Simple answers like âCrossover rate should be 0.8â ... predetermined time-varying schedule p = p(t) ..... Number of their own parameters â overhead costs.
A.E. Eiben
Principled approaches to tuning EA parameters
A.E. Eiben Free University Amsterdam Free University Amsterdam (google: eiben)
The aims of this tutorial
y Creating awareness of the tuning issue y Providing guidelines for tuning EAs y Presenting a vision for future development
CEC 2009 tutorial
1
A.E. Eiben
Principled approaches to tuning EA parameters
By the end of this talk You will certainly NOT have: y Simple answers like “Crossover rate should be 0.8” y Clear recipes like “Method X can tune your EA perfectly” You will hopefully have: y A new look on EA parameter calibration y Motivation to adjust your practice j y p y Inspiration to do research on EA parameter calibration
The basic EC metaphor EVOLUTION
PROBLEM SOLVING
Environment
Problem
Individual Fitness
Candidate Solution Quality
Fitness → chances for survival and reproduction Quality → chance for seeding new solutions
CEC 2009 tutorial
2
A.E. Eiben
Principled approaches to tuning EA parameters
The two main pillars of EAs There are two competing forces active y Increasing population diversity by
y Decreasing population diversity by
genetic operators
selection
y mutation
y of parents
y recombination
y of survivors
Push towards novelty
Push towards quality us to a ds qua ty
Proper balance of these forces is essential This is regulated through the parameters
Algorithm design and parameters y Calibration of EAs y Design of EAs y Configuration of EAs y Parameter optimization of EAs y…
Given: Required:
CEC 2009 tutorial
an algorithmic framework instantiation to a specific algorithm with good quality
3
A.E. Eiben
Principled approaches to tuning EA parameters
Problems y How to find good parameter values ?
Many parameters, unknown effects, unknown, non‐ linear interactions
y How to vary parameter values?
EA is a dynamic, staged, process Æoptimal parameter values may vary during a run
Brief historical account y 1970/80ies “GA is a robust method”
adapt mutation stepsize σ y 1970ies + ESs self 1970ies + ESs self‐adapt mutation stepsize σ y 1986 meta‐GA for optimizing GA parameters y 1990ies EP adopts self‐adaptation of σ as ‘standard’ y 1990ies some papers on changing parameters on‐the‐fly y 1999 Eiben‐Michalewicz‐Hinterding paper proposes
clear taxonomy & terminology clear taxonomy & terminology
CEC 2009 tutorial
4
A.E. Eiben
Principled approaches to tuning EA parameters
Taxonomy
PARAMETER CALIBRATION PARAMETER TUNING
PARAMETER CONTROL
(before the run)
(during the run)
DETERMINISTIC
ADAPTIVE
SELF-ADAPTIVE
((time dependent) p )
((feedback from search))
((coded in chromosomes))
Google Scholar index > 550 (>700 with the conference version)
Parameter tuning Parameter tuning: testing and comparing different values before the “real” real run Problems: y users mistakes in settings can be sources of errors or
sub-optimal performance y costs much time y parameters interact: exhaustive search is not practicable y good values may become bad during the run
CEC 2009 tutorial
5
A.E. Eiben
Principled approaches to tuning EA parameters
Parameter control Parameter control: setting values on-line, during the actual run, e.g. y predetermined time-varying schedule p = p(t) y using (heuristic) feedback from the search process y encoding parameters in chromosomes and rely on natural
selection
Problems: y finding optimal p is hard, finding optimal p(t) is harder y still user-defined feedback mechanism, how to “optimize”? y when would natural selection work for algorithm parameters?
