Ten Years of Geomechanical Modelling Using Abaqus

4 downloads 279 Views 16MB Size Report
Abaqus Users Conference 2006, Boston MA. E i Si li C ti J i t R&D P j t 2008 2010 . ▫ Eni-Simulia Cooperation: Joint R&D Project, 2008-2010. ▫ Parameter ...
Ten Years of Geomechanical Modelling Using Abaqus Current Framework and New Perspectives Stefano Mantica E&P RUM, Milan 07/11/2013 www.eni.it

Outline

ƒ Motivation: need for geomechanics, 1999 ƒ The choice: Abaqus q test,, 2000 ƒ Eni Eni’s s workflow for field scale geomechanical studies ƒ Abaqus Users Conference 2006, 2006 Boston MA ƒ Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 ƒ Parameter identification: automatic multiscale optimization ƒ Focus on the well scale: wellbore and completion stability ƒ Future Perspectives in 2013: change the point of view

2

Need for Integrated Geomechanics – 1999

t0

Production/Injection / j t1

Fluid pressure variation i ti

p0

Reservoir 3D “Static” model

Reservoir 3D “Dynamic” Dynamic model

Stress state variation D f Deformation ti

Geomechanical 3D model

Integrated simulation approach 3

Test of the Abaqus Software – 2000

2000 Features Accurate Fast

F E M Model F.E.M. M d l Abaqus Ab Work schedule (R&D project)

• Phase 1 – Geertsma synthetic case • Phase 2 – Geertsma geometry, cm = cm(z)

El t Elasto-plasticity l ti it

• Phase 3 – From ECL to FEM model

User U friendly f i dl

• Phase Ph 4 – Real R l reservoir, i strain i nuclei l i versus FEM

Strong support

• Phase 5 – Real reser reservoir, oir eextension tension cm=cm(z) ( )

Fully integrated

• Phase 6 – Real reservoir reservoir, elasto elasto-plastic plastic behaviour

Milestone

Eni Agip Division - DSC

4

Test of Abaqus Phase 1: Geertsma Synthetic Case • Cylindrical reservoir • Homogeneous elastic semi-infinite space r C R



z

Displacement Features Accurate Fast

Stress

Elasto-plasticity User friendly Strong support Fully integrated 5

Outline

ƒ Motivation: need for geomechanics, 1999 ƒ The choice: Abaqus test,, 2000 q ƒ Eni Eni’s s workflow for field scale geomechanical studies ƒ Abaqus Users Conference 2006 ƒ Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 ƒ Parameter identification: automatic multiscale optimization ƒ Focus on the well scale: wellbore and completion stability ƒ Future Perspectives: change the point of view

6

Eni’s Workflow for Subsidence Simulation ƒ FEM construction ƒ gridding iddi ƒ region definition (porous/non-porous; water/oil/gas bearing) ƒ Property assignation ƒ bulk/dry density ƒ fluid p properties: p specific p weight g ƒ rock properties: constitutive law / geomechanical properties ƒ Boundary condition & Initialization ƒd displacement sp ace e t at the t e boundaries bou da es ƒ initial stress/pore pressure ƒ initial void ratio

-0.5

-1.0

-1.5

-2.0

Dec-29

Dec-27

Dec-25

Dec-23

Dec-21

Dec-19

Dec-17

Dec-15

Dec-13

Dec-11

Dec-09

Dec-07

Dec-05

Dec-03

-2.5 Dec-01

ƒ Results ƒ Maps ƒ Maximum value evolution

0.0

subsidence (cm m)

ƒ Elasto-plastic Elasto plastic simulations ƒ load history: pressure evolution assignment ƒ sensitivities and match of measured data

The Implementation: Eclipse-Abaqus Interface, Grid (1/3)

Interface li d l Eclipse Model F.D. GRID Cell

Node coords

((1,1) , )

((x1,y1))…(x ( 4,y4)

