Tetrameric triphenylsilanol, (Ph3SiOH) - IUCr Journals - International ...

3 downloads 21 Views 805KB Size Report
May 23, 2002 - Katharine F. Bowes,a Christopher Glidewella* and John N. Lowb². aSchool of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST,.
organic compounds Acta Crystallographica Section C

Crystal Structure Communications ISSN 0108-2701

Tetrameric triphenylsilanol, (Ph3SiOH)4, and the adduct (Ph3SiOH)2±dimethyl sulfoxide, both at 120 K, and the adduct (Ph3SiOH)4±1,4-dioxan at 150 K: interplay of OÐH  O and CÐH  p(arene) interactions Katharine F. Bowes,a Christopher Glidewella* and John N. Lowb² a School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, and bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland Correspondence e-mail: [email protected]

Received 21 May 2002 Accepted 23 May 2002 Online 20 June 2002

The structure of tetrameric triphenylsilanol, C18H16OSi, (I), has been re-investigated at 120 (2) K. The hydroxyl H atoms were readily located and one of the arene rings is disordered over two closely positioned sets of sites. The molecules are linked into cyclic tetramers, having approximate 4 (S4) symmetry, via OÐH  O hydrogen bonds [H  O 1.81± Ê , O  O 2.634 (3)±2.693 (3) A Ê and OÐH  O 156± 1.85 A 166 ]. At ambient temperature, there are indications of multiple disorder of the phenyl-ring sites. In bis(triphenylsilanol) dimethyl sulfoxide solvate, 2C18H16OSiC2H6OS, (II), the dimethyl sulfoxide component is disordered across a twofold rotation axis in C2/c, and the molecular components are linked by a single OÐH  O hydrogen bond [H  O Ê , O  O 2.732 (2) A Ê and OÐH  O 172 ] into three1.85 A molecule aggregates, which are themselves linked into a single three-dimensional framework by two CÐH  (arene) interactions. In tetrakis(triphenylsilanol) 1,4-dioxan solvate, 4C18H16OSiC4H8O2, (III), the 1,4-dioxan component lies across an inversion centre in space group P1 and centrosymmetric ®ve-molecule aggregates are linked by paired CÐ H  (arene) interactions to form molecular ladders.

Comment We recently reported the structure analysis at 120 (2) K of catena-poly[[triphenyltin(IV)]--hydroxo-2O:O], (Ph3SnOH)n, and, by use of a low-temperature data set collected on a CCD diffractometer, the location of the hydroxyl H atom ² Postal address: School of Engineering, University of Dundee, Dundee DD1 4HN, Scotland. Acta Cryst. (2002). C58, o409±o415

was readily achieved (Glidewell et al., 2002). By contrast, use of an ambient-temperature data set, collected using a fourcircle diffractometer, did not allow location of the hydroxyl H atom (Glidewell & Liles, 1978). We also noted (Glidewell et al., 2002) that the use of low-temperature CCD data sets should render possible the location of the hydroxyl H atoms in other Ph3MOH compounds, in particular, those in Ph3SiOH, (I). This compound crystallizes in space group P1 with Z = 16, i.e. with Z0 = 8 (Puff et al., 1991), and the molecules are arranged to form two independent cyclic tetramers, each having approximate 4 (S4) symmetry. The short intermolecular O  O distances indicate the presence of OÐH  O hydrogen bonds linking the molecules, but, using data collected at 198 K on a four-circle diffractometer, it was not possible to locate any of the eight hydroxyl H atoms (Puff et al., 1991). Furthermore, scrutiny of the original structure report reveals anomalously high Ueq values for several of the C atoms, two of which, moreover, were only re®ned isotropically. These facts, and the rather high residual densities, suggest some dif®culties with the re®nement model. This may, in turn, account for the rather high R value of 0.079 for only 12 146 re¯ections, with 9079 labelled `observed' and used in the re®nement, giving a re¯ections:parameters (n/p) ratio of only 6.35. The overall precision of the structure determination is thus rather modest Ê , (SiÐC) 0.007 A Ê and (CÐC) 0.007± [(SiÐO) 0.005 A Ê Ê 0.026 A (mean 0.015 A)].

We have therefore re-investigated (I), both at 120 (2) K and at ambient temperature. At both temperatures, the unit-cell dimensions, the space group and the atomic coordinates indicate the same phase as originally investigated by Puff et al. (1991). The same phase was obtained by crystallization from a wide range of solvents, including toluene (as used in the original study); a crystal grown from chloroform solution gave marginally the best data set, and it is the re®nement based on these data that is reported here. Data collection at 120 (2) K resulted in a much larger data set than previously employed, with an n/p ratio of 17.2. The hydroxyl H atoms were readily located from difference maps, but it was necessary to model one of the phenyl rings using two sets of sites, each with 50% occupancy. The overall supramolecular structure matches that reported earlier, based solely on OÐH  O hydrogen bonds; there are neither CÐH  (arene) interactions nor aromatic ±-stacking interactions in the crystal structure of (I).

DOI: 10.1107/S0108270102009381

# 2002 International Union of Crystallography

o409

organic compounds The principal structural features of (I) (Fig. 1), in which the C atoms are labelled as Cpqr, where the index p (= 1 to 8) de®nes the molecule, q (= 1 to 3) de®nes the ring within a speci®ed molecule, and r (= 1 to 6) de®nes the atom within a speci®ed ring, are identical to those reported earlier, but the key structural parameters (Table 1) are more precise [(SiÐ Ê , (SiÐC) 0.003 A Ê and (CÐC) 0.004±0.005 A Ê ]. O) 0.002 A The hydrogen bonds (Table 2), in which all of the hydroxyl H are fully ordered at 120 (2) K, are characterized by O  O distances which are short for simple neutral ROH species, and by OÐH  O angles which are close to 160 . For comparison, the O  O distances in the tetrahedral tetramer (Ph3COH)4 Ê at 113 K, and 2.905 (4) and are 2.859 (5) and 2.854 (5) A Ê 2.901 (4) A at 293 K (Serrano-GonzaÂlez et al., 1999). The hydroxyl H atoms in (Ph3COH)4 could not be located from ambient-temperature X-ray data (Ferguson et al., 1992); these H atoms are, in fact, mobile over a number of sites at ambient temperature (Aliev et al., 1998), and neutron diffraction at

100 K was required to locate these H sites unambiguously (Serrano-GonzaÂlez et al., 1999). Using data collected at 298 (2) K from a crystal grown from toluene solution, so mimicking the original crystal preparation, we then investigated the ambient-temperature structure of (I). The overall tetrameric aggregation is unchanged and there were reasonably good indications, from difference maps, for at least some of the hydroxyl H atoms. However, not only was the diffraction intensity rather poor, with only 27.6% of the re¯ections labelled `observed' compared with over 60% at 120 (2) K, but there were indications of possible disorder in no fewer than eight of the 24 independent phenyl rings. Accordingly, re®nement was not pursued. After completing this study, we learned of a recent unpublished determination at 123 K (Nieger, 2001), deposited in the Cambridge Structural Database (CSD; Allen & Kennard, 1993) as a private communication (CSD reference code JIPTIL01). The ®ndings of this study appear to be identical with those reported here,

Figure 1

Views of the eight independent molecules in (I), showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 30% probability level in all cases and H atoms are shown as small spheres of arbitrary radii.

o410

Katharine F. Bowes et al.



