 β 4 ] 111

+8 β 2

4

111

100 P6,I (x) = −α β (α + β) x [105 α4 β 4 (α + β) x4 +  2 +20 β 2 α2 30 α4 + 53 α3 β + 13 β 2 α2 − 80 α β 3 − 40 β 4 (α + β) x2 +

+960 α8 + 3360 α7 β + 3936 α6 β 2 + 1440 α5 β 3 − 480 α4 β 4 − 6816 β 5 α3 − 11232 β 6 α2 − −7680 β 7 α − 1920 β 8 ] 111

 4 101 P6,I (x) = 2 β 2 [35 β 2 α4 4 α2 + 4 α β − 5 β 2 (α + β) x4 +

 2 +8 α2 60 α6 + 180 α5 β + 161 β 2 α4 + 22 α3 β 3 − 314 β 4 α2 − 295 α β 5 − 90 β 6 (α + β) x2 −  −96 β 4 66 α4 + 132 α3 β + 121 β 2 α2 + 55 α β 3 + 10 β 4 ]  2 2 111 110 P6,I (x) = 2 (α + β) [35 α4 β 4 5 α2 + 14 α β + 5 β 2 (α + β) x4 +  +8 β 2 α2 90 α6 + 245 α5 β + 189 β 2 α4 + 128 α3 β 3 + 189 β 4 α2 + 245 α β 5 + 90 β 6 x2 + 403

 4 +96 10 α4 − 15 α3 β + 16 β 2 α2 − 15 α β 3 + 10 β 4 (α + β) ] 2 4 2 111 P6,I (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 − 800 β 2 α2 (α + β) α2 + α β + β 2 x2 −   −32 α2 + α β + β 2 60 β 6 + 180 α β 5 + 101 β 4 α2 − 98 α3 β 3 + 101 β 2 α4 + 180 α5 β + 60 α6 ] 111

111

 2 2 000 P6,K (x) = 8 α2 β 2 (α + β) x2 [35 β 2 α2 α2 + α β + β 2 (α + β) x2 +

+120 α6 + 360 α5 β + 342 β 2 α4 + 84 α3 β 3 + 342 β 4 α2 + 360 α β 5 + 120 β 6 ] 4

111

+20 β 2 α2

001 P6,K (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 +  2 30 α4 + 67 α3 β + 34 β 2 α2 + 67 α β 3 + 30 β 4 (α + β) x2 +

+960 α8 + 4320 α7 β + 7296 α6 β 2 + 5376 α5 β 3 + 960 α4 β 4 + 5376 β 5 α3 + 7296 β 6 α2 + +4320 β 7 α + 960 β 8 ] 4

111

010 P6,K (x) = −α β (α + β) x [105 α4 β 4 (α + β) x4 −  2 −20 β 2 α2 40 α4 + 80 α3 β − 13 β 2 α2 − 53 α β 3 − 30 β 4 (α + β) x2 −

−1920 α8 − 7680 α7 β − 11232 α6 β 2 − 6816 α5 β 3 − 480 α4 β 4 + 1440 β 5 α3 + 3936 β 6 α2 + +3360 β 7 α + 960 β 8 ]  4 011 P6,K (x) = 2 α2 [35 β 4 α2 5 α2 − 4 α β − 4 β 2 (α + β) x4 +  2 90 α6 + 295 α5 β + 314 β 2 α4 − 22 α3 β 3 − 161 β 4 α2 − 180 α β 5 − 60 β 6 (α + β) x2 +  +96 α4 10 α4 + 121 β 2 α2 + 55 α3 β + 132 α β 3 + 66 β 4 ] 111

+8 β 2

4

111

100 P6,K (x) = −α β (α + β) x [105 α4 β 4 (α + β) x4 +  2 +20 β 2 α2 30 α4 + 53 α3 β + 13 β 2 α2 − 80 α β 3 − 40 β 4 (α + β) x2 +

+960 α8 + 3360 α7 β + 3936 α6 β 2 + 1440 α5 β 3 − 480 α4 β 4 − 6816 β 5 α3 − 11232 β 6 α2 − −7680 β 7 α − 1920 β 8 ]  4 101 P6,K (x) = −2 β 2 [35 β 2 α4 4 α2 + 4 α β − 5 β 2 (α + β) x4 +  2 +8 α2 60 α6 + 180 α5 β + 161 β 2 α4 + 22 α3 β 3 − 314 β 4 α2 − 295 α β 5 − 90 β 6 (α + β) x2 −  −96 β 4 66 α4 + 132 α3 β + 121 β 2 α2 + 55 α β 3 + 10 β 4 ]  2 2 111 110 P6,K (x) = −2 (α + β) [35 α4 β 4 5 α2 + 14 α β + 5 β 2 (α + β) x4 +  +8 β 2 α2 90 α6 + 245 α5 β + 189 β 2 α4 + 128 α3 β 3 + 189 β 4 α2 + 245 α β 5 + 90 β 6 x2 +  4 +96 10 α4 − 15 α3 β + 16 β 2 α2 − 15 α β 3 + 10 β 4 (α + β) ] 2 4 2 111 111 P6,K (x) = α β (α + β) x [105 α4 β 4 (α + β) x4 − 800 β 2 α2 (α + β) α2 + α β + β 2 x2 −   −32 α2 + α β + β 2 60 β 6 + 180 α β 5 + 101 β 4 α2 − 98 α3 β 3 + 101 β 2 α4 + 180 α5 β + 60 α6 ] 111

404

Recurrence relations: Z

x2n+1 J0 (αx) J0 (βx) J0 ((α + β)x) dx =

 Z 1 −4n2 β(2α + β) x2n J0 (αx) J0 (βx) J1 ((α + β)x) dx − 2(4n + 1)αβ(α + β) Z Z 2 2 2 2n 2 x2n J1 (αx) J1 (βx) J1 ((α + β)x) dx+ −4n (α − β ) x J0 (αx) J1 (βx) J0 ((α + β)x) dx − 4n(n − 1)α =

+x2n+1 [αβ(α + β)x J0 (αx) J0 (βx) J0 ((α + β)x) + 2nβ(2α + β) J0 (αx) J0 (βx) J1 ((α + β)x)+ +2n(α2 − β 2 ) J0 (αx) J1 (βx) J0 ((α + β)x) + αβ(α + β)x J0 (αx) J1 (βx) J1 ((α + β)x)+ +αβ(α + β)x J1 (αx) J0 (βx) J1 ((α + β)x) − αβ(α + β)x J1 (αx) J1 (βx) J0 ((α + β)x)+  2 + 2nα J1 (αx) J1 (βx) J1 ((α + β)x)] Z

=

x2n+1 J0 (αx) J1 (βx) J1 ((α + β)x) dx =

1 2(4n + 1)αβ(α + β)

 Z 2nβ(α − 2nβ) x2n J0 (αx) J0 (βx) J1 ((α + β)x) dx+ Z

+2n[(2n + 1)α + 2nβ](α + β) +2(2n + 1)(n − 1)α2

Z

x2n J0 (αx) J1 (βx) J0 ((α + β)x) dx+

x2n J1 (αx) J1 (βx) J1 ((α + β)x) dx+

+x2n+1 [αβ(α + β)x J0 (αx) J0 (βx) J0 ((α + β)x)+ +β(2nβ − α) J0 (αx) J0 (βx) J1 ((α + β)x) − (α + β)((2n + 1)α + 2nβ) J0 (αx) J1 (βx) J0 ((α + β)x)+ +αβ(α + β)x J0 (αx) J1 (βx) J1 ((α + β)x) + αβ(α + β)x J1 (αx) J0 (βx) J1 ((α + β)x)−  − αβ(α + β)x J1 (αx) J1 (βx) J0 ((α + β)x) − (2n + 1)α2 J1 (αx) J1 (βx) J1 ((α + β)x)] Z 1 = 2(4n + 1)αβ(α + β)

x2n+1 J1 (αx) J1 (βx) J0 ((α + β)x) dx =  Z −2nβ[(2n + 1)β + α] x2n J0 (αx) J0 (βx) J1 ((α + β)x) dx−

−2n(2n + 1)(α2 − β 2 )

Z

x2n J0 (αx) J1 (βx) J0 ((α + β)x) dx− Z

−2(n − 1)α[(2n + 1)α + (4n + 1)β]

x2n+1 J1 (αx) J1 (βx) J1 ((α + β)x) dx+

+x2n+1 [−αβ(α + β)x J0 (αx) J0 (βx) J0 ((α + β)x) + β[(2n + 1)β + α] J0 (αx) J0 (βx) J1 ((α + β)x)+ +(2n + 1)(α2 − β 2 ) J0 (αx) J1 (βx) J0 ((α + β)x) − αβ(α + β)x J0 (αx) J1 (βx) J1 ((α + β)x)− −αβ(α + β)x J1 (αx) J0 (βx) J1 ((α + β)x) + αβ(α + β)x J1 (αx) J1 (βx) J0 ((α + β)x)+  +α[(4n + 1)β + (2n + 1)α] J1 (αx) J1 (βx) J1 ((α + β)x)]

405

Z

=

1 2(4n + 3)αβ(α + β)

x2n+2 J0 (αx) J0 (βx) J1 ((α + β)x) dx =

 Z 2(n + 1)β[(4n + 3)α + (2n + 1)β] x2n+1 J0 (αx) J0 (βx) J0 ((α + β)x) dx− 2

2

Z

−2n(2n + 1)(α − β ) Z +2αn[(2n + 1)α − β]

x2n+1 J0 (αx) J1 (βx) J1 ((α + β)x) dx+ x2n+1 J1 (αx) J1 (βx) J0 ((α + β)x) dx+

+x2n+2 [ − β[(4n + 3)α + (2n + 1)β] J0 (αx) J0 (βx) J0 ((α + β)x)+ +αβ(α + β)x J0 (αx) J0 (βx) J1 ((α + β)x) − αβ(α + β)x J0 (αx) J1 (βx) J0 ((α + β)x)+ +(2n + 1)(α2 − β 2 ) J0 (αx) J1 (βx) J1 ((α + β)x) − αβ(α + β)x J1 (αx) J0 (βx) J0 ((α + β)x)−  −α[(2n + 1)α − β] J1 (αx) J1 (βx) J0 ((α + β)x) −αβ(α + β) x J1 (αx) J1 (βx) J1 ((α + β)x)] Z

=

1 2(4n + 3)αβ(α + β)

x2n+2 J0 (αx) J1 (βx) J0 ((α + β)x) dx =

 Z −2β 2 (n + 1)(2n + 1) x2n+1 J0 (αx) J0 (βx) J0 ((α + β)x) dx− Z

−2n(α + β)[2(n + 1)α + (2n + 1)β] Z +2nα[2(n + 1)α + β]

x2n+1 J0 (αx) J1 (βx) J1 ((α + β)x) dx+

x2n+1 J1 (αx) J1 (βx) J0 ((α + β)x) dx+

+x2n+2 [(2n + 1)β 2 J0 (αx) J0 (βx) J0 ((α + β)x) − αβ(α + β)x J0 (αx) J0 (βx) J1 ((α + β)x)+ +αβ(α + β)x J0 (αx) J1 (βx) J0 ((α + β)x) + (α + β)[2(n + 1)α + (2n + 1)β] J0 (αx) J1 (βx) J1 ((α + β)x)+ +αβ(α + β)x J1 (αx) J0 (βx) J0 ((α + β)x) − α[2(n + 1)α + β)] J1 (αx) J1 (βx) J0 ((α + β)x)+  +αβ(α + β) J1 (αx) J1 (βx) J1 ((α + β)x)] Z

x2n+2 J1 (αx) J1 (βx) J1 ((α + β)x) dx =

1 = 2(4n + 3)αβ(α + β)

 Z 2 2 4β (n + 1) x2n+1 J0 (αx) J0 (βx) J0 ((α + β)x) dx−

−4n(n + 1)(α2 − β 2 )

Z Z

+4n(n + 1)α(α + 2β)

x2n+1 J0 (αx) J1 (βx) J1 ((α + β)x) dx+ x2n+1 J1 (αx) J1 (βx) J0 ((α + β)x) dx+

+x2n+2 [ − 2(n + 1)β 2 J0 (αx) J0 (βx) J0 ((α + β)x) − αβ(α + β)x J0 (αx) J0 (βx) J1 ((α + β)x)+ +αβ(α + β)x J0 (αx) J1 (βx) J0 ((α + β)x) + 2(n + 1)(α2 − β 2 ) J0 (αx) J1 (βx) J1 ((α + β)x)+ +αβ(α + β)x J1 (αx) J0 (βx) J0 ((α + β)x) − 2(n + 1)α(α + 2β) J1 (αx) J1 (βx) J0 ((α + β)x)+  +αβ(α + β)x J1 (αx) J1 (βx) J1 ((α + β)x)]

406

Z

x2n+1 I0 (αx) I0 (βx) I0 ((α + β)x) dx =

 Z 1 −4n2 β(2α + β) x2n I0 (αx) I0 (βx) I1 ((α + β)x) dx − 2(4n + 1)αβ(α + β) Z Z 2 2 2 2n 2 x2n I1 (αx) I1 (βx) I1 ((α + β)x) dx+ −4n (α − β ) x I0 (αx) I1 (βx) I0 ((α + β)x) dx + 4n(n − 1)α =

+x2n+1 [αβ(α + β)x I0 (αx) I0 (βx) I0 ((α + β)x) + 2nβ(2α + β) I0 (αx) I0 (βx) I1 ((α + β)x)+ +2n(α2 − β 2 ) I0 (αx) I1 (βx) I0 ((α + β)x) − αβ(α + β)x I0 (αx) I1 (βx) I1 ((α + β)x)− −αβ(α + β)x I1 (αx) I0 (βx) I1 ((α + β)x) + αβ(α + β)x I1 (αx) I1 (βx) I0 ((α + β)x)−  − 2nα2 I1 (αx) I1 (βx) I1 ((α + β)x)] Z

=

x2n+1 I0 (αx) I1 (βx) I1 ((α + β)x) dx =

1 2(4n + 1)αβ(α + β)

 Z −2nβ(α − 2nβ) x2n I0 (αx) I0 (βx) I1 ((α + β)x) dx− Z

−2n[(2n + 1)α + 2nβ](α + β) +2(2n + 1)(n − 1)α2

Z

x2n I0 (αx) I1 (βx) I0 ((α + β)x) dx+

x2n I1 (αx) I1 (βx) I1 ((α + β)x) dx+

+x2n+1 [−αβ(α + β)x I0 (αx) I0 (βx) I0 ((α + β)x)− −β(2nβ − α) I0 (αx) I0 (βx) I1 ((α + β)x) + (α + β)((2n + 1)α + 2nβ) I0 (αx) I1 (βx) I0 ((α + β)x)+ +αβ(α + β)x I0 (αx) I1 (βx) I1 ((α + β)x) + αβ(α + β)x I1 (αx) I0 (βx) I1 ((α + β)x)−  2 − αβ(α + β)x I1 (αx) I1 (βx) I0 ((α + β)x) − (2n + 1)α I1 (αx) I1 (βx) I1 ((α + β)x)] Z 1 = 2(4n + 1)αβ(α + β)

x2n+1 I1 (αx) I1 (βx) I0 ((α + β)x) dx =  Z 2nβ[(2n + 1)β + α] x2n I0 (αx) I0 (βx) I1 ((α + β)x) dx+

+2n(2n + 1)(α2 − β 2 )

Z

x2n I0 (αx) I1 (βx) I0 ((α + β)x) dx− Z

−2(n − 1)α[(2n + 1)α + (4n + 1)β]

x2n+1 I1 (αx) I1 (βx) I1 ((α + β)x) dx+

+x2n+1 [αβ(α + β)x I0 (αx) I0 (βx) I0 ((α + β)x) − β[(2n + 1)β + α] I0 (αx) I0 (βx) I1 ((α + β)x)− −(2n + 1)(α2 − β 2 ) I0 (αx) I1 (βx) I0 ((α + β)x) − αβ(α + β)x I0 (αx) I1 (βx) I1 ((α + β)x)− −αβ(α + β)x I1 (αx) I0 (βx) I1 ((α + β)x) + αβ(α + β)x I1 (αx) I1 (βx) I0 ((α + β)x)+  +α[(4n + 1)β + (2n + 1)α] I1 (αx) I1 (βx) I1 ((α + β)x)]

407

Z

=

1 2(4n + 3)αβ(α + β)

x2n+2 I0 (αx) I0 (βx) I1 ((α + β)x) dx =

 Z −2(n + 1)β[(4n + 3)α + (2n + 1)β] x2n+1 I0 (αx) I0 (βx) I0 ((α + β)x) dx− 2

2

Z

−2n(2n + 1)(α − β ) Z +2αn[(2n + 1)α − β]

x2n+1 I0 (αx) I1 (βx) I1 ((α + β)x) dx+ x2n+1 I1 (αx) I1 (βx) I0 ((α + β)x) dx+

+x2n+2 [β[(4n + 3)α + (2n + 1)β] I0 (αx) I0 (βx) I0 ((α + β)x)+ +αβ(α + β)x I0 (αx) I0 (βx) I1 ((α + β)x) − αβ(α + β)x I0 (αx) I1 (βx) I0 ((α + β)x)+ +(2n + 1)(α2 − β 2 ) I0 (αx) I1 (βx) I1 ((α + β)x) − αβ(α + β)x I1 (αx) I0 (βx) I0 ((α + β)x)−  −α[(2n + 1)α − β] I1 (αx) I1 (βx) I0 ((α + β)x) +αβ(α + β) x I1 (αx) I1 (βx) I1 ((α + β)x)] Z

=

1 2(4n + 3)αβ(α + β)

x2n+2 I0 (αx) I1 (βx) I0 ((α + β)x) dx =

 Z 2β 2 (n + 1)(2n + 1) x2n+1 I0 (αx) I0 (βx) I0 ((α + β)x) dx− Z

−2n(α + β)[2(n + 1)α + (2n + 1)β] Z +2nα[2(n + 1)α + β]

x2n+1 I0 (αx) I1 (βx) I1 ((α + β)x) dx+

x2n+1 I1 (αx) I1 (βx) I0 ((α + β)x) dx+

+x2n+2 [ − (2n + 1)β 2 I0 (αx) I0 (βx) I0 ((α + β)x) − αβ(α + β)x I0 (αx) I0 (βx) I1 ((α + β)x)+ +αβ(α + β)x I0 (αx) I1 (βx) I0 ((α + β)x) + (α + β)[2(n + 1)α + (2n + 1)β] I0 (αx) I1 (βx) I1 ((α + β)x)+ +αβ(α + β)x I1 (αx) I0 (βx) I0 ((α + β)x) − α[2(n + 1)α + β)] I1 (αx) I1 (βx) I0 ((α + β)x)−  −αβ(α + β) I1 (αx) I1 (βx) I1 ((α + β)x)] Z

x2n+2 I1 (αx) I1 (βx) I1 ((α + β)x) dx =

1 = 2(4n + 3)αβ(α + β)

 Z 2 2 4β (n + 1) x2n+1 I0 (αx) I0 (βx) I0 ((α + β)x) dx+

+4n(n + 1)(α2 − β 2 )

Z Z

−4n(n + 1)α(α + 2β)

x2n+1 I0 (αx) I1 (βx) I1 ((α + β)x) dx− x2n+1 I1 (αx) I1 (βx) I0 ((α + β)x) dx+

+x2n+2 [ − 2(n + 1)β 2 I0 (αx) I0 (βx) I0 ((α + β)x) + αβ(α + β)x I0 (αx) I0 (βx) I1 ((α + β)x)− −αβ(α + β)x I0 (αx) I1 (βx) I0 ((α + β)x) − 2(n + 1)(α2 − β 2 ) I0 (αx) I1 (βx) I1 ((α + β)x)− −αβ(α + β)x I1 (αx) I0 (βx) I0 ((α + β)x) + 2(n + 1)α(α + 2β) I1 (αx) I1 (βx) I0 ((α + β)x)+  +αβ(α + β)x I1 (αx) I1 (βx) I1 ((α + β)x)]

408

Z

x2n+1 K0 (αx) K0 (βx) K0 ((α + β)x) dx =

 Z 1 4n2 β(2α + β) x2n K0 (αx) K0 (βx) K1 ((α + β)x) dx + 2(4n + 1)αβ(α + β) Z Z 2 2 2 2n 2 x2n K1 (αx) K1 (βx) K1 ((α+β)x) dx+ +4n (α −β ) x K0 (αx) K1 (βx) K0 ((α+β)x) dx−4n(n−1)α =

+x2n+1 [αβ(α + β)x K0 (αx) K0 (βx) K0 ((α + β)x) − 2nβ(2α + β) K0 (αx) K0 (βx) K1 ((α + β)x)− −2n(α2 − β 2 ) K0 (αx) K1 (βx) K0 ((α + β)x) − αβ(α + β)x K0 (αx) K1 (βx) K1 ((α + β)x)− −αβ(α + β)x K1 (αx) K0 (βx) K1 ((α + β)x) + αβ(α + β)x K1 (αx) K1 (βx) K0 ((α + β)x)+  + 2nα2 K1 (αx) K1 (βx) K1 ((α + β)x)] Z

=

x2n+1 K0 (αx) K1 (βx) K1 ((α + β)x) dx =

1 2(4n + 1)αβ(α + β)

 Z 2nβ(α − 2nβ) x2n K0 (αx) K0 (βx) K1 ((α + β)x) dx+ Z

+2n[(2n + 1)α + 2nβ](α + β) −2(2n + 1)(n − 1)α2

Z

x2n K0 (αx) K1 (βx) K0 ((α + β)x) dx−

x2n K1 (αx) K1 (βx) K1 ((α + β)x) dx+

+x2n+1 [−αβ(α + β)x K0 (αx) K0 (βx) K0 ((α + β)x)+ +β(2nβ − α) K0 (αx) K0 (βx) K1 ((α + β)x) − (α + β)((2n + 1)α + 2nβ) K0 (αx) K1 (βx) K0 ((α + β)x)+ +αβ(α + β)x K0 (αx) K1 (βx) K1 ((α + β)x) + αβ(α + β)x K1 (αx) K0 (βx) K1 ((α + β)x)−  2 − αβ(α + β)x K1 (αx) K1 (βx) K0 ((α + β)x) + (2n + 1)α K1 (αx) K1 (βx) K1 ((α + β)x)] Z 1 = 2(4n + 1)αβ(α + β)

x2n+1 K1 (αx) K1 (βx) K0 ((α + β)x) dx =  Z −2nβ[(2n + 1)β + α] x2n K0 (αx) K0 (βx) K1 ((α + β)x) dx−