(2,1) … (2 3) (2,3)

(x1,y1)…(x4,y4) … (x1,y y1)…(x ) (x4,y y 4)

b d l Abaqus Model F.E.M. GRID

x F.D. pressure o F.E.M. pressure o i=1 i=2

j=1

o

x o

o

x o

x o

j=2

o

x o

x o

j=3

o x

o

o

Node # 1 … 12 Element # 1 … 6

Coords ((x,y) ,y) … (x,y) Node # 1 2 6 5 … 7 8 12 11

8

The Implementation: Eclipse-Abaqus Interface, Grid (2/3)

Interface li d l Eclipse Model

F.D. grid: fault

F.E. grid: fault

b d l Abaqus Model

F D grid: pinch out F.D.

F.E. grid: pinch out 9

The Implementation: Eclipse-Abaqus Interface, Grid (3/3)

Interface li d l Eclipse Model

First Abaqus mesh of a reservoir, 2000

b d l Abaqus Model

Refined Y2K Refined,

10

2006 AUC, Boston: Workflow and Grid Validation Procedure How big should I build the grid?

• Eni Workflow; • New grid validation

Eni S.p.A. E l Exploration ti & P Production d ti Division Di i i

Numerical Simulation of Compaction and Subsidence Using ABAQUS Gaia Capasso and Stefano Mantica

2006 ABAQUS Users’ Conference May 23-25, Boston, MA

PUNQ model semi-analytical y FE ABAQUS

11

Outline

ƒ Motivation: need for geomechanics, 1999 ƒ The choice: Abaqus q test,, 2000 ƒ Eni Eni’s s workflow for field scale geomechanical studies ƒ Abaqus Users Conference 2006 ƒ Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 ƒ Parameter identification: automatic multiscale optimization ƒ Focus on the well scale: wellbore and completion stability ƒ Future Perspectives: change the point of view

12

Eni-Simulia Cooperation: Joint R&D Project, 2008-2010

Blend our workflow into CAE • Implement Eclipse-Abaqus interface; • New CAE Reservoir Modeler; • Speed up Abaqus STD: new sparse solver solver. 13

Overview of the Methodology (1/2) Reservoir modeler (RM) plug-in listing all the steps of the standard workflow for subidence studies. studies Eclipse Output

CAE: Material Assignment

STANDARD Elastic Geostatic

Eclipse Translation

CAE: Burden Regions

ODB file

Eclipse ODB file

CAE: Model Import

CAE: Upscaling

CAE: Reorder IDs

CAE: CAE Plastic Material

STANDARD Complete Reservoir

14

Overview of the Methodology (2/2) A model tree based approach is adopted for the Eclipse reservoir modeler GUI User Help Translator execution command d The step p has been correctly performed The step execution has failed

Multidisciplinary R&D Project

Thanks to all Simulia p people p who interacted with us: R. Vitali, R Vitali E. E Sguanci, Sguanci D. D Datye, Datye Jeff Haan, Haan Xianwu Ling, Ling Shirish Mulmule Chris Wohlever, Eric Lapczyk, Jie Wan, Xiaoliang Qin R k Giovinazzo, Rocky Gi i JJoanne F Fu, Rachel R h l Fu F Matthew Rees, Konstantin Kovalev, Sivaram Somaroutu, Thomas Tam Phil Greene, David Lau, John Wodziak, Susmita Tripathy, Edward Moore Vladimir Belsky, Chun Sun, Harun Bayraktar, David Ehrlich Henry Gama, Srinivasan Vimalanathan, Srikanth Kannan Amol Joshi, Joshi Dhiraj Nahar, Nahar Sameer Shah Mike Shubert A Asif if Kh Khan, E Eric i W Weybrant b t Valoree Schrank, Matt Turner Sumit Kumar Singhal, Akbay Zekai Mahesh Kailasam, Pierre Burgers

