The Role of the Strange Quark Mass. Include strange quark mass in gap
equations main parameter x = m. 2 s. pF ∆ x ∼ 1: transition CFL → 2SC. But:
Problems ...
The CFL Phase and m(strange): An Effective Field Theory Approach Thomas Schaefer North Carolina State
1
µ → ∞: CFL Phase F C L L
Consider Nf = 3 (mi = 0) hqia qjb i = φ (δia δjb − δja δib )
L L
C F R R
R R
hudi = husi = hdsi hrbi = hrgi = hbgi Symmetry breaking pattern:
Rotate left flavor
Compensate by rotating color
SU (3)L × SU (3)R × [SU (3)]C × U (1) → SU (3)C+F
... have to rotate right flavor also !
All quarks and gluons acquire a gap
2
hψL ψL i = −hψR ψR i
The Role of the Strange Quark Mass Include strange quark mass in gap equations main parameter x =
m2s pF ∆
x ∼ 1: transition CFL → 2SC But: Problems turns out to be much more difficult (even if the coupling is weak!) additional scales electric neutrality, gauge invariance many gap parameters, how to find the right ansatz 3
Effective Field Theories quarks, gluons
QCD 2p F HDET 2∆
quasi−particles, holes, gluons CFLChTh p=p
Goldstone bosons Fermi surface
F
4
High Density Effective Theory Quasi-particles (holes)
ε
L=
v
ψv† (iv
p
v
p =µv + l + l
v’
ψ
1 a a · D)ψv − Gµν Gµν + O(1/µ) 4 5
p
Effective lagrangian for ψv+ X
1±α ~ · ~v 2
¶
ψv± = e
−iµv·x
µ
Λ
particles F
Effective field theory on v-patches
holes
p E± = −µ ± p~2 + m2 ' −µ ± |~ p|
Mass Terms: Match HDET to QCD
L=
† MM ψR
2µ
†
ψR +
† M ψL
R
†
M ψL 2µ
R
R
+ MM
C † † + 2 (ψR M λa ψL )(ψR M λ a ψL ) µ
R + M
M
R R
L
g
L
L M
g2MM R
L
R
L g
mass corrections to FL parameters µ ˆ, vF and V0++−−
6
M
EFT in the CFL Phase Consider HDET with a CFL gap term ³ ´ ∆n ¡ o ¢ £ ¡ ¢¤ 2 † L = Tr ψL (iv · D)ψL + Tr X † ψL X † ψL − κ Tr X † ψL 2 + (L ↔ R, X ↔ Y ) ψL → LψL C T , X → LXC T , hXi = hY i = 11 Quark loops generate a kinetic term for X, Y ¢ª fπ2 © ¡ † 2 † 2 Tr (X D0 X) + (Y D0 Y ) + ... L=− 2 Integrate out gluons, identify low energy fields (ξ = Σ1/2 ) Σ = XY †
NL = ξ(ψL X † )ξ †
[8]+[1] GBs
[8]+[1] Baryons 7
Effective chiral theory ¡ ¢ ¢ª fπ2 © ¡ † 2 † Tr ∇0 Σ∇0 Σ − vπ Tr ∇i Σ∇i Σ L = 4 ¢ ¡ † µ ¢ ¡ † µ + Tr N iv Dµ N − DTr N v γ5 {Aµ , N } o ¢ ∆n ¡ † µ 2 Tr (N N ) − [Tr (N )] − F Tr N v γ5 [Aµ , N ] + 2 with Dµ N = ∂µ N + i[Vµ , N ] Vµ Aµ
¢ i¡ † † = − ξ∂µ ξ + ξ ∂µ ξ 2 ¢ i ¡ † = − ξ ∂µ Σ ξ 2
