Tetraruthenium Metallamacrocycles with Potentially ... - MDPI

8 downloads 0 Views 5MB Size Report
Jul 24, 2018 - Despite this unifying principle, ruthenium macrocycles of types I or II .... of the solid residue that remained after removal of the solvents with methanol, .... necessary to immediately freeze the crystal in a stream of liquid ...... H15), 1.32 (vq, 3JHH/HP = 6.7 Hz, 72H, H16), 1.20 (vq, 3JHH/HP = 6.7 Hz, 72H, H16 ).
inorganics Article

Tetraruthenium Metallamacrocycles with Potentially Coordinating Appended Functionalities Patrick Anders

ID

, Mario Robin Rapp, Michael Linseis and Rainer F. Winter *

ID

Fachbereich Chemie der Universität Konstanz, Universitätsstraße 10, D-78457 Konstanz, Germany; [email protected] (P.A.); [email protected] (M.R.R.); [email protected] (M.L.) * Correspondence: [email protected]; Tel.: +49-7531-88-5355  

Received: 26 June 2018; Accepted: 20 July 2018; Published: 24 July 2018

Abstract: We present four new tetraruthenium macrocycles built from two 1,4-divinylphenylene diruthenium and two isophthalic acid building blocks with peripheral, potentially mono- or tridentate donor functions attached to the isophthalic linkers. These macrocycles are characterized by multinuclear NMR spectroscopy, mass spectrometry and, in the case of the thioacetyl-appended complex 4, by X-ray crystallography. Cyclic and square wave voltammetry establish that the macrocycles can be oxidized in four consecutive redox steps that come as two pairs of two closely spaced one-electron waves. Spectroscopic changes observed during IR and UV/Vis/NIR spectroelectrochemical experiments (NIR = near infrared) show that the isophthalate linkers insulate the electroactive divinylphenylene diruthenium moieties against each other. The macrocycles exhibit nevertheless pronounced polyelectrochromism with highly intense absorptions in the Vis (2+/4+ states) and the NIR (2+ states) with extinction coefficients of up to >100,000 M−1 ·cm−1 . The strong absorptivity enhancement with respect to the individual divinylphenylene diruthenium building blocks is attributed to conformational restrictions imposed by the macrocycle backbone. Moreover, the di- and tetracations of these macrocycles are paramagnetic as revealed by EPR spectroscopy. Keywords: ruthenium; metallamacrocycle; electrochemistry; spectroelectrochemistry

1. Introduction We have recently reported on some representatives of new types of metallamacrocyclic ruthenium complexes based on alkenylarylene and carboxylate linkers [1–4], which add to the rapidly growing class of redox-active metallamacrocycles [5–7]. Metallacycles of type I in Figure 1 are constructed from bis(alkenyl)arylene diruthenium complexes and isophthalic acid derivatives or pyridine-3,5-dicarboxylate as two different kinds of building blocks [1,2,4]. Metallacycles of type II, in contrast, are made from self-complimentary building blocks that incorporate the alkenylarylene and the carboxylate functionalities within the same bridging ligand [3,4]. A feature common to both types of macrocycles is their redox activity with one reversible one-electron oxidation per alkenyl ruthenium moiety. By peripherally appending triarylamine tags, their redox activity can be even further enhanced to the reversible loss of up to eight electrons per macrocycle [2]. Despite this unifying principle, ruthenium macrocycles of types I or II strongly differ with respect to the pattern of the individual redox waves and their properties. Thus, members of the type I family are characterized by two pairs of closely spaced one-electron voltammetric waves that are mutually split by ca. 300 mV, representing the stepwise oxidation of first the one and then the other divinylarylene diruthenium moiety to their associated radical cationic (first pair of waves) and then to the dicationic states (second pair of waves). The spatial extension of the π-conjugated metal-organic pathway renders tetraruthenium macrocycles of this architecture highly efficient polyelectrochromic Inorganics 2018, 6, 73; doi:10.3390/inorganics6030073

www.mdpi.com/journal/inorganics

Inorganics 2018, 6, 73

2 of 21

Inorganics 2018, 6, x FOR PEER REVIEW   

2 of 21 

dyes organic  [8–12]. Another property is the paramagnetism of architecture  the di- and tetraoxidized forms, pathway  interesting renders  tetraruthenium  macrocycles  of  this  highly  efficient  which feature two or four uncoupled spins, even in the presence of 1,4-divinylphenylene linkages polyelectrochromic dyes [8–12]. Another interesting property is the paramagnetism of the di‐ and  [1]. Tri- or tetraruthenium of two  family however, offer three or four individually tetraoxidized  forms, macrocycles which  feature  or  II, four  uncoupled  spins,  even  in  the  presence  of resolved, 1,4‐ ratherdivinylphenylene linkages [1]. Tri‐ or tetraruthenium macrocycles of family II, however, offer three  evenly spaced, consecutive one-electron redox waves in electrochemical experiments. Moreover, four  individually  resolved,  rather  evenly  spaced,  redox constituents waves  in  in they or  show clear signs of electronic coupling between theconsecutive  individual one‐electron  monoruthenium electrochemical  experiments.  Moreover,  they  show  clear  signs  of  electronic  coupling  between  their mixed-valent +/2+ or +/2+/3+ states as revealed by the presence of weak intervalencethe  charge individual monoruthenium constituents in their mixed‐valent +/2+ or +/2+/3+ states as revealed by  transfer (IVCT) transitions. They thus resemble electrically conductive molecular loops. This, however, the presence of weak intervalence charge transfer (IVCT) transitions. They thus resemble electrically  comes at the expense of a significantly attenuated performance as polyelectrochromics, [13–19] due conductive  molecular  loops.  This,  however,  comes  at  the  expense  of  a  significantly  attenuated  to fact that the π-conjugated chromophores are restricted to just a monoruthenium alkenylarylene performance  as  polyelectrochromics,  [13–19]  due  to  fact  that  the  π‐conjugated  chromophores  are  building block. restricted to just a monoruthenium alkenylarylene building block. 

  Figure 1. Vinylarylene‐bridged ruthenium macrocycles of types I and II. 

Figure 1. Vinylarylene-bridged ruthenium macrocycles of types I and II.

One formidable challenge en route to responsive materials made from such macrocycles is to  interconnect individual molecules to larger, ordered arrays [20]. Assembling individual macrocycles  One formidable challenge en route to responsive materials made from such macrocycles is to via  coordinative  or  molecules covalent  bonds  or  other  specific  intermolecular  interactions  might macrocycles ultimately  via interconnect individual to larger, ordered arrays [20]. Assembling individual provide more complex structures with anisotropic electrical or electronic properties, if the type of  coordinative or covalent bonds or other specific intermolecular interactions might ultimately provide morebonding interactions between individual macrocycles differs for different directions in space. Such a  complex structures with anisotropic electrical or electronic properties, if the type of bonding level  of  structural  complexity  would  go  beyond  that  of  traditional  MOFs.  As  a  first  step  to  such  interactions between individual macrocycles differs for different directions in space. Such a level of materials, we here report on four new tetraruthenium macrocycles of type I with either terpyridine‐  structural complexity would go beyond that of traditional MOFs. As a first step to such materials, (terpy),  1,3‐(dipyrid‐2‐yl)phenyl‐(phpy2),  (4‐ethynylpyridine)‐  or  4‐thioacetyl‐functionalized  we here report on four new tetraruthenium macrocycles of type I with either terpyridine- (terpy), isophthalate linkers along with their electrochemical and spectroscopic properties.  1,3-(dipyrid-2-yl)phenyl-(phpy2 ), (4-ethynylpyridine)- or 4-thioacetyl-functionalized isophthalate 2. Results and Discussion  linkers along with their electrochemical and spectroscopic properties. As  the  functionalized  isophthalate  linkers  of  this  study  we  employed  2,6‐di(pyrid‐2‐yl)‐ pyridine‐3,5‐dicarboxylate  (IL1),  the  3,5‐bis(pyrid‐2‐yl)phenylethynyl‐appended  isophthalate  IL2,  the the 5‐ethynylpyridine‐appended  isophthalate  IL3,  5‐thioacetyl‐modified  isophthalate  IL4  (see  As functionalized isophthalate linkers of thisand  study we employed 2,6-di(pyrid-2-yl)-pyridineFigure  2).  IL1  was  already  in  1961  and  made  by  condensation  of  picolinoylacetate  3,5-dicarboxylate (IL1), the reported  3,5-bis(pyrid-2-yl)phenylethynyl-appended isophthalate with  IL2, the ammonia  followed  by  oxidation  of  the  cyclic  1,4‐dihydropyridine  with  nitrosulphuric  acid  5-ethynylpyridine-appended isophthalate IL3, and 5-thioacetyl-modified isophthalate and  IL4 (see subsequent  basic  hydrolysis  of  the  formed  diethyl  ester  [21].  In  our  present  work  we  employed  Figure 2). IL1 was already reported in 1961 and made by condensation of picolinoylacetate with permanganate oxidation of 3′,5′‐dimethyl‐2,2′,6′,2′′‐terpyridine [22] to prepare the dimethyl ester of  ammonia followed by oxidation of the cyclic 1,4-dihydropyridine with nitrosulphuric acid and IL1. The latter was saponified in situ before macrocycle synthesis. Linkers IL2 to IL4 are new. IL2 

2. Results and Discussion

subsequent basic hydrolysis of the formed diethyl ester [21]. In our present work we employed permanganate oxidation of 30 ,50 -dimethyl-2,20 ,60 ,200 -terpyridine [22] to prepare the dimethyl ester of IL1. The latter was saponified in situ before macrocycle synthesis. Linkers IL2 to IL4 are new. IL2 was made by Sonogashira coupling of 1-bromo-3,5-di(pyrid-2yl)benzene [23] with 5-ethynylisophthalic

Inorganics 2018, 6, 73 Inorganics 2018, 6, x FOR PEER REVIEW   

33 of 21  of 21

was  made  by  Sonogashira  coupling  of  1‐bromo‐3,5‐di(pyrid‐2yl)benzene  [23]  with  5‐ acid dimethyl ester. The latter was prepared bywas  a Sonogashira of the reaction  corresponding ethynylisophthalic  acid  dimethyl  ester.  The  latter  prepared  by reaction a  Sonogashira  of  the  5-bromo derivative with trimethylsilylacetylene (TMSA) followed by deprotection of the product corresponding 5‐bromo derivative with trimethylsilylacetylene (TMSA) followed by deprotection of  with K2 CO3 /MeOH. Sonogashira coupling of 5-ethynylisophthalic acid dimethyl ester with the the  product  with  K2CO 3/MeOH. Sonogashira  coupling  of 5‐ethynylisophthalic  acid  dimethyl  ester  hydrochloride of 4-bromopyridine afforded linker IL3. IL4 was prepared from acetylation of the with the hydrochloride of 4‐bromopyridine afforded linker IL3. IL4 was prepared from acetylation  known 5-mercaptoisophthalic acid [24] with acetic acid anhydride. Details of the synthesis and the of the known 5‐mercaptoisophthalic acid [24] with acetic acid anhydride. Details of the synthesis and  characterization of IL1 to IL4 and of new synthetic intermediates are given in the Experimental the characterization of IL1 to IL4 and of new synthetic intermediates are given in the Experimental  Section. NMR spectra of all  all new  new isophthalate  isophthalate ligands  ligands are  are collected  collected as  as Figures  Figures S1  S1 to  to S8  S8 in  in the Section.  NMR  spectra  of  the  Supplementary Materials. Supplementary Materials. 

  Figure 2. Ligands IL1 to IL4 and the derived tetraruthenium macrocycles 1–4.  Figure 2. Ligands IL1 to IL4 and the derived tetraruthenium macrocycles 1–4.

The four new tetraruthenium macrocycles 1–4 shown in Figure 2 were generated in yields of  The four new tetraruthenium macrocycles 1–4 shown in Figure 2 were generated in yields of 46% to 87% by stirring equimolar amounts of the divinylphenylene‐bridged diruthenium complex  46% to 87% by equimolar amounts of the divinylphenylene-bridged diruthenium complex iPrstirring {Ru(CO)Cl(P 3)2}2(μ‐CH=CH–C6H4–CH=CH‐1,4) [8] and the respective isophthalate linkers IL1 to  i {Ru(CO)Cl(P Pr3 )2 }22(µ-CH=CH–C 6 H4 –CH=CH-1,4) [8] and the respective isophthalate linkers IL1 to IL4 in a MeOH/CH Cl2 mixture (ca. 1:1, vol:vol), subsequent filtration of the soluble materials over  IL4 in a MeOH/CH Cl mixture (ca. 1:1, vol:vol), subsequent filtration of the soluble materials over 2 2 Celite®, and washing of the solid residue that remained after removal of the solvents with methanol,  ® Celite , and washing of the solid residue that remained after removal of the solvents with methanol, ether and pentane. Reaction times varied between 3 h and 3 days. In the latter cases, monitoring of  ether and pentane. Reaction betweenrevealed  3 h and the  3 days. In theof latter cases, monitoring the  reaction  solutions  by  31P times NMR varied spectroscopy  presence  several  species  during  31 P NMR spectroscopy revealed the presence of several species during of the reaction solutions by intermediate  stages  of  the  reaction.  These  multicomponent  mixtures  gradually  turned  uniform,  intermediate stages of the reaction. These multicomponent mixtures gradually turned uniform, leaving leaving just one principal, dissolved species besides variable quantities of insoluble, solid material at  just one principal, dissolved species besides variable quantities of insoluble, solid material at the end of the end of the reactions. The success of these self‐assembly reactions obviously rests on the reversible  the reactions. The success of these self-assembly reactions obviously rests on the reversible binding of binding of the carboxylate linkers and a thermodynamic competitiveness of the cyclic architectures  the carboxylate linkers and a thermodynamic competitiveness of the cyclic architectures with respect with respect to linear, polymeric structures due to enthalpy‐entropy compensation [25–27] and the  to linear, structures due to enthalpy-entropy compensation [25–27]of  andequilibria  the stabilities of the stabilities polymeric of  the  as‐formed  macrocycles  [28–30].  Similar  observations  involving  as-formed macrocycles [28–30]. Similar observations of equilibria involving reversible ligand binding reversible ligand binding en route to closed metallamacrocycles were reported on earlier occasions,  en route to closed metallamacrocycles were reported on closed  earlier macrocycles  occasions, including diruthenium including  diruthenium  complexes  [31].  However,  even  may  undergo  ligand  complexes [31]. However, even closed macrocycles may undergo ligand scrambling in scrambling  in  the  presence  of  an  excess  of  a  ditopic  ligand  [30,32,33].  Gratifyingly, the the presence angular  of an excess of a ditopic ligand [30,32,33]. Gratifyingly, the angular dispositions of the coordinating dispositions of the coordinating functionalities at the divinylphenylene and the isophthalate linkers  ◦ [2,4] functionalities at the andselective  the isophthalate linkers of ca. 160◦ and of ca. 1202  of  ca.  160°  and  of  divinylphenylene ca.  120°  [2,4]  grant  formation  of  rectangular,  unstrained  +  2  grant selective formation of rectangular, unstrained 2 + 2 tetraruthenium macrocyclic structures as tetraruthenium macrocyclic structures as opposed to larger cyclic arrays (vide infra).  opposed to larger cyclic arrays (vide infra). The new macrocycles are characterized by the appropriate NMR resonances of the two different  The macrocycles characterized by the appropriatediruthenium  NMR resonances of and  the two kinds  of  new ditopic  building  are blocks—the  divinylarylene‐bridged  complex  the  different kinds of ditopic building blocks—the divinylarylene-bridged diruthenium complex and the isophthalate linker—in a 1:1 ratio, with distinct peak shifts when compared to the isolated precursors  isophthalate linker—in a 1:1 ratio, distinctspectra  peak shifts when compared to in  thethe  isolated precursors (for  graphical  representations  of with the  NMR  see  Figures  S9  to  S21  Supplementary  Materials).  As  usual,  substitution  of  the  chlorido  ligand  at  the  ruthenium  atoms  by  a  bidentate 

Inorganics 2018, 6, 73

Inorganics 2018, 6, x FOR PEER REVIEW   

4 of 21

4 of 21 

(for graphical representations of the NMR spectra see Figures S9 to S21 in the Supplementary Materials). carboxylate goes along with low‐field shifts of the vinylic protons Ru–CH and Ru–CH=CH and of  As usual, substitution of the chlorido ligand at the ruthenium atoms by a bidentate carboxylate those at the 1,4‐phenylene linker by ca. 0.6 to 0.7 ppm, 0.8 to 1.0 ppm, and 0.6 to 0.7 ppm, respectively  goes along with low-field shifts of the vinylic protons Ru–CH and Ru–CH=CH and of those at the [1,2,11,34]. Significant shifts are also observed for the protons at the isophthalate ligands, in particular  1,4-phenylene linker by ca. 0.6 to 0.7 ppm, 0.8 to 1.0 ppm, and 0.6 to 0.7 ppm, respectively [1,2,11,34]. for  those  which  are  poised  to  the  central  cavity.  This  is  exemplified  by  macrocycle  1  where  the  Significant shifts are also observed for the protons at the isophthalate ligands, in particular for those corresponding 1H NMR resonance changes from 8.29 ppm in IL1 to 9.80 ppm, or by the 2/IL2 pair of  which are poised to the central cavity. This is exemplified by macrocycle 1 where the corresponding compounds, where a shift from 8.65 ppm to 9.28 ppm is observed. Chloride substitution by bidentate  1 H NMR resonance changes from 8.29 ppm in IL1 to 9.80 ppm, or by the 2/IL2 pair of compounds, carboxylate donors is indicated by low‐field shifts of the COO  13C NMR resonances by ca. 10 ppm  where a shift from 8.65 ppm to 9.28 ppm is observed. Chloride substitution by bidentate carboxylate when compared to the parent isophthalic esters and, concomitant with the increase of the valence  donors is indicated by low-field shifts of the COO 13 C NMR resonances by ca. 10 ppm when compared electron count at the ruthenium atom from 16 to 18, by a 9 cm−1 shift of the CO stretch of the Ru‐ to the parent isophthalic esters and, concomitant with the increase of the valence electron count at the bonded carbonyl ligands to lower energy.  ruthenium atom from 16 to 18, by a 9 cm−1 shift of the CO stretch of the Ru-bonded carbonyl ligands While these observations generally confirm the presence of well‐defined macrocyclic structures,  to lower energy. they are indeterminate with respect to their nuclearity. Such information can, however, be gleaned  While these observations generally confirm the presence of well-defined macrocyclic structures, from the corresponding mass spectra. The latter show clear peaks corresponding to the mono‐ and  they are indeterminate with respect to their nuclearity. Such information can, however, be gleaned dications of the intact macrocycles with series of additional peaks corresponding to the stepwise loss  from the corresponding mass spectra. The latter show clear peaks corresponding to the mono- and of up to four PiPr3 ligands. In most cases, the mass peak for the [M2+ − 4PiPr3] ion constitutes the base  dications of the intact macrocycles with series of additional peaks corresponding to the stepwise peak of the mass spectrum, confirming stability of even the higher oxidized, dicationic states. For  loss of up to four Pi Pr3 ligands. In most cases, the mass peak for the [M2+ − 4Pi Pr3 ] ion constitutes preoxidized  samples,  mass  peaks  corresponding  to  even  the  trications  were  observed.  Figure  3  the base peak of the mass spectrum, confirming stability of even the higher oxidized, dicationic depicts  a  representative  mass  spectrum  of  the  ethynylpyridyl‐appended  macrocycle  3  and  states. For preoxidized samples, mass peaks corresponding to even the trications were observed. demonstrates  the  excellent  match  between  the  calculated  and  experimentally  observed  peak  Figure 3 depicts a representative mass spectrum of the ethynylpyridyl-appended macrocycle 3 and positions and isotope patterns. Mass spectra of the other metallamacrocycles can be retrieved from  demonstrates the excellent match between the calculated and experimentally observed peak positions Figures S22 to S27 of the Supplementary Materials.  and isotope patterns. Mass spectra of the other metallamacrocycles can be retrieved from Figures S22 to S27 of the Supplementary Materials.