C18H16OSi, 2C18H16OSiC2H6OS and 4C18H16OSiC4H8O2

Acta Cryst. (2002). C58, o409±o415

organic compounds although it is perhaps unfortunate that there are no anisotropic displacement parameters stored in the CSD ®les. Crystallization of triphenylsilanol from dimethyl sulfoxide (DMSO), on the other hand, leads to a 2:1 solvate, (Ph3SiOH)2DMSO, (II) (Fig. 3). In (II), the silanol molecule lies in a general position in space group C2/c, and the DMSO molecule is disordered across a twofold rotation axis, such that it could be satisfactorily modelled using a single oxygen site on the twofold axis, a single carbon site in a general position and two distinct sulfur sites of 0.25 occupancy, corresponding to

two confacial pyramidal orientations having common oxygen and carbon sites on a shared face. Within the silanol molecule in (II), the SiÐO distance (Table 3) is slightly shorter than those in (I), but the SiÐC distances in (I) and (II) span comparable ranges, with virtually identical mean values. Whereas the intermolecular aggregation in (I) produces ®nite oligomers, compound (II) forms a continuous framework. Silanol atom O1 acts as a hydrogen-bond donor to DMSO atom O2 (Table 4), so generating a three-molecule aggregate lying across a rotation axis (Fig. 4). There are four of these aggregates in each unit cell and they are linked into a single three-dimensional framework by means of two distinct CÐH  (arene) hydrogen bonds (Table 4). Atom C4 in the silanol molecule at (x, y, z) acts as a hydrogen-bond donor to the centroid, Cg3, of the C31±C36 ring of the silanol molecule at (x ÿ 12, y ÿ 12, z), so generating by translation a chain running parallel to the [110] direction (Fig. 5), while the action of a twofold rotation axis generates a similar chain parallel to [110]. These two chains are linked via OÐH  O hydrogen

Figure 3

The molecular components of (II), showing the atom-labelling scheme; (a) the silanol component and (b) the disordered DMSO, where the atom marked with an asterisk (*) is at the symmetry position (ÿx, y, 12 ÿ z). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Figure 4 Figure 2

The two independent cyclic tetramers of (I). For the sake of clarity, only one of the disordered rings in molecule 2 is shown. Acta Cryst. (2002). C58, o409±o415

Katharine F. Bowes et al.

Part of the crystal structure of (II), showing the formation of a threemolecule aggregate by means of OÐH  O hydrogen bonds. For the sake of clarity, only the O atom of the DMSO molecule is shown. Atoms marked with an asterisk (*) are at the symmetry position (Ðx, y, 12 Ð z). 

C18H16OSi, 2C18H16OSiC2H6OS and 4C18H16OSiC4H8O2

o411

organic compounds bonds to the DMSO, and propagation of the two interactions generates an (001) sheet lying in the domain 0 < z < 12. Adjacent sheets are linked by a second CÐH  (arene) interaction. Atom C23 in the silanol molecule at (x, y, z) lies in the 0 < z < 12 sheet. This atom acts as a hydrogen-bond donor to the centroid, Cg1, of the C11±C16 ring in the silanol molecule at (ÿx, 1 ÿ y, 1 ÿ z) (Fig. 6), which is part of the sheet in the domain 12 < z < 1. The action of the twofold axes similarly links the 0 < z < 12 sheet to its neighbour in the domain ÿ12 < z < 0, and hence all the sheets are linked into a single framework by the action of this centrosymmetric motif. Crystallization of triphenylsilanol from 1,4-dioxan yields a 4:1 adduct, (Ph3SiOH)4C4H8O2, (III). The structure of this adduct has been reported using data collected at 293 K (Bourne, Johnson et al., 1991), and the supramolecular structure was discussed in terms of a ®nite centrosymmetric ®vemolecule aggregate. We have now re-investigated this compound at 150 (2) K, using a rather larger data set (6905 re¯ections, as opposed to 4435). The same phase clearly exists at the two temperatures, but careful examination of the structure re®ned from the 150 K data shows that the centrosymmetric aggregates (Fig. 7) are in fact linked by two CÐ H  (arene) hydrogen bonds (Table 6), which co-operate to form molecular ladders along the [100] direction. Atoms C134 and C214 in the two silanol molecules at (x, y, z) act as hydrogen-bond donors to, respectively, the rings C111±C116 and C121±C126 in the type 1 silanol molecule at (x ÿ 1, y, z) (Table 6 and Fig. 8). The SiÐO distances in (III) (Table 5) are intermediate between those in (I) and (II), while the SiÐC distances are not signi®cantly different from those in (I) and (II). It is striking that crystallization of triphenylsilanol yields speci®c stoichiometric solvates when crystallized from DMSO or dioxan, but, when crystallized from acetone, which is

expected to be at least as good an acceptor of hydrogen bonds as dioxan, the solvent-free phase (I) is formed. Likewise, it has been reported (Bourne, Nassimbeni et al., 1991) that crystallization of triphenylsilanol from mixtures of ethanol with any of methanol, propanol or water selectively yields a 4:1 ethanol solvate, (Ph3SiOH)4C2H6O. Clearly, the crystallization conditions which lead to the formation of phases other than (I) are highly speci®c. It is also notable that no solvent-free

Figure 5

Figure 7

A stereoview of part of the crystal structure of (II), showing the formation of the [110] and [110] chains which comprise the (001) sheet built from OÐH  O and CÐH  (arene) interactions. For the sake of clarity, only the O atom of the DMSO molecule is shown.

o412

Katharine F. Bowes et al.



Figure 6

Part of the crystal structure of (II), showing the formation of the centrosymmetric CÐH  (arene) motif linking the (001) sheets. The atom marked with an asterisk (*) is at the symmetry position (ÿx, 1 ÿ y, 1 ÿ z).

The molecular components of (III), showing the atom-labelling scheme [symmetry code: (i) 1 ÿ x, 1 ÿ y, 1 ÿ z]. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

C18H16OSi, 2C18H16OSiC2H6OS and 4C18H16OSiC4H8O2

Acta Cryst. (2002). C58, o409±o415

organic compounds Compound (I) Crystal data C18H16OSi Mr = 276.40 Triclinic, P1 Ê a = 15.0514 (2) A Ê b = 19.5456 (2) A Ê c = 23.0921 (6) A = 108.0455 (5) = 102.7869 (6)

= 101.3081 (8) Ê3 V = 6037.06 (19) A

Z = 16 Dx = 1.216 Mg mÿ3 Mo K radiation Cell parameters from 25 279 re¯ections  = 2.9±27.4  = 0.15 mmÿ1 T = 120 (2) K Plate, colourless 0.40  0.26  0.06 mm

Data collection Nonius KappaCCD area-detector diffractometer ' scans, and ! scans with  offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) Tmin = 0.915, Tmax = 0.993 25 408 measured re¯ections

25 279 independent re¯ections 15 492 re¯ections with I > 2(I) Rint = 0.084 max = 27.4 h = ÿ19 ! 19 k = ÿ25 ! 25 l = ÿ28 ! 29

Re®nement w = 1/[ 2(Fo2) + (0.0913P)2 + 0.8422P] where P = (Fo2 + 2Fc2)/3 (/)max = 0.001 Ê ÿ3 max = 1.04 e A Ê ÿ3 min = ÿ0.39 e A

Re®nement on F 2 R[F 2 > 2(F 2)] = 0.061 wR(F 2) = 0.174 S = 1.02 25 279 re¯ections 1471 parameters H-atom parameters constrained

Table 1

Ê ) for (I). Selected interatomic distances (A

Figure 8

Part of the crystal structure of (III), showing the formation of a [100] chain by CÐH  (arene) interactions. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (x ÿ 1, y, z) and (1 + x, y, z), respectively.

polymorph of triphenylsilanol other than (I) has yet been observed, suggesting that this phase may be particularly stable, despite the absence from the structure of both CÐ H  (arene) and ±-stacking interactions. In summary, the hydroxyl H atoms in (Ph3SiOH)4 have been located at 120 (2) K, as for (Ph3SnOH)n (Glidewell et al., 2002), and the ring disorder is straightforwardly handled. At 198 K (Puff et al., 1991), the ring disorder appears to be more extensive, and at ambient temperature, the extensive disorder and the poor diffraction intensity effectively preclude a straightforward re®nement. In the solvates (II) and (III), ®nite aggregates generated by OÐH  O hydrogen bonds are further linked by CÐH  (arene) interactions.

