talk slides

7 downloads 12129 Views 5MB Size Report
S Uji. T. Terashima, S. Uji. National Institute for material Science. Ibaraki, Japan ... 2 A quantum spin liquid state in 2D organic Mott insulator .... Hubbard model.
Collaborators Physics

seminar at 清華大学 高等研究院

Quantum `spin-metal' phase in an organic Mott insulator with two-dimensional triangular g lattice Takasada Shibauchi 芝内 孝禎 (京都大学) Department of Physics, Kyoto University Sakyo-ku Kyoto, Sakyo-ku, Kyoto Japan

Kyoto University

Current projects in Matsuda-Shibauchi group in Kyoto Iron-pnictide superconductivity

Heavy-fermion superlattices

Nature (2012); Science (2012); PRLs (2009-12) (2009 12).

Science (2011); Nature Phys Phys. (2012); PRL (2012) (2012).

Hidden-order mystery in URu2Si2

Quantum spin liquids in triangular lattices

Science (2011); Nature Phys. (2012); PRL (2012).

Nat. Phys. (2009); Science (2010); Nat. Commun. (2012).

Collaborators

Collaborators

D. Watanabe, M. Yamashita, Y. Matsuda Department of Physics, Kyoto University Kyoto , Japan

H. M. Yamamoto, R. Kato RIKEN, Saitama, Japan

T Terashima, T. T hi S Uji S. National Institute for material Science Ibaraki, Japan

K. Behnia LPEM (CNRS-UPMC), ESPCI Paris France Paris,

I. Sheikin Grenoble High Magnetic Field Laboratory Grenoble, France Acknowledgement:

Kyoto University

N. Kawakami, Yong-Baek Yong Baek Kim, P. A. Lee, T. Senthil, and N. Nagaosa for discussions

Outline 1 Introduction 1. 2 A quantum spin liquid state in 2D organic Mott insulator 2. EtMe3Sb[Pd(dmit)2]2 with triangular lattice 3. Elementary excitations and phase diagram of the quantum spin liquid 4 Quantum spin metal: a novel phase in the Mott Insulator 4. 5 Summary 5. M.Yamashita et al., Nature Phys. 5, 44 (2009). M. Yamashita et al., Science 328, 1246 ((2010). ) D. Watanabe et al., Nature Commun. (2012).

University KyotoKyoto University

Introduction Quantum Liquid Q Quantum t fluctuation fl t ti prevents t conventional ti l ordering d i 4He

3He

Introduction Quantum spin liquid (QSL) A state of matter where strong quantum fluctuations melt the longrange magnetic ti order d even att absolute b l t zero ttemperature. t Spin Liquids are states which do not break any simple symmetry: neither spin-rotational symmetry nor lattice symmetry symmetry. P. W. Anderson, Mater. Res. Bull (1973), Science (1987).

Notion of QSL is firmly established in 1D 1D XXZ chain (S = 1/2) Spinon excitation (S=1/2, e=0) QSL ‡ No N LRO ‡ Gapless ‡ Algebraic spin correlation (critical phase)

Introduction QSLs in two and three dimensions Geometrical frustrations are required Classical

A large ground-state degeneracy

Quantum

Quantum fluctuation lifts the degeneracy and a QSL ground state may appear

Only a few candidate materials exist exist. Triangular lattice

3He

on graphite Organic compounds

Kagome lattice

Pyrochlore lattice

ZnCu3(OH)6Cl2 (Herbertsmithite) BaCu3V2O8(OH)2 (Vesigniete)

Na4Ir3O8 ・ ・

Introduction QSLs in two and three dimensions Geometrical frustrations are required Classical

A large ground-state degeneracy

Quantum

Quantum fluctuation lifts the degeneracy and a QSL ground state may appear

Only a few candidate materials exist exist. Triangular lattice

3He

on graphite surface

Organic compounds bulk

Introduction Organic Mott insulators with trianglar lattice κ-(BEDT-TTF)2Cu2(CN)3 EtMe3Sb[ Sb[Pd Pd((dmit) dmit)2]2

ET dmit

Strong candidates that host a QSL state

What kind of QSL is realized? Many types of QSL proposed • Resonating-valence-bond Resonating valence bond liquid • Chiral spin liquid • Quantum dimer liquid • Z2 spin liquid • Algebraic spin liquid • Spin Bose Metal • etc…

Elementary excitations S i Spinon with ith F Fermii surface f • Vison • Majorana fermions • etc…

Heisenberg spins on 2D triangular lattice Resonating Valence Bond (RVB) Liquid

Long-range order

Further fluctuations are required to realize a QSL

Superposition of different configurations Resonance between highly degenerated spin configurations leads to a liquid-like liquid like wavefunction. P. Fazekas and P. W. Anderson, Philos. Mag. (1974).