−2n(2n + 1)(α2 − β 2 )

Z

x2n K0 (αx) K1 (βx) K0 ((α + β)x) dx+ Z

+2(n − 1)α[(2n + 1)α + (4n + 1)β]

x2n+1 K1 (αx) K1 (βx) K1 ((α + β)x) dx+

+x2n+1 [αβ(α + β)x K0 (αx) K0 (βx) K0 ((α + β)x) + β[(2n + 1)β + α] K0 (αx) K0 (βx) K1 ((α + β)x)+ +(2n + 1)(α2 − β 2 ) K0 (αx) K1 (βx) K0 ((α + β)x) − αβ(α + β)x K0 (αx) K1 (βx) K1 ((α + β)x)− −αβ(α + β)x K1 (αx) K0 (βx) K1 ((α + β)x) + αβ(α + β)x K1 (αx) K1 (βx) K0 ((α + β)x)−  −α[(4n + 1)β + (2n + 1)α] K1 (αx) K1 (βx) K1 ((α + β)x)]

409

Z

=

1 2(4n + 3)αβ(α + β)

x2n+2 K0 (αx) K0 (βx) K1 ((α + β)x) dx =

 Z 2(n + 1)β[(4n + 3)α + (2n + 1)β] x2n+1 K0 (αx) K0 (βx) K0 ((α + β)x) dx+ 2

2

Z

+2n(2n + 1)(α − β ) Z −2αn[(2n + 1)α − β]

x2n+1 K0 (αx) K1 (βx) K1 ((α + β)x) dx− x2n+1 K1 (αx) K1 (βx) K0 ((α + β)x) dx+

+x2n+2 [ − β[(4n + 3)α + (2n + 1)β] K0 (αx) K0 (βx) K0 ((α + β)x)+ +αβ(α + β)x K0 (αx) K0 (βx) K1 ((α + β)x) − αβ(α + β)x K0 (αx) K1 (βx) K0 ((α + β)x)− −(2n + 1)(α2 − β 2 ) K0 (αx) K1 (βx) K1 ((α + β)x) − αβ(α + β)x K1 (αx) K0 (βx) K0 ((α + β)x)+  +α[(2n + 1)α − β] K1 (αx) K1 (βx) K0 ((α + β)x) +αβ(α + β) x K1 (αx) K1 (βx) K1 ((α + β)x)] Z

=

1 2(4n + 3)αβ(α + β)

x2n+2 K0 (αx) K1 (βx) K0 ((α + β)x) dx =

 Z −2β 2 (n + 1)(2n + 1) x2n+1 K0 (αx) K0 (βx) K0 ((α + β)x) dx+ Z

+2n(α + β)[2(n + 1)α + (2n + 1)β] Z −2nα[2(n + 1)α + β]

x2n+1 K0 (αx) K1 (βx) K1 ((α + β)x) dx −

x2n+1 K1 (αx) K1 (βx) K0 ((α + β)x) dx+

+x2n+2 [(2n + 1)β 2 K0 (αx) K0 (βx) K0 ((α + β)x) − αβ(α + β)x K0 (αx) K0 (βx) K1 ((α + β)x)+ +αβ(α + β)x K0 (αx) K1 (βx) K0 ((α + β)x) − (α + β)[2(n + 1)α + (2n + 1)β] K0 (αx) K1 (βx) K1 ((α + β)x)+ +αβ(α + β)x K1 (αx) K0 (βx) K0 ((α + β)x) + α[2(n + 1)α + β)] K1 (αx) K1 (βx) K0 ((α + β)x)−  −αβ(α + β) K1 (αx) K1 (βx) K1 ((α + β)x)] Z

x2n+2 K1 (αx) K1 (βx) K1 ((α + β)x) dx =

1 = 2(4n + 3)αβ(α + β)

 Z 2 2 −4β (n + 1) x2n+1 K0 (αx) K0 (βx) K0 ((α + β)x) dx−

−4n(n + 1)(α2 − β 2 )

Z Z

+4n(n + 1)α(α + 2β)

x2n+1 K0 (αx) K1 (βx) K1 ((α + β)x) dx+ x2n+1 K1 (αx) K1 (βx) K0 ((α + β)x) dx+

+x2n+2 [2(n + 1)β 2 K0 (αx) K0 (βx) K0 ((α + β)x) + αβ(α + β)x K0 (αx) K0 (βx) K1 ((α + β)x)− −αβ(α + β)x K0 (αx) K1 (βx) K0 ((α + β)x) + 2(n + 1)(α2 − β 2 ) K0 (αx) K1 (βx) K1 ((α + β)x)− −αβ(α + β)x K1 (αx) K0 (βx) K0 ((α + β)x) − 2(n + 1)α(α + 2β) K1 (αx) K1 (βx) K0 ((α + β)x)+  +αβ(α + β)x K1 (αx) K1 (βx) K1 ((α + β)x)]

410

p c) xn Zκ (αx) Zµ (βx) Zν ( α2 ± β 2 x) p Formulas with α2 + β 2 were found for the following integrals. Replacing β by β i one gets some modifications. Z p x J1 (αx) J1 (βx) J0 ( α2 + β 2 x) dx = p p x hp 2 α + β 2 J0 (αx) J0 (βx) J1 ( α2 + β 2 x) − β J0 (αx) J1 (βx) J0 ( α2 + β 2 x)− 2αβ i p − α J1 (αx) J0 (βx) J0 ( α2 + β 2 x) Z p x I1 (αx) I1 (βx) I0 ( α2 + β 2 x) dx =

=

p p x h p 2 − α + β 2 I0 (αx) I0 (βx) I1 ( α2 + β 2 x) + β I0 (αx) I1 (βx) I0 ( α2 + β 2 x)+ 2αβ i p + α I1 (αx) I0 (βx) I0 ( α2 + β 2 x) Z p x K1 (αx) K1 (βx) K0 ( α2 + β 2 x) dx =

=

=

p p x hp 2 α + β 2 K0 (αx) K0 (βx) K1 ( α2 + β 2 x) − β K0 (αx) K1 (βx) K0 ( α2 + β 2 x)− 2αβ i p − α K1 (αx) K0 (βx) K0 ( α2 + β 2 x)

Z

=

p p x h p 2 − α − β 2 J0 (αx) I0 (βx) J1 ( α2 − β 2 x) − β J0 (αx) I1 (βx) J0 ( α2 − β 2 x)+ 2αβ i p + α J1 (αx) I0 (βx) J0 ( α2 − β 2 x)

Z

=

p x I1 (αx) J1 (βx) I0 ( α2 − β 2 x) dx =

p p x hp 2 α − β 2 I0 (αx) J0 (βx) I1 ( α2 − β 2 x) + β I0 (αx) J1 (βx) I0 ( α2 − β 2 x)− 2αβ i p − α I1 (αx) J0 (βx) I0 ( α2 − β 2 x)

Z

Z

Z

p x J1 (αx) I1 (βx) J0 ( α2 − β 2 x) dx =

p p x2 h x2 J0 (αx) J0 (βx) J1 ( α2 + β 2 x) dx = α J0 (α x)J1 (β x)J1 ( α2 + β 2 x)+ 2αβ i p p p +β J1 (α x)J0 (β x)J1 ( α2 + β 2 x) − α2 + β 2 J1 (α x)J1 (β x)J0 ( α2 + β 2 x) p p x2 h x2 I0 (αx) I0 (βx) I1 ( α2 + β 2 x) dx = α I0 (α x)I1 (β x)I1 ( α2 + β 2 x)+ 2αβ i p p p +β I1 (α x)I0 (β x)I1 ( α2 + β 2 x) − α2 + β 2 I1 (α x)I1 (β x)I0 ( α2 + β 2 x)

p p x2 h α K0 (α x)K1 (β x)K1 ( α2 + β 2 x)+ x2 K0 (αx) K0 (βx) K1 ( α2 + β 2 x) dx = − 2αβ i p p p +β K1 (α x)K0 (β x)K1 ( α2 + β 2 x) − α2 + β 2 K1 (α x)K1 (β x)K0 ( α2 + β 2 x)

411

Z

Z

p p x2 h x2 I0 (αx) J0 (βx) I1 ( α2 − β 2 x) dx = α I0 (α x)J1 (β x)I1 ( α2 − β 2 x)+ 2αβ i p p p +β I1 (α x)J0 (β x)I1 ( α2 − β 2 x) − α2 − β 2 I1 (α x)J1 (β x)I0 ( α2 − β 2 x)

h p p x p − α2 − β 2 J0 (α x)J0 (β x)J1 ( α2 − β 2 x)− 2β α2 − β 2 i p p −β J0 (α x)J1 (β x)J0 ( α2 − β 2 x) + α J1 (α x)J0 (β x)J0 ( α2 − β 2 x) hp p x p α2 − β 2 I0 (α x)I0 (β x)I1 ( α2 − β 2 x)+ 2 2 2β α − β i p p +β I0 (α x)I1 (β x)I0 ( α2 − β 2 x) − α I1 (α x)I0 (β x)I0 ( α2 − β 2 x)

p x I0 (αx) I1 (βx) I1 ( α2 − β 2 x) dx =

h p p x p − α2 − β 2 K0 (α x)K0 (β x)K1 ( α2 − β 2 x)− 2 2 2β α − β i p p −β K0 (α x)K1 (β x)K0 ( α2 − β 2 x) + α K1 (α x)K0 (β x)K0 ( α2 − β 2 x)

p x K0 (αx) K1 (βx) K1 ( α2 − β 2 x) dx =

Z

p x J0 (αx) I1 (βx) J1 ( α2 + β 2 x) dx =

Z

p x I0 (αx) J1 (βx) I1 ( α2 + β 2 x) dx =

Z

p x2 J1 (αx) J0 (βx) J0 ( α2 − β 2 x) dx =

Z

Z

p p x2 h α J0 (α x)I1 (β x)J1 ( α2 − β 2 x)+ x2 J0 (αx) I0 (βx) J1 ( α2 − β 2 x) dx = 2αβ i p p p +β J1 (α x)I0 (β x)J1 ( α2 − β 2 x) − α2 − β 2 J1 (α x)I1 (β x)J0 ( α2 − β 2 x)

p x J0 (αx) J1 (βx) J1 ( α2 − β 2 x) dx =

Z

Z

Z

hp p x p α2 + β 2 J0 (α x)I0 (β x)J1 ( α2 + β 2 x)− 2β α2 + β 2 i p p −β J0 (α x)I1 (β x)J0 ( α2 + β 2 x) − α J1 (α x)I0 (β x)J0 ( α2 + β 2 x)

h p p x p − α2 + β 2 I0 (α x)J0 (β x)I1 ( α2 + β 2 x)+ 2β α2 + β 2 i p p +β I0 (α x)J1 (β x)I0 ( α2 + β 2 x) + α I1 (α x)J0 (β x)I0 ( α2 + β 2 x)

hp p x2 p α2 − β 2 J1 (α x)J1 (β x)J0 ( α2 − β 2 x)+ 2 2 2β α − β i p p +β J1 (α x)J0 (β x)J1 ( α2 − β 2 x) − α J0 (α x)J1 (β x)J1 ( α2 − β 2 x) hp p x2 p α2 − β 2 I1 (α x)I1 (β x)I0 ( α2 − β 2 x)+ 2β α2 − β 2 i p p +β I1 (α x)I0 (β x)I1 ( α2 − β 2 x) − α I0 (α x)I1 (β x)I1 ( α2 − β 2 x)

p x2 I1 (αx) I0 (βx) I0 ( α2 − β 2 x) dx =

h p p x2 p − α2 − β 2 K1 (α x)K1 (β x)K0 ( α2 − β 2 x)− 2 2 2β α − β i p p −β K1 (α x)K0 (β x)K1 ( α2 − β 2 x) + α K0 (α x)K1 (β x)K1 ( α2 − β 2 x)

p x2 K1 (αx) K0 (βx) K0 ( α2 − β 2 x) dx =

412

hp p x2 p α2 + β 2 J1 (α x)I1 (β x)J0 ( α2 + β 2 x)+ 2β α2 + β 2 i p p +β J1 (α x)I0 (β x)J1 ( α2 + β 2 x) − α J0 (α x)I1 (β x)J1 ( α2 + β 2 x)

Z

p x2 J1 (αx) I0 (βx) J0 ( α2 + β 2 x) dx =

Z

p x2 I1 (αx) J0 (βx) I0 ( α2 + β 2 x) dx =

hp p x2 p α2 + β 2 I1 (α x)J1 (β x)I0 ( α2 + β 2 x)+ 2β α2 + β 2 i p p +β I1 (α x)J0 (β x)I1 ( α2 + β 2 x) − α I0 (α x)J1 (β x)I1 ( α2 + β 2 x)

413

4. Products of four Bessel Functions 4.1. Integrals of the type

R

xm Z0n (x)Z14−n (x) dx

4.1. a) Explicit Integrals Z

1 J03 (x) J1 (x) dx = − J04 (x) 4 Z

Z

Z

I03 (x) I1 (x) dx =

1 4 I (x) 4 0

1 K03 (x) K1 (x) dx = − K04 (x) 4

 1 2 4 x J0 (x) − 2xJ03 (x)J1 (x) + 2x2 J02 (x)J12 (x) − 2xJ0 (x)J13 (x) + x2 J14 (x) 4 Z  1 2 4 −x I0 (x) + 2xI03 (x)I1 (x) + 2x2 I02 (x)I12 (x) − 2xI0 (x)I13 (x) − x2 I14 (x) I0 (x)I13 (x) dx = 4 Z  1 2 4 K0 (x)K13 (x) dx = x K0 (x) + 2xK03 (x)K1 (x) − 2x2 K02 (x)K12 (x) − 2xK0 (x)K13 (x) + x2 K14 (x) 4 J0 (x)J13 (x) dx =

Z Z Z

x4 J0 (x) J13 (x) dx =

x4 4 J (x) 4 1

x4 I0 (x) I13 (x) dx =

x4 4 I (x) 4 1

x4 K0 (x) K13 (x) dx = −

(See also p. 455.)

x4 4 K (x) 4 1

J02 (x)J12 (x) x2 + 1 4 x x2 + 1 2 x x2 dx = − J0 (x) + J03 (x)J1 (x) − J0 (x)J12 (x) + J0 (x)J13 (x) − J14 (x) x 4 2 2 2 4

Z

I02 (x)I12 (x) x2 − 1 4 x x2 − 1 2 x x2 dx = − I0 (x) + I03 (x)I1 (x) + I0 (x)I12 (x) − I0 (x)I13 (x) − I14 (x) x 4 2 2 2 4

Z Z

x2 − 1 4 x x2 − 1 2 x x2 K02 (x)K12 (x) dx = − K0 (x) − K03 (x)K1 (x) + K0 (x)K12 (x) + K0 (x)K13 (x) − K14 (x) x 4 2 2 2 4

Z

J0 (x)J13 (x) 4x2 + 3 4 x 4x2 + 3 2 2x2 − 1 4x2 − 1 4 dx = − J0 (x)+ J03 (x)J1 (x)− J0 (x)J12 (x)+ J0 (x)J13 (x)− J1 (x) 2 x 16 2 8 4x 16

Z

4x2 − 3 4 x 3 4x2 − 3 2 4x2 + 1 4 I0 (x)I13 (x) 2x2 + 1 3 2 dx = − I (x)+ I (x)I (x)+ I (x)I I (x)I (x)− I1 (x) (x)− 0 1 0 0 1 1 x2 16 2 0 8 4x 16 Z K0 (x)K13 (x) dx = x2 =

4x2 − 3 4 x 4x2 − 3 2 2x2 + 1 4x2 + 1 4 K0 (x) + K03 (x)K1 (x) − K0 (x)K12 (x) − K0 (x)K13 (x) + K1 (x) 16 2 8 4x 16 Z

 J14 (x) 1 2 4 dx = x J0 (x) − 2xJ03 (x)J1 (x) + 2x2 J02 (x)J12 (x) − 2xJ0 (x)J13 (x) + (x2 − 1)J14 (x) x 4

Z

 1 2 4 I14 (x) dx = −x I0 (x) + 2xJI3 (x)I1 (x) + 2x2 I02 (x)I12 (x) − 2xI0 (x)I13 (x) − (x2 + 1)I14 (x) x 4

414

Z

=

K14 (x) dx = x

 1 2 4 −x K0 (x) − 2xKI3 (x)K1 (x) + 2x2 K02 (x)K12 (x) + 2xK0 (x)K13 (x) − (x2 + 1)K14 (x) 4

Z

4x2 + 3 4 J14 (x) x 4x2 + 3 2 2x2 − 1 4x4 − x2 + 4 4 dx = − J1 (x) J0 (x)+ J03 (x)J1 (x)− J0 (x)J12 (x)+ J0 (x)J13 (x)− 3 x 24 3 12 6x 24x2

Z

I14 (x) 4x2 − 3 4 x 3 4x2 − 3 2 2x2 + 1 4x4 + x2 + 4 4 2 3 dx = − I1 (x) I I I I (x)I (x)+ (x)I (x)+ (x)I (x)− (x)− 0 1 0 0 1 1 x3 24 3 0 12 6x 24x2 Z K14 (x) dx = x3

=−

4x2 − 3 4 x 4x2 − 3 2 2x2 + 1 4x4 + x2 + 4 4 K1 (x) K0 (x) − K03 (x)K1 (x) + K0 (x)K12 (x) + K0 (x)K13 (x) − 24 3 12 6x 24x2

4.1. b) Basic Integral Z04 (x) . ........ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.0 ... .... R .... x J 4 (t) dt ... 0 0 .... ..................... .... ....................................................................................................................................................................................... ....................... . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... ... ...... .... .... . . .... .. .... . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.75 ... ... .. .... ... ... . .. .... . .... . .... .. . .... . .. .... . . .... .... . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.50 ... .. ... ... .... ... . .... .. . .... .. .... .. .... .. .... .. .... .. .. . 0.25 ..... . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .. .... .. ... .. .... .. .... .. .... .. ...... ...... x ..... ...................................................................................................................................................................................................................................................................................................................................................................................... 2 4 6 8 Power series: Z x ∞ X 1 7 1 679 179 6049 J04 (t) dt = (−1)k ak x2k+1 = x− x3 + x5 − x7 + x9 − x11 + x13 −. . . 3 80 63 331776 921600 431308800 0 k=0

Z 0

x

I04 (t) dt =

∞ X k=0

ak x2k+1 = x +

7 5 1 7 679 179 6049 1 3 x + x + x + x9 + x11 + x13 + . . . 3 80 63 331776 921600 431308800 415

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ak 1 1 3 7 80 1 63 679 331776 179 921600 6049 431308800 9671 12192768000 16304551 452803638067200 7844077 5856006714163200 752932783 18122799725936640000 93524251 85775087818506240000 36868956721 1503674582974857216000000 131084576323 274450684884570939064320000 134309549357 16507700453797896482979840000 242618760673 1985193287331729792565248000000

ak 1.00000 00000 00000 00000 0.33333 33333 33333 33333 0.08750 00000 00000 00000 0.01587 30158 73015 87302 0.00204 65615 35493 82716 0.00019 42274 30555 55556 0.00001 40247 54421 88984 0.00000 07931 75101 83086 0.00000 00360 07994 70074 0.00000 00013 39492 48744 0.00000 00000 41546 16253 0.00000 00000 01090 34282 0.00000 00000 00024 51924 0.00000 00000 00000 47763 0.00000 00000 00000 00814 0.00000 00000 00000 00012

Approximation by Chebyshev polynomials: For |x| ≤ 8 holds (based on [2], 9.7) Z

x

J04 (t) dt =

0

with the coefficients k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.11216 -0.34519 0.19338 -0.12647 0.09004 -0.06770 0.04909 -0.03372 0.02266 -0.01515 0.01031 -0.00711 0.00463 -0.00263 0.00126 -0.00050 0.00016

33 X

αk T2n+1

k=0

αk 87232 17415 82074 08183 56892 17817 46023 40353 69978 53930 44234 67527 50732 71375 22032 48484 99635

77997 46385 76973 95063 27881 94869 85233 97394 75674 28431 66796 37994 52595 49146 52082 79216 21655

x 8

k 70374 57003 67514 85502 33025 79248 15906 50397 80247 47066 38411 13547 22669 56248 49660 82394 61120

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 416

+ ∆(40) (x)

αk -0.00004 0.00001 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

87217 20357 25907 04907 00825 00124 00016 00002 00000 00000 00000 00000 00000 00000 00000 00000 00000

67090 15738 87311 99998 41454 18007 82526 06529 23088 02361 00222 00019 00001 00000 00000 00000 00000

45658 11243 63049 13736 11576 27445 91798 29192 90409 98127 04627 25615 54585 11524 00800 00052 00003

The derivation ∆(40) (x): . ......... 20 (40) .... 10 · ∆ (x) .. .... .. . .... ..... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . . . . . . . . . . . . ....... . 2 ... . ... ..... ... ...... ...... ... .... . . .... . . . ... ..... . ... .... ... ... .. .... .. ... ... .... ... ..... ... ....... ........ .......... ... .... ... .... ..... .... ... .... .... .. . .. .. .. . . . . .... . .. 1 .... . . . . .. . . .... . . . . . . . . . . . . . . . . . . . ... . . . . ..... . . . . . . . . . . . . . .... ...... . . . . ..... . ..... . . . . . . . . . . . . ... . ....... . . . . .......... . .... ........ ........ ... . . . . . ... . ... . . .. . . .. . . .... . . ... .... .... ..... ... ..... ... . .. . ... . .... ... ... . . . . . . .... . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . .. . ... . .. ... . .... ... . . .... .. .... ... ..... ... .... ... .... ... ......... .. .. .. ..... ... ... ... . . .... . ... . . . . . . . . .. ...............................................................................................................................................................................................................................................................................................................................................................................................................................x .... .... ... .. .. ... .. .. ... ... . . . . . . . . . ........ .. . . . . . . . . . . 2 4 6 8 . . . . . . . . . . . . . . ... ... . ... . ... . ........... ... . ... . ... . . .... ... .. ... ... .. ... .. ... .. ..... ... .. ... .. .. .... ..... . . . . . ... .. . . . . . ..... ... . ... . ... ... .. .... . . . ... . . . . . . . . . ...... . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... . ..... . . . . . . .... . . . . . . ..... ..... . . . . . . . . . . ..... ..... . . . ... . ... ... .. -1 ... ... .. . . ... ... ... ... ... ... ... .... ... ... ... .... ... ... .. ... . .... . . ..... ..... . .... . . .. . . . . . . . . . . . . . ..... . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... . . . . . ... . -2 ... ... .. .... . ... . .... ... ... .... ... ... .. Asymptotic formula: Z



J04 (x) dx

=

0.90272 85783 23834 82419 . . .

