The Geometry of Tangent Bundles: Canonical Vector Fields

0 downloads 0 Views 2MB Size Report
Mar 13, 2013 - The semispray theory has been used in the calculus of variations on ... results of analytical mechanics to contemporary mechanical problemsΒ ...
Hindawi Publishing Corporation Geometry Volume 2013, Article ID 364301, 10 pages http://dx.doi.org/10.1155/2013/364301

Research Article The Geometry of Tangent Bundles: Canonical Vector Fields Tongzhu Li1 and Demeter Krupka1,2,3 1

Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China Department of Mathematics, Faculty of Science, The University of Ostrava, 30. dubna 22, 70103 Ostrava, Czech Republic 3 Department of Mathematics, La Trobe University, Melbourne, Bundoora, VIC 3086, Australia 2

Correspondence should be addressed to Demeter Krupka; [email protected] Received 14 December 2012; Accepted 13 March 2013 Academic Editor: Anna Fino Copyright Β© 2013 T. Li and D. Krupka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A canonical vector field on the tangent bundle is a vector field defined by an invariant coordinate construction. In this paper, a complete classification of canonical vector fields on tangent bundles, depending on vector fields defined on their bases, is obtained. It is shown that every canonical vector field is a linear combination with constant coefficients of three vector fields: the variational vector field (canonical lift), the Liouville vector field, and the vertical lift of a vector field on the base of the tangent bundle.

1. Introduction Vector fields on tangent bundles belong to basic concepts of pure and applied differential geometry, global analysis, and mathematical physics. Recent research in geometry extends the well-known correspondence of semisprays, sprays, and geodesic sprays to the classical theory of geodesics and connections (see, e.g., [1, 2]). Vector fields on tangent bundles can be considered as an underlying geometric structure for the theory of second-order differential equations [3– 7]. The semispray theory has been used in the calculus of variations on manifolds to characterize extremal curves of a variational functional as integral curves of the Hamilton or Euler-Lagrange vector fields [2, 4, 8, 9]. Sprays and semisprays also provide a natural framework for extension of classical results of analytical mechanics to contemporary mechanical problems and stimulate a broad research in the global theory of nonconservative systems, symmetries, and the constraint theory (see, e.g., [6, 10–12]). This paper is devoted to the structure theory of vector fields on the tangent bundle 𝑇𝑋 of a manifold 𝑋; our aim will be to classify all canonical vector fields on 𝑇𝑋, independent of any geometric structure or on the topology of 𝑋. Our main theorem says that every canonical vector field is a linear combination with constant coefficients of three independent vector fields: (a) a variational vector field (the natural lift of a vector field, defined on 𝑋), (b) the Liouville vector field, and

(c) the vertical lift of a vector field on 𝑋; this completes the results obtained in [13]. Another result is the method how the main theorem has been formulated and proved; the concepts we use allow generalizations and applications to analogous problems of discovering and describing canonical geometric objects. Our approach to the problem is based on the theory of jets and differential invariants, and on an observation that the coordinate transformations on 𝑋 naturally define a Lie group πΏπ‘Ÿπ‘› , where 𝑛 = dim 𝑋, the differential group, and its left action on the type fibre of any natural bundle over 𝑋 [13– 17]. The general theory gives us equations that determine a canonical vector field on 𝑇𝑋 as a differential invariant of the second differential group πΏπ‘Ÿπ‘› . The proof of our result is not straightforward; it relies on the semidirect product structure of πΏπ‘Ÿπ‘› and on the orbit reduction method that has already been applied to the classification problem of differential invariants of a linear connection [18]. The method can also be used in the canonical constructions depending on any geometric objects. Throughout this work, 𝑋 is a smooth real 𝑛-dimensional manifold, 𝑇𝑋 is the tangent bundle of 𝑋, and πœπ‘‹ : 𝑇𝑋 β†’ 𝑋 is the tangent bundle projection. The second tangent bundle of 𝑋 is the tangent bundle 𝑇𝑇𝑋 = 𝑇2 𝑋 over 𝑇𝑋 with the tangent bundle projection πœπ‘‡π‘‹ : 𝑇𝑇𝑋 β†’ 𝑇𝑋; its elements are second-order tangent vectors on 𝑋. The mapping π‘‡πœπ‘‹ is the differential π‘‡πœπ‘‹ : 𝑇𝑇𝑋 β†’ 𝑇π‘₯ of πœπ‘‹ , satisfying

2

Geometry

πœπ‘‹ βˆ˜π‘‡πœπ‘₯ = πœπ‘‹ βˆ˜πœπ‘‡π‘‹. The 1-jet prolongation of 𝑇𝑋 is denoted by 𝐽1 𝑇𝑋; elements of the set 𝐽1 𝑇𝑋 are the 1-jets 𝐽π‘₯1 πœ‰ with source π‘₯ ∈ 𝑋 and target πœ‰(π‘₯) ∈ 𝑇π‘₯ 𝑋 = 𝜏π‘₯βˆ’1 (π‘₯); the source and target jet projections are πœπ‘‹1 : 𝐽1 𝑇𝑋 β†’ 𝑋 and πœπ‘‹1,0 : 𝐽1 𝑇𝑋 β†’ 𝑇𝑋.

πœŒπ‘‹ = π‘π‘Ÿ1 .

2. Second-Order Vectors and Jets of a Vector Field In this section, we fix basic notation, used throughout this paper. If (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), is a chart on 𝑋, we denote by (πœπ‘‹βˆ’1 (π‘ˆ), Ξ¦), Ξ¦ = (π‘₯𝑖 , π‘₯Μ‡ 𝑖 ), the associated chart on the tangent bundle 𝑇𝑋; the associated chart on 𝑇2 𝑋 is denoted βˆ’1 βˆ’1 ΜƒΜ‡ 𝑖 ). The tangent bundle ̃𝑖, π‘₯ (πœπ‘‹ (π‘ˆ)), Ξ¨), Ξ¨ = (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , π‘₯ by (πœπ‘‡π‘‹ projection πœπ‘‹ has the chart expression (π‘₯𝑖 , π‘₯Μ‡ 𝑖 ) β†’ (π‘₯𝑖 ), and ΜƒΜ‡ 𝑖 ) β†’ (π‘₯𝑖 , π‘₯Μ‡ 𝑖 ). The tangent ̃𝑖, π‘₯ πœπ‘‡π‘‹ is expressed by (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , π‘₯ ΜƒΜ‡ 𝑖 ) β†’ ̃𝑖, π‘₯ mapping π‘‡πœπ‘‹ is expressed in coordinates as (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , π‘₯ Μƒ 𝑖 ). (π‘₯𝑖 , π‘₯ In the following two lemmas, we recall standard transformation formulas, needed in proofs. Lemma 1. Let a second-order tangent vector Ξ ∈ π‘‡πœ 𝑇𝑋 be expressed in two charts (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), and (𝑉, πœ“), πœ“ = (𝑦𝑖 ), as Ξ = Ξžπ‘˜ (

πœ• πœ• πœ• πœ• π‘˜ 𝑙 ) + ΞžΜ‡ ( π‘˜ ) = Ξ˜π‘™ ( 𝑙 ) + Ξ˜Μ‡ ( 𝑙 ) . πœ•π‘₯π‘˜ 𝜁 πœ•π‘¦ 𝜁 πœ•π‘₯Μ‡ 𝜁 πœ•π‘¦Μ‡ 𝜁 (1)

Then, Ξ˜π‘™ = (

πœ•π‘¦π‘™ ) Ξžπ‘˜ , πœ•π‘₯π‘˜ πœ‘(π‘₯)

πœ• 2 𝑦𝑙 πœ•π‘¦π‘™ π‘˜ Ξ˜Μ‡ = ( 𝑝 π‘˜ ) π‘₯Μ‡ 𝑝 (𝜁) Ξžπ‘˜ + ( π‘˜ ) ΞžΜ‡ . πœ•π‘₯ πœ•π‘₯ πœ‘(π‘₯) πœ•π‘₯ πœ‘(π‘₯)

(2)

𝑙

The chart on 𝐽1 𝑇𝑋, associated with the chart (π‘ˆ, πœ‘), πœ‘ = (π‘₯ ), on 𝑋 is denoted by ((𝜏π‘₯1 )βˆ’1 (π‘ˆ), Ξ¦1 ), Ξ¦1 = (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , π‘₯Μ‡ 𝑖𝑗 ). The coordinates of a 1-jet 𝐽π‘₯1 πœ‰ are π‘₯𝑖 (𝐽π‘₯1 πœ‰) = π‘₯𝑖 (π‘₯), π‘₯Μ‡ 𝑖 (𝐽π‘₯1 πœ‰) = π‘₯Μ‡ 𝑖 (πœ‰(π‘₯)), and π‘₯Μ‡ 𝑖𝑗 (𝐽π‘₯1 πœ‰) = 𝐷𝑗 (π‘₯Μ‡ 𝑖 πœ‰πœ‘βˆ’1 )(πœ‘(π‘₯)). 𝑖

Lemma 2. For any two charts (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), and (𝑉, πœ“), πœ“ = (𝑦𝑖 ), on 𝑋, such that π‘ˆ ∩ 𝑉 =ΜΈ 0, the transformation equations on (πœπ‘‹1 )βˆ’1 (π‘ˆ) ∩ (πœπ‘‹1 )βˆ’1 (π‘ˆ) are 𝑦̇ 𝑝 =

πœ•π‘¦π‘ π‘š π‘₯Μ‡ , πœ•π‘₯π‘š

𝑦̇ π‘π‘ž = (

πœ•2 𝑦𝑝 π‘š πœ•π‘¦π‘ π‘š πœ•π‘₯𝑠 π‘₯Μ‡ + π‘š π‘₯Μ‡ 𝑠 ) π‘ž . (3) πœ•π‘₯𝑠 πœ•π‘₯π‘š πœ•π‘₯ πœ•π‘¦

We need the pullback fibration πœπ‘‹βˆ— 𝐽1 𝑇𝑋 = {(𝜁, 𝐽π‘₯1 πœ‰) ∈ 𝑇𝑋 Γ— 𝐽1 𝑇𝑋|πœπ‘‹ (𝜁) = π‘₯} over 𝑇𝑋. We have the commutative diagram βˆ— 1 πœπ‘‹ 𝐽 𝑇𝑋

𝐽1 𝑇𝑋 1 πœπ‘‹

𝑇𝑋

πœπ‘‹

𝑋

in which the left vertical arrow is the restriction of the first Cartesian projection π‘π‘Ÿ1 : 𝑇𝑋 Γ— 𝐽1 𝑇𝑋 β†’ 𝑇𝑋 and the upper horizontal arrow is the restriction of the second Cartesian projection π‘π‘Ÿ2 : 𝑇𝑋 Γ— 𝐽1 𝑇𝑋 β†’ 𝐽1 𝑇𝑋. We denote

(4)

(5)

Any chart (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), on 𝑋 induces a chart on the pullback manifold πœπ‘‹βˆ— 𝐽1 𝑇𝑋. Denoting by π‘₯𝑖 (𝜁) = π‘₯𝑖 (π‘₯), π‘₯Μ‡ 𝑖 (𝜁) = πœπ‘– the coordinates of a vector 𝜁 ∈ πœπ‘‹βˆ’1 (π‘ˆ) at π‘₯ ∈ π‘ˆ and by π‘₯𝑖 (𝐽π‘₯1 πœ‰) = π‘₯𝑖 (π‘₯), π‘₯Μ‡ 𝑖 (𝐽π‘₯1 πœ‰) = πœ‰π‘– , π‘₯Μ‡ 𝑖𝑗 (𝐽π‘₯1 πœ‰) = πœ‰π‘—π‘– the coordinates of a 1-jet 𝐽π‘₯1 πœ‰ ∈ (πœπ‘‹1 )βˆ’1 (π‘ˆ), then the induced chart on πœπ‘‹βˆ— 𝐽1 𝑇𝑋, Μƒ 1 ), Ξ¦ Μƒ 1 = (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ 𝑖 ), is defined by (𝜌π‘₯βˆ’1 (πœπ‘‹βˆ’1 (π‘ˆ)), Ξ¦ 𝑗 π‘₯𝑖 (𝜁, 𝐽π‘₯1 πœ‰) = π‘₯𝑖 (π‘₯) , 𝑧̇ 𝑖 (𝜁, 𝐽π‘₯1 πœ‰) = πœ‰π‘– ,

π‘₯Μ‡ 𝑖 (𝜁, 𝐽π‘₯1 πœ‰) = πœπ‘– , 𝑧̇ 𝑖𝑗 (𝜁, 𝐽π‘₯1 πœ‰) = πœ‰π‘—π‘– .