Figure 3. (Left): HR ESI Mass spectrum of macrocycle 3; (right): experimental (top) and simulated Figure 3. (Left): HR ESI Mass spectrum of macrocycle 3; (right): experimental (top) and simulated  (bottom) isotope peak pattern for the [M+ ] peak. (bottom) isotope peak pattern for the [M+] peak. 

 

Final confirmation of the formation of tetraruthenium macrocycles was obtained by an X-ray Final confirmation of the formation of tetraruthenium macrocycles was obtained by an X‐ray  diffraction experiment on a single crystal of macrocycle 4 grown from a solution of the complex in a diffraction experiment on a single crystal of macrocycle 4 grown from a solution of the complex in a  benzene/MeOH mixture. Details to the data collection, the structure solution and refinement, as well benzene/MeOH mixture. Details to the data collection, the structure solution and refinement, as well  as listings of the bond lengths and angles are provided as Tables S30 to S32 in the Supplementary as listings of the bond lengths and angles are provided as Tables S30 to S32 in the Supplementary  Materials. Complex 4 crystallizes in the triclinic space group P−1 with two half macrocycles and Materials. Complex 4 crystallizes in the triclinic space group P − 1 with two half macrocycles and  eleven benzene solvate molecules in the unit cell. One benzene solvate molecule rests within the inner eleven benzene solvate molecules in the unit cell. One benzene solvate molecule rests within the inner  cavity of every macrocycle and, at an interplanar angle of 8.0◦ , is in a close to parallel orientation with cavity of every macrocycle and, at an interplanar angle of 8.0°, is in a close to parallel orientation with  the arene rings of the divinylphenylene linkers. the arene rings of the divinylphenylene linkers. 

Figure 4 shows front and rear views of an individual molecule of 4 with the numbering of the  most important atoms and with the incorporated benzene solvate molecule. The other ten solvate 

Inorganics 2018, 6, 73

5 of 21

Figure 4 shows front and rear Inorganics 2018, 6, x FOR PEER REVIEW   

views of an individual molecule of 4 with the numbering of the 5 of 21  most important atoms and with the incorporated benzene solvate molecule. The other ten solvate molecules occupy hydrophobic voids between parallel displaced macrocycle molecules (see Figure S28 molecules occupy hydrophobic voids between parallel displaced macrocycle molecules (see Figure  of theof Supplementary Materials). Individual solvate molecules do not display anydisplay  notableany  interactions S28  the  Supplementary  Materials).  Individual  solvate  molecules  do  not  notable  with each other or the metallamacrocycles. Thus, the shortest C–H ··· C distances between individual interactions with each other or the metallamacrocycles. Thus, the shortest C–HC distances between  benzene molecules are 3.0 Å, which is by 0.1 Å longer than what is usually considered as a secondary individual benzene molecules are 3.0 Å, which is by 0.1 Å longer than what is usually considered as  bonding interaction. only exception is a exception  weak contact 2.638contact  Å between one benzene solvate a  secondary  bonding The interaction.  The  only  is  a ofweak  of  2.638  Å  between  one  hydrogensolvate  atom and atom O1 atom  of a carboxylate absence of any intermolecular interactions benzene  hydrogen  and  atom ligand. O1  of The a  carboxylate  ligand.  The  absence  of  any  also explains why single crystals of 4 rapidly lose their solvate molecules on removal from the mother intermolecular interactions also explains why single crystals of 4 rapidly lose their solvate molecules  liquor. This posed considerable difficulties in collecting a specimen for data collection. Thus, it was on removal from the mother liquor. This posed considerable difficulties in collecting a specimen for  necessary to immediately freeze the crystal in a stream of liquid nitrogen in order to avoid a rapid data collection. Thus, it was necessary to immediately freeze the crystal in a stream of liquid nitrogen  loss of transparency and crystallinity. Some solvent loss was nevertheless encountered during the in order to avoid a rapid loss of transparency and crystallinity. Some solvent loss was nevertheless  X-ray diffraction experiment, even at liquidexperiment,  nitrogen temperature. As isnitrogen  shown in Figure S29 of the encountered  during  the  X‐ray  diffraction  even  at  liquid  temperature.  As  is  Supplementary Materials, individual macrocycles weakly associate along the c axis of the unit cell by shown in Figure S29 of the Supplementary Materials, individual macrocycles weakly associate along  two c pairs bonding interactions of 2.578 Å and 2.636interactions  Å between atom O7 at thioacetyl the  axis of of hydrogen the  unit  cell  by  two  pairs  of  hydrogen  bonding  of  2.578  Å the and  2.636  Å  i i moiety and methyl protons at the P Pr3 ligands. between atom O7 at the thioacetyl moiety and methyl protons at the P Pr3 ligands. 

  Figure  4.  Two  with  the the  benzene benzene  solvate solvate  molecule molecule  Figure 4. Two different  different views  views of  of an  an individual  individual molecule  molecule of  of 4  4 with incorporated into the central cavity. Selected bond lengths in Å: Ru1–P1: 2.398(4), Ru1–P2: 2.413(4),  incorporated into the central cavity. Selected bond lengths in Å: Ru1–P1: 2.398(4), Ru1–P2: 2.413(4), Ru2–P3:  Ru2–P3: 2.402(4),  2.402(4), Ru2–P4:  Ru2–P4: 2.402(4),  2.402(4), Ru1–O1:  Ru1–O1: 2.316(6),  2.316(6), Ru1–O2:  Ru1–O2: 2.183(6),  2.183(6), Ru2–O3:  Ru2–O3: 2.287(6),  2.287(6), Ru2–O4:  Ru2–O4: 2.205(6), Ru1–C1: 1.976(9), Ru1–C11: 1.764(10), Ru2–C10: 1.982(10), Ru2–C12: 1.763(10). Selected bond  2.205(6), Ru1–C1: 1.976(9), Ru1–C11: 1.764(10), Ru2–C10: 1.982(10), Ru2–C12: 1.763(10). Selected bond angles in °: P1–Ru1–P2: 179.72(12), P3–Ru2–P4: 176.83(12), O1–Ru1–O2: 58.7(2), O3–Ru2–O4: 59.1(2),  angles in ◦ : P1–Ru1–P2: 179.72(12), P3–Ru2–P4: 176.83(12), O1–Ru1–O2: 58.7(2), O3–Ru2–O4: 59.1(2), O1–Ru1–C1: 156.3(3), O2–Ru1–C11: 172.2(4), O3–Ru2–C10: 160.5(3), O4–Ru2–C12: 168.9(4).  O1–Ru1–C1: 156.3(3), O2–Ru1–C11: 172.2(4), O3–Ru2–C10: 160.5(3), O4–Ru2–C12: 168.9(4).

While the rather poor quality of the data set in terms of intensity‐to‐noise ratio does not allow  While the rather poor quality of the data set in terms of intensity-to-noise ratio does not allow for a detailed discussion of the bond parameters, a qualitative discussion and some statements on the  for a detailed discussion of the bond parameters, a qualitative discussion and some statements on macrocycle  conformation  are  nevertheless  possible.  Of  note  are  the  large  differences  in  the  Ru–O  the macrocycle conformation are nevertheless possible. Of note are the large differences in the Ru–O bond lengths at the bidentate carboxylate linkers. Thus, the Ru–O bonds to the carboxylate O donors  bond lengths at the bidentate carboxylate linkers. Thus, the Ru–O bonds to the carboxylate O donors trans to the divinylphenylene ligands (Ru1–O1 = 2.316(6) Å, Ru2–O3 = 2.287(6) Å) are by 0.13 or 0.08  Å longer than those to the oxygen atoms trans to the carbonyl ligand (Ru1–O2 = 2.183(6) Å, Ru2–O4  = 2.205(6) Å). Likewise, the trans‐angles C1–Ru1–O1 and C10–Ru2–O3 of 156.3(3)° or 160.5(3)° show  considerably  larger  deviations  from  ideality  than  the  angles  C11–Ru1–O2  and  C12–Ru2–O4  of  172.2(4)° and 168.9(4)° involving the C atoms of the carbonyl ligands. These differences, however, do 

Inorganics 2018, 6, 73

6 of 21

trans to the divinylphenylene ligands (Ru1–O1 = 2.316(6) Å, Ru2–O3 = 2.287(6) Å) are by 0.13 or 0.08 Å longer than those to the oxygen atoms trans to the carbonyl ligand (Ru1–O2 = 2.183(6) Å, Ru2–O4 = 2.205(6) Å). Likewise, the trans-angles C1–Ru1–O1 and C10–Ru2–O3 of 156.3(3)◦ or 160.5(3)◦ show considerably larger deviations from ideality than the angles C11–Ru1–O2 and C12–Ru2–O4 of 172.2(4)◦ and 168.9(4)◦ involving the C atoms of the carbonyl ligands. These differences, however, do not seem to be imposed by conformational constraints of macrocycle formation, since very similar observations were also made for similar mono- and diruthenium complexes with terminal benzoate ligands, e.g., Ru–O = 2.305(2) Å and 2.200(2) Å, O–Ru–Cst = 157.83(10)◦ , O–Ru–CCO = 170.39(11)◦ for the closely related complex Ru(CO)(Pi Pr3 )2 (CH=CH–C6 H5 )(κO,O0 -OOCC6 H4 -4SC(=O)CH3 ) [11]. The macrocycles therefore seem to be largely devoid of ring strain. This is also indicated by an only minute twisting of the P–Ru vectors, as indicated by torsional angles P–Ru···Ru–P of 0.2◦ or 3.0◦ along the divinylphenylene, and of 4.8◦ along the isophthalate linkers. The phenylene rings at the divinylphenylene linkers are rotated by 27.9◦ and 26.4◦ out of the coordination planes defined by the Ru atoms and the equatorial ligands. As was found for other tetraruthenium macrocycles of the same general architecture, the vinyl linkers at the Ru atoms are rotated outward from the interior cavity [2,4]. This conformation generates the most regular cavity shape, and was also found to be the most stable one by quantum chemical calculations [1]. Cavity dimensions in 4 are 12.7 Å × 8.3 Å as measured between opposite hydrogen atoms, which is very similar to the values obtained for other structurally characterized tetraruthenium macrocycles with isophthalate linkers [2]. Together with the rotation of the phenyl rings, the outward rotation at the phenylene linkers generates the necessary space within the central cavity to incorporate one benzene solvate molecule. The redox properties of macrocycles 1–4 were explored by cyclic and square wave voltammetric measurements in 0.1 M NBu4 PF6 /CH2 Cl2 solutions and, in the case of 1 and 4, also in the NBu4 + B{C6 H3 (CF3 )2 -3,5}4 − supporting electrolyte. Table 1 summarizes the relevant data from electrochemical experiments on the present complexes 1–4 and compares them to those for the dinuclear chloro-substituted precursor (Pi Pr3 )2 Cl(CO)Ru–CH=CH–C6 H4 –CH=CH–Ru(CO)Cl(Pi Pr3 )2 (Ru2 Cl2 ) [1] and its bis(benzoato) derivative (PhCOO-κO,O0 )(Pi Pr3 )2 (CO)Ru–CH=CH–C6 H4 –CH=CH–Ru(CO)(Pi Pr3 )2 –(κO,O0 -OOCPh) (Ru2 bza2 [11]; for their structures see Figure 5). All macrocycles are oxidized in two consecutive redox processes with potential splittings of 195 mV to 248 mV. Figure 6 shows a representative voltammogram of macrocycle 3; those of the other complexes can be found as Figures S30 to S34 of the Supplementary Materials. Each of these processes involves two electrons in total and corresponds to the stepwise loss of one electron from every conjugated divinylphenylene diruthenium side. Some small splitting ∆E1/2 between the individual one-electron waves is evident for the first composite redox process constituted by the 0/+ and +/2+ redox couples, in particular in square wave experiments. The latter also made it possible to derive individual half-wave potentials E1/2 for the individual processes by digital simulation of the overall peak shape (see Figures S35 to S40 of the Supplementary Materials). No such splitting is, however, seen for the second composite wave, corresponding to the overall 2+/4+ redox event. All oxidations involve the π-conjugated Ru–CH=CH–C6 H4 –CH=CH–Ru sides, which are largely identical for every macrocycle and only vary by the substituents at the isophthalate linker. Since the isophthalate linkers essentially act as insulators between the conjugated sides, they only exert an inductive influence. This also explains that variations of E1/2 values for equivalent redox processes between the individual macrocycles are rather small. Changing the anion of the supporting electrolyte from PF6 − to the even more weakly ion pairing B{C6 H3 (CF3 )2 -3,5}4 − anion leaves the splitting between the first and second one-electron steps unaltered (Table 1), while increasing the half-wave potential differences between the second and third oxidations (i.e., for the second charging of a conjugated side) by ca. 100 mV. Some further minor splitting between the 2+/3+ and the 3+/4+ waves is indicated by a broadening of the corresponding CV wave (see Figures S31 and S34 of the Supplementary Materials) and the square wave peaks. Digital simulation of the square wave voltammograms now required four separate peaks (Figures

Inorganics 2018, 6, 73

7 of 21

S36 and S40 of the Supplementary Materials), and the corresponding potentials are also provided in Table 1. It becomes evident that increasing the electron count at the ruthenium atoms from 16 to 18 does not only influence the energies also Inorganics 2018, 6, x FOR PEER REVIEW    of the υ(CO) stretching vibrations of the carbonyl ligands but7 of 21  shifts the redox potentials cathodically by ca. 150 to 180 mV for the first, and by 90 to 130 mV for the second oxidation of an individual  {Ru}–CH=CH–C6 H4 –CH=CH–{Ru} entity. Inorganics 2018, 6, x FOR PEER REVIEW  7 of 21 

  Figure 5. The diruthenium reference complexes Ru2Cl2 and Ru2bza2. 

  Table 1. Electrochemistry data for macrocycles 1–4 and the diruthenium analogs Ru 2bza2 and Ru2Cl2 1.  Figure 5. The diruthenium reference complexes Ru Cl2 and Ru 2bza2.  Figure 5. The diruthenium reference complexes Ru22Cl 2 and Ru2 bza2 .