0

Z

x

J04 (t) dt ∼ 0.90272 . . . −

0

= 0.90272 . . . −

1 π2



 8 cos (2 x) + sin (4 x) 1 − 10 sin (2 x) + cos (4 x) 3 + − + . . . = 2x 8x2 8 x3

∞ ∞ 1 X pk + qk sin 2x + rk sin 4x + sk cos 2x + tk cos 4x 1 X σk (x) = 0.90272 . . . − π2 nk · xk π2 xk k=1

k=1

k

pk

qk

rk

sk

tk

nk

1 2 3 4 5 6 7 8 9 10 11 12

3 0 -1 0 168 0 -27648 0 1042944 0 -1979596800 0

0 0 10 0 -5770 0 2053401 0 -134972229 0 394714074735 0

0 1 0 -9 0 644 0 -93636 0 102333888 0 -48926574720

0 8 0 -138 0 24095 0 -93636 0 19644534099 0 -17487139338315

0 0 -1 0 245 0 -35364 0 1015836 0 -1482416640 0

2 8 8 64 1280 2048 57344 65536 262144 8388608 33554432 268435456

Let Dn (x) = 0.90272 . . . −

Z x n 1 X σk (x) − J04 (t) dt π2 xk 0 k=1

denote the derivation of the partial sums of the asymptotic series. The following table shows consecutive maxima and minima of this functions: xk D1 (xk )

1.505 -3.113E-02

3.298 8.502E-03

4.622 -4.513E-03

6.418 2.446E-03

7.755 -1.678E-03

9.552 1.126E-03

10.893 -8.628E-04

xk D2 (xk )

2.356 -6.617E-03

3.964 1.749E-03

5.498 -6.893E-04

7.091 3.361E-04

8.639 -1.879E-04

10.226 1.152E-04

11.781 -7.558E-05

417

xk D3 (xk )

3.221 -1.514E-03

4.656 3.813E-04

6.355 -1.230E-04

7.796 5.450E-05

9.494 -2.601E-05

10.936 1.463E-05

12.634 -8.457E-06

xk D4 (xk )

3.945 -3.508E-04

5.498 7.283E-05

7.080 -2.295E-05

8.639 8.509E-06

10.219 -3.893E-06

11.781 1.881E-06

13.358 -1.046E-06

xk D5 (xk )

3.176 6.526E-04

4.688 -7.890E-05

6.314 1.534E-05

7.830 -4.427E-06

9.454 1.511E-06

10.971 -6.268E-07

12.595 2.819E-07

xk D6 (xk )

3.937 1.452E-04

5.498 -1.689E-05

7.076 3.288E-06

8.639 -8.541E-07

10.216 2.789E-07

11.781 -1.044E-07

13.356 4.469E-08

xk D7 (xk )

3.157 -5.521E-04

4.702 3.208E-05

6.297 -3.752E-06

7.844 7.106E-07

9.438 -1.734E-07

10.985 5.326E-08

12.579 -1.868E-08

xk D8 (xk )

3.933 -1.077E-04

5.498 6.921E-06

7.074 -8.432E-07

8.639 1.521E-07

10.214 -3.594E-08

11.781 1.033E-08

13.355 -3.490E-09

xk D9 (xk )

3.150 7.860E-04

4.708 -2.183E-05

6.290 1.525E-06

7.849 -1.904E-07

9.431 3.320E-08

10.991 -7.650E-09

12.573 2.080E-09

xk D10 (xk )

3.931 1.271E-04

5.498 -4.450E-06

7.072 3.409E-07

8.639 -4.254E-08

10.213 7.270E-09

11.781 -1.600E-09

13.354 4.100E-10

Holds D9 (8) = -1.798E-7 and min {Dn (xk ) | 8 ≤ x } = |D10 (8.639)| = 4.254E − 8 . Therefore using the partial sum of the asymptotic series with n = 10 means to get the best uniform approximation of the integral with x ≥ 8. It is the best way to continue the representation by the sum of Chebyshev polynomials given before. Z 0

x

I04 (t) dt ∼

e4x 16π 2 x2

  ∞ 9 49 161 1263 23409 e4x X µk 1 + + + + . . . = 1+ + 2 + x 8x 32 x3 64 x4 256 x5 2048 x6 16π 2 x2 xk k=0

k

µk

µk

µk /µk−1

0 1

1 1 9 8 49 32 161 64 1263 256 23409 2048 253959 8192 1598967 16384 2895345 8192 382238865 262144 7110791145 1048576 295087625775 8388608

1.000 000 000 000 1.000 000 000 000

1.000

1.125 000 000 000

1.125

1.531 250 000 000

1.361

2.515 625 000 000

1.643

4.933 593 750 000

1.961

11.430 175 781 25

2.317

31.000 854 492 19

2.712

97.593 200 683 59

3.148

353.435 668 945 3

3.622

1 458.125 553 131

4.126

6 781.378 884 315

4.651

35 177.186 223 864

5.187

2 3 4 5 6 7 8 9 10 11 12

For a given x >> 0 the series can be used while µk /µk−1 ≤ x. 418

4.1. c) Basic Integral x Z02 (x) Z12 (x) .. ........ R x 2 2 .... 0 t J0 (t) J1 (t) dt .... .... .... ... ... .................. .. ............... . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ... .......... 0.2 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........................................................ . . . . . . . . . . . . . . . . . . . .. ... .......... ............................. . .... . . . . . . . . . . . . .... ...... .... ..... . . . . . .... ....... .... ............................. . . . . . . . ... ..... . ..... 0.15 ..... . . . . . . . . . . . . . . . . . ...................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .... .... ... . .... . .... .. . . .... .. .... . . .... .. . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.10 .. .. ... .... ... . .... .... .. . .... . .. .... . .... .. . . . . . . . . . . . ............................................................................ . . . 0.05 .. .... .. . . .... .. ... . . .... .. .... . .... . x ... .... . . . ........................................................................................................................................................................................................................................................................................................................................................................................ . 8 6 4 2 Power series: Z x ∞ X x4 x6 47 8 43 17 211 t J02 (t) J12 (t) dt = (−1)k bk x2k = − + x − x10 + x12 − x14 + . . . 16 32 6144 36864 138240 22118400 0 k=2

Z 0

x

t I02 (t) I12 (t) dt =

∞ X

bk x2k =

k=2

k 2 3 4 5 6 7 8

x6 47 8 43 17 211 x4 + + x + x10 + x12 + x14 + . . . 16 32 6144 36864 138240 22118400

bk 1 4 1 32 47 6144 43 36864 17 138240 211 22118400 540619 951268147200

bk 0.25000 00000 00000 00000 0.03125 00000 00000 00000 0.00764 97395 83333 33333 0.00116 64496 52777 77778 0.00012 29745 37037 03704 0.00000 95395 68865 74074 0.00000 05683 13993 89465

419

k 9 10 11 12 13 14 15 16

bk 1072333 39953262182400 19751801 19177565847552000 11307553 345196185255936000 88869497 101257547675074560000 402630853 20048994439664762880000 17384556227 43787003856227842129920000 16710855809 2439561643418408347238400000 58219427293829 559576891520740833056155238400000

bk 0.00000 00268 39685 70838 0.00000 00010 29943 06770 0.00000 00000 32756 88864 0.00000 00000 00877 65800 0.00000 00000 00020 08235 0.00000 00000 00000 39703 0.00000 00000 00000 00685 0.00000 00000 00000 00010

Approximation by Chebyshev polynomials: For |x| ≤ 8 holds (based on [2], 9.7) x

Z

t J02 (t) J12 (t) dt = x4

0

with the coefficients k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.00654 -0.01239 0.01094 -0.00914 0.00727 -0.00551 0.00398 -0.00273 0.00177 -0.00107 0.00059 -0.00030 0.00013 -0.00005 0.00001 -0.00000

33 X

βk T2n

k=0

βk 92504 97369 53569 38524 27632 50237 42908 36991 13047 36173 89651 12533 40719 21809 76814 52208

91232 78264 42769 55194 79880 23344 14902 93851 44123 62206 07157 67887 51669 55261 63326 90537

k 31929 31272 10753 87209 71248 53306 62113 90098 60885 65294 49244 99958 75647 86499 68133 98925

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

x 8

+ ∆(22) (x)

βk 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

13488 03066 00617 00110 00017 00002 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

21251 11870 07706 63931 77850 57472 33780 04034 00440 00044 00004 00000 00000 00000 00000 00000

71102 00840 64541 41290 51057 65556 93775 52317 55264 16078 07863 34826 02758 00203 00014 00001

The derivation ∆(22)(x) : ........ 1017 · ∆(22) (x) .... ... .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . 6 ... .. .... ... ..... .... .... 4 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... ...... . ... .. .. .... ... .... . 2 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......... . . .... .... ... ... .. ...... ... ..... ... ........... . .... . . . . . . . . . . . . . . . . . . . .. .. .. ..x . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ................................................................................................................................................................................................................................................................................................................................................................................................................. [2ex] . ... ... ... ... 8 . . . . ... . . ........... .. 4 2 ...6 ... .. ... ... .... .. ..... ... .. . . .. -2 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .......................... ... . ...... . ... . . . . .... ... . ....... ...... . . ... . ... . ..... ..... ... .. .... .. .... -4 ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ........ . . . . . . . . . .. 420

Asymptotic formula:

x

Z

t J02 (t) J12 (t) dt ∼ 0.09947 25799 65044 03230 . . . +

0

 ln x sin 4x cos 4x − 16 sin 2x − 6 sin 4x + 12 cos 2x + + . . . = + + 2 8x 8x2 32 x3 " # ∞ 1 ln x X pk + qk sin 2x + rk sin 4x + sk cos 2x + tk cos 4x = = 0.09947 . . . + 2 + π 2 nk · xk k=1 " # ∞ X 1 σk (x) = 0.09947 . . . + 2 σ0 (x) + π xk +

1 π2



k=1

k

pk

qk

rk

sk

tk

nk

1 2 3 4 5 6 7 8 9 10 11 12

0 -6 0 18 0 -576 0 99360 0 -137687040 0 67108864

0 -16 0 180 0 -15483 0 99360 0 -13633922835 0 12571439587875

1 0 1 0 -51 0 3015 0 -703530 0 1159159680 0

0 0 12 0 -1356 0 182385 0 -88668135 0 271539997785 0

0 1 0 -9 0 357 0 -60300 0 75666960 0 -40044715200

8 32 32 256 1024 4096 16384 131072 524288 16777216 67108864 536870912

Let 1 Dn (x) = 0.09947 . . . + 2 π

" σ0 (x) +

n X σk (x) k=1

xk

#

Z −

x

t J02 (t) J12 (t) dt

0

denote the derivation of the partial sums of the asymptotic series. The following table shows consecutive maxima and minima of this functions: xk D1 (xk )

3.391 -5.002E-04

4.211 6.375E-03

5.147 -2.955E-03

5.931 1.615E-03

6.602 -8.607E-04

7.398 2.793E-03

8.273 -1.744E-03

xk D2 (xk )

3.870 4.475E-03

5.505 -8.864E-04

7.037 1.430E-03

8.644 -3.717E-04

10.188 6.919E-04

11.784 -2.023E-04

13.335 4.062E-04

xk D3 (xk )

3.248 -1.021E-03

4.676 3.135E-04

6.384 -1.471E-04

7.800 7.402E-05

9.520 -4.504E-05

10.934 2.779E-05

12.658 -1.922E-05

xk D4 (xk )

3.901 -2.742E-04

5.502 5.650E-05

7.053 -3.011E-05

8.642 1.011E-05

10.199 -7.214E-06

11.783 3.019E-06

13.343 -2.511E-06

xk D5 (xk )

3.201 2.732E-04

4.711 -4.339E-05

6.340 1.169E-05

7.840 -3.970E-06

9.477 1.674E-06

10.975 -7.807E-07

12.616 4.107E-07

xk D6 (xk )

3.175 -1.747E-04

4.724 1.386E-05

6.316 -2.198E-06

7.857 4.983E-07

9.455 -1.481E-07

10.994 5.176E-08

12.594 -2.095E-08

xk D7 (xk )

3.921 -3.990E-05

5.499 3.253E-06

7.064 -5.342E-07

8.640 1.093E-07

10.207 -3.219E-08

11.782 9.988E-09

13.349 -3.994E-09

xk D8 (xk )

3.161 2.032E-04

4.726 -7.880E-06

6.305 7.394E-07

7.863 -1.115E-07

9.444 2.348E-08

11.001 -6.142E-09

12.584 1.922E-09

xk D9 (xk )

3.924 3.864E-05

5.499 -1.772E-06

7.066 1.785E-07

8.640 -2.587E-08

10.208 5.416E-09

11.782 -1.316E-09

13.350 4.030E-10

xk D10 (xk )

3.154 -3.766E-04

4.725 7.014E-06

6.299 -3.886E-07

7.864 3.885E-08

9.439 -5.815E-09

11.003 1.138E-09

12.579 -2.759E-10

421

Holds min {Dn (xk ) | 8 ≤ x } = |D9 (9.439)| = 2.587E − 08 . Therefore using the partial sum of the asymptotic series with n = 9 means to get the best uniform approximation of the integral with x ≥ 8. It is the best way to continue the representation by the sum of Chebyshev polynomials given before. Z

x

t I02 (t) I12 (t) dt ∼

0

  9 51 357 3015 e4x 1 1 − − − − − . . . = 1 − − 16π 2 x 4x 4x2 32 x3 128 x4 512 x5 2048 x6 ! ∞ X e4x µk = 1− 16π 2 x xk k=1

k 1 2 3 4 5 6 7 8 9 10 11 12

µk 1 4 1 4 9 32 51 128 357 512 3015 2048 15075 4096 351765 32768 4729185 131072 9055935 65536 625698675 1048576 24131137275 8388608

µk

µk /µk−1

0.250 000 000 000

-

0.250 000 000 000

1.000

0.281 250 000 000

1.125

0.398 437 500 000

1.417

0.697 265 625 000

1.750

1.472 167 968 750

2.111

3.680 419 921 875

2.500

10.735 015 869 14

2.917

36.080 818 176 27

3.361

138.182 601 928 7

3.830

596.712 756 156 9

4.318

2 876.655 730 605

4.821

For a given x >> 0 the series can be used while µk /µk−1 ≤ x.

422

4.1. d) Basic Integral Z14 (x) ..... 0.2 ...... .R. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... x J 4 (t) dt .... 0 1 ....................................................... .... ...................................................................................... . . . . . . . . . . . . . . .... . . ........... .... ............ . . . . . . . . . . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... ........... .... ...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.15 ... .. ... ... .. . .... . .... .. .... . .... . .... .. . .... .. 0.10 .... . . . . . . . . . . . . . . . . .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . .... .. . .... . .... .. . .... . .. .... . . .... 0.05 ... . . . . . . . . . . . . ..... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... .. .... . .... . .... ... . .... .. ... .... . . . x .... .... ......................................................................................................................................................................................................................................................................................................................................................................................... 2 4 6 8 Power series: Z x ∞ X 1 5 1 7 11 37 11 1223 4 J1 (t) dt = (−1)k ck x2k+1 = x − x + x9 − x11 + x13 − x15 +. . . 80 224 13824 405504 1474560 2654208000 0 k=2

Z 0

x

I14 (t) dt =

∞ X

ck x2k+1 =

k=2

k 2 3 4 5 6 7 8 9 10 11

1 7 11 37 11 1223 1 5 x + x + x9 + x11 + x13 + x15 +. . . 80 224 13824 405504 1474560 2654208000 ck 1 80 1 224 11 13824 37 405504 11 1474560 1223 2654208000 45173 2021444812800 221467 253037327155200 2278819 80545776559718400 1524667 1984878065221632000

ck 0.01250 00000 00000 00000 0.00446 42857 14285 71429 0.00079 57175 92592 59259 0.00009 12444 76010 10101 0.00000 74598 52430 55556 0.00000 04607 77753 66512 0.00000 00223 46887 58949 0.00000 00008 75234 50587 0.00000 00000 28292 22210 0.00000 00000 00768 14139

423

k 12 13 14 15

ck 33739889 1898579018907648000000 191964463 541322849870948597760000 639303779 103659029537192442593280000 1383459431 14666940304673097457336320000

ck 0.00000 00000 00017 77113 0.00000 00000 00000 35462 0.00000 00000 00000 00617 0.00000 00000 00000 00009

Approximation by Chebyshev polynomials: For |x| ≤ 8 holds (based on [2], 9.7) x

Z

J14 (t) dt = x5

0

with the coefficients k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

γk T2n

k=0

γk

0.00153 -0.00288 0.00246 -0.00194 0.00141 -0.00095 0.00060 -0.00035 0.00018 -0.00009 0.00004 -0.00001 0.00000 -0.00000 0.00000

33 X

17807 55180 63655 01230 41566 77666 29805 21217 96461 33179 14766 64773 58075 18093 04981

x 8

k

42787 23979 58097 51814 95709 19168 69397 05640 12672 14008 56943 77688 26406 92101 61958

63788 94997 67279 45392 63740 38344 05353 59655 32841 29393 42490 70038 73172 58874 19526

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

+ ∆(04) (x)

γk -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000 0.00000 -0.00000

01214 00263 00050 00008 00001 00000 00000 00000 00000 00000 00000 00000 00000 00000 00000

49955 11808 87634 82115 37795 19482 02504 00293 00031 00003 00000 00000 00000 00000 00000

80695 30629 73551 64716 20459 53784 22692 84879 59998 12564 28533 02411 00189 00014 00001

The derivation ∆(04)(x) : .. ......... 1016 · ∆(04) (x) 2 ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ......... . . . . . . . . .... . ... . .... .. .... ..... . . . . . . . . . . ....................................................................................................................................................................................................................................................................................................................................................................................................................x .......... ..... 0 .. ... . .... . . .... .. ..... 8 ... 6 .................................... .... .... 4 2 . .. .. ... .... . ... .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............ . . . . . . . . . . . . .... . . . . ..... ..... . ... -2 ... . .. ... ... ... ... ...... .... ..... .... . .. ... . .. -4 .... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....... .... .... . ..... ... .. ... .. ... . .... . .. .. .. -6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... . . . . . Asymptotic formula: Z



J14 (x) dx

=

0.20025 27575 82806 70455 . . .