2 µ 21 − 8 log 2 fπ2 = 18 2π 2
vπ2 8
1 = 3
1 D=F = 2
Mass Terms: Match HDET to CFLχTh Kinetic term:
† † ψL X L ψL + ψ R X R ψR
¢ 1¡ † † ξXR ξ + ξ XL ξ D0 N = ∂0 N + i[Γ0 , N ], Γ 0 = V0 + 2 ∇0 Σ = ∂0 Σ + iXL Σ − iΣXR vector (axial) potentials Contact term:
† † (ψR M ψL )(ψR M ψL )
ª 3∆2 © 2 L= [Tr(M Σ)] − Tr(M ΣM Σ) 2 4π meson mass terms
9
Phase Structure and Spectrum Phase structure determined by effective potential ¤ ¢ £ fπ2 ¡ † † † 2 Tr XL ΣXR Σ − ATr(M Σ ) − B1 Tr(M Σ ) + . . . V (Σ) = 2 V (Σ0 ) ≡ min Fermion spectrum determined by o n ∆ 2 L = Tr N † iv µ Dµ N + Tr N † γ5 ρA N + Tr (N N ) − [Tr (N )] , 2 ¡
¢
ρV,A
¡
¢
¾ ½ † † 1 M M † † MM = ξ ±ξ ξ ξ 2 2pF 2pF
10
p ξ = Σ0
Phase Structure and Spectrum 20
+
40
-20
µQ (MeV)
60
0
CFLπ
CFLK
−
-10
80
CFL
0
CFLK
10
20
-30
-40 10
-8
10
-6
10
-4
10
-2
2 10
0
10
20
20
30
40
80
60
ms /2µ (MeV)
gapless modes? (gCFLK)
meson condensation: CFLK 1/3
µs (crit) ∼
ms (crit) ∼ mu ∆2/3
Figures: Kaplan & Reddy (2002)
4∆ 3
Kryjevski & Sch¨ afer (2005)
11
100
Instabilities Consider meson current Σ(x) = UY (x)ΣK UY (x)†
UY (x) = exp(iφK (x)λ8 )
~ K ∇φ ~ ~ ~ K (eiφK u (−2Iˆ3 + 3Yˆ ) A(x) V(x) = = ∇φ ˆ+ + e−iφK u ˆ− ) 4 Gradient energy fπ2 2 2 ~ K vπ K ~k = ∇φ E= 2 Fermion spectrum 4µs 1 l2 − − ~v · ~K ωl = ∆ + 2∆ 3 4 2
µ E= 2π 2
Z
dl
Z
ˆ ωl Θ(−ωl ) dΩ 12
Ω
j
Stability lost 1
65
2
¯ ∂ E ¯¯ 2 mV = 2 ¯ ∂ =0
70
75
80
-1
-2
-3
E = Cfh (x)
jk x= a∆
3µs − 4∆ h= a∆
h i 1 (h + x)5/2 Θ(h + x) − (h − x)5/2 Θ(h − x) fh (x) = x2 − x see also: Son & Stephanov cond-mat/0507586, Kryjevski hep-ph/0508180
13
Energy Functional #$
20
40
60
80
100
0.2
-5
!
"
-10
0.1
-15 40
50
60
70
'
30
&%
20
(
10
)
'
&%
-20
-0.1
'
&%
(
¯ 3µs − 4∆ ¯¯ ¯ ∆
= ahcrit
hcrit = −0.067
crit
2 a= 2 2 4 15 cπ vπ
[Figures include baryon current jB = αB /αK jK ]
14
Stability found
1
2
55
60
70
75
80
-1
2
¯ ∂ E ¯¯ 2 mV = 2 ¯ ∂ =0
65
¯ ∂ E ¯¯ 2 mV = 2 ¯ ∂ 0
-2
-3
E = Cfh (x)
jk x= a∆
15
3µs − 4∆ h= . a∆
85
Notes No net current, meson current canceled by backflow of gapless modes (δE)/(δ∇φ) = 0 Instability related to “chromomagnetic instability” CFL phase: gluons carry SU (3)F quantum numbers Meson current equivalent to a color gauge field P-wave meson condensate continuously connected to LOFF? Additional currents? Higher order corrections to µs |crit = (4 + ahcrit )∆/3 ? 16