Complex  E1/20/+ (mV)  E1/21+/2+ (mV)  E1/2+2/4+ (mV)  ΔE1/2+1/2+ (mV)  ΔE1/22+/4+ (mV) 

Table 1. Electrochemistry data for macrocycles 1–4 and the diruthenium analogs Ru 2bza2 and Ru2Cl2 11.  2  Table 1.1 Electrochemistry 1–4 and82  the diruthenium analogs Ru2 bza2 and −244 data for macrocycles −147  97  229 Ru2 Cl2 . 4  +2/4+ (mV)  1 3  −330  −241  89  (mV)  ΔE1/22+/4+ 315  Complex  E1/20/+  (mV)  E1/21+/2+  (mV)  E1/274/125  ΔE1/2+1/2+  (mV)  +2/4+ (mV) +1/2+ (mV) 2+/4+ E1/2 0/+ −256  (mV) E1/2 1+/2+ (mV) E ∆E ∆E 1/2 1/2 1/2 −173  59  83  232  (mV) 1  −244  −147  82  97  229  −244 −147 8273  4  97 229 1 2 1  3 3 2  −256  −175  81  248  −330  −241  74/125  89  315  −330 −241 89 315 13 74/125 4 2  2  4  −220  −150  45  70  195  −256  −173  83  232  −256 −173 5959  83 232 2 2 2  4  4 2 3  −330  −255  57/114  75  312  −256  −175  81  248  −256 −175 7373  81 248 3 2 3  2   5  −220 − 150 45 70 195 4Ru4  2  2  2bza −250 ‐  20  ‐  270  −220  −150  45  70  195  −330 −255 75 312 4 3 3  57/114 45  4  Ru2Cl2  −75  ‐  175  ‐  250  −330  −255  57/114  75  312  Ru2 bza4  −250 270 20 5 2 1 In CH2Cl2 at r.t. and v = 100 mV/s or at a step width of 2 mV and a square wave frequency of 20 Hz  −250  20 5 5  270  RuRu −75 - ‐  -‐  250 175 2 Cl22bza2  5  1in square wave voltammetry. Potentials are provided against the ferrocene/ferrocenium redox scale.  Ru 2Cl 2  r.t. and v−75  ‐  frequency of 20250  In CH = 100 mV/s or at ‐  a step width of 175  2 mV and a square wave Hz in square 2 Cl 2 at

Complex 2 2 2 

2 With 0.1 M NBu + − 2 With 0.1 M NBu 3 With 0.02 M NBu wave voltammetry. Potentials are provided against the ferrocene/ferrocenium redox scale. 4+PF6− as the supporting electrolyte.  4+B{C6H 3(CF3)2‐3,5}4− as the  1 In CH 4 PF6 2Cl2 at r.t. and v = 100 mV/s or at a step width of 2 mV and a square wave frequency of 20 Hz  3 With 0.02 M NBu + B{C H (CF ) -3,5} − as the supporting electrolyte. 4 Separate as the supporting electrolyte. 4 6 3 3 2 4 4 5 supporting electrolyte.   Separate potentials for the 2+/3+ and the 3+/4+ waves.   Half‐wave potential  in square wave voltammetry. Potentials are provided against the ferrocene/ferrocenium redox scale.  potentials for the 2+/3+ and the 3+/4+ waves. 5 Half-wave potential for the +/2+ wave, which phenomenologically for the +/2+ wave, which phenomenologically corresponds to the 2+/3+ wave of a macrocyclic analog.  2corresponds 3 + − + to the 2+/3+ of a macrocyclic analog.  With 0.1 M NBu 4 PF6 wave  as the supporting electrolyte.   With 0.02 M NBu4 B{C6H3(CF3)2‐3,5}4− as the 

supporting electrolyte. 4 Separate potentials for the 2+/3+ and the 3+/4+ waves. 5 Half‐wave potential  for the +/2+ wave, which phenomenologically corresponds to the 2+/3+ wave of a macrocyclic analog. 

  2Cl2,  NBu +PF − ,  0.1  M,  at  v  =  100  mV/s,  r.t.  Figure 6. 6.  Cyclic Cyclic voltammogram voltammogram of of macrocycle macrocycle 33 (CH (CHCl Figure 2 2 , NBu4 PF6 , 0.1 M, at v = 100 mV/s, r.t.   2Cl2 and Ru2bza2.  diruthenium reference complexes Ru diruthenium reference complexes Ru2 Cl2 and Ru2 bza2. Figure  6.  Cyclic  voltammogram  of  macrocycle  3  (CH2Cl2,  NBu4+PF6−,  0.1  M,  at  v  =  100  mV/s,  r.t.  Previous studies on similar 2 + 2 tetraruthenium macrocycles assembled from divinylphenylene  2Cl2 and Ru2bza2.  diruthenium reference complexes Ru Previous studies on similar 2 + 2 tetraruthenium macrocycles assembled from divinylphenylene 4+

6−

and  isophthalate  building  blocks  had  indicated  that  the  small  splitting  of  the  0/+  and  +/2+  redox  and isophthalate building blocks had indicated that the small splitting of the 0/+ and +/2+ redox couples,  which  correspond  to  the  stepwise  charging  of  first  the  one  and  then  the  other  Previous studies on similar 2 + 2 tetraruthenium macrocycles assembled from divinylphenylene  couples, which correspond to the stepwise charging of first the one and then the other divinylphenylene divinylphenylene diruthenium sides of a macrocycle, are entirely due to electrostatic and inductive  and  isophthalate  building  blocks  had  indicated  that  the  small  splitting  of  the  0/+  and  +/2+  redox  diruthenium sides of a macrocycle, are entirely due to electrostatic and inductive effects, with no effects, with no indication for through‐space or through‐bond electronic interactions between them.  couples,  which  correspond  to  the  stepwise  charging  of  first  the  one  and  then  the  other  This also holds here, as is indicated by the results of our IR and UV/Vis/NIR spectroelectrochemical  divinylphenylene diruthenium sides of a macrocycle, are entirely due to electrostatic and inductive  experiments.  Figure  7  provides  a  graphical  account  of  the  spectroscopic  changes  for  the  Ru(CO)  effects, with no indication for through‐space or through‐bond electronic interactions between them.  stretching  vibrations  and  in  the  near  infrared  (NIR)  for  macrocycle  1;  the  results  for  the  other  This also holds here, as is indicated by the results of our IR and UV/Vis/NIR spectroelectrochemical  macrocycles are included as Figures S41 to S52 in the Supplementary Materials. The corresponding  experiments.  Figure  7  provides  a  graphical  account  of  the  spectroscopic  changes  for  the  Ru(CO)  data are summarized in Table 2.  stretching  vibrations  and  in  the  near  infrared  (NIR)  for  macrocycle  1;  the  results  for  the  other 

Inorganics 2018, 6, 73

8 of 21

indication for through-space or through-bond electronic interactions between them. This also holds here, as is indicated by the results of our IR and UV/Vis/NIR spectroelectrochemical experiments. Figure 7 provides a graphical account of the spectroscopic changes for the Ru(CO) stretching vibrations and in the near infrared (NIR) for macrocycle 1; the results for the other macrocycles are included as Inorganics 2018, 6, x FOR PEER REVIEW    8 of 21  Figures S41 to S52 in the Supplementary Materials. The corresponding data are summarized in Table 2.

   Figure 7. Spectroscopic changes of the Ru(CO) bands (left) and in the near infrared (right) during the  Figure 7. Spectroscopic changes of the Ru(CO) bands (left) and in the near infrared (right) during the 2+ to the tetracation  oxidation of the neutral macrocycle 1 to its dication 1 oxidation of the neutral macrocycle 1 to its dication 12+2+ (top) and from dication 1 (top) and from dication 12+ to the tetracation 4+ + − + 6 , at r.t.  − 4Cl2/0.1 M NBu4 PF 1  (bottom) in 1,2‐C 14+ (bottom) in 1,2-C2 H2H 4 Cl2 /0.1 M NBu4 PF6 , at r.t. Table 2. Energies of the υ(CO) stretches and UV/Vis/NIR data for macrocycles 1–4 and the analogous 

Table 2. Energies of the υ(CO) stretches and UV/Vis/NIR data1,2for macrocycles 1–4 and the analogous diruthenium complex Ru2bza2 in their various oxidation states  .  diruthenium complex Ru2 bza2 in their various oxidation states 1,2 . Complex  υ(CO) 1  λmax(εmax) 1  1  1 1901  354(85,000)  Complex υ(CO) λmax (εmax ) 1 1927,  279(59,300), 492(35,700), 534(69,000), 587(83,000), 963(15,900), 1089(62,700),  1 12+  1901 354(85,000) 1944  1259(95,000)  1927, 1944 279(59,300), 492(35,700), 534(69,000), 587(83,000), 963(15,900), 1089(62,700), 1259(95,000) 12+ 4+  1 1973  279(79,200), 602(126,000)  1973 279(79,200), 602(126,000) 14+ 2  1901  354(85,000)  2 1901 354(85,000) 1927,  279(59,500), 495(37,000), 535(69,000), 587(83,000), 963(15,600), 1088(62,700),  2+ 1927, 1943 279(59,500), 495(37,000), 535(69,000), 587(83,000), 963(15,600), 1088(62,700), 1257(95,000) 2 22+  1943  1257(95,000)  1973 279(79,600), 602(127,000) 24+ 1973  279(79,600), 602(127,000)  3 24+  1902 354(70,700) 1902  354(70,700)  1928, 1944 283(63,300), (495(25,900), 535(48,600), 587(61,600) 936(13,400), 1085(46,900), 1256(72,000) 32+ 3  1972 282(65,300), 608 (102,000) 34+ 2+  1928,  283(63,300), (495(25,900), 535(48,600), 587(61,600) 936(13,400), 1085(46,900),  3 4 1901 356(60,600) 1944  1256(72,000)  2+ 1928, 1944 279(46,400), 537(49,700), 589(61,000), 963(12,100), 1086(45,100), 1258(70,000) 4 34+  1972  282(65,300), 608 (102,000)  1973 283(116,000), 364(42,700), 592(109,000) 44+ 4  1901  356(60,600)  Ru2 bza2 1904 362(19,000) 1928,  279(46,400), 537(49,700), 589(61,000), 963(12,100), 1086(45,100), 1258(70,000)  Ru2 bza24+2+  1924, 1944 357(19300), 487(6600), 536(6800), 587(8000), 1016(9200), 1084(1900), 1272 (5800) 1944  1971 375 (9200), 427(9000), 606(13000) Ru2 bza2 2+4+  4 1973  283(116,000), 364(42,700), 592(109,000)  1 υ(CO) in  cm−1 ; λ ε in M−1 cm−1 ; in 1,2-C2 H4 Cl2 /0.1 M NBu4 + PF6 − . 2 Data for Ru2 bza2 n+ from ref. [11]. max in nm, Ru2bza2 1904  362(19,000)  Ru2bza2+ 

1924,  357(19300), 487(6600), 536(6800), 587(8000), 1016(9200), 1084(1900), 1272 (5800)  1944  oxidation of the macrocycles to their dications, we observe the expected 1971  375 (9200), 427(9000), 606(13000) 

On gradual blue shift Ru2bza22+  of the Ru(CO) bands and the formation of a pattern of a weaker band at a higher energy of 1944 1 υ(CO) in cm−1; λmax in nm, ε in M−1 cm−1; in 1,2‐C2H4Cl2/0.1 M NBu4+PF6−.  2 Data for Ru2bza2n+ from  −1 . This behavior is cm−1 and a more intense, main feature at a lower energy of 1927 or 1928 cm ref. [11]. 

Inorganics 2018, 6, 73

9 of 21

identical to that of linear divinylarylene-bridged diruthenium complexes [1,8,11,12]. The initially puzzling observation of two Ru(CO) bands (suggesting that the two Ru(CO) sites are electronically inequivalent) despite complete charge delocalization as indicated by detailed quantum chemical calculations and EPR studies was finally traced to the lifting of the degeneracy between the symmetric and antisymmetric combinations of the Ru(CO) stretches [1,35]. Oxidation to the dications is also accompanied by the growth of highly intense, structured and sharp NIR bands at ca. 10,500 cm−1 , 9200 cm−1 , and 8000 cm−1 (ca. 950 nm, 1085 nm and 1250 nm), with half-widths of the order of 800 cm−1 , 1100 cm−1 , and 1000–1430 cm−1 . These bands correspond to the electronic β-HOSO → β-LUSO excitation within the open-shell divinylphenylene–diruthenium chromophore(s). No clear distinction between the 0/+ and +/2+ processes was evident in any of these experiments. This is, however, due to the absence of any specific absorption band of the monocations of these macrocycles with one monooxidized and one neutral divinylphenylene diruthenium side, and not to an inherent failure of our optically transparent thin layer electrolysis (OTTLE) cell to resolve two close-lying one-electron processes. In this respect we note that similar experiments on the cis- and trans-isomers of bis(styryl)ethene-bridged diruthenium complexes {Ru}–CH=CH–C6 H4 –CH=CH–C6 H4 –CH=CH–{Ru} had clearly identified the intermediate radical cations despite similar or even smaller half-wave potential splittings (74 mV to 49 mV) than in the present cases [10]. Simple thermodynamic considerations indicate that half-wave potential splittings of 45 mV to 82 mV correspond to equilibrium constants Kc of 6 to 24 for the comproportionation reaction according to Equation (1), where MC represents an individual macrocycle molecule. MC2+ + MC 2 MC+

(1)

This in turn means that, after stoichiometric release of one electron per macrocycle (which point must be passed in every experiment), the composition of the solution varies between 55% of the monocation and 22.5% of each the dicationic and neutral forms (Kc = 6), and 71% of the monocation and 14.5% of each the dicationic and neutral forms (Kc = 24). Thus, in every instance, the radical cation must be formed and is even the dominant species at intermediate stages of the spectroelectrochemical experiment. The monocations thus contain no specific Ru(CO) and electronic NIR bands apart from those of the isolated divinylphenylene diruthenium chromophores in their respective oxidation states. Hence, the (hypothetical) spectra of the pure monocations would essentially be indistinguishable from those of a 1:1 mixture of the dicationic and the neutral macrocycles. This in turn indicates the absence of any electronic interaction through the isophthalate linkers (i.e., through bond) or through space. On close inspection, however, we note a gradual blue shift of the most intense and most red-shifted NIR band on continuous oxidation. This is likely due to a slight change of the electron-donating capabilities of the isophthalate linkers, which are bound to one oxidized and one reduced divinylphenylene diruthenium entity at initial stages of the electrolysis, but to two oxidized ones near the point of full conversion to the dications. The electronic properties of the coligands at ruthenium will affect the energies of the frontier molecular orbitals β-HOSO and β-LUSO that are involved in the corresponding electronic transition and their energy differences, which explains the slight positional changes from the initial to the later stages of the IR/NIR spectroelectrochemical experiment. These changes in inductive effects relate to the contribution of the ∆Gind term to the free enthalpy change associated with two consecutive redox processes and will therefore also contribute to the observed half-wave potential splittings [36–40]. Oxidation of the dications to the tetracations is accompanied by a further blue shift of the Ru(CO) bands along with an intensity decrease. This is particularly true for the symmetric combination of the individual Ru(CO) stretches, such that only one Ru(CO) band remains. Likewise, the NIR absorptions of the open-shell divinylphenylene diruthenium chromophores bleach completely (see Figure 7 and Figures S44, S48 and S52 of the Supplementary Materials). Again, the intermittently formed trications have no specific spectroscopic signatures that would distinguish them from the

Inorganics 2018, 6, 73

10 of 21

Inorganics 2018, 6, x FOR PEER REVIEW   

10 of 21 

dications (the remaining singly oxidized divinylphenylene diruthenium side) or the tetracations (the remaining  singly  oxidized  divinylphenylene  side)  or  the  tetracations  (the  doubly  doubly oxidized divinylphenylene dirutheniumdiruthenium  side). oxidized divinylphenylene diruthenium side).  Changes in the electronic spectra of the macrocycles are exemplified for complex 3 in Figure 8. Changes in the electronic spectra of the macrocycles are exemplified for complex 3 in Figure 8.  Representative spectra for all other   macrocycles are displayed in Figures S53 to10 of 21  S58 of the Inorganics 2018, 6, x FOR PEER REVIEW  Representative  spectra  for  all  other  macrocycles  are  displayed  in  Figures  S53  to  S58  of  the  Supplementary Materials while pertinent data are collected in Table 2. Visual impressions of 200 Supplementary Materials while pertinent data are collected in Table 2. Visual impressions of 200 μM  remaining  singly  oxidized  divinylphenylene  diruthenium  side)  or  the  tetracations  (the  doubly  µM solutions of macrocycle 1 in its neutral, dicationic and tetracationic states are displayed in Figure 9. solutions of macrocycle 1 in its neutral, dicationic and tetracationic states are displayed in Figure 9.  oxidized divinylphenylene diruthenium side).  On stepwise oxidation, the faint yellow hue of the neutral macrocycles gives way to a deep purple Changes in the electronic spectra of the macrocycles are exemplified for complex 3 in Figure 8.  On stepwise oxidation, the faint yellow hue of the neutral macrocycles gives way to a deep purple  coloration ofRepresentative  the dications. The latter due macrocycles  to structured cover the range spectra  for  all isother  are prominent displayed  in absorptions Figures  S53  that to  S58  of  the  coloration of the dications. The latter is due to structured prominent absorptions that cover the range  1 ·cm −1 . Concomitantly, the equally Supplementary Materials while pertinent data are collected in Table 2. Visual impressions of 200 μM  −1. Concomitantly, the equally  of 500–600 nm with extinction coefficients larger than 6 × 1044 M M−1−∙cm of 500–600 nm with extinction coefficients larger than 6 × 10 solutions of macrocycle 1 in its neutral, dicationic and tetracationic states are displayed in Figure 9.  intense NIR features that were already observed in the IR/NIR experiments appear. Both kinds of  intense NIR features that were already observed in the IR/NIR experiments appear. Both kinds On stepwise oxidation, the faint yellow hue of the neutral macrocycles gives way to a deep purple  absorptions  can can  be be  described  within  the the conjugated  metal–organic  of absorptions describedas  asπ π→ →π*  π*type  typetransitions  transitions within conjugated metal–organic coloration of the dications. The latter is due to structured prominent absorptions that cover the range  chromophores [1,4]. On further oxidation to the associated tetracations, the colour changes to deep  4 M−1∙cm−1. Concomitantly, the equally  chromophores [1,4]. On further oxidation to the associated tetracations, the colour changes to deep of 500–600 nm with extinction coefficients larger than 6 × 10 intense NIR features that were already observed in the IR/NIR experiments appear. Both kinds of  royalroyal blue or blue‐green. Electronic spectra indicate a red shift and broadening of the prominent Vis  blue or blue-green. Electronic spectra indicate a red shift and broadening of the prominent absorptions together with a loss of the fine structure of the absorption bands and a further gain in  absorptions  can  be  described  as  π  → π*  type  transitions  within  the  conjugated  metal–organic  Vis absorptions together with a loss of the fine structure of the absorption bands and a further gain −1∙cm−1.  In  line  with  our  chromophores [1,4]. On further oxidation to the associated tetracations, the colour changes to deep  absorptivity  to  ultimately  reach  extinction  coefficients  of  >1  ×  105  M 5 M−1 ·cm−1 . In line with our in absorptivity to ultimately reach extinction coefficients of >1 × 10 royal blue or blue‐green. Electronic spectra indicate a red shift and broadening of the prominent Vis  observations from the IR/NIR experiments, oxidation of the di‐ to the tetracations is accompanied by  observations from the IR/NIR experiments, oxidation of the di- to the tetracations is accompanied by absorptions together with a loss of the fine structure of the absorption bands and a further gain in  a complete bleach of the NIR bands.  absorptivity  to NIR ultimately  reach  extinction  coefficients  of  >1  ×  105  M−1∙cm−1.  In  line  with  our  a complete bleach of the bands. observations from the IR/NIR experiments, oxidation of the di‐ to the tetracations is accompanied by  a complete bleach of the NIR bands. 