0

Z 0

x

J14 (t) dt

1 ∼ 0.20025 . . . − 2 π

= 0.20025 . . . −



 3 8 cos (2 x) − sin (4 x) 3 − 2 sin (2 x) + cos (4 x) + − + ... = 2x 8x2 8 x3

∞ ∞ 1 X pk + qk sin 2x + rk sin 4x + sk cos 2x + tk cos 4x 1 X σk (x) = 0.20025 . . . − π2 nk · xk π2 xk k=1

k=1

424

k

pk

qk

rk

sk

tk

nk

1 2 3 4 5 6 7 8 9 10 11 12

3 0 3 0 -216 0 34560 0 -1267200 0 25778995200 0

0 0 -2 0 -30 0 65536 0 -9916623 0 376332256575 0

0 1 0 3 0 -204 0 37116 0 -52716096 0 369098752

0 -8 0 -6 0 1173 0 -586503 0 1650714957 0 -1633144646925

0 0 1 0 -75 0 12348 0 -9916623 0 9405918720 0

2 8 8 64 1280 2048 57344 65536 262144 8388608 369098752 -1633144646925

Let Dn (x) = 0.20025 . . . −

Z x n 1 X σk (x) J04 (t) dt − π2 xk 0 k=1

denote the derivation of the partial sums of the asymptotic series. The following table shows consecutive maxima and minima of this functions: xk D1 (xk )

2.930 -9.815E-03

4.738 5.061E-03

6.115 -2.533E-03

7.917 1.764E-03

9.274 -1.140E-03

11.073 8.883E-04

12.424 -6.457E-04

xk D2 (xk )

3.927 -6.708E-06

4.804 5.006E-04

7.069 -5.760E-07

8.003 1.111E-04

10.210 -1.053E-07

11.962 3.014E-05

11.962 3.014E-05

xk D3 (xk )

4.118 -7.413E-06

4.967 1.140E-05

5.948 -1.107E-05

7.057 -5.756E-07

7.182 -5.905E-07

8.102 2.135E-06

9.122 -1.971E-06

xk D4 (xk )

4.567 -1.253E-05

5.842 -1.396E-06

6.168 -1.515E-06

7.055 -5.756E-07

7.737 -9.571E-07

8.858 -1.679E-07

9.382 -2.281E-07

xk D5 (xk )

4.932 -2.582E-06

6.114 9.433E-07

8.037 -1.787E-07

9.272 8.754E-08

11.165 -2.737E-08

12.418 1.592E-08

14.300 -6.480E-09

xk D6 (xk )

3.932 7.787E-06

5.630 -6.017E-07

7.072 1.910E-07

8.735 -3.239E-08

10.212 1.673E-08

11.855 -4.050E-09

13.353 2.700E-09

xk D7 (xk )

3.044 -4.681E-05

4.823 1.729E-06

6.215 -2.866E-07

7.943 4.340E-08

9.364 -1.287E-08

11.075 3.440E-09

12.507 -1.340E-09

xk D8 (xk )

3.927 -7.839E-06

5.571 4.320E-07

7.069 -6.420E-08

8.696 9.910E-09

10.210 -2.750E-09

11.826 7.500E-10

13.352 -2.800E-10

xk D9 (xk )

3.092 7.406E-05

4.775 -1.525E-06

6.248 1.346E-07

7.905 -1.447E-08

9.394 2.910E-09

11.040 -5.800E-10

12.537 2.100E-10

xk D10 (xk )

3.927 1.082E-05

5.542 -3.483E-07

7.069 2.989E-08

8.677 -3.330E-09

10.210 6.900E-10

11.812 -1.500E-10

13.352 2.000E-11

Note that D2 (x), D3 (x) and D4 (x) do not have the regular behaviour of the other functions. Holds max {|D10 (x) | x ≥ 8} = 4.00E − 9 . Using the partial sum of the asymptotic series with n = 10 means to get the best uniform approximation of the integral with x ≥ 8. It is the best way to continue the representation by the sum of Chebyshev polynomials given before. Z 0

x

I14 (t) dt

e4x ∼ 16π 2 x2

  1 3 15 51 441 9279 e4x 1− − 2 − − − − − . . . = x 8x 32 x3 64 x4 256 x5 2048 x6 16π 2 x2

425

1−

∞ X µk k=1

xk

!

k

µk

µk

µk /µk−1

1

1 3 8 15 32 51 64 441 256 9279 2048 115137 8192 823689 16384 1670085 8192 242464455 262144 4871010735 1048576 214767448785 8388608

1.000 000 000 000

-

0.375 000 000 000

0.375

0.468 750 000 000

1.250

0.796 875 000 000

1.700

1.722 656 250 000

2.162

4.530 761 718 750

2.630

14.054 809 570 31

3.102

50.273 986 816 41

3.577

203.867 797 851 6

4.055

924.928 493 499 8

4.537

4 645.357 832 909

5.022

2 3 4 5 6 7 8 9 10 11 12

25 602.274 988 294 5.511

For a given x >> 0 the series can be used while µk /µk−1 ≤ x. 4.1. e) Integrals of xm Z04 (x) With the basic integrals Z (40) I0 (x) = J04 (x) dx , and ∗(40)

I0

Z (x) =

I04 (x) dx ,

holds

Z Z Z

x2 J04 (x) dx =

(22)

I1

Z (x) =

∗(22)

I1

Z (x) =

(04)

x J02 (x) J1 2 (x)dx ,

I0

x I02 (x) I12 (x)dx ,

I0

(22)

x J04 (x) dx = x J03 (x) J1 (x) + 3I1

∗(22)

x I04 (x) dx = x I03 (x) I1 (x) − 3I1

Z (x) =

∗(04)

Z (x) =

J14 (x) dx

I14 (x) dx

(x) (x)

12x3 − x 4 x2 3 3x3 2 3x2 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) − J0 (x) J13 (x)+ 32 8 4 8

12x3 − 3x 4 1 (40) 9 (04) J1 (x) + I0 (x) − I (x) 32 32 32 0 Z 12x3 + x 4 x2 3 3x3 2 3x2 x2 I04 (x) dx = I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x) + I0 (x) I13 (x)+ 32 8 4 8 +

+

Z

Z

12x3 + 3x 4 1 ∗(40) 9 ∗(04) I1 (x) − I (x) + I (x) 32 32 0 32 0

x3 J04 (x) dx =

3x4 + 2x2 4 x3 − x 3 3x4 2 3x4 4 3 (22) J0 (x) + J0 (x) J1 (x) + J0 (x) J12 (x) + J1 (x) − I1 (x) 16 4 8 16 4

x3 I04 (x) dx =

3 x4 − 2 x2 4 x3 + x 3 3x4 2 3x4 4 3 ∗(22) I0 (x) + I0 (x) I1 (x) − I0 (x) I12 (x) + I (x) − I1 (x) 16 4 8 16 1 4 426

Z

x4 J04 (x) dx = +

Z

Z

8 x4 + 23 x2 32 x5 − 92 x3 + 23 x 4 9 69 (04) (40) J0 (x) J13 (x) + J1 (x) − I (x) + I (x) 64 256 256 0 256 0

x4 I04 (x) dx = −

32 x5 − 12 x3 + 9 x 4 24 x4 + 9 x2 3 8 x5 − 21 x3 2 J0 (x) + J0 (x) J1 (x) + J0 (x) J12 (x)+ 256 64 32

32 x5 + 12 x3 + 9 x 4 24 x4 − 9 x2 3 8 x5 + 21 x3 2 I0 (x) + I0 (x) I1 (x) − I0 (x) I12 (x)− 256 64 32

32 x5 + 92 x3 + 23 x 4 9 69 ∗(04) 8 x4 − 23 x2 ∗(40) I0 (x) I13 (x) + I1 (x) − I I (x) + (x) 64 256 256 0 256 0 7 x5 − 7 x3 + 7 x 3 6 x6 − 21 x4 2 6 x6 + 7 x4 − 14 x2 4 J0 (x) + J0 (x) J1 (x) + J0 (x) J12 (x)+ 64 16 32

x5 J04 (x) dx =

+

Z

x5 I04 (x) dx =

6 x6 − 7 x4 − 14 x2 4 7 x5 + 7 x3 + 7 x 3 6 x6 + 21 x4 2 I0 (x) + I0 (x) I1 (x) − I0 (x) I12 (x)− 64 16 32 −

Z

x6 J04 (x) dx = +

+



768 x7 + 2496 x5 + 1668 x3 − 1251 x 4 1216 x6 − 3120 x4 − 1251 x2 3 J0 (x) + J0 (x) J1 (x)+ 10240 2560

768 x7 − 5312 x5 + 12356 x3 − 3089 x 4 1251 (40) 9267 (04) J1 (x) + I0 (x) − I (x) 10240 10240 10240 0

x6 I04 (x) dx =

Z

6 x6 + 27 x4 4 21 ∗(22) 3x5 I0 (x) I13 (x) + I1 (x) − I (x) 16 64 16 1

576 x6 − 1328 x4 − 3089 x2 192 x7 − 896 x5 + 2757 x3 2 J0 (x) J12 (x) + J0 (x) J13 (x)+ 1280 2560

+

Z

3x5 6 x6 − 27 x4 4 21 (22) J0 (x) J13 (x) + J1 (x) + I (x) 16 64 16 1

768 x7 − 2496 x5 + 1668 x3 + 1251 x 4 1216 x6 + 3120 x4 − 1251 x2 3 I0 (x) + I0 (x) I1 (x)− 10240 2560



576 x6 + 1328 x4 − 3089 x2 192 x7 + 896 x5 + 2757 x3 2 I0 (x) I12 (x) − I0 (x) I13 (x)+ 1280 2560

+

768 x7 + 5312 x5 + 12356 x3 + 3089 x 4 1251 ∗(40) 9267 ∗(04) I1 (x) − I (x) + I (x) 10240 10240 0 10240 0

x7 J04 (x) dx =

x8 + 6 x6 − 9 x4 + 18 x2 4 2 x7 − 9 x5 + 9 x3 − 9 x 3 J0 (x) + J0 (x) J1 (x)+ 16 4

x8 − 6 x6 + 27 x4 2 x7 − 5 x5 x8 − 10 x6 + 37 x4 4 27 (22) J0 (x) J12 (x) + J0 (x) J13 (x) + J1 (x) − I (x) 8 4 16 4 1 Z x8 − 6 x6 − 9 x4 − 18 x2 4 2 x7 + 9 x5 + 9 x3 + 9 x 3 x7 I04 (x) dx = I0 (x) + I0 (x) I1 (x)− 16 4 x8 + 6 x6 + 27 x4 2 x7 + 5 x5 x8 + 10 x6 + 37 x4 4 27 ∗(22) I0 (x) I12 (x) − I0 (x) I13 (x) + I1 (x) − I (x) 8 4 16 4 1 Z 15360 x9 + 145024 x7 − 535152 x5 − 364116 x3 + 273087 x 4 x8 J04 (x) dx = J0 (x)+ 286720 427

37120 x8 − 253792 x6 + 668940 x4 + 273087 x2 3 J0 (x) J1 (x)+ 71680 1920 x9 − 14352 x7 + 91726 x5 − 296367 x3 2 + J0 (x) J12 (x)+ 17920 19200 x8 − 158112 x6 + 302036 x4 + 668243 x2 J0 (x) J13 (x)+ + 71860 273087 (40) 15360 x9 − 210816 x7 + 1208144 x5 − 2672972 x3 + 668243 x 4 2004729 (04) J1 (x) − I0 (x) + I + (x) 286720 286720 286720 0 Z 15360 x9 − 145024 x7 − 535152 x5 + 364116 x3 + 273087 x 4 x8 I04 (x) dx = I0 (x)+ 286720 +

37120 x8 + 253792 x6 + 668940 x4 − 273087 x2 3 I0 (x) I1 (x)− 71680 1920 x9 + 14352 x7 + 91726 x5 + 296367 x3 2 I0 (x) I12 (x)− − 17920 19200 x8 + 158112 x6 + 302036 x4 − 668243 x2 − I0 (x) I13 (x)+ 71680 15360 x9 + 210816 x7 + 1208144 x5 + 2672972 x3 + 668243 x 4 I1 (x)− + 286720 273087 ∗(40) 2004729 ∗(04) − I I (x) + (x) 286720 0 286720 0 +

Z

x9 J04 (x) dx =

48 x10 + 652 x8 − 4074 x6 + 6111 x4 − 12222 x2 4 J0 (x)+ 1024

136 x9 − 1304 x7 + 6111 x5 − 6111 x3 + 6111 x 3 J0 (x) J1 (x)+ 256 48 x10 − 436 x8 + 3750 x6 − 18333 x4 2 J0 (x) J12 (x)+ + 512 72 x9 − 868 x7 + 3611 x5 48 x10 − 868 x8 + 7222 x6 − 25555 x4 4 18333 (22) + J0 (x) J13 (x) + J1 (x) + I (x) 256 1024 256 1 Z 48 x10 − 652 x8 − 4074 x6 − 6111 x4 − 12222 x2 4 x9 I04 (x) dx = I0 (x)+ 1024 +

136 x9 + 1304 x7 + 6111 x5 + 6111 x3 + 6111 x 3 I0 (x) I1 (x)− 256 48 x10 + 436 x8 + 3750 x6 + 18333 x4 2 I0 (x) I12 (x)− − 512 48 x10 + 868 x8 + 7222 x6 + 25555 x4 4 18333 ∗(22) 72 x9 + 868 x7 + 3611 x5 I0 (x) I13 (x) + I1 (x) − I (x) − 256 1024 256 1 Z x10 J04 (x) dx = +

573440 x11 + 10567680 x9 − 97664256 x7 + 363060288 x5 + 248212404 x3 − 186159303 x 4 J0 (x)+ 13762560 1863680 x10 − 23777280 x8 + 170912448 x6 − 453825360 x4 − 186159303 x2 3 + J0 (x) J1 (x)+ 3440640 143360 x11 − 1551360 x9 + 17194176 x7 − 122875488 x5 + 402422121 x3 2 + J0 (x) J12 (x)+ 1720320 1003520 x10 − 16537600 x8 + 113598528 x6 − 208074384 x4 − 454440717 x2 J0 (x) J13 (x)+ + 3440640 573440 x11 − 13230080 x9 + 151464704 x7 − 832297536 x5 + 1817762868 x3 − 454440717 x 4 + J1 (x)− 13762560 =

428

+

=

573440 x11 − 10567680 x9 − 97664256 x7 − 363060288 x5 + 248212404 x3 + 186159303 x 4 I0 (x)+ 13762560 +

1863680 x10 + 23777280 x8 + 170912448 x6 + 453825360 x4 − 186159303 x2 3 I0 (x) I1 (x)− 3440640

− − +

62053101 (40) 454440717 (04) I (x) − I (x) 4587520 0 4587520 0 Z x10 I04 (x) dx =

143360 x11 + 1551360 x9 + 17194176 x7 + 122875488 x5 + 402422121 x3 2 I0 (x) I12 (x)− 1720320

1003520 x10 + 16537600 x8 + 113598528 x6 + 208074384 x4 − 454440717 x2 I0 (x) I13 (x)+ 3440640

573440 x11 + 13230080 x9 + 151464704 x7 + 832297536 x5 + 1817762868 x3 + 454440717 x 4 I1 (x)+ 13762560 62053101 ∗(40) 454440717 ∗(04) − I (x) + I (x) 4587520 0 4587520 0

6x2 + 1 4 J04 (x) dx (40) (04) =− J0 (x) + 4 J03 (x) J1 (x) − 12x J02 (x) J12 (x) − 6x J14 (x) + 2I0 (x) − 18 I0 (x) 2 x x

Z

6x2 − 1 4 I04 (x) dx ∗(40) ∗(04) = I0 (x) − 4 I03 (x) I1 (x) − 12x I02 (x) I12 (x) + 6x I14 (x) − 2I0 (x) + 18 I0 (x) 2 x x

Z

Z

J04 (x) dx 40 x4 + 4 x2 − 3 4 24 x2 − 4 3 80 x2 − 4 2 J0 (x) J12 (x)+ = J (x) − J (x) J (x) + 1 0 0 x4 9x3 9x2 9x +

Z

8 40x 4 16 (40) 368 (04) J0 (x) J13 (x) + J (x) − I (x) + I (x) 27 9 1 9 0 27 0

40 x4 − 4 x2 − 3 4 24 x2 + 4 3 80 x2 + 4 2 I04 (x) dx = I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x)− 4 3 2 x 9x 9x 9x −

8 40x 4 16 ∗(40) 368 ∗(04) I0 (x) I13 (x) + I (x) − I (x) + I (x) 27 9 1 9 0 27 0

J04 (x) dx 42752 x6 + 3800 x4 − 1500 x2 + 5625 4 4992 x4 − 760 x2 + 900 3 =− J0 (x) + J0 (x) J1 (x)− 6 5 x 28125 x 5625 x4

Z



85504 x4 − 4880 x2 + 2700 2 10624 x2 − 3240 42752 x2 + 216 4 2 3 J (x) J (x) − J (x) J (x) − J1 (x)+ 0 0 1 1 28125 x3 84375 x2 28125 x 17792 (40) 395392 (04) + I (x) − I (x) 28125 0 84375 0

Z



I04 (x) dx 42752 x6 − 3800 x4 − 1500 x2 − 5625 4 4992 x4 + 760 x2 + 900 3 = I0 (x) − I0 (x) I1 (x)− 6 5 x 28125 x 5625 x4 85504 x4 + 4880 x2 + 2700 2 10624 x2 + 3240 42752 x2 − 216 4 2 3 I (x) I (x) − I (x) I (x) + I1 (x)+ 0 0 1 1 28125 x3 84375 x2 28125 x 17792 ∗(40) 395392 ∗(04) + I (x) − I (x) 28125 0 84375 0

4.1. f) Integrals of xm Z03 (x) Z1 (x) Explicit and basic integrals are omitted. 429

(40)

With the basic integrals I0 page 426 holds

(22)

(x), I1

Z

Z

Z

x3 I03 (x) I1 (x) dx = −

Z

x4 J03 (x) J1 (x) dx = −

x4 I03 (x) I1 (x) dx = Z

+

∗(04)

(x), I0

(x) as defined on

x 4 1 ∗(40) I (x) − I0 (x) 4 0 4

x2 4 x 3 (22) J0 (x) + J03 (x) J1 (x) + I1 (x) 4 2 2

x 3 ∗(22) x2 4 I (x) − I03 (x) I1 (x) + I1 (x) 4 0 2 2

36 x3 − 9 x 4 27 (04) 3 (40) J1 (x) + I0 (x) − I (x) 128 128 128 0

4 x3 + 3 x 4 3x2 3 9x3 2 9x2 I0 (x) + I0 (x) I1 (x) + I0 (x) I12 (x) − I0 (x) I13 (x)− 128 32 16 32



Z

∗(22)

(x), I1

4 x3 − 3 x 4 3x2 3 9x3 2 9x2 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) − J0 (x) J13 (x)+ 128 32 16 32 +

Z

x I03 (x) I1 (x) dx =

x2 I03 (x) I1 (x) dx =

x3 J03 (x) J1 (x) dx =

∗(40)

(x) and I0

x 1 (40) x J03 (x) J1 (x) dx = − J04 (x) + I0 (x) 4 4

x2 J03 (x) J1 (x) dx = −

Z

Z

(04)

(x), I0

3 27 ∗(04) 36 x3 + 9 x 4 ∗(40) I1 (x) + I (x) − I (x) 128 128 0 128 0

x3 − x 3 3x4 2 3 (22) x4 − 2 x2 4 3x4 4 J0 (x)+ J0 (x) J1 (x)+ J0 (x) J12 (x)+ J (x)− I1 (x) 16 4 8 16 1 4

x4 + 2 x2 4 x3 + x 3 3x4 2 3x4 4 3 ∗(22) I0 (x) − I0 (x) I1 (x) + I0 (x) I12 (x) − I (x) + I1 (x) 16 4 8 16 1 4

x5 J03 (x) J1 (x) dx = −

120 x4 + 45 x2 3 96 x5 + 60 x3 − 45 x 4 J0 (x) + J0 (x) J1 (x)+ 1024 256

40 x5 − 105 x3 2 40 x4 + 115 x2 160 x5 − 460 x3 + 115 x 4 J0 (x) J12 (x) + J0 (x) J13 (x) + J1 (x)− 128 256 1024 45 345 (04) (40) − I0 (x) + I (x) 1024 1024 0 Z 120 x4 − 45 x2 3 96 x5 − 60 x3 − 45 x 4 I0 (x) − I0 (x) I1 (x)+ x5 I03 (x) I1 (x) dx = 1024 256

40 x5 + 105 x3 2 40 x4 − 115 x2 160 x5 + 460 x3 + 115 x 4 I0 (x) I12 (x) + I0 (x) I13 (x) − I1 (x)+ 128 256 1024 45 345 ∗(04) ∗(40) + I0 (x) − I (x) 1024 1024 0 Z 14 x6 − 21 x4 + 42 x2 4 21 x5 − 21 x3 + 21 x 3 J0 (x) + J0 (x) J1 (x)+ x6 J03 (x) J1 (x) dx = − 128 32

+

+ Z

18 x6 − 63 x4 2 9x5 18 x6 − 81 x4 4 63 (22) (x) J0 (x) J12 (x) + J0 (x) J13 (x) + J1 (x) + I 64 32 128 32 1

x6 I03 (x) I1 (x) dx =

21 x5 + 21 x3 + 21 x 3 14 x6 + 21 x4 + 42 x2 4 I0 (x) − I0 (x) I1 (x)+ 128 32 430

+

+ +

8512 x6 − 21840 x4 − 8757 x2 3 1344 x7 − 6272 x5 + 19299 x3 2 J0 (x) J1 (x) + J0 (x) J12 (x)+ 10240 5120

4032 x6 − 9296 x4 − 21623 x2 5376 x7 − 37184 x5 + 86492 x3 − 21623 x 4 J0 (x) J13 (x) + J1 (x)+ 10240 40960 64869 (04) 8757 (40) I (x) − I (x) + 40960 0 40960 0 Z 4864 x7 + 17472 x5 − 11676 x3 − 8757 x 4 I0 (x)− x7 I03 (x) I1 (x) dx = 40960 −

+

Z

+

18 x6 + 63 x4 2 9x5 18 x6 + 81 x4 4 63 ∗(22) I0 (x) I12 (x) + I0 (x) I13 (x) − I1 (x) + I (x) 64 32 128 32 1 Z 4864 x7 − 17472 x5 − 11676 x3 + 8757 x 4 x7 J03 (x) J1 (x) dx = − J0 (x)+ 40960

8512 x6 + 21840 x4 − 8757 x2 3 1344 x7 + 6272 x5 + 19299 x3 2 I0 (x) I1 (x) + I0 (x) I12 (x)+ 10240 5120

4032 x6 + 9296 x4 − 21623 x2 5376 x7 + 37184 x5 + 86492 x3 + 21623 x 4 I0 (x) I13 (x) − I1 (x)+ 10240 40960 8757 ∗(40) 64869 ∗(04) + I (x) − I (x) 40960 0 40690 0

x8 J03 (x) J1 (x) dx = −

2 x7 − 9 x5 + 9 x3 − 9 x 3 x8 − 6 x6 + 9 x4 − 18 x2 4 J0 (x) + J0 (x) J1 (x)+ 8 2

x8 − 6 x6 + 27 x4 2 x7 − 5 x5 x8 − 10 x6 + 37 x4 4 27 (22) J0 (x) J12 (x) + J0 (x) J13 (x) + J1 (x) − I (x) 4 2 8 2 1 Z

+

x8 + 6 x6 + 9 x4 + 18 x2 4 2 x7 + 9 x5 + 9 x3 + 9 x 3 I0 (x) − I0 (x) I1 (x)+ 8 2

x8 I03 (x) I1 (x) dx =

x8 + 6 x6 + 27 x4 2 x7 + 5 x5 x8 + 10 x6 + 37 x4 4 27 ∗(22) I0 (x) I12 (x) + I0 (x) I13 (x) − I1 (x) + I (x) 4 2 8 2 1

Z

x9 J03 (x) J1 (x) dx = − +

334080 x8 − 2284128 x6 + 6020460 x4 + 2457783 x2 3 J0 (x) J1 (x)+ 286720

+ + +

Z

148480 x9 − 1305216 x7 + 4816368 x5 + 3277044 x3 − 2457783 x 4 J0 (x)+ 1146880

17280 x9 − 129168 x7 + 825534 x5 − 2667303 x3 2 J0 (x) J12 (x)+ 71680

172800 x8 − 1423008 x6 + 2718324 x4 + 6014187 x2 J0 (x) J13 (x)+ 286720

138240 x9 − 1897344 x7 + 10873296 x5 − 24056748 x3 + 6014187 x 4 J1 (x)− 1146880 2457783 (40) 18042561 (04) − I (x) + I (x) 1146880 0 1146880 0

x9 I03 (x) I1 (x) dx = −

148480 x9 + 1305216 x7 + 4816368 x5 − 3277044 x3 − 2457783 x 4 I0 (x)− 1146880

334080 x8 + 2284128 x6 + 6020460 x4 − 2457783 x2 3 I0 (x) I1 (x)+ 286720 431

17280 x9 + 129168 x7 + 825534 x5 + 2667303 x3 2 I0 (x) I12 (x)+ 71680 172800 x8 + 1423008 x6 + 2718324 x4 − 6014187 x2 + I0 (x) I13 (x)− 286720 138240 x9 + 1897344 x7 + 10873296 x5 + 24056748 x3 + 6014187 x 4 I1 (x)+ − 1146880 18042561 ∗(04) 2457783 ∗(40) I (x) − I (x) + 1146880 0 1146880 0 +