Si1ÐO1 Si2ÐO2 Si3ÐO3 Si4ÐO4

Si5ÐO5 Si6ÐO6 Si7ÐO7 Si8ÐO8

1.6452 (18) 1.646 (2) 1.6398 (19) 1.6435 (19)

1.6397 (19) 1.6446 (19) 1.645 (2) 1.6441 (19)

Table 2

Ê ,  ) for (I). Hydrogen-bonding geometry (A DÐH  A

DÐH

H  A

D  A

DÐH  A

O1ÐH1  O4 O2ÐH2  O1 O3ÐH3  O2 O4ÐH4  O3 O5ÐH5  O6 O6ÐH6  O7 O7ÐH7  O8 O8ÐH8  O5

0.88 0.88 0.88 0.88 0.88 0.89 0.88 0.88

1.81 1.83 1.86 1.82 1.84 1.81 1.81 1.81

2.666 (3) 2.686 (3) 2.700 (3) 2.680 (3) 2.671 (3) 2.657 (3) 2.635 (3) 2.644 (3)

163 165 159 166 157 160 156 156

Compound (II) Crystal data

Experimental A sample of triphenylsilanol was purchased from Aldrich. Crystals of (I), (II) and (III) suitable for single-crystal X-ray diffraction were grown by slow evaporation of solutions in the appropriate solvents. The same phase, (I), was obtained from solutions in acetone, chlorobenzene, chloroform, cyclohexane, dichloromethane, ethyl acetate, ethylbenzene, toluene and p-xylene. Acta Cryst. (2002). C58, o409±o415

Katharine F. Bowes et al.

2C18H16OSiC2H6OS Mr = 630.94 Monoclinic, C2=c Ê a = 16.8842 (3) A Ê b = 8.5391 (2) A Ê c = 23.7053 (6) A = 96.1310 (10) Ê3 V = 3398.18 (13) A Z=4 

Dx = 1.233 Mg mÿ3 Mo K radiation Cell parameters from 3808 re¯ections  = 3.1±27.5  = 0.20 mmÿ1 T = 120 (2) K Block, colourless 0.35  0.25  0.15 mm

C18H16OSi, 2C18H16OSiC2H6OS and 4C18H16OSiC4H8O2

o413

organic compounds Data collection

Table 5

Nonius KappaCCD area-detector diffractometer ' scans, and ! scans with  offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) Tmin = 0.910, Tmax = 0.969 21 226 measured re¯ections

3808 independent re¯ections 2792 re¯ections with I > 2(I) Rint = 0.066 max = 27.5 h = ÿ21 ! 21 k = ÿ11 ! 11 l = ÿ30 ! 30

Ê ) for (III). Selected interatomic distances (A Si1ÐO1

1.636 (2)

Si2ÐO2

1.642 (2)

Table 6

Ê ,  ) for (III). Hydrogen-bonding geometry (A

Re®nement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.042 wR(F 2) = 0.109 S = 1.00 3808 re¯ections 207 parameters H-atom parameters constrained

w = 1/[ 2(Fo2) + (0.0516P)2 + 2.3569P] where P = (Fo2 + 2Fc2)/3 (/)max < 0.001 Ê ÿ3 max = 0.27 e A Ê ÿ3 min = ÿ0.29 e A

Cg2 and Cg3 are the centroids of aryl rings C111±C116 and C121±C126, respectively. DÐH  A

DÐH

H  A

D  A

DÐH  A

O1ÐH1  O2 O2ÐH2  O4 C134ÐH134  Cg2i C214ÐH214  Cg3i

0.88 0.88 0.95 0.95

1.96 1.83 2.99 2.82

2.760 (3) 2.692 (3) 3.727 (4) 3.606 (4)

151 168 135 141

Symmetry code: (i) x ÿ 1; y; z.

Table 3

Ê ) for (II). Selected interatomic distance (A Si1ÐO1

1.6300 (12)

Table 4

Ê ,  ) for (II). Hydrogen-bonding geometry (A Cg1 and Cg3 are the centroids of aryl rings C11±C16 and C31±C36, respectively. DÐH  A

DÐH

H  A

D  A

DÐH  A

O1ÐH1  O2 C14ÐH14  Cg3i C23ÐH23  Cg1ii

0.89 0.95 0.95

1.85 2.88 2.90

2.7320 (15) 3.757 (2) 3.767 (2)

172 154 152

Symmetry codes: (i) x ÿ 12; y ÿ 12; z; (ii) ÿx; 1 ÿ y; 1 ÿ z.

Compound (III) Crystal data 4C18H16OSiC4H8O2 Mr = 1193.7 Triclinic, P1 Ê a = 9.3033 (3) A Ê b = 11.6929 (5) A Ê c = 14.7154 (6) A = 87.730 (3) = 80.906 (3)

= 87.8040 (17) Ê3 V = 1578.58 (11) A

Z=1 Dx = 1.256 Mg mÿ3 Mo K radiation Cell parameters from 6905 re¯ections  = 3.1±27.5  = 0.15 mmÿ1 T = 150 (2) K Block, colourless 0.25  0.15  0.10 mm

Data collection Nonius KappaCCD area-detector diffractometer ' scans, and ! scans with  offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) Tmin = 0.937, Tmax = 0.985 23 329 measured re¯ections

6905 independent re¯ections 3185 re¯ections with I > 2(I) Rint = 0.136 max = 27.5 h = ÿ12 ! 12 k = ÿ15 ! 15 l = ÿ18 ! 18

Re®nement Re®nement on F 2 R[F 2 > 2(F 2)] = 0.063 wR(F 2) = 0.135 S = 0.92 6905 re¯ections 388 parameters

o414

Katharine F. Bowes et al.

H-atom parameters constrained w = 1/[ 2(Fo2) + (0.039P)2] where P = (Fo2 + 2Fc2)/3 (/)max < 0.001 Ê ÿ3 max = 0.27 e A Ê ÿ3 min = ÿ0.41 e A 

Compound (I) is triclinic; space group P1 was selected and con®rmed by the subsequent analysis. At 120 (2) K, all H atoms were located from difference maps and treated as riding atoms, with Ê ; hydroxyl H atoms were treated as riding, using CÐH = 0.95 A Ê , and AFIX 3 (SHELXL97; Sheldrick, 1997) and with OÐH = 0.88 A the mean of the eight values was derived directly from the difference maps. One ring is disordered at 120 (2) K over two sets of sites, denoted C21r (r = 1 to 6) and C21N (N = A to F), occupying closely similar volumes of space. The rings were modelled as rigid hexagons and their site-occupancy factors, when constrained to sum to 1, re®ned to 0.52 (4) and 0.48 (4); hence, the occupancies were thereafter ®xed at 0.50 for both orientations. Compound (II) crystallized in the monoclinic system. The systematic absences permitted C2/c and Cc as possible space groups; C2/c was selected and con®rmed by the analysis. The position of the hydroxyl H atom was obtained from a difference map, and all H atoms in the silanol component were Ê and OÐH = 0.89 A Ê . The treated as riding atoms, with CÐH = 0.95 A disordered DMSO molecule was modelled using the PART instruction in SHELXL97. The unique C atom was treated as two parts, with occupancies of 0.5 on a ®xed common site, and the S atom was positioned in two symmetry-related sites. This was performed to permit positioning of the H atoms of the methyl groups, which were Ê . The partial C atoms treated as riding atoms, with CÐH = 0.98 A were given common anisotropic displacement parameters, as were the S atoms. Compound (III) is triclinic; space group P1 was selected and con®rmed by the subsequent analysis. The H atoms were treated Ê (CH2), and OÐH = as riding, with CÐH = 0.95 (aromatic) or 0.99 A Ê 0.88 A. For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell re®nement: DENZO±SMN (Otwinowski & Minor, 1997); data reduction: DENZO±SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to re®ne structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

The X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants which have provided computing facilities for this work.