Example Task to solve: ( 1,,…,x , n) y min f(x y Li ≤ xi ≤ Ui y gi (x) ≤ 0 y hi (x) = 0
for i = 1,…,n for i = 1,…,q for i = q+1,…,m
bounds inequality constraints equality constraints
Algorithm: y EA with ith real-valued l l d representation t ti ((x1,…,xn) y arithmetic averaging crossover y Gaussian mutation: x’ i = xi + N(0, σ)
standard deviation σ is called mutation step size
CEC 2009 tutorial
6
A.E. Eiben
Principled approaches to tuning EA parameters
Varying mutation step size: option 1 Replace the constant σ by a function σ(t)
σ (t ) = 1 - 0.9 × Tt 0 ≤ t ≤ T is the current generation number Features: z z z z
changes in σ are independent from the search progress strong user control of σ by the above formula σ is fully predictable a given σ acts on all individuals of the population
Varying mutation step size: option 2 Replace the constant σ by a function σ(t). The value is updated after every n steps by Rechenberg’s 1/5 success rule
>1/5 1/5 ⎧σ ((tt − n ) / c if ps > ⎪ σ (t ) = ⎨σ (t − n ) ⋅ c if ps < 1/5 ⎪σ (t − n ) otherwise ⎩ where ps is the % of successful mutations, c is a parameter (0.8 < c < 1)
Features: z z z z
CEC 2009 tutorial
changes in σ are based on feedback from the search progress some user control of σ by the above formula σ is not predictable a given σ acts on all individuals of the population
7
A.E. Eiben
Principled approaches to tuning EA parameters
Varying mutation step size: option 3 Assign a personal σ to each individual Incorporate this σ into the chromosome: (x1, …, xn, σ) Apply variation operators to xi‘s and σ
σ ′ = σ × e N ( 0,τ ) x′i = xi + N (0, σ ′) Features: z z z z
changes in σ are results of natural selection (almost) no user control of σ σ is not predictable a given σ acts on one individual
Varying mutation step size: option 4 Assign a personal σ to each variable in each individual Incorporate σ’s into the chromosomes: (x1, …, xn, σ1, …, σ n) Apply variation operators to xi‘s s and σi‘s s
σ ′i = σi × e N ( 0,τ ) x′i = xi + N (0, σ ′i ) Features: z z z z
CEC 2009 tutorial
changes in σi are results of natural selection (almost) no user control of σi σi is not predictable a given σi acts on one variable of one individual
8
A.E. Eiben
Principled approaches to tuning EA parameters
Control WHAT? Practically any EA component can be parameterized and thus controlled on-the-fly: y representation y evaluation function y variation operators y selection operator (parent or mating selection) y replacement operator (survival or environmental selection) y population (overlap, size, topology)
Control HOW? Three major types of parameter control: y deterministic: some rule modifies strategy parameter
without feedback from the search (based on some counter, typically time or no of search steps)
y adaptive: feedback rule, i.e., heuristic, based on some
measure monitoring search progress
y self-adaptative: parameter values evolve along with
solutions; encoded onto chromosomes they undergo variation and selection
CEC 2009 tutorial
9
A.E. Eiben
Principled approaches to tuning EA parameters
Notes on parameter control y Parameter control offers the possibility to use appropriate values in various
stages of the search y Adaptive and self‐adaptive control can Adaptive and self adaptive control can “liberate” liberate users from tuning users from tuning Æ
reduces need for EA expertise for a new application y Assumption: control heuristic is less parameter‐sensitive than the EA
BUT y State‐of‐the‐art is a mess: literature is a potpourri, no generic knowledge,
no principled approaches to developing control heuristics (deterministic or adaptive), no solid testing methodology
WHAT ABOUT TUNING?
Historical account (cont’d) Last decade: y More & more work on parameter control y Traditional parameters: mutation and xover y Non‐traditional parameters: selection and population size y All parameters Î “parameterless” EAs (name!?)
y Hardly any work on parameter tuning, i.e., y Nobody reports on tuning efforts behind their EA published y Just a handful papers on tuning methods / algorithms
CEC 2009 tutorial
10
A.E. Eiben
Principled approaches to tuning EA parameters
Control flow of EA calibration / design User
Design layer
Meta-GA
Algorithm layer
GA
optimizes
GP
optimizes Symbolic regression
Application layer
One-max
Information flow of EA calibration / design Design layer
Algorithm quality
Algorithm layer
Solution quality
Application layer
CEC 2009 tutorial
11
A.E. Eiben
Principled approaches to tuning EA parameters
Lower level of EA calibration / design EA
Searches
Decision variables Problem parameters Candidate solutions Evaluates Application
Space of solution vectors
Lower level of EA calibration / design The whole field of EC is about this
EA
Searches
Decision variables Problem parameters Candidate solutions Evaluates Application
Space of solution vectors
CEC 2009 tutorial
12
A.E. Eiben
Principled approaches to tuning EA parameters
Upper level of EA calibration / design Design method
Searches
Design variables, Algorithm parameters, Strategy parameters Evaluates EA
Space of parameter vectors
Parameter – performance landscape y All parameters together span a (search) space y One point – one EA instance y Height of point = performance of EA instance
on a given problem y Parameter‐performance landscape or utility landscape for