Z

x10 J03 (x) J1 (x) dx = −

272 x10 − 3260 x8 + 20370 x6 − 30555 x4 + 61110 x2 4 J0 (x)+ 2048

680 x9 − 6520 x7 + 30555 x5 − 30555 x3 + 30555 x 3 J0 (x) J1 (x)+ 512 240 x10 − 2180 x8 + 18750 x6 − 91665 x4 2 + J0 (x) J12 (x)+ 1024 360 x9 − 4340 x7 + 18055 x5 240 x10 − 4340 x8 + 36110 x6 − 127775 x4 4 91665 (22) + J0 (x) J13 (x)+ J1 (x)+ I (x) 512 2048 512 1 Z 272 x10 + 3260 x8 + 20370 x6 + 30555 x4 + 61110 x2 4 I0 (x)− x10 I03 (x) I1 (x) dx = 2048 +

680 x9 + 6520 x7 + 30555 x5 + 30555 x3 + 30555 x 3 I0 (x) I1 (x)+ 512 240 x10 + 2180 x8 + 18750 x6 + 91665 x4 2 I0 (x) I12 (x)+ + 1024 360 x9 + 4340 x7 + 18055 x5 240 x10 + 4340 x8 + 36110 x6 + 127775 x4 4 91665 ∗(22) + I0 (x) I13 (x)− I1 (x)+ I (x) 512 2048 512 1 −

Z

Z

3x 4 3x 4 1 (40) 9 (04) J03 (x) J1 (x) dx = J (x) − J03 (x) I1 (x) + 3x J02 (x) J12 (x) + J (x) − I0 (x) + I0 (x) x 2 0 2 1 2 2

Z

I03 (x) I1 (x) dx 3x 4 3x 4 1 ∗(40) 9 ∗(04) = I (x) − I03 (x) I1 (x) − 3x I02 (x) I12 (x) + I (x) − I0 (x) + I0 (x) x 2 0 2 1 2 2

10 x2 + 1 4 6 x2 − 1 3 20 x2 − 1 2 2 J03 (x) J1 (x) dx = − J (x) + J (x) I (x) − J0 (x) J12 (x) − J0 (x) J13 (x)− 1 0 0 3 2 x 3x 3x 3x 9 −

Z

10x 4 4 (40) 92 (04) J1 (x) + I0 (x) − I (x) 3 3 9 0

10 x2 − 1 4 6 x2 + 1 3 20 x2 + 1 2 2 I03 (x) I1 (x) dx = I (x) − I (x) I (x) − I0 (x) I12 (x) − I0 (x) I13 (x)+ 1 0 0 3 2 x 3x 3x 3x 9 +

Z

+

10x 4 92 ∗(04) 4 ∗(40) I1 (x) − I0 (x) + I (x) 3 3 9 0

J03 (x) J1 (x) dx 10688 x4 + 950 x2 − 375 4 1248 x4 − 190 x2 + 225 3 = J (x) − J0 (x) I1 (x)+ 0 x5 5625 x3 1125 x4

21376 x4 − 1220 x2 + 675 2 2656 x2 − 810 10688 x2 + 54 4 J0 (x) J12 (x) + J0 (x) J13 (x) + J1 (x)− 3 2 5625 x 16875 x 5625 x 4448 (40) 98848 (04) − I0 (x) + I (x) 5625 16875 0 432

Z



10688 x4 − 950 x2 − 375 4 1248 x4 + 190 x2 + 225 3 I03 (x) I1 (x) dx = I (x) − I0 (x) I1 (x)− 0 x5 5625 x3 1125 x4

21376 x4 + 1220 x2 + 675 2 2656 x2 + 810 10688 x2 − 54 4 I0 (x) I12 (x) − I0 (x) I13 (x) + I1 (x)− 3 2 5625 x 16875 x 5625 x 98848 ∗(04) 4448 ∗(40) I (x) + I (x) − 5625 0 16875 0

4.1. g) Integrals of xm Z02 (x) Z12 (x) Explicit and basic integrals are omitted. (40) (22) (04) ∗(40) ∗(22) ∗(04) With the basic integrals I0 (x), I1 (x), I0 (x) and I0 (x), I1 (x), I0 (x) as defined on page 426 holds Z x 3 (04) x 1 (40) J02 (x) J12 (x) dx = − J04 (x) − x J02 (x) J12 (x) − J14 (x) + I0 (x) − I0 (x) 2 2 2 2 Z

Z

I02 (x) I12 (x) dx =

x2 J02 (x) J12 (x) dx =

3 ∗(04) x 4 x 1 ∗(40) I (x) − x I02 (x) I12 (x) + I14 (x) − I0 (x) + I0 (x) 2 0 2 2 2

4 x3 − 3 x 4 3x2 3 x3 2 x2 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) − J0 (x) J13 (x)+ 32 8 4 8 +

Z

x2 I02 (x) I12 (x) dx = −

4 x3 + 3 x 4 3x2 3 x3 2 x2 I0 (x) + I0 (x) I1 (x) + I0 (x) I12 (x) − I0 (x) I13 (x)− 32 8 4 8



Z

Z

Z

x3 J02 (x) J12 (x) dx =

+

Z

Z

x4 + 2 x2 4 x3 + x 3 x4 2 x4 4 3 ∗(22) I0 (x) + I0 (x) I1 (x) + I0 (x) I12 (x) − I1 (x) − I1 (x) 16 4 8 16 4

32 x5 + 12 x3 − 9 x 4 40 x4 + 9 x2 3 8 x5 + 33 x3 2 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x)+ 768 192 96

31 (04) 8 x4 − 31 x2 32 x5 + 124 x3 − 31 x 4 3 (40) (x) − (x) J0 (x) J13 (x) + J1 (x) + I I 192 768 256 0 256 0

x4 I02 (x) I12 (x) dx = − +

4 x3 + x 4 3 ∗(40) 3 ∗(04) I1 (x) + I (x) − I (x) 32 32 0 32 0

x3 − x 3 x4 2 x4 4 3 (22) x4 − 2 x2 4 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) + J (x) + I1 (x) 16 4 8 16 1 4

x3 I02 (x) I12 (x) dx = −

x4 J02 (x) J12 (x) dx =

3 (40) 3 (04) 4 x3 − x 4 J1 (x) + I0 (x) − I (x) 32 32 32 0

32 x5 − 12 x3 − 9 x 4 40 x4 − 9 x2 3 8 x5 − 33 x3 2 I0 (x) + I0 (x) I1 (x) + I0 (x) I12 (x)+ 768 192 96

32 x5 − 124 x3 − 31 x 4 3 31 ∗(04) 8 x4 + 31 x2 ∗(40) I0 (x) I13 (x) − I1 (x) − I (x) + I (x) 192 768 256 0 256 0

x5 J02 (x) J12 (x) dx =

2 x6 − 3 x4 + 6 x2 4 3 x5 − 3 x3 + 3 x 3 2 x6 + 9 x4 2 J0 (x)− J0 (x) J1 (x)+ J0 (x) J12 (x)+ 64 16 32 433

+

Z

x5 I02 (x) I12 (x) dx = −

2 x6 + 3 x4 + 6 x2 4 3 x5 + 3 x3 + 3 x 3 2 x6 − 9 x4 2 I0 (x)+ I0 (x) I1 (x)+ I0 (x) I12 (x)+ 64 16 32 +

Z

x6 J02 (x) J12 (x) dx = +

256 x7 − 768 x5 − 444 x3 + 333 x 4 448 x6 − 960 x4 − 333 x2 3 J0 (x) − J0 (x) J1 (x)+ 10240 2560

2661 (04) 333 256 x7 + 896 x5 − 3548 x3 + 887 x 4 (40) J1 (x) − I0 (x) + I (x) 10240 10240 10240 0

x6 I02 (x) I12 (x) dx = − + −

Z

+

Z

+

2 x6 − 7 x4 4 9 ∗(22) x5 I0 (x) I13 (x) − I1 (x) − I (x) 16 64 16 1

64 x7 + 368 x5 − 831 x3 2 192 x6 + 224 x4 + 887 x2 J0 (x) J12 (x) + J0 (x) J13 (x)+ 1280 2560

+

Z

x5 2 x6 + 7 x4 4 9 (22) J0 (x) J13 (x) + J1 (x) − I (x) 16 64 16 1

256 x7 + 768 x5 − 444 x3 − 333 x 4 448 x6 + 960 x4 − 333 x2 3 I0 (x) + I0 (x) I1 (x)+ 10240 2560

192 x6 − 224 x4 + 887 x2 64 x7 − 368 x5 − 831 x3 2 I0 (x) I12 (x) + I0 (x) I13 (x)− 1280 2560

256 x7 − 896 x5 − 3548 x3 − 887 x 4 333 2661 ∗(04) ∗(40) I1 (x) − I (x) + I (x) 10240 10240 0 10240 0 4 x8 − 18 x6 + 27 x4 − 54 x2 4 8 x7 − 27 x5 + 27 x3 − 27 x 3 J0 (x) − J0 (x) J1 (x)+ 192 48

x7 J02 (x) J12 (x) dx =

4 x7 + 7 x5 4 x8 + 14 x6 − 95 x4 4 27 (22) 4 x8 + 30 x6 − 81 x4 2 J0 (x) J12 (x) + J0 (x) J13 (x) J1 (x) + I (x) 96 48 192 16 1

x7 I02 (x) I12 (x) dx = −

4 x8 + 18 x6 + 27 x4 + 54 x2 4 8 x7 + 27 x5 + 27 x3 + 27 x 3 I0 (x) + I0 (x) I1 (x)+ 192 48

4 x7 − 7 x5 4 x8 − 14 x6 − 95 x4 4 27 ∗(22) 4 x8 − 30 x6 − 81 x4 2 I0 (x) I12 (x) + I0 (x) I13 (x) − I1 (x) − I (x) 96 48 192 16 1 Z 2560 x9 − 15552 x7 + 53496 x5 + 34668 x3 − 26001 x 4 x8 J02 (x) J12 (x) dx = J0 (x)− 143360 − +

5760 x8 − 27216 x6 + 66870 x4 + 26001 x2 3 J0 (x) J1 (x)+ 35840

1280 x9 + 12384 x7 − 41292 x5 + 117639 x3 2 J0 (x) J12 (x)+ 35840

+ +

Z

1600 x8 + 3288 x6 − 12789 x4 − 32607 x2 J0 (x) J13 (x)+ 17920

1280 x9 + 4384 x7 − 51156 x5 + 130428 x3 − 32607 x 4 J1 (x)− 71680 26001 (40) 97821 (04) + (x) I0 (x) − I 143360 71680 0

x8 I02 (x) I12 (x) dx = −

2560 x9 + 15552 x7 + 53496 x5 − 34668 x3 − 26001 x 4 I0 (x)+ 143360 434

5760 x8 + 27216 x6 + 66870 x4 − 26001 x2 3 I0 (x) I1 (x)+ 35840 1280 x9 − 12384 x7 − 41292 x5 − 117639 x3 2 + I0 (x) I12 (x)+ 35840 1600 x8 − 3288 x6 − 12789 x4 + 32607 x2 + I0 (x) I13 (x)− 17920 1280 x9 − 4384 x7 − 51156 x5 − 130428 x3 − 32607 x 4 26001 ∗(40) 97821 ∗(04) − I1 (x) − I0 (x) + I (x) 71680 143360 71680 0 Z 16 x10 − 124 x8 + 690 x6 − 1035 x4 + 2070 x2 4 x9 J02 (x) J12 (x) dx = J0 (x)− 1024 +



+

40 x9 − 248 x7 + 1035 x5 − 1035 x3 + 1035 x 3 16 x10 + 196 x8 − 798 x6 + 3105 x4 2 J0 (x) J1 (x)+ J0 (x) J12 (x)+ 256 512 16 x10 + 52 x8 − 1006 x6 + 4111 x4 4 3105 (22) 24 x9 + 52 x7 − 503 x5 J0 (x) J13 (x) + J1 (x) − I + (x) 256 1024 256 1 Z 16 x10 + 124 x8 + 690 x6 + 1035 x4 + 2070 x2 4 I0 (x)+ x9 I02 (x) I12 (x) dx = − 1024 16 x10 − 196 x8 − 798 x6 − 3105 x4 2 40 x9 + 248 x7 + 1035 x5 + 1035 x3 + 1035 x 3 I0 (x) I1 (x)+ I0 (x) I12 (x)+ 256 512 24 x9 − 52 x7 − 503 x5 16 x10 − 52 x8 − 1006 x6 − 4111 x4 4 3105 ∗(22) + I0 (x) I13 (x) − I1 (x) − I (x) 256 1024 256 1 Z x10 J02 (x) J12 (x) dx = 573440 x11 − 5468160 x9 + 43299072 x7 − 157107456 x5 − 105708348 x3 + 79281261 x 4 J0 (x)− 41287680 1576960 x10 − 12303360 x8 + 75773376 x6 − 196384320 x4 − 79281261 x2 3 J0 (x) J1 (x)+ − 10321920 143360 x11 + 2181120 x9 − 10706112 x7 + 55439856 x5 − 173715327 x3 2 + J0 (x) J12 (x)+ 5160960 1003520 x10 + 2124800 x8 − 40086336 x6 + 85504608 x4 + 195091479 x2 + J0 (x) J13 (x)+ 10321920 573440 x11 + 1699840 x9 − 53448448 x7 + 342018432 x5 − 780365916 x3 + 195091479 x 4 + J1 (x)− 41287680 8809029 (40) 65030493 (04) − I (x) + I (x) 4587520 0 4587520 0 Z x10 I02 (x) I12 (x) dx = =

573440 x11 + 5468160 x9 + 43299072 x7 + 157107456 x5 − 105708348 x3 − 79281261 x 4 I0 (x)+ 41287680 1576960 x10 + 12303360 x8 + 75773376 x6 + 196384320 x4 − 79281261 x2 3 + I0 (x) I1 (x)+ 10321920 143360 x11 − 2181120 x9 − 10706112 x7 − 55439856 x5 − 173715327 x3 2 + I0 (x) I12 (x)+ 5160960 1003520 x10 − 2124800 x8 − 40086336 x6 − 85504608 x4 + 195091479 x2 + I0 (x) I13 (x)− 10321920 573440 x11 − 1699840 x9 − 53448448 x7 − 342018432 x5 − 780365916 x3 − 195091479 x 4 − I1 (x)− 41287680 8809029 ∗(40) 65030493 ∗(04) − I0 (x) + I (x) 4587520 4587520 0

=−

435

4x 4 J02 (x) J12 (x) dx 2 3 8 x2 − 1 2 2 4x 4 = J J J0 (x) J12 (x) + J0 (x) J13 (x) + J (x)− (x) − (x) J (x) + 1 0 0 2 x 3 3 3x 9 3 1

Z

2 (40) 38 (04) − I0 (x) + I (x) 3 9 0 Z

4x 4 2 3 8 x2 + 1 2 2 4x 4 I02 (x) I12 (x) dx = I (x) − I (x) I (x) − I0 (x) I12 (x) − I0 (x) I13 (x) + I (x)− 1 0 0 2 x 3 3 3x 9 3 1 38 ∗(04) 2 ∗(40) (x) + I (x) − I0 3 9 0

632 x2 + 50 4 1264 x4 − 80 x2 + 75 2 J02 (x) J12 (x) dx 72 x2 − 10 3 =− J0 (x) J1 (x) − J0 (x) J12 (x)− J0 (x) + 4 2 x 375 x 75 x 375 x3

Z



Z

632 x2 − 50 4 1264 x4 + 80 x2 + 75 2 I02 (x) I12 (x) dx 72 x2 + 10 3 = I (x) I (x) − I0 (x) I12 (x)− I (x) − 1 0 0 x4 375 x 75x2 375x3 −

184 x2 + 90 632 x2 − 6 4 272 ∗(40) 5872 ∗(04) I0 (x) I13 (x) + I1 (x) − I0 (x) + I (x) 2 1125 x 375 x 375 1125 0

J02 (x) J12 (x) dx 1485184 x4 + 124600 x2 − 36750 4 171264 x4 − 24920 x2 + 22050 3 = J (x)− J0 (x) J1 (x)+ 0 x6 1929375 x3 385875 x4

Z

+

184 x2 − 90 632 x2 + 6 4 272 (40) 5872 (04) 3 J (x) J (x) − J1 (x) + I (x) − I (x) 0 1 1125x2 375 x 375 0 1125 0

401408 x4 − 163080 x2 + 236250 2970368 x6 − 178960 x4 + 113400 x2 − 275625 2 2 J (x) J (x)+ J0 (x) J13 (x)+ 0 1 1929375 x5 5788125 x4 +

Z



1485184 x4 + 10872 x2 − 11250 4 628864 (40) 13768064 (04) J1 (x) − I (x) + I (x) 1929375 x3 1929375 0 5788125 0

I02 (x) I12 (x) dx 1485184 x4 − 124600 x2 − 36750 4 171264 x4 + 24920 x2 + 22050 3 = I (x) − I0 (x) I1 (x)− 0 x6 1929375 x3 385875 x4 2970368 x6 + 178960 x4 + 113400 x2 + 275625 2 401408 x4 + 163080 x2 + 236250 I0 (x) I12 (x) I0 (x) I13 (x)+ 5 1929375 x 5788125 x4 +

628864 ∗(40) 13768064 ∗(04) 1485184 x4 − 10872 x2 − 11250 4 I1 (x) − I (x) + I (x) 1929375 x3 1929375 0 5788125 0

4.1. h) Integrals of xm Z0 (x) Z13 (x) Explicit and basic integrals are omitted. ∗(40) ∗(22) ∗(04) (40) (22) (04) (x), I0 (x) as defined on (x), I1 With the basic integrals I0 (x), I1 (x), I0 (x) and I0 page 426 holds Z x 3 (04) x J0 (x) J13 (x) dx = J14 (x) + I0 (x) 4 4 Z x 3 ∗(04) x J0 (x) I13 (x) dx = I14 (x) + I0 (x) 4 4 Z x2 x x2 2 3 (22) x2 J0 (x) J13 (x) dx = − J04 (x) + J03 (x) J1 (x) − J (x) J12 (x) + I1 (x) 4 2 2 0 2 436

Z

Z

x2 I0 (x) I13 (x) dx = −

12 x3 − 9 x 4 9x2 3 3x3 2 11x2 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) − J0 (x) J13 (x)+ 128 32 16 32

x3 J0 (x) J13 (x) dx =

+

Z

x3 I0 (x) I13 (x) dx =

x5 J0 (x) J13 (x) dx = − +

Z

32 x5 + 36 x3 − 27 x 4 40 x4 + 27 x2 3 8 x5 + 39 x3 2 J0 (x)+ J0 (x) J1 (x)− J0 (x) J12 (x)+ 1024 256 128

40 x4 − 27 x2 3 8 x5 − 39 x3 2 32 x5 − 36 x3 − 27 x 4 I0 (x)+ I0 (x) I1 (x)+ I0 (x) I12 (x)− 1024 256 128

56 x4 − 53 x2 224 x5 + 212 x3 + 53 x 4 27 159 ∗(04) ∗(40) I0 (x) I13 (x) + I1 (x) − I (x) + I (x) 256 1024 1024 0 1024 0 Z 6 x6 − 9 x4 + 18 x2 4 9 x5 − 9 x3 + 9 x 3 x6 J0 (x) J13 (x) dx = − J0 (x) + J0 (x) J1 (x)− 128 32 − Z

+

+ +

44 x3 + 11 x 4 33 ∗(04) 9 ∗(40) I1 (x) − I (x) + I (x) 128 128 0 128 0

224 x5 − 212 x3 + 53 x 4 27 56 x4 + 53 x2 159 (04) (40) J0 (x) J13 (x) + J1 (x) − I0 (x) + I (x) 256 1024 1024 1024 0

x5 I0 (x) I13 (x) dx = − −

9 44 x3 − 11 x 4 33 (04) (40) J1 (x) + I0 (x) − I (x) 128 128 128 0

9x2 3 3x3 2 11x2 12 x3 + 9 x 4 I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x) + I0 (x) I13 (x)+ 128 32 16 32 +

Z

x2 4 x x2 2 3 ∗(22) I0 (x) + I03 (x) I1 (x) + I (x) I12 (x) − I1 (x) 4 2 2 0 2

13x5 26 x6 − 53 x4 4 27 (22) 6 x6 + 27 x4 2 J0 (x) J12 (x) + J0 (x) J13 (x) + J1 (x) + I (x) 64 32 128 32 1 x6 I0 (x) I13 (x) dx = −

9 x5 + 9 x3 + 9 x 3 6 x6 + 9 x4 + 18 x2 4 I0 (x) + I0 (x) I1 (x)+ 128 32

13x5 26 x6 + 53 x4 4 27 ∗(22) 6 x6 − 27 x4 2 I0 (x) I12 (x) − I0 (x) I13 (x) + I1 (x) − I (x) 64 32 128 32 1 Z 2304 x7 − 9792 x5 − 7236 x3 + 5427 x 4 x7 J0 (x) J13 (x) dx = − J0 (x)+ 40960

4032 x6 − 12240 x4 − 5427 x2 3 576 x7 + 2592 x5 − 10989 x3 2 J0 (x) J1 (x) − J0 (x) J12 (x)+ 10240 5120

5952 x6 − 7056 x4 − 12753 x2 7936 x7 − 28224 x5 + 51012 x3 − 12753 x 4 J0 (x) J13 (x) + J1 (x)+ 10240 40960 38259 (04) 5427 (40) + I (x) − I (x) 40960 0 40960 0 Z 2304 x7 + 9792 x5 − 7236 x3 − 5427 x 4 x7 I0 (x) I13 (x) dx = − I0 (x)+ 40960 +



4032 x6 + 12240 x4 − 5427 x2 3 576 x7 − 2592 x5 − 10989 x3 2 I0 (x) I1 (x) + I0 (x) I12 (x)− 10240 5120