(6)

In these coordinates, πœŒπ‘‹ is the mapping (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ 𝑖𝑗 ) β†’ (π‘₯𝑖 , π‘₯Μ‡ 𝑖 ) and the second Cartesian projection is (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ 𝑖𝑗 ) β†’ (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖𝑗 ).

3. Differential Groups and Differential Invariants Recall that for any positive integer π‘Ÿ, the π‘Ÿth differential group πΏπ‘Ÿπ‘› is the group of invertible π‘Ÿ-jets with source and target at the origin 0, endowed with its natural Lie group structure; the group multiplication in πΏπ‘Ÿπ‘› is the jet composition πΏπ‘Ÿπ‘› Γ— πΏπ‘Ÿπ‘› βˆ‹ 𝐽0π‘Ÿ 𝛼 ∘ 𝐽0π‘Ÿ 𝛽 = 𝐽0π‘Ÿ (𝛼 ∘ 𝛽) ∈ πΏπ‘Ÿπ‘› . The first differential group 𝐿1𝑛 is just the group 𝐺𝐿 𝑛 (R). For all π‘Ÿ β‰₯ 𝑠, we denote by πœ‹π‘Ÿ,𝑠 : πΏπ‘Ÿπ‘› β†’ 𝐿𝑠𝑛 the canonical jet projection and by πœ„1,π‘Ÿ : 𝐿1𝑛 β†’ πΏπ‘Ÿπ‘› the canonical injective Lie group morphism. The normal subgroup πΎπ‘›π‘Ÿ = πΎπ‘’π‘Ÿπœ‹π‘Ÿ,1 of πΏπ‘Ÿπ‘› is nilpotent, and πΏπ‘Ÿπ‘› is the interior semidirect product of πœ„1,π‘Ÿ (𝐿1𝑛 ) and πΎπ‘›π‘Ÿ [13, 17]; we denote πΏπ‘Ÿπ‘› = 𝐿1𝑛 Γ— 𝑠 πΎπ‘›π‘Ÿ . The first canonical coordinates on πΏπ‘Ÿπ‘› are the functions 𝑖 π‘Žπ‘—1 , π‘Žπ‘—π‘– 1 𝑗2 , . . . , π‘Žπ‘—π‘– 1 𝑗2 β‹…β‹…β‹…π‘—π‘Ÿ , where 1 ≀ 𝑗1 ≀ 𝑗2 ≀ β‹… β‹… β‹… ≀ π‘—π‘˜ ≀ 𝑛, π‘˜ = 1, 2, . . . , π‘Ÿ, defined as follows. If 𝐽0π‘Ÿ 𝛼 ∈ πΏπ‘Ÿπ‘› is an π‘Ÿjet and 𝛼 = (𝛼𝑖 ) its representative, then π‘Žπ‘—π‘– 1 𝑗2 β‹…β‹…β‹…π‘—π‘˜ (𝐽0π‘Ÿ 𝛼) = 𝐷𝑗1 𝐷𝑗2 β‹… β‹… β‹… π·π‘—π‘˜ 𝛼𝑖 (0). Similarly, the formula 𝑏𝑗𝑖1 𝑗2 β‹…β‹…β‹…π‘—π‘˜ (𝐽0π‘Ÿ 𝛼) = π‘Žπ‘—π‘– 1 𝑗2 β‹…β‹…β‹…π‘—π‘˜ (𝐽0π‘Ÿ π›Όβˆ’1 ) defines the second canonical coordinates 𝑏𝑗𝑖1 , 𝑏𝑗𝑖1 𝑗2 , . . . , 𝑏𝑗𝑖1 𝑗2 β‹…β‹…β‹…π‘—π‘Ÿ ; clearly, these coordinates satisfy 𝑗

π‘Žπ‘—π‘– π‘π‘˜ = π›Ώπ‘˜π‘– .

(7)

Equations of the subgroup πΎπ‘›π‘Ÿ are π‘Žπ‘—π‘– = 𝛿𝑗𝑖 , and equations of the subgroup πœ„1,π‘Ÿ (𝐿1𝑛 ) are π‘Žπ‘—π‘– 1 𝑗2 = 0,. . ., π‘Žπ‘—π‘– 1 𝑗2 β‹…β‹…β‹…π‘—π‘Ÿ = 0. By a differential invariant, we mean an πΏπ‘Ÿπ‘› -equivariant mapping 𝑓 : 𝑃 β†’ 𝑄 of left πΏπ‘Ÿπ‘› -manifolds [13]. Given the actions of πΏπ‘Ÿπ‘› on 𝑃 and 𝑄, we get the equation for the differential invariant 𝑓: 𝑓 (𝐽0π‘Ÿ 𝛼 β‹… 𝑝) = 𝐽0π‘Ÿ 𝛼 β‹… 𝑓 (𝑝) ,

(8)

Geometry

3

where 𝑝 ∈ 𝑃 and 𝐽0π‘Ÿ 𝛼 ∈ πΏπ‘Ÿπ‘› . Equation (8) splits to an equivalent system: 𝑓 (𝐽0π‘Ÿ 𝛼

β‹… 𝑝) =

𝐽0π‘Ÿ 𝛼

𝑓 (𝐽0π‘Ÿ 𝛽

β‹… 𝑓 (𝑝) ,

β‹… 𝑝) =

𝐽0π‘Ÿ 𝛽

β‹… 𝑓 (𝑝) , (9)

where 𝐽0π‘Ÿ 𝛼 ∈ 𝐿1𝑛 and 𝐽0π‘Ÿ 𝛽 ∈ πΎπ‘›π‘Ÿ (the orbit reduction method [18]). The problem we consider in this paper reduces to solving (9) for some specific left 𝐿2𝑛 -manifolds 𝑃 and 𝑄. In our case, the orbit reduction method simplifies (8) and allows us to obtain its complete solution.

(1) Ξ is a canonical vector field. (2) For any points π‘₯, 𝑦 ∈ 𝑋, any charts (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), at π‘₯ and (𝑉, πœ“), πœ“ = (𝑦𝑖 ), at 𝑦, and any diffeomorphism 𝛼 : π‘ˆ β†’ 𝑉 such that 𝛼(π‘₯) = 𝑦, 𝑖 π‘˜ Ξžπ‘™(𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š )

= π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) ,

π‘˜ 𝑙 𝑗 π‘˜ 𝑖 𝑖 = π‘Žπ‘—π‘˜ 𝜁 Ξ(π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘š ) + π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘š ),

4. Canonical Vector Fields on Tangent Bundles Any diffeomorphism 𝛼 : π‘ˆ β†’ 𝑋, defined on an open set π‘ˆ in 𝑋, induces the corresponding lifted diffeomorphisms 𝑇𝛼 : π‘‡π‘ˆ β†’ 𝑇𝑋, 𝐽1 𝑇𝛼 : 𝐽1 π‘‡π‘ˆ β†’ 𝐽1 𝑇𝑋, and (𝑇𝛼, 𝐽1 𝑇𝛼) : πœπ‘‹βˆ— 𝐽1 π‘‡π‘ˆ β†’ πœπ‘‹βˆ— 𝐽1 𝑇𝑋. By a canonical vector field on 𝑇𝑋, we mean a morphism Ξ : πœπ‘‹βˆ— 𝐽1 𝑇𝑋 β†’ 𝑇2 𝑋 such that πœπ‘‡π‘‹ ∘ Ξ = πœŒπ‘‹ ,

(17)

𝑙 𝑖 π‘˜ ΞžΜ‡ (𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š )

where π‘Žπ‘˜π‘™ = (

πœ•(𝑦𝑙 π›Όπœ‘βˆ’1 ) ) , πœ•π‘₯π‘˜ πœ‘(π‘₯) π‘π‘—π‘˜

(10)

𝑙 π‘Žπ‘—π‘˜ =(

πœ•2 (𝑦𝑙 π›Όπœ‘βˆ’1 ) ) , πœ•π‘₯𝑗 πœ•π‘₯π‘˜ πœ‘(π‘₯)

πœ•(π‘₯π‘˜ π›Όβˆ’1 πœ“βˆ’1 ) =( ) . πœ•π‘¦π‘— πœ“(π‘₯)

(18)

and for all diffeomorphisms 𝛼 : π‘ˆ β†’ 𝑋 of 𝑋, Ξ ∘ (𝑇𝛼, 𝐽1 𝑇𝛼) = 𝑇 (𝑇𝛼) ∘ Ξ.

(11)

Condition (10) means that the diagram βˆ— 1 𝐽 𝑇𝑋 πœπ‘‹

Ξ

𝑦̇ 𝑖 (𝑇π‘₯ 𝛼 β‹… 𝜁) = π‘Žπ‘˜π‘– πœπ‘˜ ,

𝑇2 𝑋

πœŒπ‘‹

πœπ‘‡π‘‹

𝑇𝑋

Proof. Consider condition (14). With the abbreviations (18), 1 the coordinates of the vector 𝑇π‘₯ 𝛼 β‹… 𝜁 and the 1-jet 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ βˆ’1 𝛼 ) are

id 𝑇𝑋

1 (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) = π‘Žπ‘˜π‘– πœ‰π‘˜ , 𝑦̇ 𝑖 (𝐽𝛼(π‘₯)

(12)

𝑇𝑋

1 𝑖 𝑙 π‘˜ (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) = π‘Žπ‘˜π‘™ 𝑏𝑗 πœ‰ + π‘Žπ‘˜π‘– 𝑏𝑗𝑙 πœ‰π‘™π‘˜ . 𝑦̇ 𝑖𝑗 (𝐽𝛼(π‘₯)

commutes or, which is the same, for all (𝜁, 𝐽π‘₯1 πœ‰) ∈ πœπ‘‹βˆ— 𝐽1 𝑇𝑋, Ξ(𝜁, 𝐽π‘₯1 πœ‰) is a second-order vector on 𝑋 at the point 𝜁 ∈ 𝑇𝑋, πœπ‘‡π‘‹ (Ξ (𝜁, 𝐽π‘₯1 πœ‰)) = 𝜁.