C18H16OSi, 2C18H16OSiC2H6OS and 4C18H16OSiC4H8O2

Acta Cryst. (2002). C58, o409±o415

organic compounds Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1558). Services for accessing these data are described at the back of the journal.

References Aliev, A., MacLean, E. J., Harris, K. D. M., Kariuki, B. M. & Glidewell, C. (1998). J. Phys. Chem. B, 102, 2165±2175. Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31±37. Bourne, S. A., Johnson, L., Marais, C., Nassimbeni, L. R., Weber, E., Skobridis, K. & Toda, F. (1991). J. Chem. Soc. Perkin Trans. 2, pp. 1707±1713. Bourne, S. R., Nassimbeni, L. R., Skobridis, K. & Weber, E. (1991). J. Chem. Soc. Chem. Commun. pp. 282±283. Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada. Ferguson, G., Gallagher, J. F., Glidewell, C., Low, J. N. & Scrimgeour, S. N. (1992). Acta Cryst. C48, 1272±1275. Glidewell, C. & Liles, D. C. (1978). Acta Cryst. B34, 129±134.

Acta Cryst. (2002). C58, o409±o415

Katharine F. Bowes et al.

Glidewell, C., Low, J. N., Bom®m, J. A. S., Filgueiras, C. A. L. & Wardell, J. L. (2002). Acta Cryst. C58, m199±m201. Nieger, M. (2001). Private deposition in the Cambridge Structural Database, refcode JIPTIL01. Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307±326. New York: Academic Press. Puff, H., Braun, K. & Reuter, H. (1991). J. Organomet. Chem. 409, 119± 129. Serrano-GonzaÂlez, H., Harris, K. D. M., Wilson, C. C., Aliev, A. E., Kitchin, S. J., Kariuki, B. M., Bach-VergeÂs, M., Glidewell, C., MacLean, E. J. & Kagunya, W. W. (1999). J. Phys. Chem. B, 103, 6215±6223. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of GoÈttingen, Germany. Spek, A. L. (2002). PLATON. Version of March 2002. University of Utrecht, The Netherlands.



C18H16OSi, 2C18H16OSiC2H6OS and 4C18H16OSiC4H8O2

o415

supporting information

supporting information Acta Cryst. (2002). C58, o409–o415

[doi:10.1107/S0108270102009381]

Tetrameric triphenylsilanol, (Ph3SiOH)4, and the adduct (Ph3SiOH)2–dimethyl sulfoxide, both at 120 K, and the adduct (Ph3SiOH)4–1,4-dioxan at 150 K: interplay of O—H···O and C—H···π(arene) interactions Katharine F. Bowes, Christopher Glidewell and John N. Low Computing details For all compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999). (I) Triphenylsilanol Crystal data C18H16OSi Mr = 276.40 Triclinic, P1 Hall symbol: -P 1 a = 15.0514 (2) Å b = 19.5456 (2) Å c = 23.0921 (6) Å α = 108.0455 (5)° β = 102.7869 (6)° γ = 101.3081 (8)° V = 6037.06 (19) Å3

Z = 16 F(000) = 2336 Dx = 1.216 Mg m−3 Mo Kα radiation, λ = 0.71073 Å Cell parameters from 25279 reflections θ = 2.9–27.4° µ = 0.15 mm−1 T = 120 K Plate, colourless 0.40 × 0.26 × 0.06 mm

Data collection Nonius KappaCCD diffractometer Radiation source: fine-focus sealed X-ray tube Graphite monochromator φ scans, and ω scans with κ offsets Absorption correction: multi-scan (DENZO-SMN; Otwinowski & Minor, 1997) Tmin = 0.915, Tmax = 0.993

25408 measured reflections 25279 independent reflections 15492 reflections with I > 2σ(I) Rint = 0.084 θmax = 27.4°, θmin = 2.9° h = −19→19 k = −25→25 l = −28→29

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.061 wR(F2) = 0.174 S = 1.02 25279 reflections

Acta Cryst. (2002). C58, o409–o415

1471 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

sup-1

supporting information w = 1/[σ2(Fo2) + (0.0913P)2 + 0.8422P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max = 0.001 Δρmax = 1.04 e Å−3 Δρmin = −0.39 e Å−3

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

Special details Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scalingalgorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan′ code word was used. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Si1 O1 C111 C112 C113 C114 C115 C116 C121 C122 C123 C124 C125 C126 C131 C132 C133 C134 C135 C136 Si2 O2 C211 C212 C213 C214 C215 C216 C21A C21B C21C C21D C21E C21F C221

x

y

z

Uiso*/Ueq

0.47745 (5) 0.45144 (13) 0.51731 (18) 0.5772 (2) 0.5996 (3) 0.5629 (3) 0.5041 (3) 0.4809 (2) 0.36866 (18) 0.3504 (2) 0.2698 (2) 0.2051 (2) 0.2208 (2) 0.30101 (19) 0.57037 (18) 0.61062 (18) 0.6785 (2) 0.7089 (2) 0.6702 (2) 0.6011 (2) 0.59350 (5) 0.49396 (13) 0.5524 (3) 0.6203 (2) 0.5927 (3) 0.4971 (4) 0.4292 (2) 0.4569 (3) 0.5658 (4) 0.5981 (4) 0.5731 (4) 0.5156 (4) 0.4833 (4) 0.5083 (4) 0.65709 (18)

0.15333 (4) 0.15764 (10) 0.06720 (15) 0.05864 (18) −0.0085 (2) −0.06834 (19) −0.06133 (18) 0.00509 (16) 0.14297 (14) 0.20242 (16) 0.19282 (18) 0.12212 (18) 0.06266 (17) 0.07280 (15) 0.24179 (14) 0.29497 (15) 0.36157 (15) 0.37618 (16) 0.32527 (17) 0.25876 (16) 0.14325 (4) 0.11341 (11) 0.1466 (3) 0.1736 (3) 0.1741 (3) 0.1475 (3) 0.1205 (3) 0.1201 (3) 0.1266 (3) 0.1835 (2) 0.1706 (2) 0.1008 (3) 0.0439 (2) 0.0568 (2) 0.24211 (15)