3-sublattice Néel order ((120°structure)) D. Huse and V. Elser, PRL (1988). L. Caprioti, A. E.E. Trumper, S. Sorella, PRL (1999). B. Bernu, C. Lhuillier, L. Pierre, PRL (1992).

Quantum spin liquid on a 2D triangular lattice H i Heisenberg b model d l ffor a ttriangular i l llattice tti 4 spin ring exchange model

P1234 = (s1 ⋅ s 2 )(s 3 ⋅ s 4 ) + (s1 ⋅ s 4 )(s 3 ⋅ s 2 ) − (s1 ⋅ s 3 )(s 2 ⋅ s 4 )

?

When J4>0

?

?

4-spin ring exchange yields a strong frustration

?

?

θ1−θ2+θ3−θ4=π

?

?

?

?

? ?

?

?

G. Misguich et al., PRB (1999). W. W LiMing, LiMing G. G Misguish, Misguish P. P Sindzingre, Sindzingre C. C Luhuiller, Luhuiller PRB (2000). (2000)

QSL with gapped excitations

?

? ?

Quantum spin liquid on a 2D triangular lattice Hubbard model

Non on--Magnetic Insulating phase near M M--I transition (Quantum spin liquid)

Morita-Watanabe-Imada, JPSJ (2002).

t’/t = 1

Metal

NMI

120⁰ Néel

Kyung-Tremblay, PRL (2006). Yoshioka-Koga-Kawakami, PRL (2010).

Energy resolutions of these calculations are not enough to discuss low energy excitations (E~J/100)

κ-(BEDT-TTF)2Cu2(CN)3 H

S

Spin 1/2

C

BEDT TTF molecule BEDT-TTF l l bis(ethylendithio)-tetrathiafulvalence

dimer Viewed from the top

Layer of BEDT-TTF Layer of anion (nonmagnetic)

J~250 K t /t = 1.06 t’/t 1 06 (Hückel Method)

Mott insulator : t~54.5 t 54 5 meV, meV tt’~57.5 57 5 meV and U~448 U 448 meV (U/t~8.2) (U/t 8 2)

κ-(BEDT-TTF)2Cu2(CN)3 1H

Spin 1/2

NMR

No internal magnetic field Y. Shimizu et al., PRL (2003).

dimer Layer of BEDT-TTF Layer of anion

J~250 K t /t = 1.06 t’/t 1 06 (Hückel Method)

μSR

F. L. Pratt et al., Nature (2011).

κ-(ET)2Cu2(CN)3 : inhomogeneity or phase separation 13C

NMR

8

LF-μSR T = 50 mK

Asym mmetry (%)

6

4

2

0 0

Y. Shimizu et al. PRB 73, 140407 (2006).

Relaxation curve below 300 mK two components

3950G 100G 50G 30G 20G 10G 7G 5G 3G ZF

S. Nakajima et al. ArXiv 1204.1785 3

6 Time (μs)

9

12

Microscopic phase separation between gapped and gapless regions

NMR recovery curve shows stretched exponential singlet region α> a ~ 1 nm More than 1000 times longer than the interspin distance!!

Itinerant excitation Homogeneous Extremely long correlation length

Spin liquid

κspin Residual R id l κ/T /T at T→0 K

M. Yamashita et al., Science 328, 1246 (2010).

Elementary excitations : gapless or gapped? 1 ΔT Q =κ l Wt

Thermal conductivity Quantum spin p liquid q conducts heat very well, as good as brass.

Brass ((Cu0.7+Zn0.3)) Spin liquid 5 yyen coin

Brass M. Yamashita et al., Science 328, 1246 (2010).

What kind of QSL state in EtMe3Sb[Pd(dmit)2]2 ? Gapless elementary excitations Remaining key question

Are they magnetic?

Spin-spin correlation function 1D S=1/2 Heisenberg

Haldane system (S = 1)

CuCl2∙2N(C5D5) Mag gnetization n

NENP

Gapless Power law (algebraic)

Kyoto University

Gap p Exponential

What kind of QSL state in EtMe3Sb[Pd(dmit)2]2 ? Gapless elementary excitations Remaining key question

Are they magnetic?

Uniform susceptibility and magnetization at low temperatures Magnetic torque+ESR (down to 30 mK up to 32 T) SQUID (Only down to ~4 K due to Curie contribution)

•Isotropic contribution from impurities is cancelled. cancelled Torque picks up only anisotropic components. •High sensitivity. Measurements on a tiny single crystal are possible.