    Figure 8. Changes in the UV/Vis/NIR spectra on oxidation of neutral macrocycle 3 to the dicationic Figure 8. Changes in the UV/Vis/NIR spectra on oxidation of neutral macrocycle 3 to the dicationic  Figure 8. Changes in the UV/Vis/NIR spectra on oxidation of neutral macrocycle 3 to the dicationic  2+ 4+ + − 2+ (left) and from the di‐ to the tetracationic state 3 statestate 3 3 (left) and2+ from the di- to the tetracationic state4+3 (right, 1,2‐C (right, 1,2-C NBu 2H4Cl 2, NBu 6−, r.t.).  2H 4 Cl24,++PF 4 PF6 , r.t.). 4+ − state 3  (left) and from the di‐ to the tetracationic state 3  (right, 1,2‐C2H4Cl2, NBu4 PF6 , r.t.). 

 

  Figure 9. Visual impressions of the neutral (left), dicationic (middle) and tetracationic (right) forms  Visual impressions of the neutral (left), dicationic 2Cl(middle) 2 solution.  and tetracationic (right) forms of macrocycle 1 at concentration levels of 200 μM in CH

Figure 9. Figure 9. Visual impressions of the neutral (left), dicationic (middle) and tetracationic (right) forms  macrocycle 1 at concentration levels of 200 µM in CH2 Cl solution. 22 solution.  2Cl of macrocycle 1 at concentration levels of 200 μM in CH

of

While the electronic bands of the di‐ and tetracations of the present macrocycles are, in terms of  their position and general appearance, very similar to those of the radical cations and dications of 

While the electronic bands of the di‐ and tetracations of the present macrocycles are, in terms of  While the electronic bands of the di- and tetracations of the present macrocycles are, in terms of their position and general appearance, very similar to those of the radical cations and dications of  their position and general appearance, very similar to those of the radical cations and dications of

analogous divinylphenylene-bridged diruthenium complexes like Ru2 Cl2 or Ru2 bza2 (see Figure 5), their extinction coefficients clearly surpass those of their open, linear analogues by a factor of >2

Inorganics 2018, 6, x FOR PEER REVIEW   

11 of 21 

analogous divinylphenylene‐bridged diruthenium complexes like Ru 2Cl2 or Ru2bza2 (see Figure 5),  Inorganics 2018, 6, 73 11 of 21 their extinction coefficients clearly surpass those of their open, linear analogues by a factor of >2 (see  Table  2;  a  value  of  2  would  be  expected  for  the  effect  of  simply  doubling  the  number  of  the  (see Table 2; a value of probably  2 would be expected for theconformational  effect of simply doubling of chromophores).  This  is  due  to  restricted  freedom  of  the the  number individual  the chromophores). This is probably due to restricted conformational freedom of the individual chromophores  once  they  are  embedded  into  rigidified  macrocyclic  structures.  Their  linear  chromophoresanalogues  once they are into rigidified macrocyclic structures. Theirwith  linearrespect  diruthenium diruthenium  can embedded exist  as  mixtures  of  cisoid  and  transoid  conformers  to  the  analogues can exist as mixtures of cisoid and transoid conformers with respect to the orientation of the orientation of the Ru–CO vectors and may also exhibit larger torsions around the bonds connecting  Ru–CO vectors and may also exhibit larger torsions around the bonds connecting the vinyl groups the vinyl groups to the ruthenium atoms or the phenyl rings. These observations qualify the present  to the rutheniummacrocycles  atoms or the rings. powerful  These observations qualify thedyes  present tetraruthenium tetraruthenium  as phenyl particularly  polyelectrochromic  for  the  Vis  and  the  macrocycles as particularly powerful polyelectrochromic dyes for the Vis and the NIR. NIR.  Samples of the di- and tetracations of macrocycles 1–4 for EPR investigations were prepared by Samples of the di‐ and tetracations of macrocycles 1–4 for EPR investigations were prepared by  selective oxidation of the neutral precursors with ferrocenium (E selective oxidation of the neutral precursors with ferrocenium (E 1/2 = 0 mV) or acetylferrocenium (E 1/2  1/2 = 0 mV) or acetylferrocenium (E = 270 mV) hexafluorophosphate in CH Cl solution [41]. Both kinds of species are EPR active = 270 mV) hexafluorophosphate in CH 2Cl2 solution [41]. Both kinds of species are EPR active and  2 2 1/2 and provide broadened isotropic signals with no resolved hyperfine splittings in fluid solution at provide broadened isotropic signals with no resolved hyperfine splittings in fluid solution at r.t. and  r.t. and in frozen solutions. g values are close to 2.02 for the dications and slightly higher, ca. in frozen solutions. g values are close to 2.02 for the dications and slightly higher, ca. 2.03, for the  2.03, for the tetracations (see Table 3). We also note that, for similar concentration levels, signal tetracations (see Table 3). We also note that, for similar concentration levels, signal intensities of the  intensities of the tetracations are appreciably smaller than those for the dications. Figure 10 displays tetracations are appreciably smaller than those for the dications. Figure 10 displays representative  2+ and 3 4+ at r.t.; additional spectra at T = 123 K and those for the other complexes can  representative EPR spectra of 32+ and 34+ at r.t.; additional spectra at T = 123 K and those for the EPR spectra of 3 other complexes can be found as Figures S59 to S70 of the Supplementary Materials. In no case be found as Figures S59 to S70 of the Supplementary Materials. In no case could a half‐field signal  could a half-field signal corresponding to a ∆ms ± 2 transition be observed. This indicates that s ± 2 transition be observed. This indicates that (i) every individual spin of the  corresponding to a ∆m (i) every individual spin of the dications is delocalized over one divinylphenylene diruthenium dications is delocalized over one divinylphenylene diruthenium side with major contributions of the  side with major contributions of the π-conjugated organic linker and does not interact with the π‐conjugated organic linker and does not interact with the other over the isophthalate linkers to a  other over the isophthalate linkers to a detectable extent; and (ii) the two spins at an individual detectable extent; and (ii) the two spins at an individual divinylphenylene diruthenium side in the  divinylphenylene diruthenium side in the tetracationic state also act independently from each other tetracationic state also act independently from each other and do not couple antiferromagnetically,  and do notthe  couple antiferromagnetically, although the para-phenylene linkage normally although  para‐phenylene  linkage  normally  supports  such  coupling  [42–46].  This supports kind  of  such coupling This kindfor  of behaviour wasof also the dication of thecomplex  similar behaviour  was [42–46]. also  observed  the  dication  the observed similar  for linear  diruthenium  i i i i linear complex (P 2Pr Pr3 )2 and studied in (P Pr3)2diruthenium Cl(CO)Ru–C6H 2(2,5‐OBu) –Ru(CO)Cl(P Pr3)26 H and  studied 2 –Ru(CO)Cl(P in  detail  by  variable‐temperature  3 )2 Cl(CO)Ru–C 2 (2,5-OBu) detailspectroscopy  by variable-temperature EPR to 4 K [1]. Particularly well examples  represented EPR  down  to  4  K  [1]. spectroscopy Particularly  down well  represented  among  the  few  of  among the few examples of paramagnetic compounds with two spin centers interconnected by paramagnetic compounds with two spin centers interconnected by para‐phenylene linkers are those  para-phenylene linkers are those with two Ar2 N•+centers  -aminiumyl-type paramagnetic centers interlinked with  two  Ar2N•+ ‐aminiumyl‐type  paramagnetic  interlinked  by  long  π‐conjugated  spacers  by long π-conjugatedmotifs  spacers with para-phenylene motifsdicationic  [47–49]. Quite interestingly, dicationic with  para‐phenylene  [47–49].  Quite  interestingly,  complexes  [(PiPr3)2Cl(CO)Ru– i Pr )2+Cl(CO)Ru–C H –N(C H R-4) ]2+ (R = CHO, COCH , COOMe, Me, OMe), complexes [(P C 6H4–N(C6H 4R‐4) 23] 2   (R  =  CHO,  COCH 3,  COOMe,  both  motifs  in  one  6 4 6 4 2 Me,  OMe),  which  combine  3 which combine both motifs in one compound, show the same kind of behaviour [50]. Common compound, show the same kind of behaviour [50]. Common to all these systems is that the ability of  to all these systems is that the ability of the terminal entities to accommodate the unpaired spin density the terminal entities to accommodate the unpaired spin density allows the arylene linkers to retain  allows the arylene linkers to retain their aromatic Clar’s sextets rather than sacrificing them in favour their aromatic Clar’s sextets rather than sacrificing them in favour of quinoidal structures. The latter  of quinoidal structures. The latter are necessary prerequisites for achieving antiferromagnetic coupling are necessary prerequisites for achieving antiferromagnetic coupling (see Figure 11). In the absence  (see Figure 11). In the absence of appreciable magnetic interactions between the terminal spin-bearing of appreciable magnetic interactions between the terminal spin‐bearing sites the paramagnetic triplet  sites the paramagnetic triplet and the diamagnetic singlet diradical structures will coexist in solution. and the diamagnetic singlet diradical structures will coexist in solution. 

  Figure 10. EPR spectra of the di‐ (left) and tetracation (right) of macrocycle 3 (CH2Cl2, r.t.).  Figure 10. EPR spectra of the di- (left) and tetracation (right) of macrocycle 3 (CH2 Cl2 , r.t.).  

Inorganics 2018, 6, 73

12 of 21

Inorganics 2018, 6, x FOR PEER REVIEW   

12 of 21 

Table 3. g values for oxidized complexes 1–4 in CH2 Cl2 .   Table 3. g values for oxidized complexes 1–4 in CH2Cl2. Complex Complex  1 2 3 4

  1  2  3  4 

Dication Dication  r.t. r.t. 

123 K  123 K

2.019  2.019 2.019  2.019 2.019 2.019  2.019 2.019 

2.019  2.019 2.018  2.018 2.018 2.018  2.018 2.018 

Tetracation Tetracation  r.t. r.t. 123 K  123 K 2.030  2.036  2.030 2.036 2.031  2.031 2.028 2.028 2.031 2.028 2.028 2.031  2.032 2.032  2.029 2.029

  Figure 11. Possible structures and spin multiplicities for compounds with two paramagnetic redox  Figure 11. Possible structures and spin multiplicities for compounds with two paramagnetic redox • centers RC centers RC•  bridged by a para‐phenylene spacer.  bridged by a para-phenylene spacer.

Initial  attempts  to  utilize  functionalized  macrocycles  1–4  in  a  complexes‐as‐ligands  approach  Initial attempts to utilize functionalized macrocycles 1–4 in a complexes-as-ligands approach [51,52] [51,52]  for  further  metal  coordination  were  frustrated  by  their  rather  poor  solubilities  and  their  for further metal coordination were frustrated by their rather poor solubilities and their sensitivity sensitivity towards even mildly Lewis‐acidic and oxophilic cations like Zn2+ or Cu2+. Thus, addition  towards even mildly Lewis-acidic and oxophilic cations like Zn2+ or Cu2+ . Thus, addition of zinc(II) or of zinc(II) or copper(II) salts to complexes 1 and 2 led to rapid decomposition as indicated by a colour  copper(II) salts to complexes 1 and 2 led to rapid decomposition as indicated by a colour change to change  to  brown,  the  deposition  of  brownish  solids,  and  the  loss  of  the  Ru(CO)  stretches  in  the  brown, the deposition of brownish solids, and the loss of the Ru(CO) stretches in the solution phase solution phase and these solid deposits. We assume that these cations compete with the Ru centers  and these solid deposits. We assume that these cations compete with the Ru centers for the carboxylate for  the  carboxylate  linkers,  which  may ultimately  lead  to  the  opening  of  the macrocycles. Further  linkers, which may ultimately lead to the opening of the macrocycles. Further attempts to engage attempts to engage macrocycle 2 in typical cyclometalation reactions, e.g., with PtCl2(dmso)2, were  macrocycle 2 in typical cyclometalation reactions, e.g., with PtCl2 (dmso)2 , were thwarted by their thwarted by their insufficient thermal stability to withstand the typical reaction conditions that are  insufficient thermal stability to withstand the typical reaction conditions that are required to induce required to induce ligand substitution of such Pt complexes. Structural models of macrocycle 1 also  ligand substitution of such Pt complexes. Structural models of macrocycle 1 also indicate that the outer indicate  that  the  outer  pyridyl  rings  may  be  spatially  too  close  to  the  isophthalate  carboxylate  pyridyl rings may be spatially too close to the isophthalate carboxylate functionalities to allow for the functionalities to allow for the proper orientation for providing a tridentate binding pocket. We note,  proper orientation for providing a tridentate binding pocket. We note, however, that macrocycle 4, however,  that  macrocycle  4,  due  to  its  easily  deprotected  Au‐binding  thiolate  functions,  has  the  due to its easily deprotected Au-binding thiolate functions, has the potential to bridge Au nanogap potential to bridge Au nanogap electrodes for measuring molecular conductivities in an STM‐based  electrodes for measuring molecular conductivities in an STM-based setup. Work along these lines is setup.  Work  along  these  lines  is  presently  being  pursued,  and  the  results  will  be  reported  on  a  presently being pursued, and the results will be reported on a separate occasion. separate occasion.  3. Materials, Methods, Syntheses and Characterization Data 3. Materials, Methods, Syntheses and Characterization Data  3.1. Materials and General Methods 3.1. Materials and General Methods  All manipulations were carried out under a nitrogen atmosphere. Solvents were dried and All  prior manipulations  carried  under  a  nitrogen  atmosphere.  Solvents  were  dried  and  distilled to use. Allwere  reagents fromout  commercial sources were used without further purification. 1distilled prior to use. All reagents from commercial sources were used without further purification.  13 1 31 1 H NMR (400 MHz), C{ H} NMR (101 MHz) and P{ H}-NMR (162 MHz) spectra were measured 1H NMR (400 MHz),  13C{1H} NMR (101 MHz) and  31P{1H}‐NMR (162 MHz) spectra were measured  on a Bruker AvanceIII 400 spectrometer (Bruker, Billerica, MA, USA), and 1 H-NMR (600 MHz) 1H‐NMR (600 MHz) and  on a Bruker AvanceIII 400 spectrometer (Bruker, Billerica, MA, USA), and  and 13 C{1 H} NMR (151 MHz) spectra on a Bruker AvanceIII 600 spectrometer (Bruker, Billerica, 13C{1H} NMR (151 MHz) spectra on a Bruker AvanceIII 600 spectrometer (Bruker, Billerica, MA, USA).  MA, USA). {Ru(CO)Cl(Pi Pr3 )2 }2 (1,4-(CH=CH)2 –C6 H4 ) [8], 30 ,50 -dimethyl-2,20 :60 ,200 -terpyridine [22] iPr3)2}2(1,4‐(CH=CH)2–C6H4)  [8],  3′,5′‐dimethyl‐2,2′:6′,2′′‐terpyridine  [22]  and  5‐ {Ru(CO)Cl(P and 5-mercaptoisophthalic acid [24] were prepared according to literature methods. ESI-MS data mercaptoisophthalic  acid  [24]  were  prepared  to  literature  data from was  was acquired on a Bruker micrOTOF II massaccording  spectrometer (Bruker, methods.  Billerica, ESI‐MS  MA, USA) + − acquired on a Bruker micrOTOF II mass spectrometer (Bruker, Billerica, MA, USA) from partially  partially oxidized analyte/CHCl3 solutions employing [Cp2 Fe] PF6 as the oxidant. Combustion oxidized analyte/CHCl  solutions employing [Cp 2Fe]+PF6− as the oxidant. Combustion analysis was  analysis was conducted 3with an Elementar vario MICRO cube CHN-analyzer from Heraeus (Heraeus, conducted  with  an  Elementar  vario  MICRO  cube  CHN‐analyzer  from  Heraeus  (Heraeus,  Hanau,  Hanau, Germany). Germany).  X-ray diffraction analysis of a single crystal of macrocycle 4 was performed at 100 K on a STOE X‐ray diffraction analysis of a single crystal of macrocycle 4 was performed at 100 K on a STOE  IPDS-II diffractometer (STOE, Darmstadt, Germany) equipped with a graphite-monochromated IPDS‐II  diffractometer  (STOE,  Darmstadt,  Germany)  equipped  with  a  graphite‐monochromated  radiation source (λ = 0.71073 Å) and an image plate detection system. A crystal mounted on a fine 