0.41398 (3) 0.34238 (8) 0.40610 (13) 0.45673 (16) 0.4506 (2) 0.3934 (2) 0.34248 (19) 0.34837 (15) 0.44064 (12) 0.48343 (14) 0.50312 (14) 0.48016 (15) 0.43685 (16) 0.41726 (14) 0.46987 (12) 0.44698 (13) 0.48755 (14) 0.55262 (14) 0.57649 (14) 0.53598 (13) 0.21732 (4) 0.23214 (9) 0.13283 (18) 0.1070 (3) 0.0456 (3) 0.01000 (19) 0.03584 (17) 0.09725 (17) 0.13057 (16) 0.1096 (2) 0.0447 (3) 0.00069 (17) 0.02163 (17) 0.08657 (19) 0.27275 (12)

0.01989 (16) 0.0255 (4) 0.0242 (6) 0.0419 (8) 0.0543 (10) 0.0491 (9) 0.0491 (9) 0.0373 (7) 0.0217 (6) 0.0324 (7) 0.0373 (7) 0.0353 (7) 0.0376 (7) 0.0293 (6) 0.0212 (5) 0.0245 (6) 0.0295 (6) 0.0322 (7) 0.0361 (7) 0.0294 (6) 0.02684 (18) 0.0326 (5) 0.0246 (19) 0.021 (2) 0.030 (3) 0.0344 (14) 0.0470 (18) 0.0354 (14) 0.028 (2) 0.0218 (19) 0.031 (2) 0.0351 (14) 0.056 (2) 0.0491 (19) 0.0239 (6)

Acta Cryst. (2002). C58, o409–o415

Occ. ( 2σ(I) Rint = 0.066 θmax = 27.5°, θmin = 3.1° h = −21→21 k = −11→11 l = −30→30

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.042 wR(F2) = 0.109 S = 1.00 3808 reflections 207 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.0516P)2 + 2.3569P] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.27 e Å−3 Δρmin = −0.29 e Å−3

Special details Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan′ code word was used. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Si1 O1 C11 C12 C13 C14 C15 C16 C21 C22 C23 C24 C26 C25 C31 C32 C33 C34 C35 C36 O2

x

y

z

Uiso*/Ueq

0.13139 (3) 0.13029 (7) 0.04453 (10) −0.02876 (10) −0.09327 (11) −0.08579 (11) −0.01394 (11) 0.05022 (10) 0.13235 (10) 0.08744 (11) 0.09262 (11) 0.14239 (11) 0.18275 (10) 0.18776 (11) 0.22556 (10) 0.26853 (10) 0.33784 (11) 0.36536 (12) 0.32367 (12) 0.25466 (11) 0.0000

0.41615 (6) 0.48115 (15) 0.2838 (2) 0.3119 (2) 0.2134 (2) 0.0828 (2) 0.0518 (2) 0.1513 (2) 0.5825 (2) 0.5835 (2) 0.7061 (2) 0.8306 (2) 0.7100 (2) 0.8330 (2) 0.3029 (2) 0.3012 (2) 0.2143 (2) 0.1268 (2) 0.1253 (3) 0.2129 (2) 0.6504 (2)

0.357114 (19) 0.29238 (5) 0.36374 (7) 0.33237 (7) 0.33604 (8) 0.37068 (8) 0.40199 (8) 0.39863 (7) 0.40832 (7) 0.45440 (7) 0.49301 (8) 0.48615 (8) 0.40263 (7) 0.44069 (8) 0.37190 (7) 0.42553 (7) 0.43617 (8) 0.39349 (8) 0.34011 (8) 0.32953 (7) 0.2500

0.02035 (14) 0.0264 (3) 0.0207 (4) 0.0262 (4) 0.0310 (4) 0.0298 (4) 0.0291 (4) 0.0254 (4) 0.0216 (4) 0.0242 (4) 0.0302 (4) 0.0299 (4) 0.0271 (4) 0.0303 (4) 0.0211 (4) 0.0240 (4) 0.0295 (4) 0.0355 (5) 0.0384 (5) 0.0307 (4) 0.0330 (4)

Acta Cryst. (2002). C58, o409–o415

Occ. ( 2σ(I) Rint = 0.136 θmax = 27.5°, θmin = 3.1° h = −12→12 k = −15→15 l = −18→18

Refinement Refinement on F2 Least-squares matrix: full R[F2 > 2σ(F2)] = 0.063 wR(F2) = 0.135 S = 0.92 6905 reflections 388 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained w = 1/[σ2(Fo2) + (0.039P)2] where P = (Fo2 + 2Fc2)/3 (Δ/σ)max < 0.001 Δρmax = 0.27 e Å−3 Δρmin = −0.41 e Å−3

Special details Experimental. The program DENZO-SMN (Otwinowski & Minor, 1997) uses a scaling algorithm [Fox, G. C. & Holmes, K. C. (1966). Acta Cryst. 20, 886–891] which effectively corrects for absorption effects. High-redundancy data were used in the scaling program, hence the `multi-scan′ code word was used. Geometry. Mean-plane data from the final SHELXL97 refinement run:-

Acta Cryst. (2002). C58, o409–o415

sup-29

supporting information Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

Si1 O1 C111 C112 C113 C114 C115 C116 C121 C122 C123 C124 C125 C126 C131 C132 C133 C134 C135 C136 Si2 O2 C211 C212 C213 C214 C215 C216 C221 C222 C223 C224 C225 C226 C231 C232 C233 C234 C235 C236 O4 C41 C42 H1 H112

x

y

z

Uiso*/Ueq

0.27732 (10) 0.2923 (2) 0.4059 (3) 0.4038 (4) 0.4976 (4) 0.5945 (4) 0.5982 (4) 0.5053 (4) 0.3257 (3) 0.4503 (4) 0.4888 (4) 0.4028 (4) 0.2771 (4) 0.2392 (4) 0.0890 (3) −0.0015 (4) −0.1378 (4) −0.1869 (4) −0.0974 (4) 0.0377 (4) 0.07155 (10) 0.1888 (2) −0.1096 (4) −0.1283 (4) −0.2636 (4) −0.3841 (4) −0.3685 (4) −0.2332 (4) 0.0672 (3) −0.0332 (4) −0.0263 (4) 0.0819 (4) 0.1831 (4) 0.1741 (4) 0.1296 (3) 0.0722 (4) 0.1078 (4) 0.2014 (4) 0.2625 (4) 0.2261 (4) 0.3679 (2) 0.5053 (4) 0.3857 (4) 0.2377 0.3373

0.10122 (7) 0.20363 (17) −0.0142 (3) −0.1233 (3) −0.2119 (3) −0.1940 (3) −0.0871 (3) 0.0005 (3) 0.1517 (3) 0.1123 (3) 0.1556 (3) 0.2396 (3) 0.2798 (3) 0.2356 (3) 0.0453 (2) 0.0372 (3) −0.0093 (3) −0.0510 (3) −0.0453 (3) 0.0021 (3) 0.53137 (7) 0.42805 (17) 0.4660 (3) 0.3487 (3) 0.3014 (3) 0.3692 (3) 0.4853 (3) 0.5327 (3) 0.6439 (3) 0.6457 (3) 0.7264 (3) 0.8054 (3) 0.8056 (3) 0.7263 (3) 0.5954 (3) 0.7007 (3) 0.7439 (3) 0.6829 (3) 0.5806 (3) 0.5368 (3) 0.44151 (18) 0.3848 (3) 0.5331 (3) 0.2647 −0.1369