5952 x6 + 7056 x4 − 12753 x2 7936 x7 + 28224 x5 + 51012 x3 + 12753 x 4 I0 (x) I13 (x) + I1 (x)− 10240 40960 437



Z



x8 I0 (x) I13 (x) dx = −

x9 J0 (x) J13 (x) dx = − +

+

15360 x9 − 173952 x7 + 663696 x5 + 461268 x3 − 345951 x 4 J0 (x)+ 229376

34560 x8 − 304416 x6 + 829620 x4 + 345951 x2 3 J0 (x) J1 (x)− 57344 −

960 x9 + 4248 x7 − 53649 x5 + 184383 x3 2 J0 (x) J12 (x)+ 7168

52480 x8 − 247776 x6 + 400428 x4 + 837639 x2 J0 (x) J13 (x)+ 57344

41984 x9 − 330368 x7 + 1601712 x5 − 3350556 x3 + 837639 x 4 345951 (40) 2512917 (04) J1 (x) − I (x) + I (x) 229376 229376 0 229376 0 Z

x9 I0 (x) I13 (x) dx = − +



15360 x9 + 173952 x7 + 663696 x5 − 461268 x3 − 345951 x 4 I0 (x)+ 229376

34560 x8 + 304416 x6 + 829620 x4 − 345951 x2 3 I0 (x) I1 (x)+ 57344

+

+

4 x8 + 30 x6 + 45 x4 + 90 x2 4 8 x7 + 45 x5 + 45 x3 + 45 x 3 I0 (x) + I0 (x) I1 (x)+ 64 16

4 x8 − 18 x6 − 135 x4 2 12 x7 + 33 x5 12 x8 + 66 x6 + 201 x4 4 135 ∗(22) I0 (x) I12 (x)− I0 (x) I13 (x)+ I1 (x)− I (x) 32 16 64 16 1 Z

+

4 x8 − 30 x6 + 45 x4 − 90 x2 4 8 x7 − 45 x5 + 45 x3 − 45 x 3 J0 (x) + J0 (x) J1 (x)− 64 16

x8 J0 (x) J13 (x) dx = −

12 x7 − 33 x5 12 x8 − 66 x6 + 201 x4 4 135 (22) 4 x8 + 18 x6 − 135 x4 2 J0 (x) J12 (x)+ J0 (x) J13 (x)+ J1 (x)− I (x) 32 16 64 16 1 Z

+

5427 ∗(40) 38259 ∗(04) I (x) + I (x) 40960 0 40960 0

3840 x9 − 16992 x7 − 214596 x5 − 737532 x3 2 I0 (x) I12 (x)− 28762

52480 x8 + 247776 x6 + 400428 x4 − 837639 x2 I0 (x) I13 (x)+ 57344

41984 x9 + 330368 x7 + 1601712 x5 + 3350556 x3 + 837639 x 4 345951 ∗(40) 2512917 ∗(04) I1 (x)− I (x)+ I (x) 229376 229376 0 229376 0 Z 144 x10 − 2268 x8 + 14850 x6 − 22275 x4 + 44550 x2 4 J0 (x)+ x10 J0 (x) J13 (x) dx = − 2048 + −

360 x9 − 4536 x7 + 22275 x5 − 22275 x3 + 22275 x 3 J0 (x) J1 (x)− 512

144 x10 + 612 x8 − 12366 x6 + 66825 x4 2 552 x9 − 3924 x7 + 14031 x5 J0 (x) J12 (x) + J0 (x) J13 (x)+ 1024 512 + Z

368 x10 − 3924 x8 + 28062 x6 − 94887 x4 4 66825 (22) J1 (x) + I (x) 2048 512 1

x10 I0 (x) I13 (x) dx = − +

144 x10 + 2268 x8 + 14850 x6 + 22275 x4 + 44550 x2 4 I0 (x)+ 2048

360 x9 + 4536 x7 + 22275 x5 + 22275 x3 + 22275 x 3 I0 (x) I1 (x)+ 512 438

+ −

144 x10 − 612 x8 − 12366 x6 − 66825 x4 2 I0 (x) I12 (x)− 1024

552 x9 + 3924 x7 + 14031 x5 368 x10 + 3924 x8 + 28062 x6 + 94887 x4 4 66825 ∗(22) I0 (x) I13 (x)+ I1 (x)− I (x) 512 2048 512 1 x 1 x 1 (40) J0 (x) J13 (x) dx 11 (04) = − J04 (x) − x J02 (x) J12 (x) − J0 (x) J13 (x) − J14 (x) + I0 (x) − I (x) x 2 3 2 2 6 0

Z

Z

x 1 x 1 ∗(40) I0 (x) I13 (x) dx 11 ∗(04) = I04 (x) − x I02 (x) I12 (x) − I0 (x) I13 (x) + I14 (x) − I0 I (x) + (x) x 2 3 2 2 6 0

Z

22x 4 J0 (x) J13 (x) dx 2 3 44 x2 − 5 2 14 x2 − 15 2 = J0 (x) J13 (x)+ J (x) − J (x) J (x) + J (x) J (x) + 1 0 0 0 1 x3 25 5 25x 75x2 +

Z

22x 4 2 44 x2 + 5 2 14 x2 + 15 I0 (x) I13 (x) dx = I0 (x) I13 (x)+ I0 (x) − I03 (x) I1 (x) − I0 (x) I12 (x) − 3 x 25 5 25x 75x2 +

Z



22 x2 − 1 4 12 ∗(40) 212 ∗(04) I1 (x) − I0 (x) + I (x) 25x 25 75 0

J0 (x) J13 (x) dx 4864 x2 + 350 4 544 x2 − 70 3 9728 x4 − 660 x2 + 525 2 = − J (x)+ J (x) J (x)− J0 (x) J12 (x)− 1 0 0 x5 6125 x 1225 x2 6125 x3



Z

22 x2 + 1 4 12 (40) 212 (04) J1 (x) − I (x) + I (x) 25x 25 0 75 0

1568 x4 − 930 x2 + 2625 4864 x4 + 62 x2 − 125 4 2144 (40) 45344 (04) J0 (x) J13 (x) − J1 (x) + I (x) − I (x) 4 18375 x 6125 x3 6125 0 18375 0

I0 (x) I13 (x) dx 4864 x2 − 350 4 544 x2 + 70 3 9728 x4 + 660 x2 + 525 2 = I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x)− 5 2 x 6125 x 1225 x 6125 x3 45344 ∗(04) 1568 x4 + 930 x2 + 2625 4864 x4 − 62 x2 − 125 4 2144 ∗(40) 3 I0 (x) + I (x) I (x) I (x) + I1 (x) − 0 1 4 3 18375 x 6125 x 6125 18375 0

4.1. i) Integrals of xm Z14 (x) Explicit and basic integrals are omitted. (40) (22) (04) ∗(40) ∗(22) ∗(04) With the basic integrals I0 (x), I1 (x), I0 (x) and I0 (x), I1 (x), I0 (x) as defined on page 426 holds Z x2 4 x2 (22) x J14 (x) dx = − J04 (x) + x J03 (x) J1 (x) − x2 J02 (x) J12 (x) − J (x) + 3I1 (x) 2 2 1 Z x2 x2 4 ∗(22) x I14 (x) dx = − I04 (x) + x I03 (x) I1 (x) + x2 I02 (x) I12 (x) − I (x) − 3 I1 (x) 2 2 1 Z

x2 J14 (x) dx =

12 x3 − 9 x 4 9x2 3 3x3 2 11x2 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) − J0 (x) J13 (x)+ 32 8 4 8 +

12 x3 − 11 x 4 9 (40) 33 (04) J1 (x) + I0 (x) − I (x) 32 32 32 0

439

Z

x2 I14 (x) dx =

12 x3 + 9 x 4 9x2 3 3x3 2 11x2 I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x) + I0 (x) I13 (x)+ 32 8 4 8 +

9 ∗(40) 12 x3 + 11 x 4 33 ∗(04) I1 (x) − I I (x) + (x) 32 32 0 32 0 Z x3 J14 (x) dx =

3 x4 − 6 x2 4 3 x3 − 3 x 3 3x4 2 3x4 4 9 (22) J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x) − x3 J0 (x) J13 (x) + J1 (x) + I1 (x) 16 4 8 16 4 Z x3 I14 (x) dx =

=

3 x4 + 6 x2 4 3 x3 + 3 x 3 3x4 2 3x4 4 9 ∗(22) I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x) + x3 I0 (x) I13 (x) + I (x) + I1 (x) 16 4 8 16 1 4

=

Z



Z

56 x4 + 53 x2 32 x5 + 212 x3 − 53 x 4 27 (40) 159 (04) J0 (x) J13 (x) + J1 (x) + I0 (x) − I (x) 64 256 256 256 0

x4 I14 (x) dx = +

Z

40 x4 + 27 x2 3 8 x5 + 39 x3 2 32 x5 + 36 x3 − 27 x 4 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x)− 256 64 32

x4 J14 (x) dx =

40 x4 − 27 x2 3 8 x5 − 39 x3 2 32 x5 − 36 x3 − 27 x 4 I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x)+ 256 64 32

159 ∗(04) 32 x5 − 212 x3 − 53 x 4 27 ∗(40) 56 x4 − 53 x2 I0 (x) I13 (x) + I1 (x) + I (x) − I (x) 64 256 256 0 256 0 9 x5 − 9 x3 + 9 x 3 6 x6 + 27 x4 2 6 x6 − 9 x4 + 18 x2 4 J0 (x) − J0 (x) J1 (x) + J0 (x) J12 (x)− 64 16 32

x5 J14 (x) dx =



Z

x5 I14 (x) dx =

6 x6 + 9 x4 + 18 x2 4 9 x5 + 9 x3 + 9 x 3 6 x6 − 27 x4 2 I0 (x) − I0 (x) I1 (x) − I0 (x) I12 (x)+ 64 16 32 +

Z

x6 J14 (x) dx = +

Z

13x5 6 x6 + 53 x4 4 27 (22) J0 (x) J13 (x) + J1 (x) − I (x) 16 64 16 1

6 x6 − 53 x4 4 27 ∗(22) 13x5 I0 (x) I13 (x) + I1 (x) + I (x) 16 64 16 1

1344 x6 − 4080 x4 − 1809 x2 3 768 x7 − 3264 x5 − 2412 x3 + 1809 x 4 J0 (x) − J0 (x) J1 (x)+ 10240 2560

192 x7 + 864 x5 − 3663 x3 2 1984 x6 − 2352 x4 − 4251 x2 J0 (x) J12 (x) − J0 (x) J13 (x)+ 1280 2560 768 x7 + 9408 x5 − 17004 x3 + 4251 x 4 1809 (40) 12753 (04) + J1 (x) − I (x) + I (x) 10240 10240 0 10240 0

x6 I14 (x) dx = −

768 x7 + 3264 x5 − 2412 x3 − 1809 x 4 1344 x6 + 4080 x4 − 1809 x2 3 I0 (x) − I0 (x) I1 (x)− 10240 2560

1984 x6 + 2352 x4 − 4251 x2 192 x7 − 864 x5 − 3663 x3 2 I0 (x) I12 (x) + I0 (x) I13 (x)+ 1280 2560 440

+

Z

+

4 x8 − 30 x6 + 45 x4 − 90 x2 4 8 x7 − 45 x5 + 45 x3 − 45 x 3 J0 (x) − J0 (x) J1 (x)+ 64 16

x7 J14 (x) dx =

12 x7 − 33 x5 4 x8 + 66 x6 − 201 x4 4 135 (22) 4 x8 + 18 x6 − 135 x4 2 J0 (x) J12 (x)− J0 (x) J13 (x)+ J1 (x)+ I (x) 32 16 64 16 1 Z



768 x7 − 9408 x5 − 17004 x3 − 4251 x 4 1809 ∗(40) 12753 ∗(04) I1 (x) + I0 (x) − I (x) 10240 10240 10240 0

x7 I14 (x) dx =

4 x8 + 30 x6 + 45 x4 + 90 x2 4 8 x7 + 45 x5 + 45 x3 + 45 x 3 I0 (x) − I0 (x) I1 (x)− 64 16

4 x8 − 18 x6 − 135 x4 2 12 x7 + 33 x5 4 x8 − 66 x6 − 201 x4 4 135 ∗(22) I0 (x) I12 (x) + I0 (x) I13 (x) + I1 (x) I (x) 32 16 64 16 1 Z 15360 x9 − 173952 x7 + 663696 x5 + 461268 x3 − 345951 x 4 J0 (x)− x8 J14 (x) dx = 286720 −

34560 x8 − 304416 x6 + 829620 x4 + 345951 x2 3 J0 (x) J1 (x)+ 71680 +

− +

Z

960 x9 + 4248 x7 − 53649 x5 + 184383 x3 2 J0 (x) J12 (x)− 8960

52480 x8 − 247776 x6 + 400428 x4 + 837639 x2 J0 (x) J13 (x)+ 71680

15360 x9 + 330368 x7 − 1601712 x5 + 3350556 x3 − 837639 x 4 J1 (x)+ 286720 2512917 (04) 345951 (40) I0 (x) − I (x) + 286720 286720 0

x8 I14 (x) dx = −

34560 x8 + 304416 x6 + 829620 x4 − 345951 x2 3 I0 (x) I1 (x)− 71680 −

+ +

Z

960 x9 − 4248 x7 − 53649 x5 − 184383 x3 2 I0 (x) I12 (x)+ 8960

52480 x8 + 247776 x6 + 400428 x4 − 837639 x2 I0 (x) I13 (x)+ 71680

15360 x9 − 330368 x7 − 1601712 x5 − 3350556 x3 − 837639 x 4 I1 (x)+ 286720 345951 ∗(40) 2512917 ∗(04) + I (x) − I (x) 286720 0 286720 0

x9 J14 (x) dx = −

+

15360 x9 + 173952 x7 + 663696 x5 − 461268 x3 − 345951 x 4 I0 (x)− 286720

48 x10 − 756 x8 + 4950 x6 − 7425 x4 + 14850 x2 4 J0 (x)− 1024

120 x9 − 1512 x7 + 7425 x5 − 7425 x3 + 7425 x 3 J0 (x) J1 (x)+ 256

184 x9 − 1308 x7 + 4677 x5 48 x10 + 204 x8 − 4122 x6 + 22275 x4 2 J0 (x) J12 (x) − J0 (x) J13 (x)+ 512 256 + Z

48 x10 + 1308 x8 − 9354 x6 + 31629 x4 4 22275 (22) J1 (x) − I (x) 1024 256 1

x9 I14 (x) dx =

48 x10 + 756 x8 + 4950 x6 + 7425 x4 + 14850 x2 4 I0 (x)− 1024 441

− −

48 x10 − 204 x8 − 4122 x6 − 22275 x4 2 184 x9 + 1308 x7 + 4677 x5 I0 (x) I12 (x) + I0 (x) I13 (x)+ 512 256 +

=

1576960 x10 − 26818560 x8 + 203628096 x6 − 544824720 x4 − 224580681 x2 3 J0 (x) J1 (x)+ 3440640 +



Z

143360 x11 + 568320 x9 − 17842752 x7 + 145570176 x5 − 483478767 x3 2 J0 (x) J12 (x)− 1720320

2437120 x10 − 24166400 x8 + 144152256 x6 − 253684368 x4 − 546899859 x2 J0 (x) J13 (x)+ 3440640

573440 x11 + 19333120 x9 − 192203008 x7 + 1014737472 x5 − 2187599436 x3 + 546899859 x 4 J1 (x)− 13762560 74860227 (40) 546899859 (04) − I (x) + I (x) 4587520 0 4587520 0

x10 I14 (x) dx = −

+

573440 x11 + 11919360 x9 + 116358912 x7 + 435859776 x5 − 299440908 x3 − 224580681 x 4 I0 (x)− 13762560

1576960 x10 + 26818560 x8 + 203628096 x6 + 544824720 x4 − 224580681 x2 3 I0 (x) I1 (x)− 3440640 −

+

22275 ∗(22) 48 x10 − 1308 x8 − 9354 x6 − 31629 x4 4 I1 (x) + I (x) 1024 256 1 Z x10 J14 (x) dx =

573440 x11 − 11919360 x9 + 116358912 x7 − 435859776 x5 − 299440908 x3 + 224580681 x 4 J0 (x)− 13762560 −

+

120 x9 + 1512 x7 + 7425 x5 + 7425 x3 + 7425 x 3 I0 (x) I1 (x)− 256

143360 x11 − 568320 x9 − 17842752 x7 − 145570176 x5 − 483478767 x3 2 I0 (x) I12 (x)+ 1720320

2437120 x10 + 24166400 x8 + 144152256 x6 + 253684368 x4 − 546899859 x2 I0 (x) I13 (x)+ 3440640

573440 x11 − 19333120 x9 − 192203008 x7 − 1014737472 x5 − 2187599436 x3 − 546899859 x 4 I1 (x)+ 13762560 74860227 ∗(40) 546899859 ∗(04) + I0 (x) − I (x) 4587520 4587520 0 Z J14 (x) dx = x2 =−

=

Z

2x 4 4x 2 4 2 x2 + 1 4 2 (40) 22 (04) J0 (x) − J0 (x) J12 (x) − J0 (x) J13 (x) − J1 (x) + I0 (x) − I (x) 5 5 15 5x 5 15 0 Z 4 I1 (x) dx = x2

2x 4 4x 2 4 2 x2 − 1 4 2 ∗(40) 22 ∗(04) I0 (x) − I0 (x) I12 (x) − I0 (x) I13 (x) + I1 (x) − I0 (x) + I (x) 5 5 15 5x 5 15 0

J14 (x) dx 88x 4 8 3 176 x2 − 20 2 56 x2 − 60 2 = J (x) − J (x) J (x) + J (x) J (x) + J0 (x) J13 (x)+ 1 0 1 x4 175 0 35 0 175x 525 x2 +

88 x4 + 4 x2 − 25 4 48 (40) 848 (04) J1 (x) − I (x) + I (x) 175 x3 175 0 525 0 442

Z

88x 4 I14 (x) dx 8 3 176 x2 + 20 2 56 x2 + 60 2 = I0 (x) I13 (x)+ I (x) − I (x) I (x) − I (x) I (x) − 1 0 1 x4 175 0 35 0 175x 525 x2 + Z



88 x4 − 4 x2 − 25 4 48 ∗(40) 848 ∗(04) I1 (x) − I (x) + I (x) 175 x3 175 0 525 0

19456 x2 + 1400 4 J14 (x) dx 2176 x2 − 280 3 =− J0 (x) J1 (x)− J0 (x) + 6 x 55125 x 11025 x2

38912 x4 − 2640 x2 + 2100 2 6272 x4 − 3720 x2 + 10500 2 J J0 (x) J13 (x)− (x) J (x) − 0 1 55125 x3 165375 x4 −



8576 (40) 19456 x6 + 248 x4 − 500 x2 + 6125 4 181376 (04) J1 (x) + I0 (x) − I (x) 5 55125 x 55125 165375 0 Z 4 19456 x2 − 1400 4 2176 x2 + 280 3 I1 (x) dx = I0 (x) I1 (x)− I0 (x) − 6 x 55125 x 11025 x2

38912 x4 + 2640 x2 + 2100 2 6272 x4 + 3720 x2 + 10500 2 I (x) I (x) − I0 (x) I13 (x)+ 0 1 55125 x3 165375 x4

+

19456 x6 − 248 x4 − 500 x2 − 6125 4 8576 ∗(40) 181376 ∗(04) I1 (x) − I0 (x) + I (x) 5 55125 x 55125 165375 0

4.1. j) Recurrence relations With the integrals Z

In(pq) (x)

=

and In∗(pq) (x)

Z =

xn J0p (x) J1q (x) dx ,

p+q =4

xn I0p (x) I1q (x) dx ,

p+q =4

holds Ascending recurrence relations:

(40)

In+1 (x) =

xn+1 8n

  3x J04 (x) + (5n − 6) J03 (x) J1 (x) + 6x J02 (x) J12 (x) + 3(n − 2) J0 (x) J13 (x) + 3x J14 (x) + −

5n − 6 (31) 3(n − 2)2 (13) In (x) − In (x) 8 8n

(31)

In+1 (x) = −

(22) In+1 (x)

xn+1 = 8n

xn+1 4 n + 1 (40) J0 (x) + In (x) 4 4

  4 3 2 2 3 4 x J0 (x) − (n + 2) J0 (x) J1 (x) + 2x J0 (x) J1 (x) + (n − 2) J0 (x) J1 (x) + x J1 (x) + n + 2 (31) (n − 2)2 (13) In+1 (x) − In+1 (x) 8 8n   n − 1 (22) n + 1 (40) 4 2 2 J0 (x) + 2 J0 (x) J1 (x) + In+1 (x) + In+1 (x) 4 2 +

(13)

In+1 (x) = −

(04) In+1 (x)

xn+1 = 8n

xn+1 4

  4 3 2 2 3 4 3x J0 (x) − 3(n + 2) J0 (x) J1 (x) + 6x J0 (x) J1 (x) − (5n + 6) J0 (x) J1 (x) + 3x J1 (x) +

443

+

∗(40) In+1 (x)

xn+1 = 8n

3(n + 2) (31) (5n + 6)(n − 2) (13) In+1 (x) + In+1 (x) 8 8n

  4 3 2 2 3 4 3x I0 (x) + (5n − 6) I0 (x) I1 (x) − 6x I0 (x) I1 (x) − 3(n − 2) I0 (x) I1 (x) + 3x I1 (x) − −

5n − 6 ∗(31) 3(n − 2)2 ∗(13) In (x) + In (x) 8 8n

∗(31)

In+1 (x) =

∗(22) In+1 (x)

xn+1 = 8n

xn+1 4 n + 1 ∗(40) I0 (x) − In (x) 4 4

  4 3 2 2 3 4 −x I0 (x) + (n + 2) I0 (x) I1 (x) + 2x I0 (x) I1 (x) + (n − 2) I0 (x) I1 (x) − x I1 (x) − (n − 2)2 ∗(13) n + 2 ∗(31) In+1 (x) − In+1 (x) 8 8n   n + 1 ∗(40) n − 1 ∗(22) −I04 (x) + 2 I02 (x) I12 (x) + In+1 (x) − In+1 (x) 4 2 −

∗(13)