Inorganics 2018, 6, 73

13 of 21

radiation source (λ = 0.71073 Å) and an image plate detection system. A crystal mounted on a fine glass fiber with silicon grease was employed. If not indicated otherwise, the selection, integration, and averaging procedure of the measured reflection intensities, the determination of the unit cell dimensions and a least-squares fit of the 2θ values as well as data reduction, LP-correction and space group determination were performed using the X-Area software package delivered with the diffractometer. A semiempirical absorption correction was performed [53]. All structures were solved by the heavy-atom methods (SHELXS-97, [54] SHELXS-2014, [55] and OLEX2 [56]). Structure solutions were completed with difference Fourier syntheses and full-matrix last-squares refinements using SHELXL-97, [54] SHELXS-2014, [55] and OLEX2 [56] minimizing ω(Fo 2 − Fc 2 )2 . The weighted R factor (wR2 ) and the goodness of fit GOF are based on F2 . All non-hydrogen atoms were refined with anisotropic displacement parameters, while hydrogen atoms were treated in a riding model. Molecular structures in this work are plotted with the Mercury program [57]. The crystallographic data file for macrocycle 4 has been deposited at the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, [Fax: + 44 1223/336-033; E-mail [email protected].] under the deposition number CCDC 1846386 and can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html. 3.2. Electrochemical and Spectroelectrochemical Measurements All electrochemical experiments were performed in a home-built cylindrical vacuum-tight one-compartment cell equipped with a spiral-shaped Pt-wire and an Ag-wire as the counter and reference electrodes. The electrodes are sealed into glass capillaries that connect via Quickfit screws at opposite sides of the cell. A platinum electrode is used as the working electrode and is attached from the top port via a Teflon screw cap with a suitable fitting. Before measurements, the working electrode was polished with 1 µm and then 0.25 µm diamond pastes (Buehler-Wirtz, Lake Bluff, IL, USA). Measurements were carried out in argon-saturated solutions containing CH2 Cl2 and n Bu4N+ PF6 − or n Bu4N+ B{C6 H3 (CF3 )2 -3,5}4 − as the supporting electrolyte. Referencing was done with addition of cobaltocenium hexafluorophosphate as an internal standard. Representative sets of scans were repeated with the added standard. The final referencing was done against the ferrocene/ferrocenium (Cp2 Fe0/+ ) redox couple with E1/2 (Cp2 Co+/0 ) = −1330 mV vs. Cp2 Fe0/+ . Electrochemical data were acquired BASi potentiostat (Bioanalytical Systems, West Lafayette, IN, USA). The OTTLE cell was home-built and comprises of a Pt-mesh working and counter electrode and a thin Ag/AgCl wire as a pseudoreference electrode sandwiched between the CaF2 windows of a conventional liquid IR cell. Its design is based on that of Hartl et al. [58]. The working electrode is positioned in the beam the spectrometer. For the spectroelectrochemical experiments a Wenking POS2 potentiostat (Bank Elektronik-Intelligent Controls GmbH, Pohlheim, Germany) was used. FT-IR spectra were recorded using a Bruker Tensor II FT-IR spectrometer (Bruker, Billerica, MA, USA). UV/Vis/NIR spectra were obtained on a TIDAS fiberoptic diode array spectrometer (combined MCS UV/NIR and PGS NIR instrumentation) from j&m Analytik AG, Essingen, Germany. EPR spectra were obtained using an X-Band tabletop spectrometer (MiniScope MS 400) build by Magnettech GmbH, Berlin, Germany. All measurements were performed at room temperature and at −150 ◦ C. Macrocycles were oxidized chemically employing ferrocenium hexafluorophosphate or acetylferrocenium hexafluoroantimonate.

Inorganics 2018, 6, x FOR PEER REVIEW  Inorganics 2018, 6, 73 Inorganics 2018, 6, x FOR PEER REVIEW    

14 of 21  14 of 21 14 of 21 

3.3. Syntheses and Characterization  3.3. Syntheses and Characterization  3.3. Syntheses and Characterization 3.3.1. Syntheses and Characterization of 2,6‐Di(pyrid‐2‐yl)‐pyridine‐3,5‐dicarboxylic acid dimethyl  3.3.1. Syntheses and Characterization of 2,6‐Di(pyrid‐2‐yl)‐pyridine‐3,5‐dicarboxylic acid dimethyl  3.3.1. Syntheses and Characterization of 2,6-Di(pyrid-2-yl)-pyridine-3,5-dicarboxylic acid dimethyl ester (IL1)  ester (IL1)  ester (IL1)

   30 ,50 -Dimethyl-[2,20 ,60 ,200 ]terpyridine (738 mg, 2.83 mmol) and KMnO444 (2.23 g, 14.13 mmol) were  (2.23 g, 14.13 mmol) were 3′,5′‐Dimethyl‐[2,2′,6′,2′′]terpyridine (738 mg, 2.83 mmol) and KMnO  (2.23 g, 14.13 mmol) were  3′,5′‐Dimethyl‐[2,2′,6′,2′′]terpyridine (738 mg, 2.83 mmol) and KMnO suspended in 200 mL of water and heated to reflux for 24 h. Upon heating, the purple colour of suspended in 200 mL of water and heated to reflux for 24 h. Upon heating, the purple colour of the  suspended in 200 mL of water and heated to reflux for 24 h. Upon heating, the purple colour of the  the suspension slowly faded. Subsequent filtration and washing with 40 mL of water and 80 of suspension slowly faded. Subsequent filtration and washing with 40 mL of water and 80 of MeOH  suspension slowly faded. Subsequent filtration and washing with 40 mL of water and 80 of MeOH  MeOH followed by evaporation of the solvents gave the crude oxidized product. The solid was followed by evaporation of the solvents gave the crude oxidized product. The solid was dissolved in  followed by evaporation of the solvents gave the crude oxidized product. The solid was dissolved in  dissolved insulfuric  methanolic acid (200 mL,and  4% heated  vol.) and reflux for 24 h.cooling  After cooling to methanolic  sulfuric  acid sulfuric (200 mL,  mL,  4%  vol.)  and  heated  to heated reflux to for  24 h.  h.  After  cooling  to room  room  methanolic  acid  (200  4%  vol.)  to  reflux  for  24  After  to  room temperature, aqueous NaHCO was added until the pH of the solution reached 7. Subsequent 3 added  temperature,  aqueous  aqueous  NaHCO NaHCO33   was  was  added  until  until  the  the  pH  pH  of  of  the  the  solution  solution  reached  reached  7.  7.  Subsequent  Subsequent  temperature,  evaporation of the solvents and extraction of the residue with 140 mL of CHCl /water, separation and 3 evaporation of the solvents and extraction of the residue with 140 mL of CHCl 3 /water, separation and  evaporation of the solvents and extraction of the residue with 140 mL of CHCl3/water, separation and  drying of the organic phase over Na SO and solvent removal gave the crude product. Purification on 2 4 drying of the organic phase over Na22SO SO44 and solvent removal gave the crude product. Purification   and solvent removal gave the crude product. Purification  drying of the organic phase over Na silica gel (ethyl acetate:petroleum benzene 3:2) yielded a colorless powder. Yield 310 mg, 31%. on silica gel (ethyl acetate:petroleum benzene 3:2) yielded a colorless powder. Yield 310 mg, 31%.  on silica gel (ethyl acetate:petroleum benzene 3:2) yielded a colorless powder. Yield 310 mg, 31%.  1 H NMR (400 MHz, CDCl ): δ (ppm) = 8.63 (ddd, 3 3J = 4.8 Hz, 444JJJHH = 1.8 Hz, 555JJJHH = 0.9 Hz, 2H, 11H NMR (400 MHz, CDCl H NMR (400 MHz, CDCl333): δ (ppm) = 8.63 (ddd,  ): δ (ppm) = 8.63 (ddd, 3JJHH HH = 4.8 Hz,   = 4.8 Hz,  HH = 1.8 Hz,   = 1.8 Hz,  HH  = 0.9 Hz, 2H,  HH HH HH  = 0.9 Hz, 2H,  3 4 5 3J H9), 8.29 (ddd, J = 7.9 Hz, J = 1.0, J = 0.9 Hz, H6), 8.23 (s, 1H, H3), 7.85 (td, 3 4 5 3 HH HH HH HH = 7.844JHz, 3JJHH H9), 8.29 (ddd, 3JJHH HH  = 7.9 Hz, 4JJHH HH  = 1.0, 5JJHH HH = 0.9 Hz, H6), 8.23 (s, 1H, H3), 7.85 (td,   = 0.9 Hz, H6), 8.23 (s, 1H, H3), 7.85 (td,  HH = 7.8 Hz,   = 7.8 Hz,  JHH HH   H9), 8.29 (ddd,   = 7.9 Hz,   = 1.0,  4J 3 3 4 = 1.8 Hz, 2H, H7), 7.34 J = 7.8 Hz, J = 4.8 Hz, J = 1.0. Hz, 2H, H8), 3.82 3J(ddd, 3JHH 4JHH HH HH HH HH 3 3 4 = 1.8 Hz, 2H, H7), 7.34 (ddd,  HH  = 7.8 Hz,   = 4.8 Hz,   = 1.0. Hz, 2H, H8), 3.82 (s, 6H, H10).  = 1.8 Hz, 2H, H7), 7.34 (ddd,  JHH = 7.8 Hz,  JHH = 4.8 Hz,  JHH = 1.0. Hz, 2H, H8), 3.82 (s, 6H, H10).  (s, 6H, H10). 13C{11H} NMR (100 MHz, CDCl ): δ (ppm) = 168.8 (s, C1), 155.6 (s, C4), 155.3 (s, C5), 148.7 (s, C9),  13 C{ H} NMR (100 MHz, CDCl33): δ (ppm) = 168.8 (s, C1), 155.6 (s, C4), 155.3 (s, C5), 148.7 (s, C9),  13 C{1 H} NMR (100 MHz, CDCl ): δ (ppm) = 168.8 (s, C1), 155.6 (s, C4), 155.3 (s, C5), 148.7 (s, C9), 3 138.4 (s, C3), 136.9 (s, C7), 127.4 (s, C2), 124.2 (s, C8), 123.2 (s, C6), 52.6 (s, C10).  138.4 (s, C3), 136.9 (s, C7), 127.4 (s, C2), 124.2 (s, C8), 123.2 (s, C6), 52.6 (s, C10).  138.4Elemental analysis (CHN):(C (s, C3), 136.9 (s, C7), 127.4 (s, C2), (s, C8), 123.2 (s, C6), 52.6 (s, C10). H1515124.2 N33O O44) Calc. (found): C, 65.32 (65.19); H, 4.33 (4.53); N, 12.03  ) Calc. (found): C, 65.32 (65.19); H, 4.33 (4.53); N, 12.03  Elemental analysis (CHN):(C1919H N Elemental analysis (CHN):(C H N O ) 19 15 3 4 Calc. (found): C, 65.32 (65.19); H, 4.33 (4.53); N, (12.03).  (12.03).  12.03 (12.03).

3.3.2. Syntheses and Characterization of 3,5‐Bis(pyrid‐2‐yl)‐phenylethynyl isophthalic acid dimethyl  3.3.2. Syntheses and Characterization of 3,5‐Bis(pyrid‐2‐yl)‐phenylethynyl isophthalic acid dimethyl  3.3.2. Syntheses and Characterization of 3,5-Bis(pyrid-2-yl)-phenylethynyl isophthalic acid dimethyl ester (IL2)  ester (IL2)  ester (IL2)

   1,3-Dimethyl-5-ethynyl-isophthalic acid (2.07 mmol), 1-bromo-3,5-bis(2-pyridinyl)-benzene (653, 1,3‐Dimethyl‐5‐ethynyl‐isophthalic  acid  (2.07  mmol),  1‐bromo‐3,5‐bis(2‐pyridinyl)‐benzene  1,3‐Dimethyl‐5‐ethynyl‐isophthalic  acid  (2.07  mmol),  1‐bromo‐3,5‐bis(2‐pyridinyl)‐benzene  2.10 mmol), Pd(PPh ) (97 mg, 4 mol.%) and CuI (16 mg, 4 mol.%) were dissolved in 90 mL of 3 4 3)4 (97 mg, 4 mol.%) and CuI (16 mg, 4 mol.%) were dissolved in 90 mL of  (653, 2.10 mmol), Pd(PPh (653, 2.10 mmol), Pd(PPh 3)4 (97 mg, 4 mol.%) and CuI (16 mg, 4 mol.%) were dissolved in 90 mL of  THF/NEt 3 1:1. The mixture was stirred and heated to reflux for 3 days. The solvents were removed THF/NEt33 1:1. The mixture was stirred and heated to reflux for 3 days. The solvents were removed in   1:1. The mixture was stirred and heated to reflux for 3 days. The solvents were removed in  THF/NEt in vacuum. The residue was suspended in 20 mL DCM and filtered through silica gel. The solvent vacuum. The residue was suspended in 20 mL DCM and filtered through silica gel. The solvent was  vacuum. The residue was suspended in 20 mL DCM and filtered through silica gel. The solvent was  was removed the crude product was further purifiedvia  viacolumn  columnchromatography  chromatographyon  on silica  silica gel removed  and  and and the  crude  crude  product  was  further  purified  gel  removed  the  product  was  further  purified  via  column  chromatography  on  silica  gel  (petroleum benzene:ethyl acetate 3:1). A beige powder was obtained. Yield 263 mg, 28%. (petroleum benzene:ethyl acetate 3:1). A beige powder was obtained. Yield 263 mg, 28%.  (petroleum benzene:ethyl acetate 3:1). A beige powder was obtained. Yield 263 mg, 28%. 

Inorganics 2018, 6, x FOR PEER REVIEW    Inorganics 2018, 6, 73 Inorganics 2018, 6, x FOR PEER REVIEW   

15 of 21  15 of 21 15 of 21 

H NMR (400 MHz, CDCl3): δ(ppm) = 8.75 (ddd,  3JHH = 4.8 Hz,  4JHH = 1.9 Hz,  5JHH = 0.9 Hz, 2H,  3JHH = 4.8 Hz,  4JHH = 1.9 Hz,  5JHH = 0.9 Hz, 2H,  H NMR (400 MHz, CDCl 3): δ(ppm) = 8.75 (ddd,  4 HH = 1.7 Hz, 1H, H11), 8.65 (t,  4JHH = 1.6 Hz, 1H, H4), 8.40 (d,  4JHH = 1.6 Hz, 2H, H, H3),  H16), 8.68 (t,  3J 4 1 H NMRJ(400 MHz, CDCl ): δ(ppm) = 8.75 (ddd, 1.9 Hz, 5 JHH = 0.9 Hz, 3 HH = 4.8 Hz, J HH4J= 4JHH = 1.7 Hz, 1H, H11), 8.65 (t,  4JHH = 1.6 Hz, 1H, H4), 8.40 (d,  H16), 8.68 (t,  HH = 1.6 Hz, 2H, H, H3),  4 3 4 3 8.28 (d,  JHH = 1.7 Hz, 2H, H9), 7.89 (dt,  JHH = 7.9 Hz, 4 JHH = 1.1 Hz, 2H, H13), 7.81 (ddd,  4 4 J JHH = 7.9 Hz,  2H, H16), 8.68 (t, J = 1.7 Hz, 1H, H11), 8.65 (t, J = 1.6 Hz, 1H, H4), 8.40 (d, = 1.6 Hz, HH HH 4 3 4 3HH JHH = 1.7 Hz, 2H, H9), 7.89 (dt,  JHH = 7.9 Hz,  JHH = 1.1 Hz, 2H, H13), 7.81 (ddd,  JHH = 7.9 Hz,  38.28 (d,  4JHH = 1.9 Hz, 2H, H14), 7.30 (ddd,  3JHH = 7.7 Hz, 3JHH = 4.8 Hz, 4JHH = 0.9 Hz, 2H, H15), 3.98  JHH = 7.7 Hz,  4 3 4 2H, H, H3), 8.28 (d, JHH = 1.7 Hz, 2H, H9), 7.89 JHH 3=JHH 7.9 Hz, JHH = = 0.9 Hz, 2H, H15), 3.98  1.1 Hz, 2H, H13), 7.81 3JHH = 7.7 Hz,  4JHH = 1.9 Hz, 2H, H14), 7.30 (ddd,  3JHH(dt, 4JHH  = 7.7 Hz,  = 4.8 Hz,  (s, 6H, COOCH 3).  3J 3J 4J 3J (ddd, = 7.9 Hz, = 7.7 Hz, = 1.9 Hz, 2H, H14), 7.30 (ddd, = 7.7 Hz,3 JHH = 4.8 Hz, HH HH HH HH (s, 6H, COOCH ).  3 13C{1H} NMR (100 MHz, CDCl ): δ(ppm) = 166.1 (s,C1), 156.8 (s, C12), 150.3 (s, C16), 140.8 (s,  4J 3 = 0.9 Hz, 2H, H15), 3.98 (s, 6H, COOCH HH 13 3 ). C{1H} NMR (100 MHz, CDCl ): δ(ppm) = 166.1 (s,C1), 156.8 (s, C12), 150.3 (s, C16), 140.8 (s,  C10), 137.4 (s, C14), 137.1 (s, C3), 131.6 (s, C2), 131.1 (s, C9),130.7 (s, C4), 126.4 (s, C11), 124.9 (s, C8),  13 C{1 H} NMR (100 MHz, CDCl3 ): δ(ppm) = 166.1 (s,C1), 156.8 (s, C12), 150.3 (s, C16), 140.8 (s, 3 C10), 137.4 (s, C14), 137.1 (s, C3), 131.6 (s, C2), 131.1 (s, C9),130.7 (s, C4), 126.4 (s, C11), 124.9 (s, C8),  124.1 (s, C5), 123.2 (s, C15), 121.2 (s, C13),  3).  C10), 137.4 (s, C14), 137.1 (s, C3), 131.6 (s, 91.6 (s, C7), 88.3 (s, C6), 53.4 (s, CH C2), 131.1 (s, C9),130.7 (s, C4), 126.4 (s, C11), 124.9 (s, C8), 124.1 (s, C5), 123.2 (s, C15), 121.2 (s, C13),  91.6 (s, C7), 88.3 (s, C6), 53.4 (s, CH3).  124.1 (s, C5), 123.2 (s, C15), 121.2 (s, C13), 91.6 (s, C7), 88.3 (s, C6), 53.4 (s, CH3 ). 3.3.3. Syntheses and Characterization of 1,3‐Dimethyl‐5‐(ethynyl‐4‐pyridyl)isophthalate(IL3)  3.3.3. Syntheses and Characterization of 1,3‐Dimethyl‐5‐(ethynyl‐4‐pyridyl)isophthalate(IL3)  3.3.3. Syntheses and Characterization of 1,3-Dimethyl-5-(ethynyl-4-pyridyl)isophthalate(IL3) 1