The coordinates of the vector π‘‡πœ 𝑇𝛼 β‹… Ξ(𝜁, 𝐽π‘₯1 πœ‰) are determined by

(13)

π‘‡πœ 𝑇𝛼 β‹… Ξ (𝜁, 𝐽π‘₯1 πœ‰)

1 Since 𝐽1 𝑇𝛼(𝐽π‘₯1 πœ‰) = 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 ), condition (11) can also be written as 1 (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) = π‘‡πœ 𝑇𝛼 β‹… Ξ (𝜁, 𝐽π‘₯1 πœ‰) . Ξ (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯)

= π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) (

(14)

πœ• πœ• π‘˜ ) + ΞžΜ‡ (π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) ( π‘˜ ) . π‘˜ πœ•π‘₯ 𝜁 πœ•π‘₯Μ‡ 𝜁 (15)

Then for fixed π‘₯, the components are functions of the coordinates πœπ‘– , πœ‰π‘– , and πœ‰π‘™π‘– ; that is, Ξžπ‘˜(π‘ˆ,πœ‘)

=

Ξžπ‘˜(π‘ˆ,πœ‘)

𝑖

(𝜁 , πœ‰

𝑖

, πœ‰π‘™π‘– ) ,

πœπ‘‹βˆ— 𝐽1 𝑇𝑋

π‘˜ π‘˜ ΞžΜ‡ (π‘ˆ,πœ‘) = ΞžΜ‡ (π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘™π‘– ) . (16) 2

β†’ 𝑇 𝑋 be a morphism over the Theorem 3. Let Ξ : identity id𝑇𝑋 . The following two conditions are equivalent:

πœ• ) πœ•π‘¦π‘™ 𝑇π‘₯ π›Όβ‹…πœ (20)

𝑙 𝑗 + (π‘Žπ‘˜π‘— π‘₯Μ‡ (𝜁) Ξžπ‘˜(π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰)

We express conditions (13) and (14) in coordinates. We write in a chart (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), Ξ (𝜁, 𝐽π‘₯1 πœ‰) = Ξžπ‘˜(π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) (

(19)

π‘˜

+π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰)) (

πœ• ) . πœ•π‘¦Μ‡ 𝑙 𝑇π‘₯ π›Όβ‹…πœ

Writing 1 Ξ (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) 1 = Ξžπ‘™(𝑉,πœ“) (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) (

𝑙

πœ• ) πœ•π‘¦π‘™ 𝑇π‘₯ π›Όβ‹…πœ

1 + ΞžΜ‡ (𝑉,πœ“) (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) (

πœ• ) , πœ•π‘¦Μ‡ 𝑙 𝑇π‘₯ π›Όβ‹…πœ (21)

4

Geometry

we can express condition (14), with help of (19) and (20), as 𝑖 π‘π‘—π‘š π‘₯Μ‡ π‘˜ (𝐽π‘₯1 πœ‰)+π‘Žπ‘˜π‘– π‘π‘—π‘š π‘₯Μ‡ π‘˜π‘š (𝐽π‘₯1 πœ‰)) Ξžπ‘™(𝑉,πœ“) (π‘Žπ‘˜π‘– π‘₯Μ‡ π‘˜ (𝜁) , π‘Žπ‘˜π‘– π‘₯Μ‡ π‘˜ (𝐽π‘₯1 πœ‰) , π‘Žπ‘˜π‘š

= π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) , 𝑙 𝑖 ΞžΜ‡ (𝑉,πœ“) (π‘Žπ‘˜π‘– π‘₯Μ‡ π‘˜ (𝜁) , π‘Žπ‘˜π‘– π‘₯Μ‡ π‘˜ (𝐽π‘₯1 πœ‰) , π‘Žπ‘˜π‘š π‘π‘—π‘š π‘₯Μ‡ π‘˜ (𝐽π‘₯1 πœ‰)

π‘Žπ‘˜π‘™ =

+π‘Žπ‘˜π‘– π‘π‘—π‘š π‘₯Μ‡ π‘˜π‘š (𝐽π‘₯1 πœ‰) ) =

𝑙 𝑗 π‘Žπ‘—π‘˜ π‘₯Μ‡

(𝜁) Ξžπ‘˜(π‘ˆ,πœ‘)

(𝜁, 𝐽π‘₯1 πœ‰)

+

π‘˜ π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘)

(𝜁, 𝐽π‘₯1 πœ‰) .

π‘π‘Ÿπ‘ (22)

In the well-known sense, the canonical vector fields are completely determined by certain differential invariants, that 2 is, equivariant mappings from the type fibre R𝑛 Γ— R𝑛 Γ— R𝑛 of πœπ‘‹βˆ— 𝐽1 𝑇𝑋 into the type fibre R𝑛 Γ— R𝑛 Γ— R𝑛 of 𝑇2 𝑋 over 𝑋 with respect to the canonical actions of the differential group 𝐿2𝑛 , induced by diffeomorphisms of 𝑋. We can characterize these actions explicitly in terms of the first and second canonical 𝑖 and π‘π‘Ÿπ‘ , π‘π‘Ÿπ‘ π‘ on the differential group 𝐿2𝑛 . coordinates π‘Žπ‘—π‘– , π‘Žπ‘—π‘˜ Note that π‘Žπ‘π‘™ π‘π‘Ÿπ‘ If 𝐴 =

𝑖 (π‘Žπ‘—π‘– , π‘Žπ‘—π‘˜ )

π›Ώπ‘Ÿπ‘™ ,

=

𝑙 π‘Žπ‘π‘ž π‘π‘Ÿπ‘

+

π‘Žπ‘π‘™ π‘Žπ‘žπ‘  π‘π‘Ÿπ‘ π‘

= 0.

(23)

is an element of the differential group 𝑛

𝑛

𝐿2𝑛 , 𝑛2

denote by 𝛼𝐴 (resp., 𝛽𝐴 ) the transformation of R Γ— R Γ— R (resp., R𝑛 Γ— R𝑛 Γ— R𝑛 ), defined by 𝐴. For any points (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) ∈ 2 𝑖 R𝑛 Γ— R𝑛 Γ— R𝑛 and (𝑍𝑖 , Ξžπ‘– , ΞžΜ‡ ) ∈ R𝑛 Γ— R𝑛 Γ— R𝑛 , we denote 𝑖

𝑖

𝑖

𝑖

𝑖

𝑖

(24)

The following lemma defines the points (24) explicitly. 𝑖 ) be an element of the differential Lemma 4. Let 𝐴 = (π‘Žπ‘—π‘– , π‘Žπ‘—π‘˜ group 𝐿2𝑛 . 2

(a) The canonical group action of 𝐿2𝑛 on R𝑛 Γ— R𝑛 Γ— R𝑛 is given by the equations: 𝑖

𝑖

πœ‰ = π‘Žπ‘˜π‘– πœ‰π‘˜ ,

𝑖

𝑖 π‘˜ πœ‰π‘— = π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š .

(25)

(b) The canonical group action of 𝐿2𝑛 on R𝑛 Γ— R𝑛 Γ— R𝑛 is given by the equations: 𝑖

π‘Žπ‘˜π‘– π‘π‘˜ ,

𝑍 = 𝑖

πœ•π‘₯𝑝 = π‘Ÿ, πœ•π‘¦

𝑙 π‘Žπ‘˜π‘ =

π‘π‘Ÿπ‘ π‘

πœ• 2 𝑦𝑙 , πœ•π‘₯𝑝 πœ•π‘₯π‘˜

πœ•2 π‘₯𝑝 = π‘Ÿ 𝑠. πœ•π‘¦ πœ•π‘¦

(27)

Since a canonical vector field is always a morphism over the identity mapping id𝑇𝑋 , the corresponding differential 2 invariant 𝐹 : R𝑛 Γ— R𝑛 Γ— R𝑛 β†’ R𝑛 Γ— R𝑛 Γ— R𝑛 has an expression 𝑗 (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) β†’ 𝐹(πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) = (πœπ‘– , 𝐹𝑗 (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ), 𝐹̇ (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– )); we 𝑖 denote 𝐹 = (𝐹𝑖 , 𝐹̇ ). 𝑖 Theorem 5. A mapping 𝐹 = (𝐹𝑖 , 𝐹̇ ) is a differential invariant if and only if 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š π‘π‘ž πœ‰ + π‘Žπ‘š π‘π‘ž πœ‰π‘  ) 𝐹𝑖 (π‘Žπ‘ π‘ πœπ‘  , π‘Žπ‘ π‘ πœ‰π‘  , π‘Žπ‘ π‘š

= π‘Žπ‘˜π‘– πΉπ‘˜ (πœπ‘  , πœ‰π‘  , πœ‰π‘ π‘š ) , 𝑖 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š 𝐹̇ (π‘Žπ‘ π‘ πœπ‘  , π‘Žπ‘ π‘ πœ‰π‘  , π‘Žπ‘ π‘š π‘π‘ž πœ‰ + π‘Žπ‘š π‘π‘ž πœ‰π‘  )

(28)

π‘˜ 𝑖 𝑝 π‘˜ 𝜁 𝐹 (πœπ‘  , πœ‰π‘  , πœ‰π‘ π‘š ) + π‘Žπ‘˜π‘– 𝐹̇ (πœπ‘  , πœ‰π‘  , πœ‰π‘ π‘š ) , = π‘Žπ‘˜π‘ 2

(𝑍 , Ξ , ΞžΜ‡ ) = 𝛽𝐴 (𝑍𝑖 , Ξžπ‘– , ΞžΜ‡ ) .

𝜁 = π‘Žπ‘˜π‘– πœπ‘˜ ,

πœ•π‘¦π‘™ , πœ•π‘₯π‘˜

𝑖 ) ∈ 𝐿2𝑛 . for all (πœπ‘  , πœ‰π‘  , πœ‰π‘ π‘š ) ∈ R𝑛 Γ— R𝑛 Γ— R𝑛 and (π‘Žπ‘—π‘– , π‘Žπ‘—π‘˜

(𝜁 , πœ‰ , πœ‰π‘— ) = 𝛼𝐴 (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) , 𝑖

Proof. The left 𝐿2𝑛 -actions on the type fibres of πœπ‘‹βˆ— 𝐽1 𝑇𝑋 and 𝑇2 𝑋 can be derived from the general theory of differential groups and differential invariants [13]. Note that these 𝐿2𝑛 actions can also be defined by transformation properties of components of jets and tangent vectors; compare with Lemmas 1 and 2 with the substitution

𝑖

Ξ =

π‘Žπ‘˜π‘– Ξžπ‘˜ ,

π‘˜ 𝑖 𝑗 π‘˜ ΞžΜ‡ = π‘Žπ‘—π‘˜ 𝜁 Ξ + π‘Žπ‘˜π‘– ΞžΜ‡ .

Proof. Equations (28) are direct consequences of (25) and (26). Remark 6. Note that our definition of the canonical vector field differs from the lifting of a vector field from a base manifold to its tangent bundle, which is defined by means of the lifting of diffeomorphisms and 1-parameter groups of diffeomorphisms to the tangent bundle [2, 9]. Remark 7. We can specify Theorem 3 to diffeomorphisms 𝛼, preserving a given point π‘₯ ∈ 𝑋, such that 𝛼(π‘₯) = π‘₯, and to charts (π‘ˆ, πœ‘) and (𝑉, πœ“) such that (π‘ˆ, πœ‘) = (𝑉, πœ“) π‘˜ and πœ‘(π‘₯) = 0. Then, the components Ξžπ‘™(π‘ˆ,πœ‘) and ΞžΜ‡ (π‘ˆ,πœ‘) of a canonical vector field Ξ satisfy 𝑖 π‘˜ Ξžπ‘™(π‘ˆ,πœ‘) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š ) π‘˜ ), = π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (πœπ‘˜ , πœ‰π‘˜ , πœ‰π‘š 𝑙 𝑖 π‘˜ ΞžΜ‡ (π‘ˆ,πœ‘) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š )

(26)

π‘˜

𝑙 𝑗 π‘˜ π‘˜ π‘˜ = π‘Žπ‘—π‘˜ 𝜁 Ξ(π‘ˆ,πœ‘) (πœπ‘˜ , πœ‰π‘˜ , πœ‰π‘š ) + π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘) (πœπ‘˜ , πœ‰π‘˜ , πœ‰π‘š ),

(29)