In+1 (x) =

∗(04) In+1 (x)

xn+1 = 8n

xn+1 4

  4 3 2 2 3 4 3x I0 (x) − 3(n + 2) I0 (x) I1 (x) − 6x I0 (x) I1 (x) + (5n + 6) I0 (x) I1 (x) + 3x I1 (x) + +

3(n + 2) ∗(31) (5n + 6)(n − 2) ∗(13) In+1 (x) − In+1 (x) 8 8n

444

5. Quotients (p)

In the following formulas Jν (x) may be substituted by Yν (x) or Hν (x), p = 1, 2 . Integrals are omitted, when f (x) turns out to be of a very special kind or when the antiderivative is expressed by Whittaker or other hypergeometric functions. 5.1. Denominator p (x) Z0 (x) + q(x) Z1 (x) a) Typ f (x) Zν (x) / [p (x) Z0 (x) + q(x) Z1 (x)] : Z Z

J1 (x) dx = − ln |J0 (x)| , J0 (x)

Z

I1 (x) dx = ln |I0 (x)| , I0 (x)

Z

K1 (x) dx = − ln |K0 (x)| K0 (x)

Z Z J0 (x) dx I0 (x) dx K0 (x) dx = ln |x J1 (x)| , = ln |x I1 (x)| , = − ln |x K1 (x)| J1 (x) I1 (x) K1 (x) Z (x2 + a2 − 2a) J1 (x) dx = − ln |xa J0 (x) − axa−1 J1 (x)| x[x J0 (x) − a J1 (x)] Z (x2 − a2 + 2a) I1 (x) dx = ln |xa I0 (x) − axa−1 I1 (x)| x[x I0 (x) − a I1 (x)] Z (x2 − a2 + 2a) K1 (x) dx = − ln |xa K0 (x) + axa−1 K1 (x)| x[x K0 (x) + a K1 (x)] Z

cos x J1 (x) dx = ln | sin x J0 (x) − cos x J1 (x)| x[sin x J0 (x) − cos x J1 (x)]

Z

(2x sin x + cos x) I1 (x) dx = ln | sin x I0 (x) − cos x I1 (x)| x[sin x I0 (x) − cos x I1 (x)]

Z

(2x sin x + cos x) K1 (x) dx = − ln | sin x K0 (x) + cos x K1 (x)| x[sin x K0 (x) + cos x K1 (x)] Z

Z

sin x J1 (x) dx = − ln | cos x J0 (x) + sin x J1 (x)| x[cos x J0 (x) + sin x J1 (x)] Z (2x cos x − sin x) I1 (x) dx = ln | cos I0 (x) + sin x I1 (x)| x[cos x I0 (x) + sin x I1 (x)] (2x cos x − sin x) K1 (x) dx = − ln | cos K0 (x) − sin x K1 (x)| x[cos x K0 (x) − sin x K1 (x)]

5.2. Denominator [p (x) Z0 (x) + q(x) Z1 (x)]2 a) Typ f (x) Zµ (x)/[p (x) Z0 (x) + q(x) Z1 (x)]2 : Z

[(a2 + b2 )x + ab] exp(− ax b exp(− ax b ) J0 (x) dx b ) = − 2 2 x [a J0 (x) + b J1 (x)] x [a J0 (x) + b J1 (x)] Z ax 2 2 [(a − b )x − ab] exp( b ) I0 (x) dx b exp( ax b ) = 2 2 x [a I0 (x) + b I1 (x)] x [a I0 (x) + b I1 (x)]

Z

[(a2 − b2 )x + ab] exp(− ax b exp(− ax b ) K0 (x) dx b ) = − 2 2 x [a K0 (x) + b K1 (x)] x [a I0 (x) + b I1 (x)] Z

[(a2 + b2 )x + ab] exp( bx a exp( bx a ) J1 (x) dx a ) = x [a J0 (x) + b J1 (x)]2 a J0 (x) + b J1 (x)

Z

[(a2 − b2 )x − ab] exp( bx a exp( bx a ) I1 (x) dx a ) = − 2 x [a I0 (x) + b II (x)] a I0 (x) + b I1 (x) 445

a exp(− bx [(a2 − b2 )x + ab] exp(− bx a ) K1 (x) dx a ) = 2 x [a K0 (x) + b KI (x)] a K0 (x) + b K1 (x)

Z

Z

Z

2

2

b exp( −ax [a2 x2 − b2 + 2ab] exp(− ax 2b ) K0 (x) dx 2b ) = − 2 x[ax K0 (x) + b K1 (x)] x [ax K0 (x) + b K1 (x)] Z

a x1+b/a xb/a [a2 x2 + b2 + 2ab] J1 (x) dx = [ax J0 (x) + b J1 (x)]2 ax J0 (x) + b J1 (x)

Z

a x1+b/a xb/a [a2 x2 − b2 − 2ab] I1 (x) dx = − [ax I0 (x) + b I1 (x)]2 ax I0 (x) + b I1 (x)

Z

a x1−b/a x−b/a [a2 x2 − b2 + 2ab] K1 (x) dx = [ax K0 (x) + b K1 (x)]2 ax K0 (x) + b K1 (x) Z

Z

Z

2

2

b exp( −ax [a2 x2 + b2 + 2ab] exp(− ax 2b ) J0 (x) dx 2b ) = − 2 x[ax J0 (x) + b J1 (x)] x [ax J0 (x) + b J1 (x)] 2 2 Z [a2 x2 − b2 − 2ab] exp( ax b exp( ax 2b ) I0 (x) dx 2b ) = x[ax I0 (x) + b I1 (x)]2 x [ax I0 (x) + b I1 (x)]

x−a/b [a2 + b2 x2 ] J0 (x) dx b x−a/b =− 2 x [a J0 (x) + bx J1 (x)] a J0 (x) + bx J1 (x) Z a/b 2 b xa/b x [a − b2 x2 ] I0 (x) dx = 2 x [a I0 (x) + bx I1 (x)] a I0 (x) + bx I1 (x)

Z

x−a/b [a2 − b2 x2 ] K0 (x) dx b x−a/b =− 2 x [a K0 (x) + bx K1 (x)] a K0 (x) + bx K1 (x)

Z

[a2 + b2 x2 ] exp( bx a exp( bx 2a ) J1 (x) dx 2a ) = 2 [a J0 (x) + bx J1 (x)] a J0 (x) + bx J1 (x)

Z

[b2 x2 − a2 ] exp( bx a exp( bx 2a ) I1 (x) dx 2a ) = [a I0 (x) + bx I1 (x)]2 a I0 (x) + bx I1 (x)

2

2

2

2

2

2

a exp(− bx [b2 x2 − a2 ] exp(− bx 2a ) 2a ) K1 (x) dx = − 2 [a K0 (x) + bx K1 (x)] a K0 (x) + bx K1 (x) 2

[(a2 + c2 )x3 + (2ab + ac + 2cd)x2 + (b2 + 2ad + d2 )x + bd] (cx + d)(da−cb)/c exp(− ax c ) J0 (x) dx = 2 2 x [(ax + b) J0 (x) + (cx + d) J1 (x)] 2

(cx + d)1+(da−cb)/c exp(− ax c ) = − x [(ax + b) J0 (x) + (cx + d) J1 (x)] Z

2

[(a2 − c2 )x3 + (2ab − ac − 2cd)x2 + (b2 − 2ad − d2 )x − bd] (cx + d)(cb−da)/c exp( ax c ) I0 (x) dx = 2 2 x [(ax + b) I0 (x) + (cx + d) I1 (x)] 2

= Z

(cx + d)1+(cb−da)/c exp( ax c ) x [(ax + b) I0 (x) + (cx + d) I1 (x)] 2

[(a2 − c2 )x3 + (2ab + ac − 2cd)x2 + (b2 + 2ad − d2 )x + bd] (cx + d)(da−cb)/c exp(− ax c ) K0 (x) dx = x2 [(ax + b) K0 (x) + (cx + d) K1 (x)]2 2

=−

(cx + d)1+(da−cb)/c exp(− ax c ) x [(ax + b) K0 (x) + (cx + d) K1 (x)] 446

Z

2

[(a2 + c2 )x3 + (2ab + ac + 2cd)x2 + (b2 + 2ad + d2 )x + bd] (ax + b)(da−cb)/a exp( cx a ) J1 (x) dx = 2 x [(ax + b) J0 (x) + (cx + d) J1 (x)] 2

(ax + b)1+(da−cb)/a exp( cx a ) = (ax + b) J0 (x) + (cx + d) J1 (x) Z

2

[(a2 − c2 )x3 + (2ab − ac − 2cd)x2 + (b2 − 2ad − d2 )x − bd] (ax + b)(da−cb)/a exp( cx a ) I1 (x) dx = 2 x [(ax + b) I0 (x) + (cx + d) I1 (x)] 2

=− Z

(ax + b)1+(da−cb)/c exp( cx a ) (ax + b) I0 (x) + (cx + d) I1 (x) 2

[(a2 − c2 )x3 + (2ab + ac − 2cd)x2 + (b2 + 2ad − d2 )x + bd] (ax + b)(cb−da)/c exp(− cx a ) K1 (x) dx = x [(ax + b) K0 (x) + (cx + d) K1 (x)]2 2

(ax + b)1+(cb−da)/c exp(− cx a ) = (ax + b) K0 (x) + (cx + d) K1 (x) √ 3/2 3/2 2b exp(− 2a [2a2 x3/2 + 2b2 x + 3ab] exp(− 2a ) J0 (x) dx ) 3b x 3b x √ √ = − x[a x J0 (x) + b J1 (x)] x3/2 [a x J0 (x) + b J1 (x)]2 √ Z 3/2 3/2 [2a2 x3/2 − 2b2 x − 3ab] exp( 2ax ) I0 (x) dx 2b exp( 2a ) 3b x 3b x √ √ = 3/2 2 x[a x I0 (x) + b I1 (x)] x [a x I0 (x) + b I1 (x)] √ Z 2a 3/2 3/2 2 3/2 2 ) 2b exp(− 2a [2a x − 2b x + 3ab] exp(− 3b x ) K0 (x) dx 3b x √ √ = − 3/2 2 x[a x K0 (x) + b K1 (x)] x [a x K0 (x) + b K1 (x)] Z

√ √ √ √ [2a2 x3/2 + 2b2 x + 3ab] exp( 2b 2a x exp( 2b x) J1 (x) dx x) a a √ √ = √ 2 x [a x J0 (x) + b J1 (x)] a x J0 (x) + b J1 (x) √ √ √ Z 2b √ 2 3/2 2 [2a x − 2b x − 3ab] exp( a x) I1 (x) dx 2a x exp( 2b x) a √ √ =− √ 2 x [a x I0 (x) + b I1 (x)] a x I0 (x) + b I1 (x) √ √ √ Z 2b √ 2 3/2 2 2a x exp(− 2b x) [2a x − 2b x + 3ab] exp(− a x) K1 (x) dx a √ √ = √ 2 x [a x K0 (x) + b K1 (x)] a x K0 (x) + b K1 (x) Z

√ √ √ [2b2 x3/2 + 2a2 x + ab] exp(− 2a x) J0 (x) dx 2b exp(− 2a x) b b √ √ =−√ 3/2 2 x [a J0 (x) + b x J1 (x)] x [a J0 (x) + b x J1 (x)] √ √ Z 2a √ 2 3/2 2 [2b x − 2a x + ab] exp( b x) I0 (x) dx 2b exp( 2a x) b √ √ =−√ 3/2 2 x [a I0 (x) + b x I1 (x)] x [a I0 (x) + b x I1 (x)] √ √ Z 2a √ 2 3/2 2 [2b x − 2a x − ab] exp(− b x) K0 (x) dx 2b exp(− 2a x) b √ √ √ = 3/2 2 x [a K0 (x) + b x K1 (x)] x [a K0 (x) + b x K1 (x)]

Z

√ 2b 3/2 2b 3/2 x ) J1 (x) dx x ) [2b2 x3/2 + 2a2 x + ab] exp( 3a 2a exp( 3a √ √ √ = 2 x [a J0 (x) + b x J1 (x)] a J0 (x) + b x J1 (x) √ Z 2b 3/2 2b 3/2 2 3/2 2 [2b x − 2a x + ab] exp( 3a x ) I1 (x) dx 2a exp( 3a x ) √ √ √ = 2 x [a I0 (x) + b x I1 (x)] a I0 (x) + b x I1 (x) √ Z 2b 3/2 2b 3/2 2 3/2 2 [2b x − 2a x − ab] exp(− 3a x ) K1 (x) dx 2a exp(− 3a x ) √ √ √ = − 2 x [a K0 (x) + b x K1 (x)] a K0 (x) + b x K1 (x) Z

447

√ 5/2 5/2 2b exp(− 2a [2a2 x3 + 5ab x + 2b2 ] exp(− 2a ) J0 (x) dx ) 5b x 5b x = − 3/2 2 3/2 x [ax J0 (x) + b J1 (x)] x [ax J0 (x) + b J1 (x)] √ Z 2a 5/2 2 3 2 5/2 2b exp( 2a [2a x − 5ab x − 2b ] exp( 5b x ) I0 (x) dx ) 5b x = 3/2 2 3/2 x [ax I0 (x) + b I1 (x)] x [ax I0 (x) + b I1 (x)] √ Z 2a 5/2 2 3 2 5/2 2b exp(− 2a [2a x + 5ab x − 2b ] exp(− 5b x ) K0 (x) dx ) 5b x = − 3/2 2 3/2 x [ax K0 (x) + b K1 (x)] x [ax K0 (x) + b K1 (x)] Z

√ √ √ 2a x3/2 exp(−2b/a x ) [2a2 x3 + 5ab x + 2b2 ] exp(−2b/a x ) J1 (x) dx = [ax3/2 J0 (x) + b J1 (x)]2 ax3/2 J0 (x) + b J1 (x) √ √ √ Z 2a x3/2 exp(−2b/a x ) [2a2 x3 − 5ab x − 2b2 ] exp(−2b/a x ) I1 (x) dx =− [ax3/2 I0 (x) + b I1 (x)]2 ax3/2 I0 (x) + b I1 (x) √ √ √ Z 2a x3/2 exp(2b/a x ) [2a2 x3 + 5ab x − 2b2 ] exp(2b/a x ) K1 (x) dx = 3/2 [ax3/2 K0 (x) + b K1 (x)]2 ax K0 (x) + b K1 (x) Z

√ √ √ √ 2b x exp(2a/b x ) [2b2 x3 − ab x + 2a2 ] exp(2a/b x ) J0 (x) dx = − x [a J0 (x) + bx3/2 J1 (x)]2 a J0 (x) + bx3/2 J1 (x) √ √ √ √ Z [2b2 x3 − ab x − 2a2 ] exp(−2a/b x ) I0 (x) dx 2b x exp(−2a/b x ) = − x [a I0 (x) + bx3/2 I1 (x)]2 a I0 (x) + bx3/2 I1 (x) √ √ √ √ Z [2b2 x3 + ab x − 2a2 ] exp(2a/b x ) K0 (x) dx 2b x exp(2a/b x ) = x [a K0 (x) + bx3/2 K1 (x)]2 a K0 (x) + bx3/2 K1 (x) Z

√ [2b2 x3 − ab x + 2a2 ] exp(2bx5/2 /5a) J1 (x) dx 2a exp(2bx5/2 /5a) = [a J0 (x) + bx3/2 J1 (x)]2 a J0 (x) + bx3/2 J1 (x) √ Z [2b2 x3 − ab x − 2a2 ] exp(2bx5/2 /5a) I1 (x) dx 2a exp(2bx5/2 /5a) = [a I0 (x) + bx3/2 I1 (x)]2 a I0 (x) + bx3/2 I1 (x) √ Z [2b2 x3 + ab x − 2a2 ] exp(−2bx5/2 /5a) K1 (x) dx 2a exp(−2bx5/2 /5a) = − [a K0 (x) + bx3/2 K1 (x)]2 a K0 (x) + bx3/2 K1 (x) Z

b) Typ f (x) Z0n (x) Z12−n (x)/[p (x) Z0 (x) + q(x) Z1 (x)]2 , n = 0, 1, 2 : 2 [(a2 + b2 )x + ab] · exp (− 2ax b ) · J0 (x) dx = E1 2 2 x [a J0 (x) + b J1 (x)]

Z



2ax b

 −

  b J0 (x) 2ax · exp − x [a J0 (x) + b J1 (x)] b

with the exponential integral E1 (x) (see page 456). Z

Z

Z

    2 [(a2 − b2 )x − ab] · exp ( 2ax 2ax b I0 (x) 2ax b ) · I0 (x) dx = E1 − + · exp x2 [a I0 (x) + b I1 (x)]2 b x [a I0 (x) + b I1 (x)] b

2 [(a2 − b2 )x + ab] · exp (− 2ax b ) · K0 (x) dx = E1 x2 [a K0 (x) + b K1 (x)]2



2ax b



  b K0 (x) 2ax − · exp − x [a K0 (x) + b K1 (x)] b

2  2  −b2 [(a2 + b2 )x + ab] · exp (− a ab x) · J0 (x) · J1 (x) dx ab [b J0 (x) + a J1 (x)] a − b2 =− 2 · exp − x x [a J0 (x) + b J1 (x)]2 (a − b2 ) [aJ0 (x) + bJ1 (x)] ab 2  2  Z +b2 [(a2 − b2 )x − ab] · exp ( a ab x) · I0 (x) · I1 (x) dx ab [b J0 (x) − a J1 (x)] a + b2 = − · exp x x [a I0 (x) + b I1 (x)]2 (a2 + b2 ) [a I0 (x) + b I1 (x)] ab

448

Z

2  2  +b2 [(a2 − b2 )x + ab] · exp (− a ab x) · K0 (x) · K1 (x) dx ab [b K0 (x) − a K1 (x)] a + b2 = − ·exp − x x [a K0 (x) + b K1 (x)]2 (a2 + b2 ) [a K0 (x) + b K1 (x)] ab

2 [(a2 + b2 )x + ab] · exp ( 2bx a [a(a − 2bx) J0 (x) + b(a + 2bx) J1 (x)] a ) · J1 (x) dx = · exp [a J0 (x) + b J1 (x)]2 4b2 [a J0 (x) + b J1 (x)]

 2bx a   Z 2 [(a2 − b2 )x − ab] · exp ( 2bx a [a(a − 2bx) I0 (x) + b(a + 2bx) I1 (x)] 2bx a ) · I1 (x) dx = − · exp [a I0 (x) + b I1 (x)]2 4b2 [a I0 (x) + b I1 (x)] a   Z 2 [(a2 − b2 )x + ab] · exp (− 2bx a [a(a + 2bx) K0 (x) + b(a − 2bx) K1 (x)] 2bx a ) · K1 (x) dx = − · exp − [a K0 (x) + b K1 (x)]2 4b2 [a K0 (x) + b K1 (x)] a Z



2  2   [a2 x2 + b2 + 2ab] · exp (− axb ) · J02 (x) dx 1 ax b J0 (x) ax2 = E1 − · exp − x [ax J0 (x) + b J1 (x)]2 2 b x [ax J0 (x) + b J1 (x)] b 2    2 Z [a2 x2 − b2 − 2ab] · exp ( axb ) · I02 (x) dx 1 ax2 b I0 (x) ax = E − + · exp 1 2 x [ax I0 (x) + b I1 (x)] 2 b x [ax I0 (x) + b I1 (x)] b 2     Z [(a2 x2 − b2 + 2ab] · exp (− axb ) · K02 (x) dx 1 ax2 b K0 (x) ax2 = E1 − · exp − x [ax K0 (x) + b K1 (x)]2 2 b x [ax K0 (x) + b K1 (x)] b

Z

a x2+2b/a [ax J0 (x) − (2a + b) J1 (x)] (a2 (a + b)x2 + 2a2 b + 3ab2 + b3 ) x1+2b/a J12 (x) dx =− 2 [ax J0 (x) + b J1 (x)] 2 [ax J0 (x) + b J1 (x)]

Z

Z

Z

(a2 (a + b)x2 − 2a2 b − 3ab2 − b3 ) x1+2b/a I12 (x) dx a x2+2b/a [ax I0 (x) − (2a + b) I1 (x)] = 2 [ax I0 (x) + b I1 (x)] 2 [ax I0 (x) + b I1 (x)] (a2 (a − b)x2 + 2a2 b − 3ab2 + b3 ) x1+2b/a K12 (x) dx a x2−2b/a [ax K0 (x) + (2a − b) K1 (x)] = 2 [ax K0 (x) + b K1 (x)] 2 [ax K0 (x) + b K1 (x)] Z

Z

(a2 + b2 x2 ) x−1−2a/b J02 (x) dx b x−2a/b [a J0 (x) − bx J1 (x)] = − [a J0 (x) + bx J1 (x)]2 2a [a J0 (x) + bx J1 (x)] Z b x2a/b [a I0 (x) − bx I1 (x)] (a2 − b2 x2 ) x−1+2a/b I02 (x) dx = [a I0 (x) + bx I1 (x)]2 2a [a I0 (x) + bx I1 (x)] (a2 − b2 x2 ) x−1−2a/b K02 (x) dx b x−2a/b [a K0 (x) − bx K1 (x)] = − [a K0 (x) + bx K1 (x)]2 2a [a K0 (x) + bx K1 (x)]

2  2 x(a2 + b2 x2 ) · exp ( bxa ) · J12 (x) dx a [a J0 (x) − bx J1 (x)] bx =− · exp [a J0 (x) + bx J1 (x)]2 2b [a J0 (x) + bx J1 (x)] a 2  2 Z x(a2 − b2 x2 ) · exp ( bxa ) · I12 (x) dx a [a I0 (x) − bx I1 (x)] bx = · exp [a I0 (x) + bx I1 (x)]2 2b [a I0 (x) + bx I1 (x)] a 2   Z x(a2 − b2 x2 ) · exp (− bxa ) · K12 (x) dx bx2 a [a K0 (x) − bx K1 (x)] · exp − =− [a K0 (x) + bx K1 (x)]2 2b [a K0 (x) + bx K1 (x)] a

Z

5.3. Denominator [p (x) Z0 (x) + q(x) Z1 (x)]3 b) Typ f (x) Zν /[p (x) Z0 (x) + q(x) Z1 (x)]3 , : Z

  [(a2 + b2 )x + ab] exp(− 2ax b 2ax b ) J0 (x) dx =− 2 exp − x3 [a J0 (x) + b J1 (x)]3 2x [a J0 (x) + b J1 (x)]2 b

