Abaqus Users Conference 2006, Boston MA. E i Si li C ti J i t R&D P j t 2008 2010
. ▫ Eni-Simulia Cooperation: Joint R&D Project, 2008-2010. ▫ Parameter ...
Ten Years of Geomechanical Modelling Using Abaqus Current Framework and New Perspectives Stefano Mantica E&P RUM, Milan 07/11/2013 www.eni.it
Outline
Motivation: need for geomechanics, 1999 The choice: Abaqus q test,, 2000 Eni Eni’s s workflow for field scale geomechanical studies Abaqus Users Conference 2006, 2006 Boston MA Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 Parameter identification: automatic multiscale optimization Focus on the well scale: wellbore and completion stability Future Perspectives in 2013: change the point of view
2
Need for Integrated Geomechanics – 1999
t0
Production/Injection / j t1
Fluid pressure variation i ti
p0
Reservoir 3D “Static” model
Reservoir 3D “Dynamic” Dynamic model
Stress state variation D f Deformation ti
Geomechanical 3D model
Integrated simulation approach 3
Test of the Abaqus Software – 2000
2000 Features Accurate Fast
F E M Model F.E.M. M d l Abaqus Ab Work schedule (R&D project)
• Phase 1 – Geertsma synthetic case • Phase 2 – Geertsma geometry, cm = cm(z)
El t Elasto-plasticity l ti it
• Phase 3 – From ECL to FEM model
User U friendly f i dl
• Phase Ph 4 – Real R l reservoir, i strain i nuclei l i versus FEM
Strong support
• Phase 5 – Real reser reservoir, oir eextension tension cm=cm(z) ( )
Fully integrated
• Phase 6 – Real reservoir reservoir, elasto elasto-plastic plastic behaviour
Milestone
Eni Agip Division - DSC
4
Test of Abaqus Phase 1: Geertsma Synthetic Case • Cylindrical reservoir • Homogeneous elastic semi-infinite space r C R
…
z
Displacement Features Accurate Fast
Stress
Elasto-plasticity User friendly Strong support Fully integrated 5
Outline
Motivation: need for geomechanics, 1999 The choice: Abaqus test,, 2000 q Eni Eni’s s workflow for field scale geomechanical studies Abaqus Users Conference 2006 Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 Parameter identification: automatic multiscale optimization Focus on the well scale: wellbore and completion stability Future Perspectives: change the point of view
6
Eni’s Workflow for Subsidence Simulation FEM construction gridding iddi region definition (porous/non-porous; water/oil/gas bearing) Property assignation bulk/dry density fluid p properties: p specific p weight g rock properties: constitutive law / geomechanical properties Boundary condition & Initialization d displacement sp ace e t at the t e boundaries bou da es initial stress/pore pressure initial void ratio
-0.5
-1.0
-1.5
-2.0
Dec-29
Dec-27
Dec-25
Dec-23
Dec-21
Dec-19
Dec-17
Dec-15
Dec-13
Dec-11
Dec-09
Dec-07
Dec-05
Dec-03
-2.5 Dec-01
Results Maps Maximum value evolution
0.0
subsidence (cm m)
Elasto-plastic Elasto plastic simulations load history: pressure evolution assignment sensitivities and match of measured data
The Implementation: Eclipse-Abaqus Interface, Grid (1/3)
Interface li d l Eclipse Model F.D. GRID Cell
Node coords
((1,1) , )
((x1,y1))…(x ( 4,y4)
(2,1) … (2 3) (2,3)
(x1,y1)…(x4,y4) … (x1,y y1)…(x ) (x4,y y 4)
b d l Abaqus Model F.E.M. GRID
x F.D. pressure o F.E.M. pressure o i=1 i=2
j=1
o
x o
o
x o
x o
j=2
o
x o
x o
j=3
o x
o
o
Node # 1 … 12 Element # 1 … 6
Coords ((x,y) ,y) … (x,y) Node # 1 2 6 5 … 7 8 12 11
8
The Implementation: Eclipse-Abaqus Interface, Grid (2/3)
Interface li d l Eclipse Model
F.D. grid: fault
F.E. grid: fault
b d l Abaqus Model
F D grid: pinch out F.D.
F.E. grid: pinch out 9
The Implementation: Eclipse-Abaqus Interface, Grid (3/3)