Geometry

5 Properties of 𝐹𝑖 are completely determined by the subgroup 𝐿1𝑛 of 𝐿2𝑛 . If π‘Žπ‘ π‘ = πœ†π›Ώπ‘ π‘ , πœ† =ΜΈ 0, then by (38) 𝐹𝑖 satisfies the positive homogeneity condition

where π‘Žπ‘˜π‘™ = (

πœ•(π‘₯𝑙 π›Όπœ‘βˆ’1 ) ), πœ•π‘₯π‘˜ 0

𝑙 π‘Žπ‘—π‘˜ =(

πœ•2 (π‘₯𝑙 π›Όπœ‘βˆ’1 ) ), πœ•π‘₯𝑗 πœ•π‘₯π‘˜ 0

πœ•(π‘₯π‘˜ π›Όβˆ’1 πœ“βˆ’1 ) π‘π‘—π‘˜ = ( ). πœ•π‘₯𝑗 0

5. Canonical Vector Fields: Classification 𝑖 We find all solutions 𝐹 = (𝐹𝑖 , 𝐹̇ ) of the equations for differential invariants, associated with canonical vector fields Ξ : πœπ‘‹βˆ— 𝐽1 𝑇𝑋 β†’ 𝑇2 𝑋 (Theorem 5). These equations can be written in coordinates as 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š π‘π‘ž 𝑧̇ + π‘Žπ‘š π‘π‘ž 𝑧̇ 𝑠 ) 𝐹𝑖 (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘ π‘š

(31)

= π‘Žπ‘˜π‘– πΉπ‘˜ (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝑠 ), 𝑖 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š 𝐹̇ (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘ π‘š π‘π‘ž 𝑧̇ + π‘Žπ‘š π‘π‘ž 𝑧̇ 𝑠 )

=

𝑖 π‘Žπ‘˜π‘ π‘₯Μ‡ 𝑝 πΉπ‘˜

𝑠

𝑠

(π‘₯Μ‡ , 𝑧̇

, 𝑧̇ π‘š 𝑠 )

+

π‘˜ π‘Žπ‘˜π‘– 𝐹̇

𝑠

𝑠

(π‘₯Μ‡ , 𝑧̇

, 𝑧̇ π‘š 𝑠 ).

𝐹𝑖 (πœ†π‘₯Μ‡ 𝑗 , πœ†π‘§Μ‡ π‘˜ ) = πœ†πΉπ‘– (π‘₯Μ‡ 𝑗 , 𝑧̇ π‘˜ ) .

(30)

(39)

We suppose, however, that the functions 𝐹𝑖 are defined at the origin π‘₯Μ‡ 𝑝 = 0, 𝑧̇ 𝑝 = 0; then it is easily seen that (39) also holds for πœ† = 0. Indeed, in this case, we have 𝐹𝑖 (πœ† β‹… 0, πœ† β‹… 0) = 𝐹𝑖 (0, 0) = πœ†πΉπ‘– (0, 0) for all πœ† =ΜΈ 0, hence 𝐹𝑖 (0, 0) = 0. On the other hand, the points πœ†π‘₯Μ‡ 𝑗 and πœ†π‘§Μ‡ π‘˜ are always defined for πœ† = 0; then 𝐹𝑖 (0 β‹… π‘₯Μ‡ 𝑗 , 0 β‹… 𝑧̇ π‘˜ ) = 𝐹𝑖 (0, 0) = 0 = 0 β‹… 𝐹𝑖 (π‘₯Μ‡ 𝑗 , 𝑧̇ π‘˜ ), which proves (39) for πœ† = 0. Then, we have from (28) 𝐷1,π‘ž 𝐹𝑖 (πœ†π‘₯Μ‡ 𝑙 , πœ†π‘§Μ‡ 𝑙 )π‘₯Μ‡ π‘ž + 𝐷2,π‘ž 𝐹𝑖 (πœ†π‘₯Μ‡ 𝑙 , πœ†π‘§Μ‡ 𝑙 )𝑧̇ π‘ž = 𝐹𝑖 (π‘₯Μ‡ 𝑙 , 𝑧̇ 𝑙 ) by differentiation with respect to πœ†; we see that the expression on the left does not depend on πœ†. For πœ† = 0, we get 𝐷1,π‘ž 𝐹𝑖 (0, 0)π‘₯Μ‡ π‘ž +𝐷2,π‘ž 𝐹𝑖 (0, 0)𝑧̇ π‘ž = 𝐹𝑖 (π‘₯Μ‡ 𝑙 , 𝑧̇ 𝑙 ), showing that 𝐹𝑖 is linear in π‘₯Μ‡ π‘ž and 𝑧̇ π‘ž ; that is, 𝐹𝑖 (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) = π‘†π‘žπ‘– π‘₯Μ‡ π‘ž + π‘‡π‘žπ‘– 𝑧̇ 𝑖 .

(32)

(40)

Substituting now into (38), we get

The following lemma solves (31). Lemma 8. The functions 𝐹𝑖 satisfy condition (31) if and only if

π‘†π‘žπ‘– π‘Žπ‘ π‘ž π‘₯Μ‡ 𝑠 + π‘‡π‘žπ‘– π‘Žπ‘ π‘ž 𝑧̇ 𝑠 = π‘Žπ‘˜π‘– (π‘†π‘žπ‘˜ π‘₯Μ‡ π‘ž + π‘‡π‘žπ‘˜ 𝑧̇ π‘ž ) .

(41)

π‘ž

(33)

That is, π‘†π‘žπ‘– π‘Žπ‘ π‘ž = π‘Žπ‘žπ‘– π‘†π‘ π‘ž and π‘‡π‘žπ‘– π‘Žπ‘ π‘ž = π‘Žπ‘žπ‘– π‘‡π‘ π‘ž . Thus, π‘†π‘žπ‘– π‘Žπ‘™ 𝛿𝑠𝑙 = 𝛿𝑙𝑖 π‘Žπ‘žπ‘™ π‘†π‘ π‘ž ,

Proof. (1) First we consider (31) for the group elements, belonging to the subgroup 𝐾𝑛2 of 𝐿2𝑛 ; equations of 𝐾𝑛2 are

Analogously, π‘›π‘‡π‘žπ‘– = π›Ώπ‘žπ‘– 𝑇𝑙𝑙 . These expressions together with (40) prove formula (33). (3) If condition (33) is satisfied, then we get (31) by immediate substitution.

𝑗

𝐹𝑖 (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 , 𝑧̇ π‘˜ ) = 𝐴π‘₯Μ‡ 𝑖 + 𝐡𝑧̇ 𝑖 , for some constants 𝐴, 𝐡 ∈ R.

π‘Žπ‘ π‘ = 𝛿𝑠𝑝 ,

(34)

𝑝 π‘š 𝐹𝑖 (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 , π‘Žπ‘žπ‘š 𝑧̇ + 𝑧̇ π‘π‘ž ) = 𝐹𝑖 (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝑠 ).

(35)

and we get the system

This equation is obviously satisfied at all points where 𝑧̇ π‘š = 0. On the other hand, suppose that there exists at least one index 𝑗 such that 𝑧̇ 𝑗 =ΜΈ 0; then to every point 𝑦̇ π‘π‘ž one can find the 𝑝 𝑝 π‘š group parameters π‘Žπ‘žπ‘š 𝑧̇ + 𝑧̇ π‘π‘ž = 𝑦̇ π‘π‘ž . Indeed, if, such that π‘Žπ‘žπ‘š for example, 𝑧̇ 1 =ΜΈ 0, we set 𝑝

π‘Žπ‘ž,1 =

𝑦̇ π‘π‘ž βˆ’ 𝑧̇ π‘π‘ž 𝑧̇ 1

𝑝

𝑝

𝑝 π‘Žπ‘ž,2 , π‘Žπ‘ž,3 , . . . , π‘Žπ‘ž,𝑛 = 0.

,

(36)

hence π‘†π‘žπ‘– 𝛿𝑠𝑙 = π›Ώπ‘žπ‘– 𝑆𝑠𝑙 and by the trace operation, π‘›π‘†π‘žπ‘– = π›Ώπ‘žπ‘– 𝑆𝑙𝑙 .

Now, we wish to solve (32). In view of Lemma 8, these equations are of the form 𝑖 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š π‘π‘ž 𝑧̇ + π‘Žπ‘š π‘π‘ž 𝑧̇ 𝑠 ) 𝐹̇ (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘ π‘š π‘˜

𝑖 = π‘Žπ‘˜π‘ π‘₯Μ‡ 𝑝 (𝐴π‘₯Μ‡ π‘˜ + 𝐡𝑧̇ π‘˜ ) + π‘Žπ‘˜π‘– 𝐹̇ (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝑠 ).

We prove separately the following lemma. Lemma 9. The following two conditions are equivalent: π‘–π‘ž

𝑝 π‘ π‘˜ = π‘Žπ‘˜π‘™ π‘Žπ‘ π‘– π‘„π‘š (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) . 𝑄𝑝𝑖𝑙 (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) π‘Žπ‘š

(43)

π‘–π‘ž

(37)

𝑗

which shows that 𝐹𝑖 (π‘₯Μ‡ 𝑗 , π‘₯Μ‡ 𝑗 , π‘₯Μ‡ π‘˜ ) is independent of π‘₯Μ‡ π‘π‘ž . (2) In view of (37), we can write 𝐹𝑖 (π‘₯Μ‡ 𝑗 , π‘₯Μ‡ 𝑗 ) instead of 𝑗 𝐹𝑖 (π‘₯Μ‡ 𝑗 , π‘₯Μ‡ 𝑗 , π‘₯Μ‡ π‘˜ ). Turning back to conditions (31), we have the following equations for the functions 𝐹𝑖 : 𝐹𝑖 (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) = π‘Žπ‘˜π‘– πΉπ‘˜ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) .

π‘–π‘ž

(a) The functions 𝑄𝑝 = 𝑄𝑝 (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) satisfy

This choice of the group parameters yields 𝐹𝑖 (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 , 𝑦̇ π‘π‘ž ) = 𝐹𝑖 (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 , 𝑧̇ π‘š 𝑠 ),

(42)

(38)

(b) The functions 𝑄𝑝 are of the form π‘–π‘˜ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) π‘„π‘š 𝑖 π‘˜ 𝑖 𝑖 π‘˜ 𝑖 + π›Ώπ‘š 𝛿𝑗 ) + 𝑄 (π›Ώπ‘—π‘˜ π›Ώπ‘š βˆ’ π›Ώπ‘š 𝛿𝑗 )) π‘₯Μ‡ 𝑗 = (𝑃 (π›Ώπ‘—π‘˜ π›Ώπ‘š 𝑖 π‘˜ 𝑖 𝑖 π‘˜ 𝑖 + (𝑅 (π›Ώπ‘—π‘˜ π›Ώπ‘š + π›Ώπ‘š 𝛿𝑗 ) + 𝑆 (π›Ώπ‘—π‘˜ π›Ώπ‘š βˆ’ π›Ώπ‘š 𝛿𝑗 )) 𝑧̇ 𝑗 ,

where 𝑃, 𝑄, 𝑅, 𝑆 ∈ R.