1

    4‐Bromopyridine  hydrochloride  (450  mg,  2.31  mmol),  1,3‐dimethyl‐5‐ethynylisophthalic  acid  4-Bromopyridine (450 4‐Bromopyridine  hydrochloride hydrochloride  (450 mg, mg, 2.31 2.31 mmol), mmol), 1,3-dimethyl-5-ethynylisophthalic 1,3‐dimethyl‐5‐ethynylisophthalic acid acid  (480 mg, 2.2 mmol), Pd(PPh 3)4 (100 mg, 4 mol.%) and CuI (17 mg, 4 mol.%) were dissolved in 60 mL  (480 mg, 2.2 mmol), Pd(PPh ) (100 mg, 4 mol.%) and CuI (17 mg, 4 mol.%) were dissolved in 60 mL (480 mg, 2.2 mmol), Pd(PPh 3 4  (100 mg, 4 mol.%) and CuI (17 mg, 4 mol.%) were dissolved in 60 mL  3 to  80  °C  for  3  days.  Upon  heating,  the  yellow  solution  turned  light  of  NEt3:THF  (1:1)  and  heated  ◦ of :THF (1:1) C for of NEt NEt33:THF  (1:1)  and and  heated heated  to to 80 80  °C  for 33 days. days.  Upon Upon  heating, heating,  the the yellow yellow solution solution turned turned light light  brown. Subsequently, the solvents were removed in vacuum and the residue was suspended in DCM  brown. Subsequently, the solvents were removed in vacuum and the residue was suspended in DCM brown. Subsequently, the solvents were removed in vacuum and the residue was suspended in DCM  ® and filtered over Celite . Chromatography on silica (CH2Cl2:ethyl acetate, 2:1) followed by solvent  and filtered over Celite®®.. Chromatography on silica (CH Chromatography on silica (CH22Cl2:ethyl acetate, 2:1) followed by solvent  :ethyl acetate, 2:1) followed by solvent and filtered over Celite removal yielded IL3 as a colorless solid. Yield: 545 mg, 80%.  removal yielded IL3 as a colorless solid. Yield: 545 mg, 80%. removal yielded IL3 as a colorless solid. Yield: 545 mg, 80%.  1H NMR (400 MHz, CD 2Cl2): δ(ppm) = 8.63 (t,  4JHH = 1.6 Hz, 1H, H4), 8.61 (d, 2H,  3JHH = 4.6 Hz,  11 H NMR (400 MHz, CD Cl ): δ(ppm) = 8.63 (t, 44J = 1.6 Hz, 1H, H4), 8.61 (d, 2H, 33JJHH = 4.6 Hz, H NMR (400 MHz, CD 2Cl 2): δ(ppm) = 8.63 (t,  JHH HH = 1.6 Hz, 1H, H4), 8.61 (d, 2H,  HH = 4.6 Hz,  2 2 3 H10), 8.38 (s, 2H, H3), 7.42 (d,  JHH = 4.6 Hz, 2H, H9), 3.95 (s, 6H, H11).  3 3 H10), 8.38 (s, 2H, H3), 7.42 (d, J = 4.6 Hz, 2H, H9), 3.95 (s, 6H, H11). HH = 4.6 Hz, 2H, H9), 3.95 (s, 6H, H11).  H10), 8.38 (s, 2H, H3), 7.42 (d,  13C{1H} NMR (100 MHz, CD HH 2Cl2): δ(ppm) = 165.9 (s, C1), 150.5 (s, C10), 137.1 (s, C3), 131.2 (s, C2),  13 13C{ 11H} NMR (100 MHz, CD C{ H} NMR (100 MHz, CD Cl22): δ(ppm) = 165.9 (s, C1), 150.5 (s, C10), 137.1 (s, C3), 131.2 (s, C2),  ): δ(ppm) = 165.9 (s, C1), 150.5 (s, C10), 137.1 (s, C3), 131.2 (s, C2), 22Cl 131.9 (s, C4), 130.0 (s, C8), 126.0 (s, C9), 123.8 (s, C5), 91.9 (s, C6), 88.7 (s, C7), 53.1(s, C11).  131.9 (s, C4), 130.0 (s, C8), 126.0 (s, C9), (s, C5), 91.9 (s, C6), 88.7 (s, C7), 53.1(s, C11). 131.9 (s, C4), 130.0 (s, C8), 126.0 (s, C9), 123.8 (s, C5), 91.9 (s, C6), 88.7 (s, C7), 53.1(s, C11).  Elemental  analysis  (CHN):  (C17H123.8 13NO4)  Calc.  (found):  C,  69.15  (69.06);  H,  4.44  (4.95);  N,  4.74  Elemental H1313NO NO4) 4 )Calc.  Calc.(found):  (found): C, 69.15 (69.06); H, 4.44 (4.95); N, Elemental  analysis analysis  (CHN): (CHN):  (C17 C,  69.15  (69.06);  H,  4.44  (4.95);  N,  4.74  17H (4.55).  4.74 (4.55). (4.55).  3.3.4. Syntheses and Characterization of 5‐Acetylthioisophthalic acid (IL4)  3.3.4. Syntheses and Characterization of 5-Acetylthioisophthalic acid (IL4) 3.3.4. Syntheses and Characterization of 5‐Acetylthioisophthalic acid (IL4) 

   

5-Mercaptoisophthalic acid 150 mg (1 eq., 0.76 mmol) was dissolved in CH22Cl and pyridine (2 5‐Mercaptoisophthalic acid 150 mg (1 eq., 0.76 mmol) was dissolved in CH Cl2 and pyridine (2  5‐Mercaptoisophthalic acid 150 mg (1 eq., 0.76 mmol) was dissolved in CH Cl2 and pyridine (2  eq., 0.12 mL, 1.51 mmol) were cooled to 0 ◦ C. To the mixture 0.13 mL of Ac22O (1.7 eq., 1.3 mmol) were  O (1.7 2eq., 1.3 mmol) were eq., 0.12 mL, 1.51 mmol) were cooled to 0 °C. To the mixture 0.13 mL of Ac eq., 0.12 mL, 1.51 mmol) were cooled to 0 °C. To the mixture 0.13 mL of Ac2O (1.7 eq., 1.3 mmol) were 

Inorganics 2018, 6, 73 Inorganics 2018, 6, x FOR PEER REVIEW   

16 of 21 16 of 21 

added and the mixture was stirred for 12h at room temperature. Then 50 mL of ethyl acetate was  added and the mixture was stirred for 12h at room temperature. Then 50 mL of ethyl acetate was added and the organic layer was washed 3 times with 1M HCl and water each. Finally, the organic  added and the organic layer was washed 3 times with 1M HCl and water each. Finally, the organic layer  was  dried  over  MgSO4  and  the  solvents  were  removed  in  vacuum.  A  beige  powder  was  layer was dried over MgSO4 and the solvents were removed in vacuum. A beige powder was obtained. obtained. Yield 155 mg, 84%.  Yield1155 mg, 84%. H NMR (400 MHz, dmso‐d6): δ(ppm) = 13.5 (s(br), 2H, H8), 8.49 (t, 4JHH = 1.6 Hz, 1H, H4), 8.12  1 H NMR (400 MHz, dmso-d6): δ(ppm) = 13.5 (s(br), 2H, H8), 8.49 (t, 4 J HH = 1.6 Hz, 1H, H4), 8.12 4 (d, 4 JHH = 1.6, 2H, H3), 2.49 (s, 3H, H7).  (d, JHH 1.6, 2H, H3), 2.49 (s, 3H, H7). 13C{= 1H} NMR (100 MHz, dmso‐d6): δ(ppm) = 192.7 (s, C6), 165.8 (s, C1), 138.6 (s, C3), 132.38 (s,  13 C{1 H} NMR (100 MHz, dmso-d6): δ(ppm) = 192.7 (s, C6), 165.8 (s, C1), 138.6 (s, C3), 132.38 (s, C4), 130.6 (s, C2), 129.3 (s, C5), 30.4 (s, C7).  C4), 130.6 (s, C2), 129.3 (s, C5), 30.4 (s, C7). Elemental  analysis  (CHS):  (C10H8O5S)  Calc.  (found):  C,  50.00  (50.02);  H,  3.36  (3.62);  S,  13.35  Elemental analysis (CHS): (C10 H8 O5 S) Calc. (found): C, 50.00 (50.02); H, 3.36 (3.62); S, (13.48).  13.35 (13.48). 3.3.5. Syntheses and Characterization of Macrocycle 1  3.3.5. Syntheses and Characterization of Macrocycle 1

  0 ,50 -Dimethylcarboxy-2,20 ,60 ,200 -terpyridine (30 mg, 0.086 mmol) was dissolved in 40 mL of 33′,5′‐Dimethylcarboxy‐2,2′,6′,2′′‐terpyridine  (30  mg,  0.086  mmol)  was  dissolved  in  40  mL  of  THF/MeOH and 3.45 mL of 0.05 M NaOH and heated to reflux until TLC (ethyl acetate/petroleum THF/MeOH and 3.45 mL of 0.05 M NaOH and heated to reflux until TLC (ethyl acetate/petroleum  benzene) indicated complete The solvents were  were removed  removed in and the residue benzene) indicated  complete saponification. saponification.  The solvents  in  vacuo vacuo and  the residue  i i was dissolved in 30 mL of MeOH. A purple solution of {Ru(CO)Cl(P PrPr } was dissolved in 30 mL of MeOH. A purple solution of {Ru(CO)Cl(P 2{μ‐1,4‐(CH=CH) ‐C66H H44}  3 )23)}22}{µ-1,4-(CH=CH) 22-C (90 mg, 0.082 mmol) in 40 mL of CH22Cl22 was added slowly. A yellow‐orange suspension was obtained  was added slowly. A yellow-orange suspension was obtained (90 mg, 0.082 mmol) in 40 mL of CH and room temperature for 30 The solvents were removed and the residue dissolved and stirred stirred atat  room  temperature  for min. 30  min.  The  solvents  were  removed  and  the was residue  was  ® ® in CH2 Cl2 and filtered through Celite . The solvent was stripped of the resulting orange solution dissolved in CH 2Cl2 and filtered through Celite . The solvent was stripped of the resulting orange  and the obtained yellow solid was washed with MeOH, Et2 O and pentane and then dried in vacuum. solution and the obtained yellow solid was washed with MeOH, Et 2O and pentane and then dried in  Yield 96 mg, 87%. vacuum. Yield 96 mg, 87%.  11H NMR (600 MHz, C 3 J  = 15.3 Hz,  4JHP4 = 1.7 Hz, 4H,  H NMR (600 MHz, C66D D66): δ(ppm) = 9.80 (s, 2H, H6), 8.96 (dt,  ): δ(ppm) = 9.80 (s, 2H, H6), 8.96 (dt,3JHH JHP = 1.7 Hz, HH = 15.3 Hz, 3 4 5 3JHH = 8.4 Hz,  5JHHHz, 3JHH = 7.8  4H, H1), 8.36 (ddd, JHH = 8.44JHH Hz, JHH = 1.8 JHH = 1.0 Hz, 4H, H13), 7.44 (s, 8H, H4), 7.34 (dvt,  = 1.8 Hz,   = 1.0 Hz, 4H, H13), 7.44 (s, 8H, H4), 7.34 (dvt,  H1), 8.36 (ddd,  3Hz,  4 3 4 3 3 JHH J=HH7.8 Hz, JHH = 1.0 Hz, H10), 7.17 (overlapped by solvent signal, H11), 6.73 JHH =JHH 7.7 Hz,  = 1.0 Hz, H10), 7.17 (overlapped by solvent signal, H11), 6.73 (ddd,  JHH(ddd,  = 7.7 Hz,   = 4.9  3Hz,  3JHH6.67 4JHP JHH3J=HH4.9 Hz, 3 JHH = 1.2 Hz, H12), (dt, 3 JHH = = 2.1 Hz, H2), 2.38–2.28 (m, 24H, H15), 1.32 (vq,  15.3 Hz, 4 JHP = 2.1 Hz, H2), 2.38–2.28 (m, 24H,  = 1.2 Hz, H12), 6.67 (dt,   = 15.3 Hz,  3JHH/HP1.32 3JHH/HP H15), (vq, 3 JHH/HP = 6.7 Hz, 72H, H16), 1.20 (vq, 3 JHH/HP = 6.7 Hz, 72H, H160 ).  = 6.7 Hz, 72H, H16), 1.20 (vq,   = 6.7 Hz, 72H, H16′).  13 1 13C{ 1 C{ H} NMR (150 MHz, C H} NMR (150 MHz, C66D D66): δ(ppm) = 209.8 (s, C14), 174.5 (s, C5), 160.7 (s, C7), 160.3 (s, C8),  ): δ(ppm) = 209.8 (s, C14), 174.5 (s, C5), 160.7 (s, C7), 160.3 (s, C8), 156.5 (t, C1), 148.1 (s, C13), 142 (s, C6), 137.2 (s, C3), 136.0 (s, C2), 135.3 (s, C9), 126.8 (s, C11), 124.6 (s, 156.5 (t, C1), 148.1 (s, C13), 142 (s, C6), 137.2 (s, C3), 136.0 (s, C2), 135.3 (s, C9), 126.8 (s, C11), 124.6 (s,  C4), 123.7 (s, C10), 122.3 (s, C11), 25.1 (vt, 33JCP =1J1CP JCP = 9.4 Hz, C15), 20.2 (s, C16‘), 19.8 (s, C16). CP =   = 9.4 Hz, C15), 20.2 (s, C16‘), 19.8 (s, C16).  C4), 123.7 (s, C10), 122.3 (s, C11), 25.1 (vt,  31 1 31P{ 1 6): δ(ppm) = 38.53.  P{ H} NMR (162 MHz,C H} NMR (162 MHz, C6D 6D 6 ): δ(ppm) = 38.53. Elemental analysis (CHN): (C 130H NN6O 12P Ru 4) Calc. (found): C, 57.98 (56.57); H, 7.56 (7.37); N,  Elemental analysis (CHN): (C130 H202 202 6O 128P 8 Ru 4 ) Calc. (found): C, 57.98 (56.57); H, 7.56 (7.37); 3.12 (3.08).  N, 3.12 (3.08).  