0.76082 (6) 0.68115 (15) 0.7120 (2) 0.7558 (2) 0.7199 (3) 0.6399 (3) 0.5952 (2) 0.6322 (2) 0.8704 (2) 0.9049 (2) 0.9833 (2) 1.0304 (2) 0.9991 (2) 0.9202 (2) 0.7808 (2) 0.8652 (2) 0.8738 (3) 0.7971 (3) 0.7131 (3) 0.7049 (2) 0.71849 (6) 0.68268 (15) 0.7500 (2) 0.7417 (2) 0.7657 (3) 0.7985 (2) 0.8080 (2) 0.7834 (2) 0.6255 (2) 0.5641 (2) 0.4921 (2) 0.4791 (2) 0.5385 (2) 0.6116 (2) 0.8200 (2) 0.8523 (2) 0.9325 (2) 0.9811 (3) 0.9499 (3) 0.8700 (2) 0.52020 (16) 0.5268 (3) 0.4514 (2) 0.6978 0.8109

0.0226 (2) 0.0277 (5) 0.0222 (7) 0.0272 (8) 0.0333 (9) 0.0357 (9) 0.0338 (9) 0.0293 (8) 0.0231 (7) 0.0268 (8) 0.0299 (8) 0.0311 (8) 0.0312 (8) 0.0294 (8) 0.0237 (8) 0.0286 (8) 0.0343 (9) 0.0340 (9) 0.0328 (9) 0.0295 (8) 0.0241 (2) 0.0293 (6) 0.0251 (8) 0.0323 (9) 0.0359 (9) 0.0339 (9) 0.0312 (8) 0.0277 (8) 0.0224 (7) 0.0293 (8) 0.0376 (9) 0.0383 (9) 0.0320 (8) 0.0268 (8) 0.0262 (8) 0.0299 (8) 0.0332 (9) 0.0354 (9) 0.0402 (10) 0.0325 (9) 0.0302 (6) 0.0314 (8) 0.0321 (8) 0.033* 0.033*

Acta Cryst. (2002). C58, o409–o415

sup-30

supporting information H113 H114 H115 H116 H122 H123 H124 H125 H126 H132 H133 H134 H135 H136 H2 H212 H213 H214 H215 H216 H222 H223 H224 H225 H226 H232 H233 H234 H235 H236 H41A H41B H421 H422

0.4948 0.6584 0.6638 0.5100 0.5104 0.5749 0.4298 0.2170 0.1522 0.0308 −0.1982 −0.2805 −0.1290 0.0974 0.2457 −0.0466 −0.2738 −0.4770 −0.4506 −0.2241 −0.1072 −0.0964 0.0870 0.2582 0.2422 0.0076 0.0672 0.2238 0.3293 0.2682 0.5432 0.4915 0.2910 0.4194

−0.2850 −0.2545 −0.0741 0.0736 0.0540 0.1275 0.2697 0.3373 0.2632 0.0642 −0.0128 −0.0827 −0.0743 0.0055 0.4428 0.3008 0.2217 0.3365 0.5323 0.6126 0.5908 0.7273 0.8599 0.8596 0.7280 0.7437 0.8156 0.7118 0.5395 0.4654 0.3485 0.3236 0.5740 0.5012

0.7506 0.6155 0.5397 0.6015 0.8737 1.0048 1.0841 1.0313 0.8995 0.9183 0.9322 0.8026 0.6605 0.6463 0.6302 0.7193 0.7595 0.8144 0.8314 0.7894 0.5718 0.4516 0.4292 0.5293 0.6532 0.8191 0.9536 1.0364 0.9826 0.8491 0.4678 0.5756 0.4497 0.3901

0.040* 0.043* 0.041* 0.035* 0.032* 0.036* 0.037* 0.037* 0.035* 0.034* 0.041* 0.041* 0.039* 0.035* 0.035* 0.039* 0.043* 0.041* 0.037* 0.033* 0.035* 0.045* 0.046* 0.038* 0.032* 0.036* 0.040* 0.042* 0.048* 0.039* 0.038* 0.038* 0.039* 0.039*

Atomic displacement parameters (Å2)

Si1 O1 C111 C112 C113 C114 C115 C116 C121 C122

U11

U22

U33

U12

U13

U23

0.0234 (5) 0.0349 (14) 0.0214 (18) 0.0247 (19) 0.031 (2) 0.031 (2) 0.028 (2) 0.030 (2) 0.0221 (19) 0.029 (2)

0.0202 (5) 0.0203 (12) 0.0216 (17) 0.0270 (19) 0.027 (2) 0.034 (2) 0.042 (2) 0.0283 (19) 0.0184 (17) 0.0201 (17)

0.0241 (5) 0.0258 (13) 0.0254 (19) 0.030 (2) 0.046 (2) 0.046 (2) 0.031 (2) 0.029 (2) 0.0278 (19) 0.032 (2)

−0.0016 (4) 0.0031 (10) −0.0069 (13) −0.0007 (15) −0.0022 (16) 0.0050 (16) 0.0001 (17) −0.0013 (16) −0.0060 (14) −0.0031 (14)

−0.0037 (4) 0.0000 (11) −0.0087 (15) −0.0045 (15) −0.0172 (19) −0.0157 (19) −0.0026 (17) −0.0043 (16) −0.0011 (15) −0.0069 (16)

0.0014 (4) 0.0019 (9) 0.0022 (14) −0.0008 (15) −0.0005 (17) −0.0121 (18) −0.0063 (17) 0.0021 (15) 0.0043 (14) 0.0003 (14)

Acta Cryst. (2002). C58, o409–o415

sup-31

supporting information C123 C124 C125 C126 C131 C132 C133 C134 C135 C136 Si2 O2 C211 C212 C213 C214 C215 C216 C221 C222 C223 C224 C225 C226 C231 C232 C233 C234 C235 C236 O4 C41 C42

0.034 (2) 0.040 (2) 0.034 (2) 0.030 (2) 0.027 (2) 0.027 (2) 0.034 (2) 0.024 (2) 0.028 (2) 0.030 (2) 0.0259 (6) 0.0344 (14) 0.035 (2) 0.040 (2) 0.041 (2) 0.033 (2) 0.029 (2) 0.032 (2) 0.0229 (19) 0.031 (2) 0.041 (2) 0.053 (3) 0.038 (2) 0.030 (2) 0.0226 (19) 0.030 (2) 0.033 (2) 0.037 (2) 0.044 (3) 0.032 (2) 0.0270 (14) 0.025 (2) 0.034 (2)

0.0257 (19) 0.031 (2) 0.0231 (19) 0.0269 (19) 0.0180 (17) 0.0278 (19) 0.031 (2) 0.029 (2) 0.034 (2) 0.032 (2) 0.0214 (5) 0.0231 (12) 0.0194 (18) 0.026 (2) 0.027 (2) 0.034 (2) 0.035 (2) 0.0246 (18) 0.0218 (17) 0.0298 (19) 0.044 (2) 0.031 (2) 0.026 (2) 0.0246 (18) 0.0273 (19) 0.030 (2) 0.037 (2) 0.042 (2) 0.045 (2) 0.031 (2) 0.0291 (13) 0.0269 (19) 0.036 (2)

0.033 (2) 0.0238 (19) 0.035 (2) 0.032 (2) 0.027 (2) 0.032 (2) 0.035 (2) 0.051 (3) 0.037 (2) 0.028 (2) 0.0246 (5) 0.0270 (13) 0.0212 (18) 0.029 (2) 0.039 (2) 0.035 (2) 0.030 (2) 0.027 (2) 0.0224 (18) 0.028 (2) 0.030 (2) 0.028 (2) 0.030 (2) 0.026 (2) 0.028 (2) 0.030 (2) 0.029 (2) 0.028 (2) 0.035 (2) 0.035 (2) 0.0333 (14) 0.039 (2) 0.027 (2)