Interface li d l Eclipse Model
First Abaqus mesh of a reservoir, 2000
b d l Abaqus Model
Refined Y2K Refined,
10
2006 AUC, Boston: Workflow and Grid Validation Procedure How big should I build the grid?
• Eni Workflow; • New grid validation
Eni S.p.A. E l Exploration ti & P Production d ti Division Di i i
Numerical Simulation of Compaction and Subsidence Using ABAQUS Gaia Capasso and Stefano Mantica
2006 ABAQUS Users’ Conference May 23-25, Boston, MA
PUNQ model semi-analytical y FE ABAQUS
11
Outline
Motivation: need for geomechanics, 1999 The choice: Abaqus q test,, 2000 Eni Eni’s s workflow for field scale geomechanical studies Abaqus Users Conference 2006 Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 Parameter identification: automatic multiscale optimization Focus on the well scale: wellbore and completion stability Future Perspectives: change the point of view
12
Eni-Simulia Cooperation: Joint R&D Project, 2008-2010
Blend our workflow into CAE • Implement Eclipse-Abaqus interface; • New CAE Reservoir Modeler; • Speed up Abaqus STD: new sparse solver solver. 13
Overview of the Methodology (1/2) Reservoir modeler (RM) plug-in listing all the steps of the standard workflow for subidence studies. studies Eclipse Output
CAE: Material Assignment
STANDARD Elastic Geostatic
Eclipse Translation
CAE: Burden Regions
ODB file
Eclipse ODB file
CAE: Model Import
CAE: Upscaling
CAE: Reorder IDs
CAE: CAE Plastic Material
STANDARD Complete Reservoir
14
Overview of the Methodology (2/2) A model tree based approach is adopted for the Eclipse reservoir modeler GUI User Help Translator execution command d The step p has been correctly performed The step execution has failed
Multidisciplinary R&D Project
Thanks to all Simulia p people p who interacted with us: R. Vitali, R Vitali E. E Sguanci, Sguanci D. D Datye, Datye Jeff Haan, Haan Xianwu Ling, Ling Shirish Mulmule Chris Wohlever, Eric Lapczyk, Jie Wan, Xiaoliang Qin R k Giovinazzo, Rocky Gi i JJoanne F Fu, Rachel R h l Fu F Matthew Rees, Konstantin Kovalev, Sivaram Somaroutu, Thomas Tam Phil Greene, David Lau, John Wodziak, Susmita Tripathy, Edward Moore Vladimir Belsky, Chun Sun, Harun Bayraktar, David Ehrlich Henry Gama, Srinivasan Vimalanathan, Srikanth Kannan Amol Joshi, Joshi Dhiraj Nahar, Nahar Sameer Shah Mike Shubert A Asif if Kh Khan, E Eric i W Weybrant b t Valoree Schrank, Matt Turner Sumit Kumar Singhal, Akbay Zekai Mahesh Kailasam, Pierre Burgers
16
Full Field Abaqus Models, 2013 Complex Sea Bed Structures GPS
Proper Abaqus Grid
over-burden
under-burden
reservoir side-burden
FE grid of inner region
FE grid of reservoir and the surrounding regions
17
Subsidence Results 4930000
Max Subsidence
N h (m Nort m)
4920000
GPS
4910000
4900000
4890000 2310000
2320000
2330000
2340000
East (m)
2350000
2360000
2370000
Outline
Motivation: need for geomechanics, 1999 The choice: Abaqus q test,, 2000 Eni Eni’s s workflow for field scale geomechanical studies Abaqus Users Conference 2006 E Eni-Simulia i Si li C Cooperation: ti JJoint i t R&D P Project, j t 2008 2008-2010 2010 Parameter identification: automatic multiscale optimization Focus on the well scale: wellbore and completion stability Future Perspectives: change the point of view
19
Radioactive Markers Compaction Monitoring Radioactive markers in the wellbore Regina 3Dir
GR 1 GR 2
10.5m
GR 3 GR 4
• Distance between bet een consecutive consec ti e spacings; spacings • Repeated surveys; • Measure in situ compaction; • Calibrate the Abaqus model model..
Parameter Identification: Automatic Multiscale Optimization Number of params: 1-3
Computed compaction
Observed compaction Objective function
Parameters
300 Abaqus runs Number of its: 100 Optimization Loop
Global Optimization
21
Parameter Identification: Results Compaction/Expansion (Optimized Solution)
m=1 9 layers reservoir;
m=2
m=3
Modified Cam-Clay λ 22
Parameter Identification: Subsidence Forecast Iso-subsidence contour lines B
A-B Section A
B
A
Bathymetric survey shot 6 months later confirmed the forecast of the optimized Abaqus model (and saved the speaker’s reputation)
23
Outline
Motivation: need for geomechanics, 1999 The choice: Abaqus q test,, 2000 Eni Eni’s s workflow for field scale geomechanical studies Abaqus Users Conference 2006 Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 Parameter identification: automatic multiscale optimization Focus on the well scale: wellbore and completion stability Future Perspectives: change the point of view
24
Focus on the Well Scale: Motivation
um = 8.42 MMBOE
Sid t k Sidetrack
Mechanical Completion p Failure
Oct-04 OIL BOPD