16

Full Field Abaqus Models, 2013 Complex Sea Bed Structures GPS

Proper Abaqus Grid

over-burden

under-burden

reservoir side-burden

FE grid of inner region

FE grid of reservoir and the surrounding regions

17

Subsidence Results 4930000

Max Subsidence

N h (m Nort m)

4920000

GPS

4910000

4900000

4890000 2310000

2320000

2330000

2340000

East (m)

2350000

2360000

2370000

Outline

ƒ Motivation: need for geomechanics, 1999 ƒ The choice: Abaqus q test,, 2000 ƒ Eni Eni’s s workflow for field scale geomechanical studies ƒ Abaqus Users Conference 2006 ƒ E Eni-Simulia i Si li C Cooperation: ti JJoint i t R&D P Project, j t 2008 2008-2010 2010 ƒ Parameter identification: automatic multiscale optimization ƒ Focus on the well scale: wellbore and completion stability ƒ Future Perspectives: change the point of view

19

Radioactive Markers Compaction Monitoring Radioactive markers in the wellbore Regina 3Dir

GR 1 GR 2

10.5m

GR 3 GR 4

• Distance between bet een consecutive consec ti e spacings; spacings • Repeated surveys; • Measure in situ compaction; • Calibrate the Abaqus model model..

Parameter Identification: Automatic Multiscale Optimization Number of params: 1-3

Computed compaction

Observed compaction Objective function

Parameters

300 Abaqus runs Number of its: 100 Optimization Loop

Global Optimization

21

Parameter Identification: Results Compaction/Expansion (Optimized Solution)

m=1 9 layers reservoir;

m=2

m=3

Modified Cam-Clay λ 22

Parameter Identification: Subsidence Forecast Iso-subsidence contour lines B

A-B Section A

B

A

Bathymetric survey shot 6 months later confirmed the forecast of the optimized Abaqus model (and saved the speaker’s reputation)

23

Outline

ƒ Motivation: need for geomechanics, 1999 ƒ The choice: Abaqus q test,, 2000 ƒ Eni Eni’s s workflow for field scale geomechanical studies ƒ Abaqus Users Conference 2006 ƒ Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 ƒ Parameter identification: automatic multiscale optimization ƒ Focus on the well scale: wellbore and completion stability ƒ Future Perspectives: change the point of view

24

Focus on the Well Scale: Motivation

um = 8.42 MMBOE

Sid t k Sidetrack

Mechanical Completion p Failure

Oct-04 OIL BOPD

May-05

Nov-05 GAS MSCFD

Jun-06

Dec-06

WATER BWPD

Jul-07 BHP - PSIa

25

Focus on the Well Scale: Long Term Wellbore/Well Stability Tension induced fractures Compression breakouts

HD model (Eclipse)

N 5

σh 95

Azimuth



Production

5°N

50°N

95°N

15°

X

X

X

30°

X

X

X

E

σH

Deviation 0°

X

cement-casing interface

HD model:cell geometry at well location rock-cement interface

FE (Abaqus) ( q ) model at well location

Completion Drilling

Long Term Well Stability: Results (1/3) Example: deviation 30 30° azimuth 95 95° (sH max direction) N 5

σh 95

plastic deformation ε spl (%) 0

01 0.1

0 15 0.15

02 0.2

0 25 0.25

03 0.3

0 35 0.35

04 0.4

0 45 0.45

05 0.5

3900

E

Formation 1 Bashkirian

σH

4000

dep pth (m mTVDS SS)

εspl at max shear/tensile stress location

0 05 0.05

Formation 2 Serpukhovian

4100

4200 Formation Visean 3

4300

4400

4500

end drilling after 1 yr after 2 yrs after 3 yrs after ft 5 yrs after 6 yrs after 8 y yrs after 10 yrs after 15 yrs after 18 yrs after 22 yrs after 26 yrs after 33 yrs

