2 nodes, 4 DOFs. Tricubic brick element,. 64 nodes, 192 DOFs. Quadratic thin-
plate element,. 6 nodes, 12 DOFs. Introduction to FEM. IFEM Ch 2 – Slide 2 ...
Introduction to FEM
The Direct Stiffness Method Part I
IFEM Ch 2 – Slide 1
Introduction to FEM
The Direct Stiffness Method (DSM) Importance: DSM is used by all major commercial FEM codes A democratic method, works the same no matter what the element:
Bar (truss member) element, 2 nodes, 4 DOFs
Quadratic thin-plate element, 6 nodes, 12 DOFs
Tricubic brick element, 64 nodes, 192 DOFs
Obvious decision: use the truss to teach the DSM
IFEM Ch 2 – Slide 2
Introduction to FEM
Model Based Simulation (a simplification of diagrams of Chapter 1)
IDEALIZATION
Physical system
DISCRETIZATION
Mathematical model
FEM
SOLUTION
Discrete model
Discrete solution
Solution error Discretization + solution error Modeling + discretization + solution error VERIFICATION & VALIDATION
IFEM Ch 2 – Slide 3
Introduction to FEM
Idealization Process (a) Physical System
member support joint
IDEALIZATION
; ; ;
; ; ;
(b) Idealized Sytem: FEM-Discretized Mathematical Model
IFEM Ch 2 – Slide 4
Introduction to FEM
DSM: Breakdown Steps
;; ;;
;; ;;
FEM model:
Remove loads & supports:
Disassemble:
battens
Localize: Generic element:
IFEM Ch 2 – Slide 5
longerons diagonals longerons
Introduction to FEM
DSM: Assembly & Solution Steps Form elements:
battens
longerons diagonals longerons
Globalize:
Merge:
; ;
; ;
Apply loads and supports:
; ;
; ;
Solve for joint displacements:
IFEM Ch 2 – Slide 6
Introduction to FEM
The Direct Stiffness Method (DSM) Steps Starting with: Idealization Breakdown (Chapter 2)
Assembly & Solution (Chapter 3)
Disconnection
Localization Member (Element) Formation
Globalization Merge Application of BCs Solution Recovery of Derived Quantities
IFEM Ch 2 – Slide 7
Introduction to FEM
A Physical Plane Truss Typical of those used for building roofs and short span bridges. member support joint
Too complicated to do by hand. We will use a simpler one to illustrate DSM steps
IFEM Ch 2 – Slide 8
Introduction to FEM
The Example Truss: Physical and Pin-Jointed Idealization 3
Idealization as Pin-Jointed Truss and FEM Discretization
IFEM Ch 2 – Slide 9
2
; ;
; ;
1
Introduction to FEM
The Example Truss - FEM Model: Nodes, Elements and DOFs fy3 , uy3 3(10,10) E (3) = 100, A(3) = 2 2, (3) (3) L = 10 2, ρ = 3/20
fx1 , ux1 1(0,0) fy1 , uy1
45o E (2) = 50, A(2) = 1, (2) L = 10, ρ(2) = 1/5
(3)
y 45 o
x
E (1) = (1)
fx3 , ux3
(2)
(1) (1)
50, A = 2, L = 10, ρ(1) = 1/5
fx2 , ux2 2(10,0) fy2 , uy2
IFEM Ch 2 – Slide 10
Introduction to FEM
The Example Truss - FEM Model BCs: Applied Loads and Supports (Saved for Last) f y3 = 1 3
(3)
x
;; ;; 1
(2)
(1)
;; ;;
y
f x3 = 2
IFEM Ch 2 – Slide 11
2
Introduction to FEM
Master (Global) Stiffness Equations f= Linear structure: f x1 K x1x1 f y1 K y1x1 f K x2 = x2x1 f K y2 y2x1 f K x3 x3x1 f y3 K y3x1
Nodal forces
u x1 u y1 u x2 u= u y2 u x3 u y3
f x1 f y1 f x2 f y2 f x3 f y3 K x1y1 K y1y1 K x2y1 K y2y1 K x3y1 K y3y1
K x1x2 K y1x2 K x2x2 K y2x2 K x3x2 K y3x2
K x1y2 K y1y2 K x2y2 K y2y2 K x3y2 K y3y2
K x1x3 K y1x3 K x2x3 K y2x3 K x3x3 K y3x3
Master stiffness matrix or
f = Ku
IFEM Ch 2 – Slide 12
K x1y3 u x1 K y1y3 u y1 K x2y3 u x2 K y2y3 u y2 K x3y3 u x3 K y3y3 u y3
Nodal displacements
Introduction to FEM
Member (Element) Stiffness Equations _
¯f = K u¯ f¯ K¯ xi xi xi K¯ yi xi f¯yi ¯ = ¯ fx j K x j xi f¯y j K¯ y j xi
K¯ xi yi K¯ yi yi K¯ x j yi K¯ y j yi
K¯ xi x j K¯ yi x j K¯ x j x j K¯ y j x j
IFEM Ch 2 – Slide 13
K¯ xi y j u¯ xi K¯ yi y j u¯ yi K¯ x j y j u¯ x j u¯ y j K¯ y j y j
Introduction to FEM
First Two Breakdown Steps: Disconnection and Localization 3
3
Remove loads and supports, _ and disconnect pins y_ (3) x (3)
_
x (2) (3)
y
(2) _
y (2)
_ (1)
y 2
; ;
; ;
1
1
_
x (1)
x (1)
These steps are conceptual (not actually programmed as part of the DSM)
IFEM Ch 2 – Slide 14
2
Introduction to FEM
The 2-Node Truss (Bar) Element
Equivalent spring stiffness k s = EA / L _ _ fyi, u yi _ _ fxi , uxi
i
_ y
_ _ fyj, u yj _ _ fxj , uxj
_ x
j
i
j
−F
F L
IFEM Ch 2 – Slide 15
d
Introduction to FEM
Truss (Bar) Element Formulation by Mechanics of Materials (MoM) F = ks d =
EA d, L
1 f¯ xi EA 0 f¯yi = ¯ −1 fx j L 0 f¯y j from which
1 EA 0 K= −1 L 0
F = f¯x j = − f¯xi ,
d = u¯ x j − u¯ xi
Exercise 2.3 0 −1 0 u¯ xi 0 0 0 u¯ yi Element stiffness equations in local 0 1 0 u¯ x j coordinates 0 0 0 u¯ y j 0 0 0 0
−1 0 1 0
0 0 0 0
IFEM Ch 2 – Slide 16
Element stiffness matrix in local coordinates
Introduction to FEM
Where We Are So Far in the DSM we are done with this ...