May-05
Nov-05 GAS MSCFD
Jun-06
Dec-06
WATER BWPD
Jul-07 BHP - PSIa
25
Focus on the Well Scale: Long Term Wellbore/Well Stability Tension induced fractures Compression breakouts
HD model (Eclipse)
N 5
σh 95
Azimuth
0°
Production
5°N
50°N
95°N
15°
X
X
X
30°
X
X
X
E
σH
Deviation 0°
X
cement-casing interface
HD model:cell geometry at well location rock-cement interface
FE (Abaqus) ( q ) model at well location
Completion Drilling
Long Term Well Stability: Results (1/3) Example: deviation 30 30° azimuth 95 95° (sH max direction) N 5
σh 95
plastic deformation ε spl (%) 0
01 0.1
0 15 0.15
02 0.2
0 25 0.25
03 0.3
0 35 0.35
04 0.4
0 45 0.45
05 0.5
3900
E
Formation 1 Bashkirian
σH
4000
dep pth (m mTVDS SS)
εspl at max shear/tensile stress location
0 05 0.05
Formation 2 Serpukhovian
4100
4200 Formation Visean 3
4300
4400
4500
end drilling after 1 yr after 2 yrs after 3 yrs after ft 5 yrs after 6 yrs after 8 y yrs after 10 yrs after 15 yrs after 18 yrs after 22 yrs after 26 yrs after 33 yrs
0 55 0.55
06 0.6
Long Term Well Stability: Results (2/3) Example: deviation 30 30° azimuth 95 95° (sH max direction) failure Formation 1 Formation 2 Formation BASHKIRIAN SERPUKHOVIAN VISEAN3 mode Tensile after 10 yrs after 10 yrs drilling vertical Shear after 1 yr after 1 yr after 10 yrs Tensile after 8 yrs after 8 yrs drilling 5°N after 1 yr after 2 yrs no failure Shear Tensile after 8 yrs after 10 yrs drilling 50°N Shear after 1 yr after 2 yrs after 8 yrs Tensile after 10 yrs after 18 yrs drilling 95°N Shear after 1 yr after 2 yrs after 2 yrs Tensile after 3 yrs after 3 yrs drilling 5°N 5 N S Shear after f 2 yrs after f 10 yrs no failure f Tensile after 8 yrs after 8 yrs drilling 50°N 50 N after 1 yr after 2 yrs after 8 yrs Shear Tensile no failure no failure drilling g 95°N start-up start-up start-up Shear
deviation azimuth 0°
15°
30° 30
Long Term Well Stability: Results (3/3)
Long-term g stability y study y of openp hole completions in a producing hydrocarbon field G. Capasso*, G. Musso and S. Mantica Eni E&P,, Milano,, Italy y ARMA 2008, San Francisco, USA
Outline
Motivation: need for geomechanics, 1999 The choice: Abaqus q test,, 2000 Eni Eni’s s workflow for field scale geomechanical studies Abaqus Users Conference 2006 Eni-Simulia E i Si li Cooperation: C ti JJoint i t R&D Project, P j t 2008-2010 2008 2010 Parameter identification: automatic multiscale optimization Focus on the well scale: wellbore and completion stability Future Perspectives: change the point of view
30
Future Perspective: Change the Point of View
Can subsidence data help in finding undrained d i d compartments? t t ?
InSAR based subs measurements
Add value to subsidence data for reservoir management 31
Joint Inversion of Reservoir and Geomechanical Data
R1
Subsidence observations
R2
ΔR
Geomechanical modelling
Assimilate subsidence and production data to estimate the reservoir flow and geomechanical properties
Production data
Dynamic y modelling
Ensemble Kalman Filter (or ISIGHT?)
32
Th E The Ensemble bl Kalman K l Filt Workflow Filter W kfl Ensemble Generation • Stochastic generation • Preconditioned • Ensemble will contain all the i i i statistics at any time
Integration Reservoir simulator
Model integration • Reservoir simulator is run for each ensemble member • Geomechanical code is run by using results of the previous step
EEnKF KF analysis l i • Updating each ensemble member • Minimum variance analysis scheme Minimum variance analysis scheme • Using statistical information from the ensemble in the analysis ensemble in the analysis Dynamic Data
Analysis Abaqus Geodynamic Data
ASSIMILATION FORWARD Kalman gain Data misfit 33
J i t Inversion Joint I i ffor the th PUNQ-S3 PUNQ S3 Synthetic S th ti C Case Will subsidence data provide additional information for the reservoir management of the field? Are there any sweet spots left for production?
Absolute
K
permeability grid
λ T
Transmissibility fault multipliers p
34
J i t Inversion Joint I i ffor the th PUNQ-S3 PUNQ S3 Synthetic S th ti C Case Will subsidence data provide additional information for the reservoir management of the field? Are there any sweet spots left for production? Fault 2 Absolute
K
permeability grid
MULTX = 0 Fault 1 MULTY = 0
λ T
Undrained Compartment Transmissibility fault multipliers p
Fault 3 MULTY = 0.8 08
Producing wells inside faults “inside faults” 35
PUNQ S3 IInversion i R lt PUNQ-S3: Results
IDENTIFIED undrained u d d
Forward
Production data only
IDENTIFIED undrained u d d
Production and subsidence
36
E i-Simulia Si li : strong t d excellent ll t 10 years cooperation ti Eni EniSimulia: groups and
37