Temperature Dependent Decay Measurements of

0 downloads 0 Views 378KB Size Report
450 nm slit size: Ex = 4.00, Em = 0.50. 450. 500. 550. 600. 650. 700. 750. 800. 0,00. 2,50x104. 5,00x104. 7,50x104. 1,00x105. 1,25x105. 1,50x105 λ. Ex.
Temperature Dependent Decay Measurements of Doped 2+ Garnets and Eu Doped Sulfides and Sulfoselenides MAF 11

3+ Ce

Helga Bettentrupa, Holger Winklerb , Dominik Uhlicha, Thomas Jüstela aUniversity

of Applied Sciences Münster, Stegerwaldstr. 39, D-48565 Steinfurt (Germany). e-mail: [email protected] bMerck KGaA, Frankfurter Straße 250, D-64293 Darmstadt (Germany)

Introduction Eu2+ and Ce3+ activated phosphors are widely applied in phosphor converted light emitting diodes (pcLEDs). These are the most favoured activator ions because of their tuneable emission colour, fast decay, and their broad excitation range. Another advantage is their high quantum efficiency also at elevated temperatures; however, this strongly depends on the host lattice. In this study, Ce3+ activated garnets and Eu2+ activated sulfides and sulfoselenides were investigated with respect to their thermal quenching and to their fluorescence lifetime between 100 and 500 K.

Due to the fact that high power LED dies have a working temperature of 373 K or even higher, temperature dependent characterisation of LED phosphors are necessary. The measurements were performed on an Edinburgh Instrument FLS920 fluorescence spectrometer equipped with a 450 W xenon discharge lamp for steady state and an EPL 440 LASER diode for lifetime measurements, a Microstate N from Oxford Instruments for working with liquid N2 and a R2658 photomultiplier tube from Hamamatsu cooled to -20 °C for detection was used.

Temperature Dependent Emission Spectra and Quenching Curves

4

2,0x10

600

650

700

750

0,94106 Standard Error

0,6

1

Normalized Integral A2

0

0

Normalized Integral x0

713,45428

34,84361

Normalized Integral dx

100,73301

13,81355

0,4

0,2

(BaxSr1-x)Ga2(SySe1-y)4:Eu2+ λEx= 450 nm slit size: Ex = 4.00 nm, Ex = 0.70 nm 100.0 K 200.0 K 300.0 K 400.0 K 500.0 K

Intensity [counts]

1,25x105

5

1,00x10

4

7,50x10

4

5,00x10

2,50x104

0,00 450

500

550

150

200

600

650

1,0

λEx= 450 nm slit size: Ex = 4.00 nm, Ex = 0.70 nm 100.0 K 200.0 K 300.0 K 400.0 K 500.0 K

Intensity [counts]

1,25x10

1,00x105

7,50x104

5,00x104

4

2,50x10

0,00 450

500

550

600

650

y = A2 + (A1-A2)/(1 + exp((x-x0)/dx))

700

750

A1

1

0

Normalized Integral

A2

0

0

Normalized Integral

x0

437,09725

1,35768

Normalized Integral

dx

29,315

1,22444

Emission Integral λEx= 450 nm Boltzmann Fit 150

200

Boltzmann y = A2 + (A1-A2)/(1 + exp((x-x0)/dx))

Reduced Chi-Sqr

300

350

400

450

500

0

1000

2000

Standard Error

Normalized Integral A1

1

0

Normalized Integral A2

0

0

Normalized Integral x0

844,54967

154,9456

Normalized Integral dx

134,96929

52,25968

0,4

0,2

750

800

3000

400

450

500

Temperature [K] 500

(BaxSr1-x)Ga2(SySe1-y)4:Eu2+

400

4000

Model

Boltzmann

Equation

y = A2 + (A1-A2) /(1 + exp((x-x0)/ dx))

Reduced Chi-Sq r

300

100,46475

Adj. R-Square

0,9959 Value

Standard Error

average time

A1

448,36679

average time

A2

0

6,30753 0

average time

x0

446,44104

1,77509

average time

dx

26,91353

1,61781

200

average decay time τav λEx= 445.60 nm, λEm= 536.00 nm Boltzmann fit

100

250

5000

300

350

400

450

500

Temperature [K]

Y3Al5O12:Ce3+

λEx= 445.6 nm, λEm= 560 nm Em slit = 3.00 nm T=275.00 K T=500.00 K

60 50

100

40 30 20

10

Emission Integral λEx= 450 nm Boltzmann Fit

0,0 100

150

200

1

250

300

350

400

450

500

0

200

400

Boltzmann

Equation

y = A2 + (A1-A2)/(1 + exp((x-x0)/d x))

Adj. R-Square

6,08175E-4 0,99604 Value

Standard Error

Normalized Integral A1

0,4

0,2

0,0 100

1

0

Normalized Integral A2

0

0

Normalized Integral x0

355,21237

2,85914

Normalized Integral dx

44,7516

2,54058

Emission Integral λEx= 450 nm Boltzmann Fit 150

200

800

0 250

1000

250

800

λEx= 445.60 nm, λEm= 605.00 nm Em slit: 5.00 nm 100.0 K 200.0 K 250.0 K 275.0 K 300.0 K 325.0 K 350.0 K 400.0 K

1000

350

400

450

500

0

1000

Temperature [K]

The slight decrease in luminescence intensity of the Ce3+ doped garnets Lu3Al5O12 and Y3Al5O12 with increasing temperature is due to re-absorption caused by the broadening of the excitation and emission band. The decay measurements proved that quenching of the excited state of the activator is not an issue up to 500 K. The colour point of both garnets are almost stable in the 100 – 500 K range.