449

[(a2 − b2 )x − ab] exp( 2ax b b ) I0 (x) dx = 2 exp 3 3 x [a I0 (x) + b I1 (x)] 2x [a I0 (x) + b I1 (x)]2



 2ax b   Z 2ax 2 2 [(a − b )x + ab] exp(− b ) K0 (x) dx b 2ax =− 2 exp − x3 [a K0 (x) + b K1 (x)]3 2x [a K0 (x) + b K1 (x)]2 b Z

[(a2 + b2 )x + ab] exp( 2bx a a ) J1 (x) dx = exp x [a J0 (x) + b J1 (x)]3 2 [a J0 (x) + b J1 (x)]2



 2bx a   Z [(a2 − b2 )x − ab] exp( 2bx a 2bx a ) I1 (x) dx = − exp x [a I0 (x) + b I1 (x)]3 2 [a I0 (x) + b I1 (x)]2 a   Z [(a2 − b2 )x + ab] exp(− 2bx a 2bx a ) K1 (x) dx = exp − x [a K0 (x) + b K1 (x)]3 2 [a K0 (x) + b K1 (x)]2 a Z

2   [a2 x2 + b2 + 2ab] exp(− axb ) J0 (x) dx b ax2 = − exp − x2 [ax J0 (x) + b J1 (x)]3 2x2 [ax J0 (x) + b J1 (x)]2 b 2   Z [a2 x2 − b2 − 2ab] exp( axb ) I0 (x) dx b ax2 = exp x2 [ax I0 (x) + b I1 (x)]3 2x2 [ax I0 (x) + b I1 (x)]2 b 2   Z [a2 x2 − b2 + 2ab] exp(− axb ) K0 (x) dx b ax2 =− 2 exp − x2 [ax K0 (x) + b K1 (x)]3 2x [ax J0 (x) + b J1 (x)]2 b

Z

Z

[a2 x2 + b2 + 2ab] x1+2b/a J1 (x) dx ax2+2b/a = 3 [ax J0 (x) + b J1 (x)] 2 [ax J0 (x) + b J1 (x)]2

Z

[a2 x2 − b2 − 2ab] x1+2b/a I1 (x) dx ax2+2b/a =− 3 [ax I0 (x) + b I1 (x)] 2 [ax I0 (x) + b I1 (x)]2

Z

ax2−2b/a [a2 x2 − b2 + 2ab] x1−2b/a K1 (x) dx = [ax K0 (x) + b K1 (x)]3 2 [ax K0 (x) + b K1 (x)]2 [a2 + b2 x2 ] x−1−2a/b J0 (x) dx bx−2a/b =− 3 [a J0 (x) + bx J1 (x)] 2 [a J0 (x) + bx J1 (x)]2

Z Z Z

bx2a/b [a2 − b2 x2 ] x−1+2a/b I0 (x) dx = 3 [a J0 (x) + bx J1 (x)] 2 [a I0 (x) + bx I1 (x)]2 [a2 − b2 x2 ] x−1−2a/b K0 (x) dx bx−2a/b = [a K0 (x) + bx K1 (x)]3 2 [a K0 (x) + bx K1 (x)]2

[a2 + b2 x2 ] exp( ab x2 ) J1 (x) dx a = exp [a J0 (x) + bx J1 (x)]3 2 [a J0 (x) + bx J1 (x)]2

 b x2 a   Z [a2 − b2 x2 ] exp( ab x2 ) I1 (x) dx a b x2 =− exp [a I0 (x) + bx I1 (x)]3 2 [a I0 (x) + bx I1 (x)]2 a   Z [a2 − b2 x2 ] exp(− ab x2 ) K1 (x) dx a b x2 = exp − [a K0 (x) + bx K1 (x)]3 2 [a K0 (x) + bx K1 (x)]2 a Z



5.4. Denominator [p (x) Z0 (x) + q(x) Z1 (x)]4 a) Typ f (x) Zν /[p (x) Z0 (x) + q(x) Z1 (x)]4 : Z

  [(a2 + b2 )x + ab] exp(− 3ax b 3ax b ) J0 (x) dx = − exp − x4 [a J0 (x) + b J1 (x)]4 3x3 [a J0 (x) + b J1 (x)]3 b 450

[(a2 − b2 )x − ab] exp( 3ax b b ) I0 (x) dx = 3 exp 4 4 x [a I0 (x) + b I1 (x)] 3x [a I0 (x) + b I1 (x)]3



 3ax b   Z 3ax 2 2 [(a − b )x + ab] exp(− b ) K0 (x) dx b 3ax = − exp − x4 [a K0 (x) + b K1 (x)]4 3x3 [a J0 (x) + b J1 (x)]3 b Z

  [(a2 + b2 )x + ab] exp( 3bx a 3bx a ) J1 (x) dx =− exp x [a J0 (x) + b J1 (x)]4 3 [a J0 (x) + b J1 (x)]3 a   Z 3bx 2 2 [(a − b )x − ab] exp( a ) I1 (x) dx a 3bx =− exp x [a I0 (x) + b I1 (x)]4 3 [a I0 (x) + b I1 (x)]3 a   Z 3bx 2 2 [(a − b )x + ab] exp(− a ) K1 (x) dx a 3bx = exp − x [a K0 (x) + b K1 (x)]4 3 [a K0 (x) + b K1 (x)]3 a Z

2   [a2 x2 + b2 + 2ab] exp(− 3ax b 3ax2 2b ) J0 (x) dx = − exp − x3 [ax J0 (x) + b J1 (x)]4 3x3 [ax J0 (x) + b J1 (x)]3 2b 2   Z [a2 x2 − b2 − 2ab] exp( 3ax b 3ax2 2b ) I0 (x) dx = 3 exp x3 [ax I0 (x) + b I1 (x)]4 3x [ax I0 (x) + b I1 (x)]3 2b 2   Z [a2 x2 − b2 + 2ab] exp(− 3ax b 3ax2 2b ) K0 (x) dx = − exp − x3 [ax K0 (x) + b K1 (x)]4 3x3 [ax K0 (x) + b K1 (x)]3 2b

Z

Z

a x3+3b/a [a2 x2 + b2 + 2ab] x2+3b/a J1 (x) dx = [ax J0 (x) + b J1 (x)]4 3 [ax J0 (x) + b J1 (x)]3

Z

a x3+3b/a [a2 x2 − b2 − 2ab] x2+3b/a I1 (x) dx = − [ax I0 (x) + b I1 (x)]4 3 [ax I0 (x) + b I1 (x)]3

Z

a x3−3b/a [a2 x2 − b2 + 2ab] x2−3b/a K1 (x) dx = [ax K0 (x) + b K1 (x)]4 3 [ax K0 (x) + b K1 (x)]3 (a2 + b2 x2 ) x−1−3a/b J0 (x) dx b x−3a/b =− 4 [a J0 (x) + bx J1 (x)] 3 [a J0 (x) + bx J1 (x)]3

Z

Z

Z

b x3a/b (a2 − b2 x2 ) x−1+3a/b I0 (x) dx = 4 [a I0 (x) + bx I1 (x)] 3 [a I0 (x) + bx I1 (x)]3 (a2 − b2 x2 ) x−1−3a/b K0 (x) dx b x−3a/b = 4 [a K0 (x) + bx K1 (x)] 3 [a K0 (x) + bx K1 (x)]3 2

[a2 + b2 x2 ] exp( 3bx a 2a ) J1 (x) dx = exp [a J0 (x) + bx J1 (x)]4 3 [a J0 (x) + bx J1 (x)]3

 3bx2 2a 2   Z [a2 − b2 x2 ] exp( 3bx a 3bx2 2a ) I1 (x) dx =− exp [a I0 (x) + bx I1 (x)]4 3 [a I0 (x) + bx I1 (x)]3 2a 2   Z 3bx [a2 − b2 x2 ] exp(− 2a ) K1 (x) dx a 3bx2 = exp − [a K0 (x) + bx K1 (x)]4 3 [a K0 (x) + bx K1 (x)]3 2a Z

451



5.5. Denominator p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x) a) Typ f (x) Z0n (x) Z12−n (x)/[p (x) Z02 (x) + q(x) Z12 (x)], n = 0, 1, 2 : Z

1 J02 (x) dx = ln{x2 [J02 (x) + J12 (x)]} x [J02 (x) + J12 (x)] 2

Z

I02 (x) dx 2 x [I0 (x) − I12 (x)]

=

1 ln{x2 [I02 (x) − I12 (x)]} 2

K02 (x) dx 2 x [K0 (x) − K12 (x)]

=

1 ln{x2 [K12 (x) − K02 (x)]} 2

Z

Z

Z

(x2 − a) J0 (x) J1 (x) dx 1 = ln[a J02 (x) + x2 J12 (x)] a J02 (x) + x2 J12 (x) 2

Z

(x2 + a) I0 (x) I1 (x) dx 1 = ln[a I02 (x) + x2 I12 (x)] a I02 (x) + x2 I12 (x) 2

(x2 + a) K0 (x) K1 (x) dx 1 = − ln[a K02 (x) + x2 K12 (x)] 2 2 2 a K0 (x) + x K1 (x) 2 Z Z Z

J12 (x) dx 2 x [J0 (x) + J12 (x)]

=−

1 ln[J02 (x) + J12 (x)] 2

I12 (x) dx 2 x [I0 (x) − I12 (x)]

=−

1 ln[I02 (x) − I12 (x)] 2

K12 (x) dx 1 = − ln[K12 (x) − K02 (x)] 2 2 x [K1 (x) − K0 (x)] 2

b) Typ f (x) Z0n (x) Z12−n (x)/[p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x)], n = 0, 1, 2 : Z x2 Z Z

J02 (x)

x J02 (x) dx 1 = ln x4 J02 (x) + 2x3 J0 (x) J1 (x) + (x4 − 2x3 ) J12 (x) 2 2 + 2x J0 (x) J1 (x) + (x − 2) J1 (x) 6

x I02 (x) dx 1 = ln x4 I02 (x) + 2x3 I0 (x) I1 (x) − (x4 + 2x2 ) I12 (x) 2 2 2 2 x I0 (x) + 2x I0 (x) I1 (x) − (x + 2) I1 (x) 6

x K02 (x) dx 1 = ln x4 K02 (x) − 2x3 K0 (x) K1 (x) − (x2 + 2) K12 (x) x2 K02 (x) − 2x K0 (x) K1 (x) − (x2 + 2) K12 (x) 6 Z

J0 (x)J1 (x) dx = ln xJ02 (x)x − J0 (x)J1 (x) + xJ12 (x) 2 − J0 (x)J1 (x) + xJ1 (x)] Z I0 (x)I1 (x) dx = ln xI02 (x)x − I0 (x)I1 (x) − xI12 (x) 2 2 x[xI0 (x)x − I0 (x)I1 (x) − xI1 (x)] Z K0 (x)K1 (x) dx = − ln xK02 (x)x + K0 (x)K1 (x) − xK12 (x) 2 2 x[xK0 (x)x + K0 (x)K1 (x) + xK1 (x)] x[xJ02 (x)x

Z

 (1 + 2 ln x)x J0 (x) J1 (x) dx 1  = − ln x xJ02 (x) − 2J0 (x)J1 (x) − 2x ln xJ12 (x) 2 − 2J0 (x)J1 (x) − 2x ln xJ1 (x) 2 Z  1  (1 + 2 ln x)x I0 (x) I1 (x) dx = ln x xI02 (x) − 2I0 (x)I1 (x) + 2x ln xI12 (x) xI02 (x) − 2I0 (x)I1 (x) + 2x ln xI12 (x) 2 Z  (1 + 2 ln x)x K0 (x) K1 (x) dx 1  = − ln x xK02 (x) + 2K0 (x)K1 (x) + 2x ln xK12 (x) 2 2 xK0 (x) + 2K0 (x)K1 (x) − 2x ln xK1 (x) 2 xJ02 (x)

452

  (8x2 + 3) J0 (x)J1 (x) dx = − ln x2 xJ02 (x) − 3J0 (x)J1 (x) − 3xJ12 (x) − 3J0 (x)J1 (x) − 3xJ12 (x)]

Z

x[xJ02 (x)

  (8x2 − 3) I0 (x)I1 (x) dx = ln x2 xI02 (x) − 3I0 (x)I1 (x) + 3xI12 (x) 2 − 3I0 (x)I1 (x) + 3xI1 (x)]

Z

x[xI02 (x)

  (8x2 − 3) K0 (x)K1 (x) dx = − ln x2 xK02 (x) + 3K0 (x)K1 (x) + 3xK12 (x) 2 + 3K0 (x)K1 (x) + 3xK1 (x)]

Z

x[xK02 (x)

1 x2 J0 (x) J1 (x) dx = − ln x4 J02 (x) − 4x3 J0 (x) J1 (x) − (x4 − 2x2 ) J12 (x) x2 J02 (x) − 4x J0 (x) J1 (x) − (2x2 − 4) J12 (x) 6

Z

Z x2

I02 (x)

Z x2

K02 (x) Z

1 x2 I0 (x) I1 (x) dx = ln x4 I02 (x) − 2x3 I0 (x) I1 (x) + (2x4 + 4x2 ) I12 (x) 2 2 − 4x I0 (x) I1 (x) + (2x + 4) I1 (x) 6

x2 K0 (x) K1 (x) dx 1 = − ln x4 K02 (x) + 4x3 K0 (x) K1 (x) + (2x4 + 4x2 ) K12 (x) 2 2 + 4x K0 (x) K1 (x) + (2x + 4) K1 (x) 6

1 (3x3 + 4) J0 (x) J1 (x) dx = − ln x4 J02 (x) − 4x3 J0 (x) J1 (x) − 2x4 J12 (x) x2 J02 (x) − 4x J0 (x) J1 (x) − 2x2 J12 (x) 2 Z (3x2 − 4) I0 (x) I1 (x) dx 1 4 2 3 4 2 = I I (x) I (x) + 2x I x (x) − 4x (x) ln 0 1 0 1 2 2 x2 I0 (x) − 4x I0 (x) I1 (x) + 2x2 I1 (x) 2 (3x2 − 4) K0 (x) K1 (x) dx 1 = − ln x4 K02 (x) + 4x3 K0 (x) K1 (x) + 2x4 K12 (x) 2 2 2 + 4x K0 (x) K1 (x) + 2x K1 (x)

Z x2

K02 (x) Z

J12 (x) dx 1 = ln x2 J02 (x) − 2x J0 (x)J1 (x) + x2 J12 (x) 2 2 xJ0 (x) − 2J0 (x)J1 (x) + xJ1 (x) 2

Z

I12 (x) dx 1 = − ln x2 I02 (x) − 2x I0 (x)I1 (x) − x2 I12 (x) xI02 (x) − 2I0 (x)I1 (x) − xI12 (x) 2

Z xK02 (x)

K12 (x) dx 1 = − ln x2 K02 (x) + 2x K0 (x)K1 (x) − x2 K12 (x) 2 2 + 2K0 (x)K1 (x) − xK1 (x)

x J12 (x) dx 1 = ln x4 J02 (x) − 4x3 J0 (x) J1 (x) + (x4 + 4x2 ) J12 (x) 2 2 2 2 x J0 (x) − 4x J0 (x) J1 (x) + (x + 4) J1 (x) 6

Z

Z

x I12 (x) dx 1 = − ln x4 I02 (x) − 4x3 I0 (x) I1 (x) − (x2 − 4) I12 (x) x2 I02 (x) − 4x I0 (x) I1 (x) − (x2 − 4) I12 (x) 6

Z x2 K02 (x)

x K12 (x) dx 1 4 2 3 4 2 2 = − ln x K (x) + 4x K (x) K (x) − (x − 4x ) K (x) 0 1 0 1 2 + 4x K0 (x) K1 (x) − (x2 − 4) K1 (x) 6

453

q 5.6. Denominator a(x) Z0 (x) + b(x) Z1 (x) + p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x) Generally: From Z ϕ(x) Z0m (x) Z1n (x) dx follows

=

a(x) Z0 (x) + b(x) Z1 (x) + p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x) ϕ(x) Z0m (x) Z1n (x) dx

Z

= a(x) Z0 (x) + b(x) Z1 (x) + p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x) q = 2 a(x) Z0 (x) + b(x) Z1 (x) + p (x) Z02 (x) + q(x) Z0 (x) Z1 (x) + r(x) Z12 (x) . q

Therefore the formulas from 1. and 2. give a lot of integrals of this kind. Some special cases: Z Z √ p p J1 (x) dx x J0 (x) dx p p = −2 J0 (x) , = 2 x J1 (x) J0 (x) J1 (x) Z

Z

p x2 J1 (x) dx p = 2 2x J1 (x) − x2 J0 (x) 2x J1 (x) − x2 J0 (x)

(at least for 0 < x < 5.1356)

p x3 J0 (x) dx p = 2 2x2 J0 (x) + (x3 − 4x) J1 (x) 2x2 J0 (x) + (x3 − 4x) J1 (x) Z

(at least for 0 < x < 3.0542)

p x ln x J0 (x) dx p = 2 J0 (x) + x ln x J1 (x) (at least for 0 < x < 3.6265) J0 (x) + x ln x J1 (x) Z p sin x J0 (x) dx p = 2 x sin x J0 (x) − x cos x J1 (x) x sin x J0 (x) − x cos x J1 (x) Z p cos x J0 (x) dx p = 2 x cos x J0 (x) + x sin x J1 (x) x cos x J0 (x) + x sin x J1 (x)

454

6. Miscellaneous: Z

xn · J0 (x) · J1n−1 (x) dx =

Z

dx xn

Z

· J0 (x) ·

J1n+1 (x)

1

=− n xn

xn · I0 (x) · I1n−1 (x) dx =

Z

dx xn

· I0 (x) ·

I1n+1 (x) Z

xn n J (x) , n 1 ,

1 n xn

n = ±1, ±2, ±3, . . . ...

J1n (x

xn n I (x) , n 1

=−

n = ±1, ±2, ±3, . . . ...

n = ±1, ±2, ±3, . . . ... ,

n = ±1, ±2, ±3, . . . ...

I1n (x)

Φ(x) dx = Λ1 (x) − x J0 (x) − Φ(x) x

 1  x5 J1 (px2 + i) dx = 3 J1 (px2 + i) − (px2 − i)J0 (px2 + i) 2 px + i 2p √ Z 7 √ √ √ √ i 1 h x J1 (px2 + 3 i) dx √ = 4 (2px2 − 3 i) J1 (px2 + 3 i) − (p2 x4 − 3 px2 i − 3)J0 (px2 + 3 i) 2p px2 + 3 i Z

455

7. Used special functions and defined functions: Used functions: Jν (x)

Bessel function of the first kind

Iν (x)

Modified Bessel function (of the first kind)

Yν (x)

Bessel function of the second kind, Neumann’s function, Weber’s function

Kν (x)

Modified Bessel function (of the second [third] kind), MacDonald Function

(p)

Hν (x), Bessel function of the third kind, p = 1, 2 Hankel function R∞ Γ(x) Gamma function Γ(x) = 0 tx−1 e−t dt

[1] 6.1, [2] 1.1, [4] II.1.,[5] V, [7]

E1 (x)

Exponential Z ∞integral Z ∞ −xt e−t dt e dt E1 (x) = = t t x 1 Struve functions

[1] 5.1, [4] II.5.

[1] 12.2, [2] 10.1, [7] 8.55

sµ,ν (x)

Modified Struve functions Z ∞ J0 (t) dt Ji0 (x) = t x Lommel functions

Pnm (x)

(Associated) Legendre functions of the first kind

[1] 8, [5] XII 3.1.

Pn (x)

Legendre polynom

w(x) ≡ 1

Tn (x)

Chebyshev polynom, first kind

Un (x)

Chebyshev polynom, second kind

√ w(x) = 1/ 1 − x2 √ w(x) = 1 − x2

Ln (x)

Laguerre polynom

w(x) = e−x

Hn (x)

Hermite polynom

w(x) = exp(−x2 )

Hν (x) Lν (x) Ji0 (x)

[1] 12.1, [2] 10.1, [5] XIII 2., [7] 8.55

[1] 11.1.19, [9] [2] 10.1, [7] 8.57

456

Defined functions: Function

Page

πx 2 [J1 (x) · H0 (x) − J0 (x) · H1 (x)] ΦY (x) = πx 2 [Y1 (x) · H0 (x) − Y0 (x) · H1 (x)] (1) (1) (1) πx ΦH = 2 [H1 (x) · H0 (x) − H0 (x) · H1 (x)] (2) (2) (2) ΦH = πx 2 [H1 (x) · H0 (x) − H0 (x) · H1 (x)] Ψ(x) = πx 2 [I0 (x) · L1 (x) − I1 (x) · L0 (x)]

7

Φ(x) =

7 7 7 7

ΨK (x) = πx 2 [K0 (x) · L1 (x) + K1 (x) · L0 (x)] Rx 2 Θ(x) = 0 J0 (t) dt Rx Ω(x) = 0 I02 (t) dt Rx Λ0 (x) = 0 J0 (t) dt Rx Λ∗0 = 0 I0 (t) dt(x) Rx Λ1 (x) = 0 t−1 · Λ0 (t) dt Rx Λ∗1 (x) = 0 t−1 · Λ∗0 (t) dt Rx Θ0 (x; γ) = 0 J0 (t) J0 (γt) dt Rx Ω0 (x; γ) = 0 I0 (t) I0 (γt) dt Rx Θ1 (x; γ) = 0 J1 (t) J1 (γt) dt Rx Ω1 (x; γ) = 0 I1 (t) I1 (γt) dt

7

Hp (x, a), p = 0, 1

81

H∗p (x, a),

87

p = 0, 1

208 208 123 125 125 127 277 277 279 279

8. Errata The formulas are checked once more. Misprints in some integrals were found and corrected. By now these formulas are marked with the sign *E* as a warning: ’There were errors in previous editions.’. They are located on the following pages of the present text: 7, 9, 11, 13, 14, 16, 17, 19, 63, 66, 70, 74, 93, 200, 221, 370 . In the previous editions the incorrect formulas may have different page numbers. The check is not finished yet.

457

Suggest Documents