Inorganics 2018, 6, x FOR PEER REVIEW    Inorganics 2018, 6, 73 Inorganics 2018, 6, x FOR PEER REVIEW   

17 of 21  17 of 21 17 of 21 

3.3.6. Syntheses and Characterization of Macrocycle 2  3.3.6. Syntheses and Characterization of Macrocycle 2  3.3.6. Syntheses and Characterization of Macrocycle 2

    1,3‐Dimethyl‐(5‐ethynylphenyl‐3,5:2,2′‐bispyridyl)‐isophthalic acid (35 mg, 0.063 mmol), 80 mL  0 -bispyridyl)-isophthalic acid (35 mg, 0.063 mmol), 80 mL 1,3-Dimethyl-(5-ethynylphenyl-3,5:2,2 1,3‐Dimethyl‐(5‐ethynylphenyl‐3,5:2,2′‐bispyridyl)‐isophthalic acid (35 mg, 0.063 mmol), 80 mL  of  MeOH  and  2.52  mL  of  0.05M  NaOH  were  heated  to  reflux  for  24  h.  After  cooling  to  room  of of  MeOH MeOH  and and  2.52 2.52  mL mL of of 0.05M 0.05M NaOH NaOH were were heated heated to to reflux reflux for for 24 24 h.h.  After After  cooling cooling  to to  room room  temperature, the solvent was removed and the residue was dissolved in 25 mL of MeOH. A solution  temperature, thei solvent was removed and the residue was dissolved in 25 mL of MeOH. A solution temperature, the solvent was removed and the residue was dissolved in 25 mL of MeOH. A solution  of {Ru(CO)Cl(Pi Pr3)2}2{μ‐1,4‐(CH=CH)2–C6H4} (90  mg, 0.082  mmol)  in 30  mL  of CH2Cl2  was  slowly  of {Ru(CO)Cl(P iPr33)22}}22{μ‐1,4‐(CH=CH) {µ-1,4-(CH=CH)2–C mg, 0.082mmol)  mmol)in 30  in 30 mL  mL of CH22Cl22  was  was slowly of {Ru(CO)Cl(P 6H 4} (90  of CH slowly  2 –C 6H 4 } (90mg, 0.082  added to give a yellow solution. The reaction mixture was stirred for 3 days at r.t. Then the solvent  added to give a yellow solution. The reaction mixture was stirred for 3 days at r.t. Then the solvent added to give a yellow solution. The reaction mixture was stirred for 3 days at r.t. Then the solvent  ®.  was removed in vacuo and the yellow residue was dissolved in CH2Cl2 and filtered through Celite® was removed in vacuo and the yellow residue was dissolved in CH22Cl and filtered through Celite ®. . was removed in vacuo and the yellow residue was dissolved in CH Cl22 and filtered through Celite Evaporation of the solvent and washing the residue with MeOH, Et2O and n‐pentane and drying in  Evaporation of the solvent and washing the residue with MeOH, Et22O and n-pentane and drying in Evaporation of the solvent and washing the residue with MeOH, Et O and n‐pentane and drying in  vacuum afforded a yellow powder. Yield: 42 mg, 46%.  vacuum afforded a yellow powder. Yield: 42 mg, 46%. vacuum afforded a yellow powder. Yield: 42 mg, 46%.  1H NMR (600 MHz, C6D6): δ(ppm) = 9.28 (s, 2H, H6), 9.24 (t, 4JHH = 1.7 Hz, 2H, H15), 9.07 (d, 3JHH  11H NMR (600 MHz, C 4 J = 1.7 Hz, 2H, H15), 9.07 (d,  4JHH (s, 2H, H6), 9.24 (t, Hz, 2H, H15), 9.073J(d, H NMR (600 MHz, C66DD6): δ(ppm) = 9.28 (s, 2H, H6), 9.24 (t,  HH  6 ): δ(ppm) = 39.28 HH =4J1.7 JHH = 4.7 Hz, 4H, H17), 8.26 (d,  HH = 1.7 Hz, H13), 7.53 (s,  = 15.2 Hz, 4H, H1), 8.90 (s, 4H, H8), 8.58 (d,  3J 3 4J 3 4 = 15.2 Hz, 4H, H1), 8.90 (s, 4H, H8), 8.58 (d, J = 4.7 Hz, 4H, H17), 8.26 (d, = 1.7 Hz, H13), J HH  = 4.7 Hz, 4H, H17), 8.26 (d,  J HH  = 1.7 Hz, H13), 7.53 (s,  = 15.2 Hz, 4H, H1), 8.90 (s, 4H, H8), 8.58 (d,  HH HH HH 3JHH = 7.7 Hz,  3JHH = 7.7 Hz,  4JHH = 1.9 Hz, 4H, H19),  8H, H4), 7.22 (d, 3JHH = 7.7 Hz, H4, H20), 7.08 (td,  3J 3J 3JHH(d, 3JHH(td, 3 HH = 7.7 Hz,  4JHH 7.53 (s, 8H, H4), 7.22 = 7.7 Hz, H4, H20), 7.08 Hz, 3 JHH = 7.7 = 1.9 Hz, 4H, H19),  Hz, 4 JHH = 1.9 Hz, 8H, H4), 7.22 (d,   = 7.7 Hz, H4, H20), 7.08 (td,   = 7.7 Hz,  HH HH = J7.7 3 4 6.74 (td,  JHH = 15.3 Hz,  J HP = 2.1 Hz, 4H, H2), 6.67 (dd, 3JHH = 7.4 Hz, 3JHH = 4.7 Hz, 4H, H18), 2.39–2.26  3JHH6.67 4H, H19),3J6.74 (td, 3 JHH4J=HP15.3 Hz, 4 JHP = 2.1 Hz, 4H, H2), (dd, 33JJHH = 7.4 Hz, 3 JHH = 4.7 Hz, 4H, 6.74 (td,  HH = 15.3 Hz,   = 2.1 Hz, 4H, H2), 6.67 (dd,   = 7.4 Hz,  HH = 4.7 Hz, 4H, H18), 2.39–2.26  (m, H24, H22), 1.35–1.21 (m, H144, H23/H23′).  0 H18), (m, H24, H22), 1.35–1.21 (m, H144, H23/H23 ). (m, H24, H22), 1.35–1.21 (m, H144, H23/H23′).  132.39–2.26 C{11H}  NMR  (150  MHz,  C6D6):  δ(ppm)  =  209.8  (t,  33JCP  =  15  Hz,  C21),  175.4  (s,  C5),  156.3  (m,  13 13C{ (150 MHz, D66):  ): δ(ppm)  δ(ppm) =  = 209.8  209.8 (t,  (t, 3JJCP 15Hz,  Hz,C21),  C21), 175.4  175.4 (s,  (s, C5),  C5), 156.3  156.3 (m,  (m, C{1H}  H} NMR  NMR (150  MHz,  C66D   = =15  CP C1/C16), 149.9 (s, C17), 140.4 (s, C14), 137.3 (s, C3), 136.4 (s, C19), 135.4 (s, C2), 135.2 (s, C9), 135.0 (s,  C1/C16), 149.9 (s, C17), 140.4 (s, C14), 137.3 (s, C3), 136.4 (s, C19), 135.4 (s, C2), 135.2 (s, C9), 135.0 (s, C7), C1/C16), 149.9 (s, C17), 140.4 (s, C14), 137.3 (s, C3), 136.4 (s, C19), 135.4 (s, C2), 135.2 (s, C9), 135.0 (s,  C7), 131.0 (s, C13), 129.8 (s, C6), 126.4 (s, C15), 137.3 (s, C3), 123.9 (s, C12), 122.4 (s, C18), 120.4 (s, C20),  131.0 (s, C13), 129.8 (s, C6), 126.4 (s,3 C15),1 137.3 (s, C3), 123.9 (s, C12), 122.4 (s, C18), 120.4 (s, C20), 91.6 C7), 131.0 (s, C13), 129.8 (s, C6), 126.4 (s, C15), 137.3 (s, C3), 123.9 (s, C12), 122.4 (s, C18), 120.4 (s, C20),  91.6 (s, C11), 88.9 (s, C10), 25.1 (vt,  JCP  =  JCP = 10.0 Hz, C22), 19.9 (s, C23′), 20.1 (s, C23).  1 J = 1J= 3JCP (s, C11), (s, C10), 25.1 (vt, 3 JCP = Hz, C22), 19.9 (s, C230 ), 20.1 (s, C23). 91.6 (s, C11), 88.9 (s, C10), 25.1 (vt,   = 10.0 Hz, C22), 19.9 (s, C23′), 20.1 (s, C23).  CP CP10.0 31P{188.9 H} NMR (162 MHz, C6D6): δ(ppm) = 38.12.  31 1 31P{ 1 P{ H} NMR (162 MHz, C H} NMR (162 MHz, C66DD6): δ(ppm) = 38.12.  ): δ(ppm) = 38.12. 6148 Elemental analysis (CHN): (C H212N4O12P8Ru4) Calc. (found): C, 61.48 (58.71); H, 7.39 (7.35); N,  Elemental analysis (CHN): (C 148H NN4O 12P Ru 4) Calc. (found): C, 61.48 (58.71); H, 7.39 (7.35); N,  H212 Elemental analysis (CHN): (C148 212 4O 128P 8 Ru 4 ) Calc. (found): C, 61.48 (58.71); H, 7.39 (7.35); 1.94 (1.80).  1.94 (1.80).  N, 1.94 (1.80). 3.3.7. Syntheses and Characterization of Macrocycle 3  3.3.7. Syntheses and Characterization of Macrocycle 3 3.3.7. Syntheses and Characterization of Macrocycle 3 

    1,3‐Phenyl‐dicarboxylmethylester‐5‐ethynyl‐4‐pyridine  (60  of  1,3-Phenyl-dicarboxylmethylester-5-ethynyl-4-pyridine (60 mg,  mg, 1.1  1.1 eq.,  eq., 0.20  0.20 mmol),  mmol), 8.2  8.2 mL  mL of 1,3‐Phenyl‐dicarboxylmethylester‐5‐ethynyl‐4‐pyridine  (60  mg,  1.1  eq.,  0.20  mmol),  8.2  mL  of  0.05 M NaOH (2.2 eq., 0.41 mmol) and 15 mL of THF were heated to reflux for 4 h. The solvents were  0.05 M NaOH (2.2 eq., 0.41 mmol) and 15 mL of THF were heated to reflux for 4 h. The solvents were 0.05 M NaOH (2.2 eq., 0.41 mmol) and 15 mL of THF were heated to reflux for 4 h. The solvents were  removed in vacuum and the remaining solid was dissolved in 120 mL of MeOH. To the colorless  removed in vacuum and the remaining solid was dissolved in 120 mL of MeOH. To the colorless removed in vacuum and the remaining solid was dissolved in 120 mL of MeOH. To the colorless  solution, a purple solution of {Ru(CO)Cl(PiPr3)2}2{μ‐1,4‐(CH=CH)2–C6H4} (203 mg, 0.18 mmol) in 120  solution, a purple solution of {Ru(CO)Cl(PiPr3)2}2{μ‐1,4‐(CH=CH)2–C6H4} (203 mg, 0.18 mmol) in 120 

Inorganics 2018, 6, 73

18 of 21

Inorganics 2018, 6, x FOR PEER REVIEW   

18 of 21 

solution, a purple solution of {Ru(CO)Cl(Pi Pr3 )2 }2 {µ-1,4-(CH=CH)2 –C6 H4 } (203 mg, 0.18 mmol) in 120 mL of CH2 Cl2 was added over 10 min. A yellow solution was obtained and stirred at room mL  of  CH2Cl2  was  added  over  10  min.  A  yellow  solution  was  obtained  and  stirred  at  room  temperature for 12 h. Subsequently, the solvents were removed in vacuum and the yellow crude temperature  for  12  h.  Subsequently,  the  solvents  were  removed  in  vacuum  and  the  yellow  crude  product was dissolved in CH2 Cl2 and filtered through Celite®® . The yellow filtrate was dried and product  was  dissolved  in  CH2Cl2  and  filtered  through  Celite .  The  yellow  filtrate  was  dried  and  washed with MeOH and n-hexane (3 × 10 mL). Drying in vacuum afforded macrocycle 3 as an orange washed with MeOH and n‐hexane (3 × 10 mL). Drying in vacuum afforded macrocycle 3 as an orange  solid. Yield: 169 mg, 71% solid. Yield: 169 mg, 71%  1 H NMR (600 MHz, C D ): δ(ppm) = 9.28 (t, 4 J 3 6 HH = 1.5 Hz, 2H, H6), 9.03 (dt, J HH = 15.3 Hz, 1H NMR (600 MHz, C66 D 6): δ(ppm) = 9.28 (t, 4JHH = 1.5 Hz, 2H, H6), 9.03 (dt, 3JHH = 15.3 Hz, 4JPH =  4J (d, 4 JHH = 1.5 Hz, 2H, H8), 8.36 (m, 4H, H14) 7.51 (s, 8H, 4H), 6.75 (m, 4H, PH = 1.7 Hz, 4H, H1), 8.78 4JHH = 1.5 Hz, 2H, H8), 8.36 (m, 4H, H14) 7.51 (s, 8H, 4H), 6.75 (m, 4H, H13),  1.7 Hz, 4H, H1), 8.78 (d,  3 H13), 6.72 (dt, JHH = 15.3 Hz, 4 JPH = 2.1 Hz, 4H, H2), 2.37–2.23 (m, 24H, H16), 1.32–1.21 (m, 144H, 4JPH = 2.1 Hz, 4H, H2), 2.37–2.23 (m, 24H, H16), 1.32–1.21 (m, 144H, H17/H17′).  6.72 (dt, 30 JHH = 15.3 Hz,  H17/H17 ). 13C{1H} NMR (150 MHz, C6D6): δ(ppm) = 209.7 (t,  2JCP = 13 Hz, C15), 175.0 (s, C5), 156.1 (t,  2JCP =  13 C{1 H} NMR (150 MHz, C D ): δ(ppm) = 209.7 (t, 2 J 6 6 CP = 13 Hz, C15), 175.0 (s, C5), 156.1 (t, 11 Hz, C1), 150.2 (s, C14), 137.3 (s, C3), 135.6 (s, C2), 135.3 (s, C9), 135.0 (s, C8), 130.5 (s, C7) 130.3 (s,C6),  2J = 11 Hz, C1), 150.2 (s, C14), 137.3 (s, C3), 135.6 (s, C2), 135.3 (s, C9), 135.0 (s, C8), 130.5 (s, C7) 130.3 CP 3JCP = 1JCP = 9.0 Hz, C16),  125.6 (s, C13), 124.7 (s, C4), 123.5 (s, C12), 92.4 (s, C10), 88.7 (s, C11), 25.1 (vt,  (s,C6), 125.6 (s, C13), 124.7 (s, C4), 123.5 (s, C12), 92.4 (s, C10), 88.7 (s, C11), 25.1 (vt, 3 JCP = 1 JCP = 9.0 Hz, 20.0 (s, C17) 19.8 (s, C17′).  0 C16),3120.0 (s, C17) 19.8 (s, C17 ). P{1H} NMR (C6D6): δ(ppm) = 37.97.  31 P{1 H} NMR (C D ): δ(ppm) = 37.97. 6 6 Elemental analysis (CHN): (C 126H198N2O12P8Ru4) Calc. (found): C, 58.54 (58.58); H, 7.72 (8.17); N,  Elemental analysis (CHN): (C126 H198 N2 O12 P8 Ru4 ) Calc. (found): C, 58.54 (58.58); H, 7.72 (8.17); 1.08 (1.01).  N, 1.08 (1.01).

3.3.8. Syntheses and Characterization of Macrocycle 4  3.3.8. Syntheses and Characterization of Macrocycle 4

  5-Acetylthioisophthalic acid 78 mg (1.1 eq., 33 mmol),2CO K23CO 5‐Acetylthioisophthalic acid 78 mg (1.1 eq., 33 mmol), K  45 mg (1.1 eq., 33 mmol) and 50 mL  3 45 mg (1.1 eq., 33 mmol) and 50 of MeOH stirred at room temperature. thecolorless  colorlesssolution,  solution,a a solution  solution of of  mL MeOH  were  were stirred  for  2 for h  2at h room  temperature.  To To the  of  {Ru(CO)Cl(P {µ-1,4-(CH=CH)22‐C -C6H {Ru(CO)Cl(PiiPr Pr33)22}}22{μ‐1,4‐(CH=CH) 4} (325 mg, 30 mmol) in 140 mL of CH 2Cl 2 was added over 5  6H 4 } (325 mg, 30 mmol) in 140 mL of CH 2 Cl 2 was added over 5min. After the yellow suspension was stirred for 30 min, the solvents were evaporated. The yellow  min. After the yellow suspension was stirred for 30 min, the solvents were evaporated. The yellow solid Subsequently, the  the solvent solid  was was  then then dissolved dissolved in in CH CH22Cl Cl22  and and  filtered filtered through through Celite Celite®®..  Subsequently,  solvent  was was  removed, the yellow solid was washed with methanol and hexane. Drying in vacuum gave 4 as a removed, the yellow solid was washed with methanol and hexane. Drying in vacuum gave 4 as a  yellow solid. Yield 300 mg, 78%. yellow solid. Yield 300 mg, 78%.  11 H NMR (600 Mhz, C D ): δ(ppm) = 9.27 (t, 4J 4JHH = 1.2 Hz, 2H, H6), 9.03 3(d, JHH = 15.3 Hz, 4H, H NMR (600 Mhz, C66D6): δ(ppm) = 9.27 (t,   = 1.2 Hz, 2H, H6), 9.03 (d,  JHH3 = 15.3 Hz, 4H, H1),  6 HH 4 3 4 3JHH 4JHP = 2.2 Hz, 4H, H2), 2.37–2.25  H1), 8.614JHH (d, = 1.2 Hz, 4H, H8), 7.50 (s, 8H, H4), 6.71 (dt,  JHH = 1.2 Hz, 4H, H8), 7.50 (s, 8H, H4), 6.71 (dt, JHH = 15.3 Hz, JHP = 2.2 Hz, 4H, H2), 8.61 (d,   = 15.3 Hz,  2.37–2.25 (m, 24H, H13), 1.62 (s, 6H, H11), 1.36–1.19 (m, 144H, H14/H140 ). (m, 24H, H13), 1.62 (s, 6H, H11), 1.36–1.19 (m, 144H, H14/H14′).  13 1 13C{ 1 C{ H} NMR (150 MHz, C H} NMR (150 MHz, C66D D66): δ(ppm) = 209.7 (t,  ): δ(ppm) = 209.7 (t, 22JJCPCP = 13 Hz, C12), 190.8 (s, C10), 175.3 (s, C5),  = 13 Hz, C12), 190.8 (s, C10), 175.3 (s, C5),  156.2 (t, 22JCP = 11 Hz, C1), 137.6 (s, C8), 137.3 (s, C3), 135.52 (s, C2), 135.50 (s, C9), 130.4 (s, C7), 129.8 (s,  = 11 Hz, C1), 137.6 (s, C8), 137.3 (s, C3), 135.52 (s, C2), 135.50 (s, C9), 130.4 (s, C7), 129.8 (s,  156.2 (t,  CP 3 1 3 1 C6), 124.7 (s, C4), 29.5 (s, C11) 25.1 (vt, JCP = JCP JCP = 9.0 Hz, C13), 20.0/19.9 (s, C14/C140 ). C6), 124.7 (s, C4), 29.5 (s, C11) 25.1 (vt,   = 9.0 Hz, C13), 20.0/19.9 (s, C14/C14′).  CP =  31 1 31P{ P{1H} NMR (162 MHz, C H} NMR (162 MHz, C66DD6): δ(ppm) = 38.09 (s).  6 ): δ(ppm) = 38.09 (s). Elemental analysis (CHN): (C116 O1414PP8Ru Elemental analysis (CHN): (C 116H196 4S42S ) Calc. (found): C, 55.05 (54.81); H, 7.81 (7.64); S,  196O 8 Ru 2 ) Calc. (found): C, 55.05 (54.81); H, 7.81 (7.64); S, 2.53 (2.32). 2.53 (2.32).  Supplementary following areare  available online at http://www.mdpi.com/2304-6740/6/3/73/s1, Supplementary Materials: Materials: The The  following  available  online  at  www.mdpi.com/xxx/s1,  Figures  S1–S21:  1 H and 13 C{1 H} and 31 P{1 H} NMR spectra of all compounds, Figures S1–S21: Graphical representations of the 1 13 1 31 1 Graphical representations of the  H and  C{ H} and  P{ H} NMR spectra of all compounds, Figures S22–S27:  Figures S22–S27: ESI-MS spectra of complexes 1, 2, and 4, Figure S28: Additional packing diagrams of macrocycle 4, ESI‐MS spectra of complexes 1, 2, and 4, Figure S28: Additional packing diagrams of macrocycle 4, Figure S29:  Figure S29: Association of macrocycle 4 in the crystal by hydrogen bonding, Tables S1–S3: Crystal and refinement Association of macrocycle 4 in the crystal by hydrogen bonding, Tables S1–S3: Crystal and refinement data and  full  lists  of  bond  parameters  of  4,  Figures  S30–S40:  Graphical  representations  of  the  cyclic  and  square  wave  voltammograms,  Figures  S41–S58:  the  results  of  IR/NIR  as  well  as  UV/Vis/NIR  spectroelectrochemical  experiments; Figures S59–S70: EPR spectra of the di‐ and tetracations of the macrocycles at r.t. and at 78 K. 