0 55 0.55

06 0.6

Long Term Well Stability: Results (2/3) Example: deviation 30 30° azimuth 95 95° (sH max direction) failure Formation 1 Formation 2 Formation BASHKIRIAN SERPUKHOVIAN VISEAN3 mode Tensile after 10 yrs after 10 yrs drilling vertical Shear after 1 yr after 1 yr after 10 yrs Tensile after 8 yrs after 8 yrs drilling 5°N after 1 yr after 2 yrs no failure Shear Tensile after 8 yrs after 10 yrs drilling 50°N Shear after 1 yr after 2 yrs after 8 yrs Tensile after 10 yrs after 18 yrs drilling 95°N Shear after 1 yr after 2 yrs after 2 yrs Tensile after 3 yrs after 3 yrs drilling 5°N 5 N S Shear after f 2 yrs after f 10 yrs no failure f Tensile after 8 yrs after 8 yrs drilling 50°N 50 N after 1 yr after 2 yrs after 8 yrs Shear Tensile no failure no failure drilling g 95°N start-up start-up start-up Shear

deviation azimuth 0°

15°

30° 30

Long Term Well Stability: Results (3/3)

Long-term g stability y study y of openp hole completions in a producing hydrocarbon field G. Capasso*, G. Musso and S. Mantica Eni E&P,, Milano,, Italy y ARMA 2008, San Francisco, USA

Outline

ƒ Motivation: need for geomechanics, 1999 ƒ The choice: Abaqus q test,, 2000 ƒ Eni Eni’s s workflow for field scale geomechanical studies ƒ Abaqus Users Conference 2006 ƒ Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 ƒ Parameter identification: automatic multiscale optimization ƒ Focus on the well scale: wellbore and completion stability ƒ Future Perspectives: change the point of view

30

Future Perspective: Change the Point of View

Can subsidence data help in finding undrained d i d compartments? t t ?

InSAR based subs measurements

Add value to subsidence data for reservoir management 31

Joint Inversion of Reservoir and Geomechanical Data

R1

Subsidence observations

R2

ΔR

Geomechanical modelling

Assimilate subsidence and production data to estimate the reservoir flow and geomechanical properties

Production data

Dynamic y modelling

Ensemble Kalman Filter (or ISIGHT?)

32

Th E The Ensemble bl Kalman K l Filt Workflow Filter W kfl Ensemble Generation • Stochastic generation • Preconditioned • Ensemble will contain all the     i i i statistics at any time

Integration Reservoir simulator

Model integration • Reservoir simulator is run for each ensemble member • Geomechanical code is run by using results of the previous step

EEnKF KF analysis l i • Updating each ensemble member • Minimum variance analysis scheme Minimum variance analysis scheme • Using statistical information from the  ensemble in the analysis ensemble in the analysis Dynamic Data

Analysis Abaqus Geodynamic Data

ASSIMILATION FORWARD Kalman gain Data misfit 33

J i t Inversion Joint I i ffor the th PUNQ-S3 PUNQ S3 Synthetic S th ti C Case Will subsidence data provide additional information for the reservoir management of the field? Are there any sweet spots left for production?

Absolute

K

permeability grid

λ T

Transmissibility fault multipliers p

34

J i t Inversion Joint I i ffor the th PUNQ-S3 PUNQ S3 Synthetic S th ti C Case Will subsidence data provide additional information for the reservoir management of the field? Are there any sweet spots left for production? Fault 2 Absolute

K

permeability grid

MULTX = 0 Fault 1 MULTY = 0

λ T

Undrained Compartment Transmissibility fault multipliers p

Fault 3 MULTY = 0.8 08

Producing wells inside faults “inside faults” 35

PUNQ S3 IInversion i R lt PUNQ-S3: Results

IDENTIFIED undrained u d d

Forward

Production data only

IDENTIFIED undrained u d d

Production and subsidence

36

E i-Simulia Si li : strong t d excellent ll t 10 years cooperation ti Eni EniSimulia: groups and

37