(44)

6

Geometry

𝑖𝑙 Proof. (1) If π‘Žπ‘—π‘– = πœ†π›Ώπ‘—π‘– , Lemma 9, equation (43) πœ†π‘„π‘š (πœ†π‘₯Μ‡ 𝑗 , πœ†π‘§Μ‡ 𝑗 ) 2 𝑖𝑙 𝑗 𝑗 = πœ† π‘„π‘š (π‘₯Μ‡ , 𝑧̇ ) yields 𝑖𝑙 𝑖𝑙 𝑗 𝑖𝑙 𝑗 (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) = π‘†π‘šπ‘— 𝑧̇ , π‘„π‘š π‘₯Μ‡ + π‘‡π‘šπ‘—

(45)

𝑖𝑙 𝑖𝑙 , π‘†π‘šπ‘— ∈ R (Lemma 8). Substituting back to (43), for some π‘†π‘šπ‘—

𝑖𝑙 𝑖𝑙 we get conditions for the coefficients π‘†π‘šπ‘— , π‘†π‘šπ‘— ∈ R: 𝑖𝑙 𝑗 π‘˜ π‘Žπ‘˜ π‘₯Μ‡ (𝑆𝑠𝑗

+

𝑗 𝑠 𝑇𝑠𝑗𝑖𝑙 π‘Žπ‘˜ 𝑧̇ π‘˜ ) π‘Žπ‘š

(46)

𝑗

𝑖𝑙 𝑑 π‘˜ π‘˜π‘‘ π‘Ÿ π‘Žπ‘‘ π‘Žπ‘˜π‘  = 𝛿𝑗 𝛿𝑠𝑖 (π‘†π‘šπ‘Ÿ or, which is the same, (𝑆𝑠𝑗 π‘₯Μ‡ + 𝑇𝑠𝑗𝑖𝑙 𝑧̇ 𝑑 )π›Ώπ‘š π‘₯Μ‡ + 𝑗

π‘‘π‘˜ π‘Ÿ 𝑧̇ )π‘Žπ‘‘ π‘Žπ‘˜π‘  ; that is, π‘‡π‘šπ‘Ÿ 𝑗

𝑗

𝑖𝑙 𝑝 π‘ π‘˜ 𝑆𝑝𝑗 π‘Žπ‘‘ π‘Žπ‘š = π‘Žπ‘˜π‘™ π‘Žπ‘ π‘– π‘†π‘šπ‘‘ ,

𝑖𝑙 𝑝 π‘ π‘˜ 𝑇𝑝𝑗 π‘Žπ‘‘ π‘Žπ‘š = π‘Žπ‘˜π‘™ π‘Žπ‘ π‘– π‘‡π‘šπ‘‘ .

π‘ π‘˜ π‘Žπ‘˜ π‘Žπ‘ π‘ 𝛿𝑗𝑙 𝛿𝑝𝑖 π‘†π‘šπ‘‘ from which it follows that

+

𝑖𝑙 π‘˜ 𝑠 𝑆𝑗𝑝 𝛿𝑑 π›Ώπ‘š

=

π‘ π‘˜ 𝛿𝑗𝑙 𝛿𝑝𝑖 π‘†π‘šπ‘‘

+

π‘ž π‘ž + (𝑅 (𝛿𝑗 𝛿𝑝𝑖 + π›Ώπ‘π‘ž 𝛿𝑗𝑖 ) + 𝑆 (𝛿𝑗 𝛿𝑝𝑖 βˆ’ π›Ώπ‘π‘ž 𝛿𝑗𝑖 )) 𝑧̇ 𝑗 , π‘ π‘˜ 𝑠 π‘˜ 𝑠 𝑠 π‘˜ 𝑠 π‘„π‘š = (𝑃 (π›Ώπ‘—π‘˜ π›Ώπ‘š + π›Ώπ‘š 𝛿𝑗 ) + 𝑄 (π›Ώπ‘—π‘˜ π›Ώπ‘š βˆ’ π›Ώπ‘š 𝛿𝑗 )) π‘₯Μ‡ 𝑗

𝑝 π‘˜ π‘„π‘π‘–π‘ž (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) π‘Žπ‘š π‘π‘ž

𝑖 π‘˜ π‘˜ 𝑖 𝑑 𝑖 π‘˜ π‘˜ 𝑖 𝑑 𝑧̇ + π‘…π›Ώπ‘š 𝑧̇ βˆ’ π‘†π›Ώπ‘š + π‘…π‘Žπ‘š π‘Žπ‘‘ 𝑧̇ + π‘†π‘Žπ‘š π‘Žπ‘‘ 𝑧̇ , π‘ π‘˜ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) π‘Žπ‘ π‘– π‘„π‘š

(48)

π‘˜π‘  𝛿𝑝𝑙 𝛿𝑗𝑖 π‘†π‘šπ‘  and

𝑖 π‘˜ π‘˜ 𝑖 𝑠 𝑖 π‘˜ π‘˜ 𝑖 𝑠 𝑧̇ + π‘…π›Ώπ‘š 𝑧̇ βˆ’ π‘†π›Ώπ‘š + π‘…π‘Žπ‘š π‘Žπ‘  𝑧̇ + π‘†π‘Žπ‘š π‘Žπ‘  𝑧̇ ,

proving (13). Now, we are in position to give a solution to (42). 𝑖

𝑖𝑙 𝑖𝑙 π‘ π‘š π‘šπ‘  𝑛2 𝑆𝑝𝑗 + 𝑛𝑆𝑗𝑝 = 𝛿𝑗𝑙 𝛿𝑝𝑖 π‘†π‘šπ‘  + 𝛿𝑝𝑙 𝛿𝑗𝑖 π‘†π‘šπ‘  .

(49)

Lemma 10. The functions 𝐹̇ satisfy condition (42) if and only if 𝐴 = 0,

(55)

𝑖 𝑗 𝐹̇ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 , 𝑧̇ π‘˜ ) = 𝐾π‘₯Μ‡ 𝑖 + 𝐿𝑧̇ 𝑖 + 𝐡π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘–π‘Ÿ

(56)

𝑖𝑙 π‘˜ 𝑖𝑙 π‘˜ 𝛿𝑑 + 𝑛𝑆𝑗𝑝 𝛿𝑑 = Contractions in 𝑠, π‘š and in π‘˜, 𝑑 yield 𝑆𝑝𝑗 π‘˜π‘š 𝛿𝑝𝑙 𝛿𝑗𝑖 π‘†π‘šπ‘‘

𝑖𝑙 𝑛𝑆𝑝𝑗

+ and + From these formulas, we find

𝑖𝑙 𝑛2 𝑆𝑗𝑝

=

π‘šπ‘‘ 𝛿𝑗𝑙 𝛿𝑝𝑖 π‘†π‘šπ‘‘

+

π‘‘π‘š 𝛿𝑝𝑙 𝛿𝑗𝑖 π‘†π‘šπ‘‘ .

for some constants 𝐾, 𝐿 ∈ R.

𝑖𝑙 𝑖𝑙 π‘šπ‘  π‘‘π‘š 𝑛 (𝑛 + 1) (𝑆𝑝𝑗 + 𝑆𝑗𝑝 ) = (𝛿𝑗𝑙 𝛿𝑝𝑖 + 𝛿𝑝𝑙 𝛿𝑗𝑖 ) (π‘†π‘šπ‘  + π‘†π‘šπ‘‘ ),

𝑛 (𝑛 βˆ’ 𝑖𝑙 𝑆𝑝𝑗

+

𝑖𝑙 1) (𝑆𝑝𝑗

βˆ’

𝑖𝑙 𝑆𝑗𝑝 )

=

(𝛿𝑗𝑙 𝛿𝑝𝑖

βˆ’

π‘‘π‘š 𝛿𝑝𝑙 𝛿𝑗𝑖 ) (π‘†π‘šπ‘‘

+

𝑖 Proof. (1) Suppose that 𝐹̇ satisfy (42). Then if π‘Žπ‘ π‘ = 𝛿𝑠𝑝 , we have

π‘šπ‘‘ π‘†π‘šπ‘‘ ),

1 π‘šπ‘  π‘‘π‘š = + π‘†π‘šπ‘‘ ), (𝛿𝑙 𝛿𝑖 + 𝛿𝑝𝑙 𝛿𝑗𝑖 ) (π‘†π‘šπ‘  𝑛 (𝑛 + 1) 𝑗 𝑝

𝑖𝑙 𝑆𝑗𝑝

𝑖𝑙 𝑖𝑙 𝑆𝑝𝑗 βˆ’ 𝑆𝑗𝑝 =

(50)

𝑖 𝑝 π‘š 𝑧̇ + 𝑧̇ π‘π‘ž ) 𝐹̇ (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 , π‘Žπ‘žπ‘š 𝑖 𝑖 = π‘Žπ‘˜π‘ π‘₯Μ‡ 𝑝 (𝐴π‘₯Μ‡ π‘˜ + 𝐡𝑧̇ π‘˜ ) + 𝐹̇ (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝑠 ).

1 π‘‘π‘š π‘šπ‘‘ (𝛿𝑙 𝛿𝑖 βˆ’ 𝛿𝑝𝑙 𝛿𝑗𝑖 ) (π‘†π‘šπ‘‘ + π‘†π‘šπ‘‘ ), 𝑛 (𝑛 βˆ’ 1) 𝑗 𝑝

𝑖

1 π‘šπ‘  π‘‘π‘š = + π‘†π‘šπ‘‘ ), (𝛿𝑙 𝛿𝑖 + 𝛿𝑝𝑙 𝛿𝑗𝑖 ) (π‘†π‘šπ‘  2𝑛 (𝑛 + 1) 𝑗 𝑝 +

1 π‘‘π‘š π‘šπ‘‘ (𝛿𝑙 𝛿𝑖 βˆ’ 𝛿𝑝𝑙 𝛿𝑗𝑖 ) (π‘†π‘šπ‘‘ + π‘†π‘šπ‘‘ ). 2𝑛 (𝑛 βˆ’ 1) 𝑗 𝑝

The same computation applies to 𝑖𝑙 𝑆𝑝𝑗

=

𝑃 (𝛿𝑗𝑙 𝛿𝑝𝑖

+

𝛿𝑝𝑙 𝛿𝑗𝑖 )

+

𝑖𝑙 . 𝑇𝑝𝑗

(

βˆ’

𝛿𝑝𝑙 𝛿𝑗𝑖 ) ,

𝑖𝑙 = 𝑅 (𝛿𝑗𝑙 𝛿𝑝𝑖 + 𝛿𝑝𝑙 𝛿𝑗𝑖 ) + 𝑆 (𝛿𝑗𝑙 𝛿𝑝𝑖 βˆ’ 𝛿𝑝𝑙 𝛿𝑗𝑖 ) , 𝑇𝑝𝑗

πœ•πΉΜ‡ ) πœ•π‘§Μ‡ π‘Ÿπ‘  (π‘₯Μ‡ 𝑝 ,𝑧̇𝑝 ,π‘Žπ‘

𝑝 π‘š π‘žπ‘š 𝑧̇ +𝑧̇ π‘ž )

(51)

𝑖

=(

πœ•πΉΜ‡ ) , πœ•π‘§Μ‡ π‘Ÿπ‘  (π‘₯Μ‡ 𝑝 ,𝑧̇𝑝 ,𝑧̇𝑝 )

(58)

π‘ž

𝑖 which shows that the derivative πœ•πΉΜ‡ /πœ•π‘§Μ‡ π‘Ÿπ‘  does not depend on 𝑧̇ π‘π‘ž . Then, however, 𝑖 𝑗 𝐹̇ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 , 𝑧̇ π‘˜ ) = 𝑃𝑖 (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) + π‘„π‘ π‘–π‘Ÿ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) 𝑧̇ π‘ π‘Ÿ ,

Thus,

𝑄 (𝛿𝑗𝑙 𝛿𝑝𝑖

(57)

Differentiating with respect to 𝑧̇ π‘Ÿπ‘  , we have

hence 𝑖𝑙 𝑆𝑝𝑗

(54)

𝑖 π‘˜ π‘˜ 𝑖 𝑠 𝑖 π‘˜ π‘˜ 𝑖 𝑠 π‘Žπ‘  π‘₯Μ‡ + π‘„π‘Žπ‘š π‘Žπ‘  π‘₯Μ‡ = π‘ƒπ‘Žπ‘š π‘₯Μ‡ + π‘ƒπ›Ώπ‘š π‘₯Μ‡ βˆ’ π‘„π›Ώπ‘š

π‘˜π‘  𝛿𝑝𝑙 𝛿𝑗𝑖 π‘†π‘šπ‘‘ .