Inorganics 2018, 6, 73

19 of 21

data and full lists of bond parameters of 4, Figures S30–S40: Graphical representations of the cyclic and square wave voltammograms, Figures S41–S58: the results of IR/NIR as well as UV/Vis/NIR spectroelectrochemical experiments; Figures S59–S70: EPR spectra of the di- and tetracations of the macrocycles at r.t. and at 78 K. Author Contributions: Experimental work P.A. and M.R.R.; electrochemistry and spectroelectrochemistry: P.A.; X-ray structure analysis P.A. and M.L. Original Draft Preparation, R.F.W. and P.A. Funding: We thank the University of Konstanz and the state of Baden-Württemberg for financial support of this work. Acknowledgments: We thank Gernot Haug for the synthesis of IL4. Conflicts of Interest: The authors declare no conflict of interest.

References 1.

2. 3. 4.

5.

6. 7. 8. 9.

10.

11.

12.

13. 14. 15. 16. 17.

Scheerer, S.; Linseis, M.; Wuttke, E.; Weickert, S.; Drescher, M.; Tröppner, O.; Ivanovi´c-Burmazovi´c, I.; Irmler, A.; Pauly, F.; Winter, R.F. Redox-Active Tetraruthenium Macrocycles Built from 1,4-DivinylphenyleneBridged Diruthenium Complexes. Chem. Eur. J. 2016, 22, 9574–9590. [CrossRef] [PubMed] Fink, D.; Weibert, B.; Winter, R.F. Redox-active tetraruthenium metallacycles: Reversible release of up to eight electrons resulting in strong electrochromism. Chem. Commun. 2016, 52, 6103–6106. [CrossRef] [PubMed] Fink, D.; Bodensteiner, M.; Linseis, M.; Winter, R.F. Macrocyclic Triruthenium Complexes Having Electronically Coupled Mixed-Valent States. Chem. Eur. J. 2018, 24, 992–996. [CrossRef] [PubMed] Fink, D.; Linseis, M.; Winter, R.F. Constitutional Isomers of Macrocyclic Tetraruthenium Complexes with Vastly Different Spectroscopic and Electrochemical Properties. Organometallics 2018, 37, 1817–1820. [CrossRef] Sadhukhan, N.; Patra, S.K.; Sana, K.; Bera, J.K. Novel Heterobimetallic Metallamacrocycles Based on the 1,10 -Bis(1,8-naphthyrid-2-yl)ferrocene (FcNP2 ) Ligand: Structural Characterization of the Complexes [{M(FcNP2 )}2 ]2+ (M = CuI, AgI) and {MCl2 (FcNP2 )}4 (M = ZnII , CoII ). Organometallics 2006, 25, 2914–2916. [CrossRef] Croue, V.; Goeb, S.; Salle, M. Metal-driven self-assembly: The case of redox-active discrete architectures. Chem. Commun. 2015, 51, 7275–7289. [CrossRef] [PubMed] Winter, R.F. The molecular electrochemistry of metal–organic metallamacrocycles. Curr. Opin. Electrochem. 2018, 8, 14–23. [CrossRef] Maurer, J.; Sarkar, B.; Schwederski, B.; Kaim, W.; Winter, R.F.; Záliš, S. Divinylphenylene bridged diruthenium complexes bearing Ru(CO)Cl(Pi Pr3 )2 entities. Organometallics 2006, 25, 3701–3712. [CrossRef] Linseis, M.; Winter, R.F.; Sarkar, B.; Kaim, W.; Záliš, S. Multistep Electrochromic Behaviour from an Organometallic Tetranuclear Complex of a Tetradonor-Substituted Olefin. Organometallics 2008, 27, 3321–3324. [CrossRef] Linseis, M.; Záliš, S.; Zabel, M.; Winter, R.F. Ruthenium Stilbenyl and Diruthenium Distyrylethene Complexes: Aspects of Electron Delocalization and Electrocatalyzed Isomerization of the Z-Isomer. J. Am. Chem. Soc. 2012, 134, 16671–16692. [CrossRef] [PubMed] Wuttke, E.; Hervault, Y.-M.; Polit, W.; Linseis, M.; Erler, P.; Rigaut, S.; Winter, R.F. Divinylphenylene-and Ethynylvinylphenylene-Bridged Mono-, Di-, and Triruthenium Complexes for Covalent Binding to Gold Electrodes. Organometallics 2014, 33, 4672–4686. [CrossRef] Pfaff, U.; Hildebrandt, A.; Korb, M.; Oßwald, S.; Linseis, M.; Schreiter, K.; Spange, S.; Winter, R.F.; Lang, H. Electronically Strongly Coupled Divinylheterocyclic-Bridged Diruthenium Complexes. Chem. Eur. J. 2016, 22, 783–801. [CrossRef] [PubMed] Ward, M.D. Near-infrared electrochromic materials for optical attenuation based on transition-metal coordination complexes. J. Solid State Electrochem. 2005, 9, 778–787. [CrossRef] Mortimer, R.J.; Dyer, A.L.; Reynolds, J.R. Electrochromic organic and polymeric materials for display applications. Org. Disp. 2006, 27, 2–18. [CrossRef] Sreejith, S.; Carol, P.; Chithra, P.; Ajayaghosh, A. Squaraine dyes: A mine of molecular materials. J. Mater. Chem. 2008, 18, 264–274. [CrossRef] Astruc, D.; Ornelas, C.; Ruiz, J. Dendritic Molecular Electrochromic Batteries Based on Redox-Robust Metallocenes. Chem. Eur. J. 2009, 15, 8936–8944. [CrossRef] [PubMed] Mortimer, R.J. Electrochromic Materials. Annu. Rev. Mater. Res. 2011, 41, 241–268. [CrossRef]

Inorganics 2018, 6, 73

18. 19. 20.

21. 22. 23.

24. 25. 26. 27.

28.

29. 30. 31. 32. 33.

34. 35. 36. 37. 38.

39. 40.

20 of 21

D’Alessandro, D.M. Exploiting redox activity in metal-organic frameworks: Concepts, trends and perspectives. Chem. Commun. 2016. [CrossRef] [PubMed] Lin, K.; Chen, S.; Lu, B.; Xu, J. Hybrid π-conjugated polymers from dibenzo pentacyclic centers: Precursor design, electrosynthesis and electrochromics. Sci. China Chem. 2017, 60, 38–53. [CrossRef] Dai, F.; Dou, J.; He, H.; Zhao, X.; Sun, D. Self-Assembly of Metal—Organic Supramolecules: From a Metallamacrocycle and a Metal—Organic Coordination Cage to 1D or 2D Coordination Polymers Based on Flexible Dicarboxylate Ligands. Inorg. Chem. 2010, 49, 4117–4124. [CrossRef] [PubMed] Case, F.H.; Butte, W.A. Further Preparation of Substituted 2,6-Bis(20 -pyridyl)pyridines. J. Org. Chem. 1961, 26, 4415–4418. [CrossRef] Wang, H.-B.; Mudraboyina, B.P.; Li, J.; Wisner, J.A. Minimal complementary hydrogen-bonded double helices. Chem. Commun. 2010, 46, 7343–7345. [CrossRef] [PubMed] Kazuki, O.; Daisuke, S.; Tomoya, Y.; Katsuhiro, I.; Ryota, Y.; Toshio, T.; Hirofumi, S.; Tetsuya, O.; Hiroki, K.; Nobuhiro, Y.; et al. Synthesis and Self-Assembly of NCN-Pincer Pd-Complex-Bound Norvalines. Chem. Eur. J. 2013, 19, 12356–12375. Evans, B.J.; Doi, J.T.; Musker, W.K. The aqueous periodate oxidation of aromatic and carboxylic acid disufides. Phosphorus Sulfur Silicon Relat. Elem. 1992, 73, 5–13. [CrossRef] Lawrence, D.S.; Jiang, T.; Levett, M. Self-Assembling Supramolecular Complexes. Chem. Rev. 1995, 95, 2229–2260. [CrossRef] Swiegers, G.F.; Malefetse, T.J. New Self-Assembled Structural Motifs in Coordination Chemistry. Chem. Rev. 2000, 100, 3483–3538. [CrossRef] [PubMed] Oliveri, C.G.; Ulmann, P.A.; Wiester, M.J.; Mirkin, C.A. Heteroligated Supramolecular Coordination Complexes Formed via the Halide-Induced Ligand Rearrangement Reaction. Acc. Chem. Res. 2008, 41, 1618–1629. [CrossRef] [PubMed] Psomas, G.; Stemmler, A.J.; Dendrinou-Samara, C.; Bodwin, J.J.; Schneider, M.; Alexiou, M.; Kampf, J.W.; Kessissoglou, D.P.; Pecoraro, V.L. Preparation of Site-Differentiated Mixed Ligand and Mixed Ligand/Mixed Metal Metallacrowns. Inorg. Chem. 2001, 40, 1562–1570. [CrossRef] [PubMed] Davis, A.V.; Raymond, K.N. The Big Squeeze: Guest Exchange in an M4L6 Supramolecular Host. J. Am. Chem. Soc. 2005, 127, 7912–7919. [CrossRef] [PubMed] Garci, A.; Marti, S.; Schurch, S.; Therrien, B. Insight into the dynamic ligand exchange process involved in bipyridyl linked arene ruthenium metalla-rectangles. RSC Adv. 2014, 4, 8597–8604. [CrossRef] Garci, A.; Gupta, G.; Dalvit, C.; Therrien, B. Investigating the Formation Mechanism of Arene Ruthenium Metallacycles by NMR Spectroscopy. Eur. J. Inorg. Chem. 2014, 2014, 5651–5661. [CrossRef] Hiraoka, S.; Sakata, Y.; Shionoya, M. Ti(IV)-Centered Dynamic Interconversion between Pd(II), Ti(IV)-Containing Ring and Cage Molecules. J. Am. Chem. Soc. 2008, 130, 10058–10059. [CrossRef] [PubMed] Zheng, Y.-R.; Stang, P.J. Direct and Quantitative Characterization of Dynamic Ligand Exchange between Coordination-Driven Self-Assembled Supramolecular Polygons. J. Am. Chem. Soc. 2009, 131, 3487–3489. [CrossRef] [PubMed] Pevny, F.; Winter, R.F.; Sarkar, B.; Záliš, S. How to elucidate and control the redox sequence in vinylbenzoate and vinylpyridine bridged diruthenium complexes. Dalton Trans. 2010, 8000–8011. [CrossRef] [PubMed] Záliš, S.; Winter, R.F.; Kaim, W. Quantum chemical interpretation of redox properties of ruthenium complexes with vinyl and TCNX type non-innocent ligands. Coord. Chem. Rev. 2010, 254, 1383–1396. [CrossRef] Richardson, D.E.; Taube, H. Mixed-valence molecules: Electronic delocalization and stabilization. Coord. Chem. Rev. 1984, 60, 107–129. [CrossRef] De la Rosa, R.; Chang, P.J.; Salaymeh, F.; Curtis, J.C. Redox asymmetry and metal–metal coupling in pyrazine-bridged ruthenium dimers. Inorg. Chem. 1985, 24, 4229–4231. [CrossRef] Crutchley, R.J. Intervalence Charge Transfer and Electron Exchange Studies of Dinuclear Ruthenium Complexes. In Advances in Inorganic Chemistry; Sykes, A.G., Ed.; Academic Press: Cambridge, MA, USA, 1994; Volume 41, pp. 273–325. Winter, R.F. Half-Wave Potential Splittings ∆E1/2 as a Measure of Electronic Coupling in Mixed-Valent Systems: Triumphs and Defeats. Organometallics 2014, 33, 4517–4536. [CrossRef] Hildebrandt, A.; Lang, H. (Multi)ferrocenyl Five-Membered Heterocycles: Excellent Connecting Units for Electron Transfer Studies. Organometallics 2013, 32, 5640–5653. [CrossRef]

Inorganics 2018, 6, 73

41. 42. 43. 44. 45. 46. 47.

48.

49.

50.

51. 52.

53. 54. 55. 56. 57.

58.

21 of 21

Connelly, N.G.; Geiger, W.E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877–910. [CrossRef] [PubMed] Ovchinnikov, A.A. Multiplicity of the ground state of large alternant organic molecules with conjugated bonds (do organic ferromagnets exist?). Theor. Chim. Acta 1978, 47, 297–304. [CrossRef] Yoshizawa, K.; Hoffmann, R. Potential Linear-Chain Organic Ferromagnets. Chem. Eur. J. 1995, 1, 403–413. [CrossRef] Zhang, J.; Zhang, H.; Wang, L.; Wang, R.; Wang, L. Effect of configuration and conformation on the spin multiplicity in xylylene type biradicals. Sci. China Ser. B Chem. 2000, 43, 524–530. [CrossRef] Baumgarten, M. High Spin Molecules Directed Towards Molecular Magnets. In EPR of Free Radicals in Solids II; Lund, A., Shiotani, M., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 25, pp. 205–244. Abe, M. Diradicals. Chem. Rev. 2013, 113, 7011–7088. [CrossRef] [PubMed] Barlow, S.; Risko, C.; Chung, S.-J.; Tucker, N.M.; Coropceanu, V.; Jones, S.C.; Levi, Z.; Brédas, J.-L.; Marder, S.R. Intervalence Transitions in the Mixed-Valence Monocations of Bis(triarylamines) Linked with Vinylene and Phenylene—Vinylene Bridges. J. Am. Chem. Soc. 2005, 127, 16900–16911. [CrossRef] [PubMed] Barlow, S.; Risko, C.; Odom, S.A.; Zheng, S.; Coropceanu, V.; Beverina, L.; Brédas, J.-L.; Marder, S.R. Tuning Delocalization in the Radical Cations of 1,4-Bis[4-(diarylamino)styryl]benzenes, 2,5-Bis[4-(diarylamino)styryl]thiophenes, and 2,5-Bis[4-(diarylamino)styryl]pyrroles through Substituent Effects. J. Am. Chem. Soc. 2012, 134, 10146–10155. [CrossRef] [PubMed] Nie, H.-J.; Yao, C.-J.; Shao, J.-Y.; Yao, J.; Zhong, Y.-W. Oligotriarylamines with a Pyrene Core: A Multicenter Strategy for Enhancing Radical Cation and Dication Stability and Tuning Spin Distribution. Chem. Eur. J. 2014, 20, 17454–17465. [CrossRef] [PubMed] Hassenrück, C.; Winter, R.F. Manipulation and Assessment of Charge and Spin Delocalization in Mixed-Valent Triarylamine–Vinylruthenium Conjugates. Inorg. Chem. 2017, 56, 13517–13529. [CrossRef] [PubMed] Garnovskii, A.D.; Kharisov, B.I.; Blanco, L.M.; Sadimenko, A.P.; Uraev, A.I.; Vasilchenko, I.S.; Garnovskii, D.A. Metal Complexes as Ligands. J. Coord. Chem. 2002, 55, 1119–1134. [CrossRef] Serroni, S.; Campagna, S.; Puntoriero, F.; Di Pietro, C.; McClenaghan, N.D.; Loiseau, F. Dendrimers based on ruthenium(II) and osmium(II) polypyridine complexes and the approach of using complexes as ligands and complexes as metals. Chem. Soc. Rev. 2001, 30, 367–375. [CrossRef] Herrendorf, W.; Bärnighausen, W. HABITUS. Program for the Optimization of the Crystal Shape for Numerical Absorption Correction in X-SHAPE, version 1.06; Fa. STOE: Darmstadt, Germany, 1999. Sheldrick, G.M. SHELXL-97, Program for Crystal Structure Solution and Refinement; Universität Göttingen: Göttingen, Germany, 1997. Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A 2008, 64, 112–122. [CrossRef] [PubMed] Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [CrossRef] Macrae, C.F.; Bruno, I.J.; Chisholm, J.A.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; Van De Streek, J.; Wood, P.A. Mercury CSD 2.0—New features for the visualization and investigation of crystal structures. J. Appl. Crystallogr. 2008, 41, 466–470. [CrossRef] Krejcik, M.; Danicek, M.; Hartl, F. Simple construction of an infrared optically transparent thin-layer cell: Applications to the redox reactions of ferrocene, Mn2( CO)10 and Mn(CO)3 (3,5-di-t-butylcatcholate)− . J. Eletcroanal. Chem. 1991, 317, 179–187. [CrossRef] © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).