−0.0064 (16) −0.0132 (17) −0.0041 (16) −0.0007 (16) 0.0031 (14) −0.0035 (15) −0.0023 (17) −0.0025 (15) −0.0023 (16) −0.0048 (16) 0.0009 (4) 0.0025 (10) 0.0000 (15) −0.0009 (17) −0.0098 (18) −0.0107 (17) −0.0006 (16) −0.0028 (16) −0.0002 (14) −0.0020 (15) 0.0061 (19) 0.0028 (19) −0.0049 (16) 0.0010 (15) −0.0030 (15) −0.0001 (16) −0.0025 (17) −0.0165 (18) −0.0007 (19) −0.0015 (16) −0.0031 (10) −0.0008 (15) −0.0069 (16)

−0.0135 (17) −0.0075 (17) 0.0020 (17) −0.0043 (16) −0.0072 (16) −0.0060 (16) 0.0021 (18) −0.0095 (18) −0.0091 (18) −0.0070 (16) −0.0038 (4) 0.0039 (11) −0.0077 (16) 0.0009 (17) −0.0035 (18) −0.0069 (17) −0.0040 (16) −0.0058 (16) −0.0024 (15) −0.0044 (16) −0.0122 (18) −0.0026 (19) 0.0024 (17) −0.0072 (16) −0.0022 (15) −0.0080 (16) 0.0002 (17) −0.0058 (17) −0.0194 (19) −0.0105 (17) −0.0007 (11) 0.0029 (16) −0.0077 (17)

0.0059 (15) 0.0005 (15) −0.0076 (15) −0.0021 (15) −0.0012 (14) −0.0022 (15) 0.0012 (16) 0.0016 (17) 0.0016 (16) 0.0025 (15) −0.0001 (4) 0.0034 (10) 0.0029 (13) −0.0002 (15) 0.0057 (16) 0.0100 (16) 0.0015 (15) 0.0011 (14) −0.0061 (13) −0.0014 (15) 0.0015 (17) 0.0104 (16) −0.0011 (15) −0.0020 (14) 0.0040 (14) 0.0023 (15) −0.0098 (16) −0.0028 (17) 0.0074 (18) 0.0030 (16) 0.0010 (10) −0.0004 (15) 0.0073 (15)

Geometric parameters (Å, º) Si1—O1 Si1—C111 Si1—C121 Si1—C131 O1—H1 C111—C116 C111—C112 C112—C113 C112—H112 C113—C114 C113—H113 C114—C115

Acta Cryst. (2002). C58, o409–o415

1.636 (2) 1.857 (3) 1.865 (3) 1.869 (3) 0.8800 1.385 (5) 1.406 (4) 1.394 (5) 0.9500 1.378 (5) 0.9500 1.388 (5)

O2—H2 C211—C216 C211—C212 C212—C213 C212—H212 C213—C214 C213—H213 C214—C215 C214—H214 C215—C216 C215—H215 C216—H216

0.8800 1.397 (5) 1.402 (4) 1.383 (5) 0.9500 1.382 (5) 0.9500 1.385 (5) 0.9500 1.384 (5) 0.9500 0.9500

sup-32

supporting information C114—H114 C115—C116 C115—H115 C116—H116 C121—C122 C121—C126 C122—C123 C122—H122 C123—C124 C123—H123 C124—C125 C124—H124 C125—C126 C125—H125 C126—H126 C131—C132 C131—C136 C132—C133 C132—H132 C133—C134 C133—H133 C134—C135 C134—H134 C135—C136 C135—H135 C136—H136 Si2—O2 Si2—C231 Si2—C211 Si2—C221

0.9500 1.385 (5) 0.9500 0.9500 1.393 (4) 1.400 (5) 1.380 (5) 0.9500 1.380 (5) 0.9500 1.382 (5) 0.9500 1.389 (5) 0.9500 0.9500 1.388 (5) 1.401 (4) 1.385 (5) 0.9500 1.394 (5) 0.9500 1.377 (5) 0.9500 1.379 (5) 0.9500 0.9500 1.642 (2) 1.860 (3) 1.861 (3) 1.865 (3)

C221—C226 C221—C222 C222—C223 C222—H222 C223—C224 C223—H223 C224—C225 C224—H224 C225—C226 C225—H225 C226—H226 C231—C236 C231—C232 C232—C233 C232—H232 C233—C234 C233—H233 C234—C235 C234—H234 C235—C236 C235—H235 C236—H236 O4—C41 O4—C42 C41—C42i C41—H41A C41—H41B C42—C41i C42—H421 C42—H422

1.397 (4) 1.397 (4) 1.387 (5) 0.9500 1.378 (5) 0.9500 1.382 (5) 0.9500 1.386 (5) 0.9500 0.9500 1.391 (4) 1.394 (5) 1.393 (5) 0.9500 1.374 (5) 0.9500 1.369 (5) 0.9500 1.395 (5) 0.9500 0.9500 1.433 (4) 1.440 (4) 1.502 (5) 0.9900 0.9900 1.502 (5) 0.9900 0.9900

O1—Si1—C111 O1—Si1—C121 C111—Si1—C121 O1—Si1—C131 C111—Si1—C131 C121—Si1—C131 Si1—O1—H1 C116—C111—C112 C116—C111—Si1 C112—C111—Si1 C113—C112—C111 C113—C112—H112 C111—C112—H112 C114—C113—C112 C114—C113—H113 C112—C113—H113 C113—C114—C115

104.65 (13) 111.07 (13) 111.37 (14) 110.67 (13) 108.59 (14) 110.34 (15) 112.7 116.8 (3) 123.2 (2) 119.9 (3) 121.1 (3) 119.5 119.5 120.3 (3) 119.8 119.8 119.7 (3)

C216—C211—C212 C216—C211—Si2 C212—C211—Si2 C213—C212—C211 C213—C212—H212 C211—C212—H212 C214—C213—C212 C214—C213—H213 C212—C213—H213 C213—C214—C215 C213—C214—H214 C215—C214—H214 C216—C215—C214 C216—C215—H215 C214—C215—H215 C215—C216—C211 C215—C216—H216

117.2 (3) 121.0 (2) 121.8 (3) 121.1 (3) 119.5 119.5 120.6 (3) 119.7 119.7 119.5 (3) 120.2 120.2 119.9 (3) 120.1 120.1 121.7 (3) 119.1

Acta Cryst. (2002). C58, o409–o415

sup-33

supporting information C113—C114—H114 C115—C114—H114 C116—C115—C114 C116—C115—H115 C114—C115—H115 C111—C116—C115 C111—C116—H116 C115—C116—H116 C122—C121—C126 C122—C121—Si1 C126—C121—Si1 C123—C122—C121 C123—C122—H122 C121—C122—H122 C122—C123—C124 C122—C123—H123 C124—C123—H123 C123—C124—C125 C123—C124—H124 C125—C124—H124 C124—C125—C126 C124—C125—H125 C126—C125—H125 C125—C126—C121 C125—C126—H126 C121—C126—H126 C132—C131—C136 C132—C131—Si1 C136—C131—Si1 C133—C132—C131 C133—C132—H132 C131—C132—H132 C132—C133—C134 C132—C133—H133 C134—C133—H133 C135—C134—C133 C135—C134—H134 C133—C134—H134 C134—C135—C136 C134—C135—H135 C136—C135—H135 C135—C136—C131 C135—C136—H136 C131—C136—H136 O2—Si2—C231 O2—Si2—C211 C231—Si2—C211 O2—Si2—C221