We apply to this formula various trace operations. Contracπ‘˜ 𝑖𝑙 π‘˜ π‘ π‘˜ tions in 𝑠, 𝑑 and then in π‘˜, π‘š yield 𝑛𝑆𝑖𝑙𝑝𝑗 π›Ώπ‘š + 𝑆𝑗𝑝 π›Ώπ‘š = 𝛿𝑗𝑙 𝛿𝑝𝑖 π‘†π‘šπ‘  +

π‘šπ‘˜ 𝛿𝑗𝑙 𝛿𝑝𝑖 π‘†π‘šπ‘‘

(53)

and substituting these expressions into (44), we have

(47)

𝑖𝑙 𝑖𝑙 𝑠 π‘˜ 𝑗 , we write 𝑆𝑝𝑗 𝛿𝑑 π›Ώπ‘š π‘Žπ‘  π‘Žπ‘˜ = To determine the constants 𝑆𝑝𝑗

𝑖𝑙 𝑠 π‘˜ 𝑆𝑝𝑗 𝛿𝑑 π›Ώπ‘š

π‘ž

𝑖 π‘˜ π‘˜ 𝑖 𝑑 𝑖 π‘˜ π‘˜ 𝑖 𝑑 = π‘ƒπ‘Žπ‘š π‘Žπ‘‘ π‘₯Μ‡ + π‘„π‘Žπ‘š π‘Žπ‘‘ π‘₯Μ‡ π‘₯Μ‡ + π‘ƒπ›Ώπ‘š π‘₯Μ‡ βˆ’ π‘„π›Ώπ‘š

𝑝

𝑗

π‘ž

π‘„π‘π‘–π‘ž = (𝑃 (𝛿𝑗 𝛿𝑝𝑖 + π›Ώπ‘π‘ž 𝛿𝑗𝑖 ) + 𝑄 (𝛿𝑗 𝛿𝑝𝑖 βˆ’ π›Ώπ‘π‘ž 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗

𝑠 π‘˜ 𝑠 𝑠 π‘˜ 𝑠 + (𝑅 (π›Ώπ‘—π‘˜ π›Ώπ‘š + π›Ώπ‘š 𝛿𝑗 ) + 𝑆 (π›Ώπ‘—π‘˜ π›Ώπ‘š βˆ’ π›Ώπ‘š 𝛿𝑗 )) 𝑧̇ 𝑗

π‘˜π‘‘ 𝑗 π‘‘π‘˜ 𝑗 𝑧̇ ) , = π‘Žπ‘‘π‘™ π‘Žπ‘˜π‘– (π‘†π‘šπ‘— π‘₯Μ‡ + π‘‡π‘šπ‘— 𝑗

π‘–π‘˜ satisfies (44). Writing (2) Conversely, suppose that π‘„π‘š

(59)

where the functions 𝑃𝑖 and π‘„π‘ π‘–π‘Ÿ do not depend on 𝑧̇ π‘π‘ž . Substituting from (59) back to (57), we have (52)

for some constants 𝑃, 𝑄, 𝑅, 𝑆 ∈ R. Formula (44) now follows from (52) and (45).

𝑠 𝑧̇ π‘š + 𝑧̇ π‘ π‘Ÿ ) 𝑃𝑖 (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) + π‘„π‘ π‘–π‘Ÿ (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) (π‘Žπ‘Ÿπ‘š 𝑖 = π‘Žπ‘˜π‘ π‘₯Μ‡ 𝑝 (𝐴π‘₯Μ‡ π‘˜ + 𝐡𝑧̇ π‘˜ ) + 𝑃𝑖 (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) + π‘„π‘ π‘–π‘Ÿ (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) 𝑧̇ π‘ π‘Ÿ , (60)

Geometry

7

𝑠 𝑠 𝑧̇ π‘š = 𝛿𝑠𝑖 π‘Žπ‘Ÿπ‘š hence π‘„π‘ π‘–π‘Ÿ (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 )π‘Žπ‘Ÿπ‘š π‘₯Μ‡ π‘Ÿ (𝐴π‘₯Μ‡ π‘š + 𝐡𝑧̇ π‘š ). Thus, the 𝑖 π‘–π‘Ÿ functions 𝑃 and 𝑄𝑠 in (59) must satisfy

π‘„π‘ π‘–π‘Ÿ (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) 𝑧̇ π‘š + π‘„π‘ π‘–π‘š (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) 𝑧̇ π‘Ÿ = 𝛿𝑠𝑖 π‘₯Μ‡ π‘Ÿ (𝐴π‘₯Μ‡ π‘š + 𝐡𝑧̇ π‘š ) + 𝛿𝑠𝑖 π‘₯Μ‡ π‘š (𝐴π‘₯Μ‡ π‘Ÿ + 𝐡𝑧̇ π‘Ÿ ) .

(𝑃 (𝑛 + 1) + 𝑄 (𝑛 βˆ’ 1)) (π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š + π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ ) = 𝑛𝐡 (π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š ) (𝑅 (𝑛 + 1) + 𝑆 (𝑛 βˆ’ 1)) 𝑧̇ π‘š 𝑧̇ π‘Ÿ = 0,

(61)

(70) hence

Note that the trace operation in 𝑖 and 𝑠 yields 1 π‘ π‘Ÿ 𝑝 𝑝 π‘š (𝑄 (π‘₯Μ‡ , 𝑧̇ ) 𝑧̇ + π‘„π‘ π‘ π‘š (π‘₯Μ‡ 𝑝 , 𝑧̇ 𝑝 ) 𝑧̇ π‘Ÿ ) 𝑛 𝑠

Consequently, 𝐴 = 0 and

𝐴 = 0, 𝑃 (𝑛 + 1) + 𝑄 (𝑛 βˆ’ 1) = 𝑛𝐡,

(62)

𝑅 (𝑛 + 1) + 𝑆 (𝑛 βˆ’ 1) = 0.

= π‘₯Μ‡ π‘Ÿ (𝐴π‘₯Μ‡ π‘š + 𝐡𝑧̇ π‘š ) + π‘₯Μ‡ π‘š (𝐴π‘₯Μ‡ π‘Ÿ + 𝐡𝑧̇ π‘Ÿ ) . 𝑖 (2) We now use (56) for the group parameters π‘Žπ‘—π‘˜ = 0. We have the condition 𝑖 π‘˜ 𝑝 𝑠 π‘š π‘π‘ž 𝑧̇ 𝑠 ) = π‘Žπ‘˜π‘– 𝐹̇ (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝐹̇ (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘š 𝑠 ),

(63)

and, from (59), 𝑠 𝑑 π‘š 𝑃𝑖 (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) + π‘„π‘ π‘–π‘Ÿ (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) π‘Žπ‘š π‘π‘Ÿ 𝑧̇ 𝑑

= π‘Žπ‘˜π‘– π‘ƒπ‘˜ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) + π‘Žπ‘˜π‘– π‘„π‘ π‘˜π‘Ÿ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) 𝑧̇ π‘ π‘Ÿ .

𝑠 𝑑 π‘π‘Ÿ = π‘Žπ‘˜π‘– π‘„π‘ π‘˜π‘Ÿ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) . π‘„π‘ π‘–π‘Ÿ (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) π‘Žπ‘š

(64)

(𝑃 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 + π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 ) + 𝑄 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗 𝑧̇ π‘š + 𝑆(

(65)

+ 𝑆(

1βˆ’π‘› π‘š 𝑖 (𝛿 𝛿 + π›Ώπ‘ π‘š 𝛿𝑗𝑖 ) + (π›Ώπ‘—π‘š 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘š 𝛿𝑗𝑖 )) 𝑧̇ 𝑗 𝑧̇ π‘Ÿ 𝑛+1 𝑗 𝑠 (72)

The terms containing 𝑧̇ 𝑗 𝑧̇ π‘š should vanish separately. Since these terms are 1 𝑆 (βˆ’ (𝑛 βˆ’ 1) 𝛿𝑠𝑖 𝑧̇ π‘Ÿ 𝑧̇ π‘š βˆ’ (𝑛 βˆ’ 1) π›Ώπ‘ π‘Ÿ 𝑧̇ 𝑖 𝑧̇ π‘š 𝑛+1 + (𝑛 + 1) 𝛿𝑠𝑖 𝑧̇ π‘Ÿ 𝑧̇ π‘š βˆ’ (𝑛 + 1) π›Ώπ‘ π‘Ÿ 𝑧̇ 𝑖 𝑧̇ π‘š )

(66) +

for some constants 𝐾, 𝐿 ∈ R (Lemma 8), and π‘„π‘ π‘–π‘Ÿ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 )

1 𝑆 (βˆ’ (𝑛 βˆ’ 1) 𝛿𝑠𝑖 𝑧̇ π‘š 𝑧̇ π‘Ÿ βˆ’ (𝑛 βˆ’ 1) π›Ώπ‘ π‘š 𝑧̇ 𝑖 𝑧̇ π‘Ÿ 𝑛+1

(73)

+ (𝑛 + 1) 𝛿𝑠𝑖 𝑧̇ π‘š 𝑧̇ π‘Ÿ βˆ’ (𝑛 + 1) π›Ώπ‘ π‘š 𝑧̇ 𝑖 𝑧̇ π‘Ÿ )

= (𝑃 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 + π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 ) + 𝑄 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗

(67)

+ (𝑅 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 + π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 ) + 𝑆 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )) 𝑧̇ 𝑗 ,

+

π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )

+

𝑄 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖

βˆ’

π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗 𝑧̇ π‘š

= 𝛿𝑠𝑖 (2𝐴π‘₯Μ‡ π‘š π‘₯Μ‡ π‘Ÿ + 𝐡 (π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š )) .

=

βˆ’2𝑛 𝑆 (π›Ώπ‘ π‘Ÿ 𝑧̇ 𝑖 𝑧̇ π‘š + π›Ώπ‘ π‘š 𝑧̇ 𝑖 𝑧̇ π‘Ÿ ) , 𝑛+1

we have, from (71) and (73),

where 𝑃, 𝑄, 𝑅, 𝑆 ∈ R (Lemma 9). These functions satisfy (61); that is, (𝑃 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖

1βˆ’π‘› π‘Ÿ 𝑖 (𝛿 𝛿 + π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 ) + (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )) 𝑧̇ 𝑗 𝑧̇ π‘š 𝑛+1 𝑗 𝑠

= 𝛿𝑠𝑖 𝐡 (π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š ) .

Then, however, 𝑃𝑖 (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) = 𝐾π‘₯Μ‡ 𝑖 + 𝐿𝑧̇ 𝑖 ,

Then from (68),

+ (𝑃 (π›Ώπ‘—π‘š 𝛿𝑠𝑖 + π›Ώπ‘ π‘š 𝛿𝑗𝑖 ) + 𝑄 (π›Ώπ‘—π‘š 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘š 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗 𝑧̇ π‘Ÿ

These equations split to the system 𝑃𝑖 (π‘Žπ‘ π‘— π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘— 𝑧̇ 𝑠 ) = π‘Žπ‘˜π‘– π‘ƒπ‘˜ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 ) ,

(71)

(68)

𝑆 = 0,

𝑅 = 0.