each { EA + problem instance + performance measure }
y This landscape is unlikely to be trivial, e.g., unimodal,
separable
y If there is some structure in the utility landscape, then we
can do better than random or exhaustive search
CEC 2009 tutorial
13
A.E. Eiben
Principled approaches to tuning EA parameters
Ontology ‐ Terminology LOWER PART
UPPER PART UPPER PART
EA
Tuner
Solution vectors
Parameter vectors
Fitness
Utility
Evaluation
Test
METHOD SEARCH SPACE QUALITY ASSESSMENT
y Fitness ≈ objective function value y Utility = ? y MBF‐utility, AES‐utility, SR‐utility, combined utility,
robustness utility, …
Off‐line vs. on‐line calibration / design Design / calibration method y Off‐line Æ parameter tuning y On‐line Æ parameter control y Why focus on tuning (first)? y Easier y Most immediate need of users y Control strategies have parameters too Æ need tuning themselves y Knowledge about tuning (utility landscapes) can help the design of Knowledge about tuning (utility landscapes) can help the design of good control strategies y There are indications that good tuning works better than control High impact R&D programme: principled approaches to EA tuning
CEC 2009 tutorial
14
A.E. Eiben
Principled approaches to tuning EA parameters
Tuning by generate‐and‐test y EA tuning is a search problem itself y Straightforward approach: generate‐and‐test hf d h d Generate parameter vectors
Test parameter vectors
Terminate
Testing parameter vectors y Run EA with these parameters on the given problem or problems y Record EA performance in that run e.g., by y Solution quality = best fitness at termination y Speed = time used to find required solution quality y EAs are stochastic Æ repetitions are needed for reliable
evaluation Æ we get statistics, e.g., y Average performance by solution quality, speed (MBF, AES, AEB) y Robustness R b = variance in those averages i i h y Success rate = % runs ending with success
y Big issue: how many repetitions of the test
CEC 2009 tutorial
15
A.E. Eiben
Principled approaches to tuning EA parameters
Numeric parameters y E.g., population size, xover rate, tournament size, … y Domain D i is i subset b t off R, R Z, Z N (finite (fi it or infinite) i fi it )
EA performance
EA performance
y Sensible distance metric Æ searchable
Parameter value
Parameter value
Relevant parameter
Irrelevant parameter
Symbolic parameters y E.g., xover_operator, elitism, selection_method y Finite domain, e.g., {1 point, uniform, averaging}, {Y, N} Finite domain e g {1‐point uniform averaging} {Y N}
A B C D E F G H Parameter value Non-searchable ordering
CEC 2009 tutorial
EA peerformance
EA peerformance
y No sensible distance metric Æ non‐searchable in general
B D C A H F G E Parameter value Searchable ordering
16
A.E. Eiben
Principled approaches to tuning EA parameters
Notes on parameters y A value of a symbolic parameter can introduce a numeric
parameter, e.g., y Selection = tournament Æ tournament size y Populations_type = overlapping Æ generation gap y Parameters can have a hierarchical, nested structure y Number of EA parameters is not defined in general y Cannot simply denote the design space / tuning search space by S = Q1 x … Qm x R1 x … x Rn with Qi / Rj as domains of the symbolic/numeric parameters
What is an EA? ALG‐1
ALG‐2
ALG‐3
ALG‐4
SYMBOLIC PARAMETERS Bit‐string
Bit‐string
Real‐valued
Real‐valued
Overlapping pops
Representation
N
Y
Y
Y
Survivor selection
̶
Tournament
Replace worst
Replace worst
Roulette wheel
Uniform determ
Tournament
Tournament
Bit‐flip
Bit‐flip
N(0,σ)
N(0,σ)
Recombination
Uniform xover
Uniform xover
Discrete recomb
Discrete recomb
G Generation ti gap
̶
05 0.5
09 0.9
09 0.9
Population size
100
500
100
300
Parent selection Mutation
NUMERIC PARAMETERS
Tournament size Mutation rate Mutation stepsize Crossover rate
CEC 2009 tutorial
̶
2
3
30
0.01
0.1
̶
̶
̶
̶
0.01
0.05
0.8
0.7
1
0.8
17
A.E. Eiben
Principled approaches to tuning EA parameters
What is an EA? (cont’d) Make a principal distinction between EAs and EA instances and place the border between them by: y Option 1 O ti 1 y There is only one EA, the generic EA scheme y Previous table contains 1 EA and 4 EA‐instances
y Option 2 y An EA = particular configuration of the symbolic parameters y Previous table contains 3 EAs, with 2 instances for one of them
y Option 3 y An EA = particular configuration of parameters y Notions of EA and EA‐instance coincide y Previous table contains 4 EAs / 4 EA‐instances
Generate‐and‐test under the hood Generate initial parameter vectors
Test p.v.’s
Terminate
Select p.v.’s
→ Fixed-set search → Smart S t fixed-set fi d t search h → Population-based search Generate p.v.’s
CEC 2009 tutorial
18
A.E. Eiben
Principled approaches to tuning EA parameters
Tuning effort y Total amount of computational work is determined by y A A = number of vectors tested number of vectors tested y B = number of tests per vector y C = number of fitness evaluations per test y Tuning methods can be positioned by their rationale: y To optimize A (population‐based search) y To optimize B (smart fixed‐set search) p ( ) y To optimize A and B (combination) y To optimize C (non‐existent) y…
Optimize A = optimally use A Applicable only to numeric parameters Number of tested vectors not fixed, A is the maximum (stop cond.) Initialization with N