Disconnection Breakdown (Chapter 2) Localization
Member (Element) Formation
we finish Chapter 2 with
Assembly & Solution (Chapter 3)
Globalization Merge Application of BCs Solution Recovery of Derived Quantities
IFEM Ch 2 – Slide 17
Introduction to FEM
Globalization: Displacement Transformation _
uyj
uyj
_
uxj _
_
y y
_
uyi
u yi
x _
uxj
ϕ
uxi
x
j
uxi
i Node displacements transform as
in which
u¯ xi = u xi c + u yi s,
u¯ yi = −u xi s + u yi cγ
u¯ x j = u x j c + u y j s,
u¯ y j = −u x j s + u y j cγ
c = cos ϕ
s = sin ϕ
IFEM Ch 2 – Slide 18
Introduction to FEM
Displacement Transformation (cont'd) In matrix form _
uxi _ u yi _ uxj _ uyj
or
c −s = 0 0
_e
u
s c 0 0
=
0 0 c −s
0 0 s c
Te u e
IFEM Ch 2 – Slide 19
uxi uyi uxj uyj Note: global on RHS, local on LHS
Introduction to FEM
Globalization: Force Transformation _
fyj
fyj
_
fxj
y
_
fyi
fyi
_
ϕ
fxi
x
i
fxi
Node forces transform as f xi c −s 0 s c 0 f yi = 0 0 c fx j 0 0 s fyj or
f
fxj
j
e
_
0 0 −s c
_ e T e
= (T ) f
IFEM Ch 2 – Slide 20
f_xi f_yi f_x j fyj
Note: global on LHS, local on RHS
Introduction to FEM
Globalization: Congruential Transformation of Element Stiffness Matrices
¯
¯
e
K ue = f
¯
e
¯
f e = ( T e) T f e
u e = T e ue
¯
e
K e = ( T e )T K T e
e e A E e K = Le
c2 sc 2 −c −sc
sc s2 −sc −s 2
−c2 −sc c2 sc
IFEM Ch 2 – Slide 21
−sc −s 2 sc s2
Exercise 2.8
Introduction to FEM
The Example Truss - FEM Model (Recalled for Convenience) fy3 , uy3 3(10,10) E (3) = 100, A(3) = 2 2, (3) (3) L = 10 2, ρ = 3/20
fx1 , ux1 1(0,0) fy1 , uy1
45o E (2) = 50, A(2) = 1, (2) L = 10, ρ(2) = 1/5
(3)
y 45 o
x
E (1) = (1)
fx3 , ux3
(2) fx2 , ux2
(1) (1)
50, A = 2, L = 10, ρ(1) = 1/5
2(10,0) fy2 , uy2
IFEM Ch 2 – Slide 22
Insert the geometric & physical properties of this model into the globalized member stiffness equations
Introduction to FEM
We Obtain the Globalized Element Stiffness Equations of the Example Truss f (1) u (1) 1 0 −1 0 x1 x1 (1) (1) f y1 u y1 0 0 0 0 = 10 (1) f (1) −1 0 1 0 u x2 x2 (1) 0 0 0 0 f y2 u (1) y2 u (2) f (2) 0 0 0 0 x2 x2 (2) (2) u y2 In the next class f y2 0 1 0 −1 f (2) = 5 0 0 0 0 u (2) we will put these to good use x3 x3 (2) (2) 0 −1 0 1 f y3 u y3 (3) f (3) 0.5 0.5 −0.5 −0.5 u x1 x1 (3) u (3) f y1 0.5 0.5 −0.5 −0.5 y1 = 20 (3) f (3) −0.5 −0.5 0.5 0.5 u x3 x3 (3) −0.5 −0.5 0.5 0.5 f y3 u (3) y3
IFEM Ch 2 – Slide 23