(74)

Analogously, the terms with π‘₯Μ‡ 𝑗 𝑧̇ π‘š should vanish separately; that is, (𝑃 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 + π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 ) + 𝑄 (π›Ώπ‘—π‘Ÿ 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘Ÿ 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗 𝑧̇ π‘š + (𝑃 (π›Ώπ‘—π‘š 𝛿𝑠𝑖 + π›Ώπ‘ π‘š 𝛿𝑗𝑖 ) + 𝑄 (π›Ώπ‘—π‘š 𝛿𝑠𝑖 βˆ’ π›Ώπ‘ π‘š 𝛿𝑗𝑖 )) π‘₯Μ‡ 𝑗 𝑧̇ π‘Ÿ (75)

The trace in 𝑖 and 𝑠 yields (𝑃 (𝑛 + 1) + 𝑄 (𝑛 βˆ’ 1)) π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š + (𝑅 (𝑛 + 1) + 𝑆 (𝑛 βˆ’ 1)) 𝑧̇ π‘Ÿ 𝑧̇ π‘š + (𝑃 (𝑛 + 1) + 𝑄 (𝑛 βˆ’ 1)) π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ

= 𝛿𝑠𝑖 𝐡 (π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š ) . Since this equation can be written as (𝑃 + 𝑄) 𝛿𝑠𝑖 (π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š + π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ ) + (𝑃 βˆ’ 𝑄) (π›Ώπ‘ π‘Ÿ π‘₯Μ‡ 𝑖 𝑧̇ π‘š + π›Ώπ‘ π‘š π‘₯Μ‡ 𝑖 𝑧̇ π‘Ÿ )

+ (𝑅 (𝑛 + 1) + 𝑆 (𝑛 βˆ’ 1)) 𝑧̇ π‘š 𝑧̇ π‘Ÿ = 𝑛 (2𝐴π‘₯Μ‡ π‘š π‘₯Μ‡ π‘Ÿ + 𝐡 (π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š )) . (69)

= 𝛿𝑠𝑖 𝐡 (π‘₯Μ‡ π‘š 𝑧̇ π‘Ÿ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘š ) ,

(76)

8

Geometry

we get 𝑃 + 𝑄 = 𝐡 and 𝑃 βˆ’ 𝑄 = 0; thus, 1 𝑃 = 𝑄 = 𝐡. 2

(77)

such that for any points π‘₯, 𝑦 ∈ 𝑋, any charts (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), at π‘₯ and (𝑉, πœ“), πœ“ = (𝑦𝑖 ), at 𝑦, and any diffeomorphism 𝛼 : π‘ˆ β†’ 𝑉 such that 𝛼(π‘₯) = 𝑦, 𝑖 π‘˜ π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š ) Ξžπ‘™(𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š

Summarizing, we see that condition (42) implies, from (59), (66), (67), (71), (74), and (77), 𝐴 = 0,

(78)

π‘˜ ), = π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (πœπ‘˜ , πœ‰π‘˜ , πœ‰π‘š 𝑙 𝑖 π‘˜ ΞžΜ‡ (𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š ) π‘˜

𝑙 𝑗 π‘˜ π‘˜ = π‘Žπ‘—π‘˜ ) + π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘) (πœπ‘˜ , πœ‰π‘˜ , πœ‰π‘š ). π‘₯Μ‡ (𝜁) Ξžπ‘˜(π‘ˆ,πœ‘) (πœπ‘˜ , πœ‰π‘˜ , πœ‰π‘š (84)

(48) and 𝑖 𝑗 𝐹̇ (π‘₯Μ‡ 𝑗 , 𝑧̇ 𝑗 , 𝑧̇ π‘˜ ) = 𝐾π‘₯Μ‡ 𝑖 + 𝐿𝑧̇ 𝑖 + 𝐡π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘–π‘Ÿ .

(79)

(3) It remains to prove that conditions (55) and (56) imply (42). The left-hand side of (42) is 𝑖 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š π‘π‘ž 𝑧̇ + π‘Žπ‘š π‘π‘ž 𝑧̇ 𝑠 ) 𝐹̇ (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘ π‘š 𝑖 𝑖 π‘š 𝑧̇ π‘š + π‘Žπ‘š 𝑧̇ 𝑑 ) , = πΎπ‘Žπ‘ π‘– π‘₯Μ‡ 𝑠 + πΏπ‘Žπ‘ π‘– 𝑧̇ 𝑠 + 𝐡π‘₯Μ‡ 𝑑 (π‘Žπ‘‘π‘š

(80)

and the right-hand side is π‘˜ 𝑖 π‘Žπ‘˜π‘ π‘₯Μ‡ 𝑝 (𝐴π‘₯Μ‡ π‘˜ + 𝐡𝑧̇ π‘˜ ) + π‘Žπ‘˜π‘– 𝐹̇ (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝑠 ) 𝑖 π‘˜ = π‘Žπ‘˜π‘– 𝐾π‘₯Μ‡ π‘˜ + π‘Žπ‘˜π‘– 𝐿𝑧̇ π‘˜ + 𝐡π‘₯Μ‡ 𝑝 (π‘Žπ‘˜π‘ 𝑧̇ + π‘Žπ‘˜π‘– 𝑧̇ π‘˜π‘ ) .

(81)

We can now summarize our results in the following theorem. 2

β†’ 𝑇𝑋 Theorem 11. Let 𝑋 be a manifold and let Ξ : be a morphism over id𝑇𝑋 . The following two conditions are equivalent:

(b) For any chart (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), on 𝑋 πœ• πœ• πœ• + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘–π‘Ÿ 𝑖 ) + (𝐾π‘₯Μ‡ 𝑖 + 𝐿𝑧̇ 𝑖 ) 𝑖 , 𝑖 πœ•π‘₯ πœ•π‘₯Μ‡ πœ•π‘₯Μ‡

πœ• πœ• πœ• = 𝐡 (𝑒̇ 𝑖 + 𝑦̇ π‘Ÿ 𝑒̇ π‘–π‘Ÿ 𝑖 ) + (𝐾𝑦̇ 𝑖 + 𝐿𝑒̇ 𝑖 ) 𝑖 ; πœ•π‘¦ πœ•π‘¦Μ‡ πœ•π‘¦Μ‡

(85)

that is, in the notation of Lemma 1, 𝐡𝑒̇ 𝑙 =

πœ•π‘¦π‘™ π‘˜ 𝐡𝑧̇ , πœ•π‘₯π‘˜

𝐾𝑦̇ 𝑙 + 𝐿𝑒̇ 𝑙 + 𝐡𝑦̇ π‘Ÿ 𝑒̇ π‘™π‘Ÿ =

(86)

πœ• 2 𝑦𝑙 πœ•π‘¦π‘™ 𝑝 π‘˜ Μ‡ Μ‡ 𝑧 𝐡 π‘₯ + (𝐾π‘₯Μ‡ π‘˜ + 𝐿𝑧̇ π‘˜ + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘˜π‘Ÿ ) . πœ•π‘₯𝑝 πœ•π‘₯π‘˜ πœ•π‘₯π‘˜

𝐹𝑖 = 𝐡𝑧̇ 𝑖 , (82)

where 𝐡, 𝐾, 𝐿 ∈ R are arbitrary constants. Proof. (1) We show that (a) implies (b). Suppose that we have a canonical vector field Ξ. Then, in any chart on 𝑋 the 2ndorder vector field Ξ has an expression Ξ (𝜁, 𝐽π‘₯1 πœ‰) = Ξžπ‘˜(π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) (

πœ• πœ• πœ• + π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘–π‘Ÿ 𝑖 ) + (𝐾π‘₯Μ‡ 𝑖 + 𝐿𝑧̇ 𝑖 ) 𝑖 𝑖 πœ•π‘₯ πœ•π‘₯Μ‡ πœ•π‘₯Μ‡

Each element of the family of vector fields (82) defines a 𝑖 differential invariant 𝐹 = (𝐹𝑖 , 𝐹̇ ), where

(a) Ξ is a canonical vector field.

Ξ = 𝐡 (𝑧̇ 𝑖

𝐡 (𝑧̇ 𝑖

𝑖

These formulas already verify condition (42). The proof is complete.

πœπ‘‹βˆ— 𝐽1 𝑇𝑋

(Theorem 3). If π‘₯ = 𝑦 and (π‘ˆ, πœ‘) = (𝑉, πœ“), the components 𝑙 𝑖 Ξžπ‘™(π‘ˆ,πœ‘) and ΞžΜ‡ (π‘ˆ,πœ‘) define a differential invariant 𝐹 = (𝐹𝑖 , 𝐹̇ ) (Theorem 5); then, however, Ξ must be of the form (82) (Lemmas 9 and 10). (2) To prove that (b) implies (a), we first show that any two members of the family of vector fields (82) agree on intersection of their domains. Let (π‘ˆ, πœ‘), πœ‘ = (π‘₯𝑖 ), and (𝑉, πœ“), πœ“ = (𝑦𝑖 ), be two charts on 𝑋 such that π‘ˆ ∩ 𝑉 =ΜΈ 0, let (π‘₯𝑖 , π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ 𝑖𝑗 ) and (𝑦𝑖 , 𝑦̇ 𝑖 , 𝑒̇ 𝑖 , 𝑒̇ 𝑖𝑗 ) be the corresponding coordinates on πœπ‘‹βˆ— 𝐽1 𝑇𝑋. We want to show that

πœ• πœ• π‘˜ ) + ΞžΜ‡ (π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) ( π‘˜ ) π‘˜ πœ•π‘₯ 𝜁 πœ•π‘₯Μ‡ 𝜁 (83)

𝑖 𝐹̇ = 𝐾π‘₯Μ‡ 𝑖 + 𝐿𝑧̇ 𝑖 + 𝐡π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘–π‘Ÿ .

(87)

Recall that 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š 𝐹𝑖 (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘ π‘š π‘π‘ž 𝑧̇ + π‘Žπ‘š π‘π‘ž 𝑧̇ 𝑠 )

= π‘Žπ‘˜π‘– πΉπ‘˜ (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š 𝑠 ),

(88)

𝑖 𝑝 𝑠 π‘š 𝑝 𝑠 π‘š π‘π‘ž 𝑧̇ + π‘Žπ‘š π‘π‘ž 𝑧̇ 𝑠 ) 𝐹̇ (π‘Žπ‘ π‘ π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘ 𝑧̇ 𝑠 , π‘Žπ‘ π‘š 𝑖 𝑝 π‘˜ 𝑖 Μ‡π‘˜ 𝑠 𝑠 π‘š 𝜁 𝐹 (π‘₯Μ‡ 𝑠 , 𝑧̇ 𝑠 , 𝑧̇ π‘š = π‘Žπ‘˜π‘ 𝑠 ) + π‘Žπ‘˜ 𝐹 (π‘₯Μ‡ , 𝑧̇ , 𝑧̇ 𝑠 ) ,

(Theorem 5). Now the right-hand sides of (86) can be written as π‘Žπ‘˜π‘™ πΉπ‘˜ (π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ π‘–π‘Ÿ ) ,

π‘˜

𝑙 πΉπ‘˜ (π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ π‘–π‘Ÿ ) 𝑧̇ 𝑝 + π‘Žπ‘˜π‘™ 𝐹̇ (π‘₯Μ‡ 𝑖 , 𝑧̇ 𝑖 , 𝑧̇ π‘–π‘Ÿ ) , π‘Žπ‘˜π‘ (89)

Geometry

9

and the left-hand sides are

We substitute these expressions into formulas (17) of Theorem 3,

𝐹𝑙 (𝑦̇ 𝑖 , 𝑒̇ 𝑖 , 𝑒̇ π‘–π‘Ÿ ) =𝐹

𝑙

𝑖 (π‘Žπ‘ π‘– π‘₯Μ‡ 𝑠 , π‘Žπ‘ π‘– 𝑧̇ 𝑠 , (π‘Žπ‘ π‘š π‘₯Μ‡ π‘š

+

𝑖 π‘˜ π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š ) Ξžπ‘™(𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š

𝑖 π‘š π‘Žπ‘š π‘₯Μ‡ 𝑠 ) π‘π‘Ÿπ‘  ) ,

= π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) ,

(90)

𝑙 𝐹̇ (𝑦̇ 𝑖 , 𝑒̇ 𝑖 , 𝑒̇ π‘–π‘Ÿ )

𝑙 𝑖 π‘˜ ΞžΜ‡ (𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š )