Acta Cryst. (2002). C58, o409–o415

120.2 120.2 119.4 (3) 120.3 120.3 122.7 (3) 118.7 118.7 116.8 (3) 122.6 (3) 120.5 (2) 121.8 (3) 119.1 119.1 120.3 (3) 119.9 119.9 119.7 (3) 120.1 120.1 119.6 (3) 120.2 120.2 121.8 (3) 119.1 119.1 117.1 (3) 125.7 (3) 117.1 (3) 121.5 (3) 119.2 119.2 120.3 (3) 119.8 119.8 118.9 (3) 120.6 120.6 120.6 (3) 119.7 119.7 121.7 (3) 119.2 119.2 108.53 (14) 107.14 (13) 111.04 (15) 110.07 (13)

C211—C216—H216 C226—C221—C222 C226—C221—Si2 C222—C221—Si2 C223—C222—C221 C223—C222—H222 C221—C222—H222 C224—C223—C222 C224—C223—H223 C222—C223—H223 C223—C224—C225 C223—C224—H224 C225—C224—H224 C224—C225—C226 C224—C225—H225 C226—C225—H225 C225—C226—C221 C225—C226—H226 C221—C226—H226 C236—C231—C232 C236—C231—Si2 C232—C231—Si2 C233—C232—C231 C233—C232—H232 C231—C232—H232 C234—C233—C232 C234—C233—H233 C232—C233—H233 C235—C234—C233 C235—C234—H234 C233—C234—H234 C234—C235—C236 C234—C235—H235 C236—C235—H235 C231—C236—C235 C231—C236—H236 C235—C236—H236 C41—O4—C42 O4—C41—C42i O4—C41—H41A C42i—C41—H41A O4—C41—H41B C42i—C41—H41B H41A—C41—H41B O4—C42—C41i O4—C42—H421 C41i—C42—H421 O4—C42—H422

119.1 117.6 (3) 119.4 (2) 122.8 (2) 120.9 (3) 119.5 119.5 120.2 (3) 119.9 119.9 120.3 (3) 119.9 119.9 119.4 (3) 120.3 120.3 121.6 (3) 119.2 119.2 117.3 (3) 121.1 (3) 121.5 (2) 121.1 (3) 119.5 119.5 120.1 (3) 119.9 119.9 120.2 (3) 119.9 119.9 119.8 (3) 120.1 120.1 121.6 (3) 119.2 119.2 110.4 (2) 111.5 (3) 109.3 109.3 109.3 109.3 108.0 110.0 (3) 109.7 109.7 109.7

sup-34

supporting information C231—Si2—C221 C211—Si2—C221 Si2—O2—H2

109.27 (14) 110.74 (14) 115.2

C41i—C42—H422 H421—C42—H422

109.7 108.2

O1—Si1—C111—C116 C121—Si1—C111—C116 C131—Si1—C111—C116 O1—Si1—C111—C112 C121—Si1—C111—C112 C131—Si1—C111—C112 C116—C111—C112—C113 Si1—C111—C112—C113 C111—C112—C113—C114 C112—C113—C114—C115 C113—C114—C115—C116 C112—C111—C116—C115 Si1—C111—C116—C115 C114—C115—C116—C111 O1—Si1—C121—C122 C111—Si1—C121—C122 C131—Si1—C121—C122 O1—Si1—C121—C126 C111—Si1—C121—C126 C131—Si1—C121—C126 C126—C121—C122—C123 Si1—C121—C122—C123 C121—C122—C123—C124 C122—C123—C124—C125 C123—C124—C125—C126 C124—C125—C126—C121 C122—C121—C126—C125 Si1—C121—C126—C125 O1—Si1—C131—C132 C111—Si1—C131—C132 C121—Si1—C131—C132 O1—Si1—C131—C136 C111—Si1—C131—C136 C121—Si1—C131—C136 C136—C131—C132—C133 Si1—C131—C132—C133 C131—C132—C133—C134 C132—C133—C134—C135 C133—C134—C135—C136 C134—C135—C136—C131 C132—C131—C136—C135

9.7 (3) −110.4 (3) 127.9 (3) −169.5 (2) 70.5 (3) −51.2 (3) −0.1 (5) 179.0 (2) −0.2 (5) −0.1 (5) 0.7 (5) 0.8 (5) −178.4 (3) −1.0 (5) −111.3 (3) 4.9 (3) 125.6 (3) 66.1 (3) −177.7 (2) −57.0 (3) −1.4 (5) 176.1 (2) 0.5 (5) 0.4 (5) −0.4 (5) −0.6 (5) 1.5 (5) −176.1 (3) −125.9 (3) 119.8 (3) −2.5 (3) 57.8 (3) −56.5 (3) −178.8 (2) −1.3 (5) −177.7 (3) 0.9 (5) 0.2 (5) −0.8 (5) 0.4 (5) 0.7 (5)

C231—Si2—C211—C216 C221—Si2—C211—C216 O2—Si2—C211—C212 C231—Si2—C211—C212 C221—Si2—C211—C212 C216—C211—C212—C213 Si2—C211—C212—C213 C211—C212—C213—C214 C212—C213—C214—C215 C213—C214—C215—C216 C214—C215—C216—C211 C212—C211—C216—C215 Si2—C211—C216—C215 O2—Si2—C221—C226 C231—Si2—C221—C226 C211—Si2—C221—C226 O2—Si2—C221—C222 C231—Si2—C221—C222 C211—Si2—C221—C222 C226—C221—C222—C223 Si2—C221—C222—C223 C221—C222—C223—C224 C222—C223—C224—C225 C223—C224—C225—C226 C224—C225—C226—C221 C222—C221—C226—C225 Si2—C221—C226—C225 O2—Si2—C231—C236 C211—Si2—C231—C236 C221—Si2—C231—C236 O2—Si2—C231—C232 C211—Si2—C231—C232 C221—Si2—C231—C232 C236—C231—C232—C233 Si2—C231—C232—C233 C231—C232—C233—C234 C232—C233—C234—C235 C233—C234—C235—C236 C232—C231—C236—C235 Si2—C231—C236—C235 C234—C235—C236—C231

61.6 (3) −60.0 (3) 0.1 (3) −118.3 (3) 120.1 (3) 0.0 (5) 179.9 (3) 0.0 (5) −0.5 (5) 1.0 (5) −0.9 (5) 0.5 (5) −179.4 (3) −81.4 (3) 37.7 (3) 160.3 (3) 94.2 (3) −146.7 (3) −24.1 (3) 0.1 (5) −175.6 (3) 1.1 (6) −0.9 (6) −0.5 (5) 1.7 (5) −1.5 (5) 174.3 (3) −18.8 (3) 98.8 (3) −138.8 (3) 165.0 (3) −77.5 (3) 44.9 (3) −1.4 (5) 175.0 (3) 0.3 (5) 1.4 (5) −1.8 (5) 1.0 (5) −175.5 (3) 0.6 (6)

Acta Cryst. (2002). C58, o409–o415

sup-35

supporting information Si1—C131—C136—C135 O2—Si2—C211—C216

C42—O4—C41—C42i C41—O4—C42—C41i

177.3 (2) 179.9 (2)

57.4 (4) −56.5 (4)

Symmetry code: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º) D—H···A

D—H

H···A

D···A

D—H···A

O1—H1···O2 O2—H2···O4 C134—H134···Cg2ii C214—H214···Cg3ii

0.88 0.88 0.95 0.95

1.96 1.83 2.99 2.82

2.760 (3) 2.692 (3) 3.727 (4) 3.606 (4)

151 168 135 141

Symmetry code: (ii) x−1, y, z.

Acta Cryst. (2002). C58, o409–o415

sup-36