Kyoto University

Magnetic torque measurements in EtMe3Sb[Pd(dmit)2]2

Uniform susceptibility and magnetization of QSL Susceptibility χ⊥plane

Magnetization M⊥plane 30 mK

T-independent and remains finite at TÆ0K

increases linearly with H

Gapless magnetic excitations (absence of spin gap)

Δ ∝ ξ −1

( ξ: magnetic correlation length, Δ: spin gap )

Divergence of ξ , i.e. i e QSL is in a critical state S z (r ) S z (0) ∝ r −η

Algebraic spin liquid

Uniform susceptibility and magnetization of QSL H How th QSL changes the h when h th the d degree off ffrustration t ti varies? i ? Deuteration Cation layer X = EtMe3Sb,

Three Me groups are deuterated

h9-dmit: pristine d9-dmit :deuterated

h9-dmit: d it Cp / T ~ 20 mJ/K J/K2moll d9-dmit : Cp / T ~ 40 mJ/K2mol

d9-dmit: dmit: h9-dmit:

Deuteration changes the low temperature specific heat. Presumably it reduces t’/t. S. Yamashita et al., Nature Commun. (2011).

Uniform susceptibility and magnetization of QSL Susceptibility χ⊥plane

Magnetization M⊥plane 30 mK

Deuteration changes the degrees of geometrical frustration.

Uniform susceptibility and magnetization of QSL Susceptibility χ⊥plane

Magnetization M⊥plane 30 mK

Deuteration changes the degrees of geometrical frustration.

Both h9- and d9-dmit dmit systems exhibit essentially the same paramagnetic behavior with gapless magnetic excitations.

B h systems are iin a critical Both i i l state d down to kBT~J/10,000

Phase diagram of the QSL Case-I

Case-II

d9-dmit h9-dmit

Quantum critical ‘phase’

D W D. Watanabe t b ett al., l Nature N t C Commun. 3 1090 (2012) 3, (2012).

Both h9-dmit and d9-dmit with different degrees of frustration exhibit essentially the same paramagnetic behavior with gapless magnetic excitations.

An extended quantum critical phase, rather than a QCP.

What kind of spin liquid is realized in dmit? Resonating-Valence-Bond theory

Spin liquid with spinon Fermi surface

Algebraic spin liquid

Quantum Dimer Model

Z2 spin liquid

Spin Bose Metal

Chiral spin liquid

What kind of spin liquid is realized in dmit? Gapless Spin Liquid

Gapped Spin Liquid

Gapless Fermionic spinon or spin Bose metal

Resonating-Valence-Bond theory

Spin liquid with spinon Fermi surface Quantum critical ‘phase’

Spin Bose Metal

Algebraic spin liquid

Gapped Bosonic spinon

Spin liquid with spinon Fermi surface?

Quantum critical iti l ‘‘phase’ h ’

A simple thermodynamic test assuming 2D Fermion with Fermi surface Pauli susceptibility

Specific heat coefficient C/T

γ~20mJ/K2 mol (experimental value)

Fermi temperature (exp. value)

These values are (semi-)quantitatively consistent with the theory of the QSL that possesses a spinon Fermi surface.

A new phase in a Mott insulator

Metal

Quantum `spin-metal’ phase

D. F. Mross and T. Senthil, PRB (2011).

Spin excitation behave as in Pauli paramagnetic metals with Fermi surface, even though the charge degrees of freedom are frozen.

Spin liquid with spinon Fermi surface? More direct methods to detect the spinon Fermi surface

Thermal Hall effect

Quantum oscillation

H. Katsura, N. Nagaosa and P. A. Lee, PRL (2010). O I. O. I Mitrunich, Mitrunich PRB (2006). (2006)

tanθH=κxy/κxx

κxy thermal Hall conductivity 0.23 K

M⊥(μB/diimer)

30 mK up to 35 T

1K D. Watanabe et al., Nature Commun. (2012).

No discernible oscillation M. Yamashita et al., Science (2010).

No discernible thermal Hall effect

The coupling between the magnetic field and the gauge flux may be weak. Z2 spin liquid with pseudo-Fermi surfaces? Barkeshli, Yao, Kivelson (2012).

Summary Ground state and phase diagram of the QSL in 2D organic Mott insulator EtMe3Sb[Pd(dmit)2]2 with triangular lattice Distinct residual thermal conductivity and paramagnetic susceptibility in the zero temperature limit. The QSL is an algebraic spin liquid with a magnetically gapless ground state, i.e. a critical state with infinite magnetic correlation length.

Essentially the same results in the deuterated sample with a different degree of geometrical frustration The emergence of an extended `quantum spin-metal phase' in the Mott insulator, in which the low-energy spin excitations behave as in Pauli paramagnetic metals with Fermi surface.

University KyotoKyoto University

M.Yamashita et al.,, Nature Phys. y 5,, 44 (2009). ( ) M. Yamashita et al., Science 328, 1246 (2010). D. Watanabe et al., Nature Commun. 3, 1090 (2012).