350

2000

3000

400

450

500

4000

CaSxSe1-x:Eu2+

700

Model

Boltzmann

Equation

y = A2 + (A1-A2)/(1 + exp((x-x 0)/dx))

Reduced Chi-Sqr

125,91747

Adj. R-Square

100

300

300

Temperature [K]

CaSxSe1-x:Eu2+

Model

Reduced Chi-Sqr

600

Time [ns]

CaSxSe1-x:Eu2+

0,6

decay time τ1 λEx= 445.6 nm, λEm= 560 nm

10

0,8

700

350

1000

0,40792 Value

0,6

300

Time [ns]

3,42529E-4

Adj. R-Square

0 250

1000

100

Y3Al5O12:Ce3+

Equation

800

10

250

Model

600

λEx= 445.60 nm, λEm= 536.00 nm Em slit: 5.00 nm 250.0 K 350.0 K 425.0 K 450.0 K 475.0 K 500.0 K

1000

Y3Al5O12:Ce3+

0,8

Normalised Intensity [a.u.]

Intensity [counts]

Conclusions

400

10000

1x10

Wavelength [nm]

Standard Error

Normalized Integral

0,4

0,2

Decay time τ1 λEx= 445.6 nm, λEm= 520 nm

Time [ms]

0,99805 Value

0,6

1,0

5

650

200

Temperature [K]

2x105

600

0

10000

800

λEx= 450 nm slit size: Ex = 4.00 nm, Ex = 0.70 nm 4x105 100.0 K 200.0 K 300.0 K 400.0 K 3x105 500.0 K

550

1

500

2,08604E-4

Adj. R-Square

1,0

CaSxSe1-x:Eu2+

500

450

10000

Boltzmann

Wavelength [nm]

0 450

400

Temperature [K]

Y3Al5O12:Ce3+

5

350

(BaxSr1-x)Ga2(SySe1-y)4:Eu2+

Model

0,0 100

700

Normalised Intensity [a.u.]

1,50x10

300

Equation

Reduced Chi-Sqr

20

10

(BaxSr1-x)Ga2(SySe1-y)4:Eu2+

0,8

30

10

250

Wavelength [nm]

5

100

Temperature [K]

Normalised Intensity [a.u.]

1,50x10

40

Emission Integral λEx= 450 nm Boltzmann Fit

Wavelength [nm] 5

0

Decay Time [ns]

Value Normalized Integral A1

0,0 100

800

1000

50

Decay Time [ns]

550

8,13943E-5

λEx= 445.6 nm, λEm= 520 nm Em slit = 3.00 nm T=250.00 K T=500.00 K

Average Decay Time [ns]

4,0x104

Reduced Chi-Sqr Adj. R-Square

Lu3Al5O12:Ce3+

Average Decay Time [ns]

6,0x10

500

y = A2 + (A1-A2)/(1 + exp((x-x0)/dx))

Lu3Al5O12:Ce3+

600

Value

500

Standard Error

A1

733,20101

average time

A2

0

0

average time

x0

266,93217

7,31813 1,09235

average time

dx

22,1817

0,90461

400 300 200

average decay time τav 100 λEx= 445.60 nm, λEm= 605.00 nm Boltzmann Fit 0 100

5000

0,99868

average time

150

200

250

300

350

400

Temperature [K]

Time [ns]

1,0

doped sulfoselenide The luminescence of the and sulfide is nearly completely quenched at 500 K, which is in line with our decay measurements. The distinct blue shift of the emission band of both Eu2+ phosphors is assigned to the decrease in crystal field splitting of the d-levels of the excited [Xe]4f65d1 configuration caused by thermal expansion of the host lattice.

Colour Points (C.I.E. 1931) (BaxSr1-x)Ga2(SySe1-y)4:Eu2+

Eu2+

520

0,8

Lu3Al5O12:Ce3+ Y3Al5O12:Ce3+

530 540

510

0,6 500

K CaSxSe1-x:Eu2+ 105500 K60 5010005 K0 K K 50 155070000 K 580

y

4

0,0 450

Equation

Intensity [counts]

8,0x10

Boltzmann

10000

Intensity [counts]

4

Model

0,8

Normalised Intensity [a.u.]

1,0x105

Intensity [counts]

1,0

λEx= 450 nm slit size: Ex = 4.00, Em = 0.50 100.0 K 200.0 K 300.0 K 400.0 K 500.0 K

Intensity [counts]

1,2x10

Lu3Al5O12:Ce3+

Intensity [counts]

Lu3Al5O12:Ce3+

5

Temperature Dependent Decay Measurements

K 500

590

0,4

600

490

K 100

610 0 62 30 6 700

0,2 480

0,0 0,0

470 464050 0 38

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

x

http://www.fh-muenster.de