𝑙 𝑖 𝑖 π‘š = 𝐹̇ (𝑦̇ 𝑖 , 𝑒̇ 𝑖 , (π‘Žπ‘ π‘š π‘₯Μ‡ π‘š + π‘Žπ‘š π‘₯Μ‡ 𝑠 ) π‘π‘Ÿπ‘  ) ,

(95)

π‘˜ 𝑙 𝑗 π‘˜ 𝑖 𝑖 = π‘Žπ‘—π‘˜ 𝜁 Ξ(π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘š ) + π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘š ).

where

Then since π‘Žπ‘˜π‘™ = ( 𝑙 =( π‘Žπ‘˜π‘

π‘π‘Ÿπ‘

𝑙

πœ•π‘¦ ) , πœ•π‘₯π‘˜ Ξ¨(𝜁)

𝑖 π‘˜ Μƒ 𝑙 πœ‰π‘˜ , π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š ) = π΅π‘Ž Ξžπ‘™(𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘˜

π‘Žπ‘˜π‘™ Ξžπ‘˜(π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘—π‘– ) = π‘Žπ‘˜π‘™ π΅πœ‰π‘˜ ,

2 𝑙

πœ•π‘¦ ) , πœ•π‘₯𝑝 πœ•π‘₯π‘˜ Ξ¨(𝜁)

(91)

𝑙 𝑖 π‘˜ ΞžΜ‡ (𝑉,πœ“) (π‘Žπ‘˜π‘– πœπ‘˜ , π‘Žπ‘˜π‘– πœ‰π‘˜ , π‘Žπ‘˜π‘š π‘π‘—π‘š πœ‰π‘˜ + π‘Žπ‘˜π‘– π‘π‘—π‘š πœ‰π‘š )

πœ•π‘₯𝑝 =( π‘Ÿ) . πœ•π‘¦ Ξ¦(𝜁)

Μƒ π‘˜ πœ‰π‘™ + π΅π‘Ž Μƒ π‘Ÿ πœπ‘ (π‘Žπ‘˜ π‘π‘š πœ‰π‘™ + π‘Žπ‘˜ π‘π‘š πœ‰π‘™ ) , Μƒ π‘˜ πœπ‘™ + πΏπ‘Ž = πΎπ‘Ž 𝑙 𝑙 𝑝 π‘™π‘š π‘Ÿ 𝑙 π‘Ÿ π‘š

Expressions (89) and (90) prove (86) as well as existence of Ξ. (3) To complete the proof, it remains to show that the vector field Ξ is a canonical vector field; to this purpose, we verify condition (2) of Theorem 3. Express the vectors 1 (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) as in formula (15), Ξ(𝜁, 𝐽π‘₯1 πœ‰) and Ξ(𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) Section 4,

π‘˜ 𝑙 𝑗 π‘˜ 𝑖 𝑖 𝜁 Ξ(π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘š ) + π‘Žπ‘˜π‘™ ΞžΜ‡ (π‘ˆ,πœ‘) (πœπ‘– , πœ‰π‘– , πœ‰π‘š ) π‘Žπ‘—π‘˜

= π΅π‘Žπ‘—π‘™π‘˜ πœπ‘— πœ‰π‘™ + π‘Žπ‘™π‘˜ (πΎπœπ‘™ + πΏπœ‰π‘™ + π΅πœπ‘Ÿ πœ‰π‘Ÿπ‘™ ) , we have Μƒ 𝑙 πœ‰π‘˜ = π΅π‘Žπ‘™ πœ‰π‘˜ , π΅π‘Ž π‘˜ π‘˜ Μƒ π‘˜ πœ‰π‘™ + π΅π‘Ž Μƒ π‘Ÿ πœπ‘ (π‘Žπ‘˜ π‘π‘š πœ‰π‘™ + π‘Žπ‘˜ π‘π‘š πœ‰π‘™ ) Μƒ π‘˜ πœπ‘™ + πΏπ‘Ž πΎπ‘Ž 𝑙 𝑙 𝑝 π‘™π‘š π‘Ÿ 𝑙 π‘Ÿ π‘š

Ξ (𝜁, 𝐽π‘₯1 πœ‰) =

Ξžπ‘˜(π‘ˆ,πœ‘)

(𝜁, 𝐽π‘₯1 πœ‰) (

πœ• πœ• π‘˜ ) + ΞžΜ‡ (π‘ˆ,πœ‘) (𝜁, 𝐽π‘₯1 πœ‰) ( π‘˜ ) , π‘˜ πœ•π‘₯ 𝜁 πœ•π‘₯Μ‡ 𝜁

1 Ξ (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) 1 = Ξžπ‘˜(𝑉,πœ“) (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) (

πœ• ) πœ•π‘¦π‘˜ 𝜁

πœ• π‘˜ 1 + ΞžΜ‡ (𝑉,πœ“) (𝑇π‘₯ 𝛼 β‹… 𝜁, 𝐽𝛼(π‘₯) (𝑇𝛼 ∘ πœ‰ ∘ π›Όβˆ’1 )) ( π‘˜ ) . πœ•π‘¦Μ‡ 𝜁 (92)

Ξ = 𝐡𝑒̇ π‘˜

πœ• πœ• + (𝐾𝑦̇ π‘˜ + 𝐿𝑒̇ π‘˜ + 𝐡𝑦̇ π‘Ÿ 𝑒̇ π‘˜π‘Ÿ ) π‘˜ , πœ•π‘¦π‘˜ πœ•π‘¦Μ‡

Μƒ = 𝐡, 𝐾 Μƒ = 𝐾, and But these conditions are equivalent to 𝐡 Μƒ 𝐿 = 𝐿 as required. Having in mind that the canonical constructions are geometric constructions independent of charts, we can also state our theorem in an equivalent way as follows. Let 𝑋 be an 𝑛-dimensional manifold. Then for any vector field 𝜁 on 𝑋, there are exactly three independent canonical vector fields 𝑍 on 𝑇𝑋 that can canonically be constructed from 𝜁. If in a chart πœ• , πœ•π‘₯𝑖

(98)

𝑖 πœ• πœ• π‘Ÿ πœ•πœ πœ• Μ‡ + π‘₯ ) + (𝐾π‘₯Μ‡ 𝑖 + πΏπœπ‘– ) 𝑖 , πœ•π‘₯𝑖 πœ•π‘₯π‘Ÿ πœ•π‘₯Μ‡ 𝑖 πœ•π‘₯Μ‡

(99)

𝜁 = πœπ‘– then

(93)

on the corresponding coordinate neighbourhoods. Thus, the components of these vector fields are Ξžπ‘–(π‘ˆ,πœ‘) = 𝐡𝑧̇ 𝑖 ,

π‘˜ ΞžΜ‡ (π‘ˆ,πœ‘) = 𝐾π‘₯Μ‡ π‘˜ + 𝐿𝑧̇ π‘˜ + 𝐡π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘˜π‘Ÿ ,

Μƒ 𝑒̇ 𝑖 , Ξžπ‘–(𝑉,πœ“) = 𝐡

π‘˜ Μƒ 𝑦̇ π‘˜ + 𝐿 Μƒ 𝑒̇ π‘˜ + 𝐡 Μƒ 𝑦̇ π‘Ÿ 𝑒̇ π‘˜ . ΞžΜ‡ (𝑉,πœ“) = 𝐾 π‘Ÿ

(97)

= π΅π‘Žπ‘—π‘™π‘˜ πœπ‘— πœ‰π‘™ + π‘Žπ‘™π‘˜ (πΎπœπ‘™ + πΏπœ‰π‘™ + π΅πœπ‘Ÿ πœ‰π‘Ÿπ‘™ ) .

We have already proved that πœ• πœ• Ξ = 𝐡𝑧̇ π‘˜ π‘˜ + (𝐾π‘₯Μ‡ π‘˜ + 𝐿𝑧̇ π‘˜ + 𝐡π‘₯Μ‡ π‘Ÿ 𝑧̇ π‘˜π‘Ÿ ) π‘˜ , πœ•π‘₯ πœ•π‘₯Μ‡

(96)

𝑍 = 𝐡 (πœπ‘–

where 𝐡, 𝐾, 𝐿 ∈ R are arbitrary constants. Taking 𝐾, 𝐿 = 0 and 𝐡 = 1, we get the variational vector field; if 𝐡, 𝐿 = 0 and 𝐾 = 1, we get the Liouville vector field, and, if 𝐡, 𝐾 = 0 and 𝐿 = 1, we have the vertical lift vector field.

Acknowledgments (94)

The first author (T. Li) is grateful for the support of the National Natural Science Foundation of China (Grant no.

10 10801006). The second author (D. Krupka) acknowledges the support of the National Science Foundation of China (Grant no. 10932002) and the Czech Science Foundation (Grant no. 201/09/0981).

References [1] D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics, no. 55, Springer, Berlin, Germany, 1968. [2] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. [3] O. KrupkovΒ΄a and G. E. Prince, β€œSecond order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations,” in Handbook of Global Analysis, D. Krupka and D. Saunders, Eds., pp. 837–904, Elsevier Sci. B. V., Amsterdam, The Netherlands, 2008. [4] S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1999. [5] R. S. Palais and C. L. Terng, β€œNatural bundles have finite order,” Topology, vol. 19, no. 3, pp. 271–277, 1977. [6] D. J. Saunders, β€œJet fields, connections and second-order differential equations,” Journal of Physics A, vol. 20, no. 11, pp. 3261– 3270, 1987. [7] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, USA, 1964. [8] H. Goldschmidt and S. Sternberg, β€œThe Hamilton-Cartan formalism in the calculus of variations,” Annales de l’Institut Fourier, vol. 23, no. 1, pp. 203–267, 1973. [9] D. Krupka, β€œSome geometric aspects of variational problems in fibred manifolds,” Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae. Brunensis, vol. 14, pp. 1–65, 1973. [10] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, Mass, USA, 2nd edition, 1978. [11] D. Krupka, O. KrupkovΒ΄a, G. Prince, and W. Sarlet, β€œContact symmetries of the Helmholtz form,” Differential Geometry and Its Applications, vol. 25, no. 5, pp. 518–542, 2007. [12] W. Sarlet, A. Vandecasteele, F. Cantrijn, and E. MartΒ΄Δ±nez, β€œDerivations of forms along a map: the framework for timedependent second-order equations,” Differential Geometry and Its Applications, vol. 5, no. 2, pp. 171–203, 1995. [13] D. Krupka and J. JanyΛ‡ska, Lectures on Differential Invariants, vol. 1 of Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis. Mathematica, University J. E. PurkynΛ‡e, Brno, Czech Republic, 1990. [14] D. R. Grigore and D. Krupka, β€œInvariants of velocities and higher-order Grassmann bundles,” Journal of Geometry and Physics, vol. 24, no. 3, pp. 244–264, 1998. [15] I. KolΒ΄aΛ‡r, P. W. Michor, and J. SlovΒ΄ak, Natural Operations in Differential Geometry, Springer, Berlin, Germany, 1993. [16] D. Krupka and M. Krupka, β€œJets and contact elements,” in Proceedings of the Seminar on Differential Geometry (Opava, 2000), vol. 2 of Mathematical Publications, pp. 39–85, Silesian Univ. Opava, Opava, Czech Republic, 2000. [17] W. Sarlet and F. Cantrijn, β€œSpecial symmetries for Lagrangian systems and their analogues in nonconservative mechanics,” in Proceedings of the Conference on Differential Geometry and Its Applications, D. Krupka, Ed., pp. 247–260, Univ. J. E. PurkynΛ‡e, Brno, Czech Republic, 1984.

Geometry [18] D. Krupka, β€œLocal invariants of a linear connection,” in Differential Geometry (Budapest, 1979), vol. 31 of Colloq. Math. Soc. JΒ΄anos Bolyai, pp. 349–369, North-Holland, Amsterdam, The Netherlands, 1982.

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014