Hindawi Publishing Corporation Geometry Volume 2013, Article ID 364301, 10 pages http://dx.doi.org/10.1155/2013/364301
Research Article The Geometry of Tangent Bundles: Canonical Vector Fields Tongzhu Li1 and Demeter Krupka1,2,3 1
Department of Mathematics, Beijing Institute of Technology, Beijing 100081, China Department of Mathematics, Faculty of Science, The University of Ostrava, 30. dubna 22, 70103 Ostrava, Czech Republic 3 Department of Mathematics, La Trobe University, Melbourne, Bundoora, VIC 3086, Australia 2
Correspondence should be addressed to Demeter Krupka;
[email protected] Received 14 December 2012; Accepted 13 March 2013 Academic Editor: Anna Fino Copyright Β© 2013 T. Li and D. Krupka. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A canonical vector field on the tangent bundle is a vector field defined by an invariant coordinate construction. In this paper, a complete classification of canonical vector fields on tangent bundles, depending on vector fields defined on their bases, is obtained. It is shown that every canonical vector field is a linear combination with constant coefficients of three vector fields: the variational vector field (canonical lift), the Liouville vector field, and the vertical lift of a vector field on the base of the tangent bundle.
1. Introduction Vector fields on tangent bundles belong to basic concepts of pure and applied differential geometry, global analysis, and mathematical physics. Recent research in geometry extends the well-known correspondence of semisprays, sprays, and geodesic sprays to the classical theory of geodesics and connections (see, e.g., [1, 2]). Vector fields on tangent bundles can be considered as an underlying geometric structure for the theory of second-order differential equations [3β 7]. The semispray theory has been used in the calculus of variations on manifolds to characterize extremal curves of a variational functional as integral curves of the Hamilton or Euler-Lagrange vector fields [2, 4, 8, 9]. Sprays and semisprays also provide a natural framework for extension of classical results of analytical mechanics to contemporary mechanical problems and stimulate a broad research in the global theory of nonconservative systems, symmetries, and the constraint theory (see, e.g., [6, 10β12]). This paper is devoted to the structure theory of vector fields on the tangent bundle ππ of a manifold π; our aim will be to classify all canonical vector fields on ππ, independent of any geometric structure or on the topology of π. Our main theorem says that every canonical vector field is a linear combination with constant coefficients of three independent vector fields: (a) a variational vector field (the natural lift of a vector field, defined on π), (b) the Liouville vector field, and
(c) the vertical lift of a vector field on π; this completes the results obtained in [13]. Another result is the method how the main theorem has been formulated and proved; the concepts we use allow generalizations and applications to analogous problems of discovering and describing canonical geometric objects. Our approach to the problem is based on the theory of jets and differential invariants, and on an observation that the coordinate transformations on π naturally define a Lie group πΏππ , where π = dim π, the differential group, and its left action on the type fibre of any natural bundle over π [13β 17]. The general theory gives us equations that determine a canonical vector field on ππ as a differential invariant of the second differential group πΏππ . The proof of our result is not straightforward; it relies on the semidirect product structure of πΏππ and on the orbit reduction method that has already been applied to the classification problem of differential invariants of a linear connection [18]. The method can also be used in the canonical constructions depending on any geometric objects. Throughout this work, π is a smooth real π-dimensional manifold, ππ is the tangent bundle of π, and ππ : ππ β π is the tangent bundle projection. The second tangent bundle of π is the tangent bundle πππ = π2 π over ππ with the tangent bundle projection πππ : πππ β ππ; its elements are second-order tangent vectors on π. The mapping πππ is the differential πππ : πππ β ππ₯ of ππ , satisfying
2
Geometry
ππ βπππ₯ = ππ βπππ. The 1-jet prolongation of ππ is denoted by π½1 ππ; elements of the set π½1 ππ are the 1-jets π½π₯1 π with source π₯ β π and target π(π₯) β ππ₯ π = ππ₯β1 (π₯); the source and target jet projections are ππ1 : π½1 ππ β π and ππ1,0 : π½1 ππ β ππ.
ππ = ππ1 .
2. Second-Order Vectors and Jets of a Vector Field In this section, we fix basic notation, used throughout this paper. If (π, π), π = (π₯π ), is a chart on π, we denote by (ππβ1 (π), Ξ¦), Ξ¦ = (π₯π , π₯Μ π ), the associated chart on the tangent bundle ππ; the associated chart on π2 π is denoted β1 β1 ΜΜ π ). The tangent bundle Μπ, π₯ (ππ (π)), Ξ¨), Ξ¨ = (π₯π , π₯Μ π , π₯ by (πππ projection ππ has the chart expression (π₯π , π₯Μ π ) β (π₯π ), and ΜΜ π ) β (π₯π , π₯Μ π ). The tangent Μπ, π₯ πππ is expressed by (π₯π , π₯Μ π , π₯ ΜΜ π ) β Μπ, π₯ mapping πππ is expressed in coordinates as (π₯π , π₯Μ π , π₯ Μ π ). (π₯π , π₯ In the following two lemmas, we recall standard transformation formulas, needed in proofs. Lemma 1. Let a second-order tangent vector Ξ β ππ ππ be expressed in two charts (π, π), π = (π₯π ), and (π, π), π = (π¦π ), as Ξ = Ξπ (
π π π π π π ) + ΞΜ ( π ) = Ξπ ( π ) + ΞΜ ( π ) . ππ₯π π ππ¦ π ππ₯Μ π ππ¦Μ π (1)
Then, Ξπ = (
ππ¦π ) Ξπ , ππ₯π π(π₯)
π 2 π¦π ππ¦π π ΞΜ = ( π π ) π₯Μ π (π) Ξπ + ( π ) ΞΜ . ππ₯ ππ₯ π(π₯) ππ₯ π(π₯)
(2)
π
The chart on π½1 ππ, associated with the chart (π, π), π = (π₯ ), on π is denoted by ((ππ₯1 )β1 (π), Ξ¦1 ), Ξ¦1 = (π₯π , π₯Μ π , π₯Μ ππ ). The coordinates of a 1-jet π½π₯1 π are π₯π (π½π₯1 π) = π₯π (π₯), π₯Μ π (π½π₯1 π) = π₯Μ π (π(π₯)), and π₯Μ ππ (π½π₯1 π) = π·π (π₯Μ π ππβ1 )(π(π₯)). π
Lemma 2. For any two charts (π, π), π = (π₯π ), and (π, π), π = (π¦π ), on π, such that π β© π =ΜΈ 0, the transformation equations on (ππ1 )β1 (π) β© (ππ1 )β1 (π) are π¦Μ π =
ππ¦π π π₯Μ , ππ₯π
π¦Μ ππ = (
π2 π¦π π ππ¦π π ππ₯π π₯Μ + π π₯Μ π ) π . (3) ππ₯π ππ₯π ππ₯ ππ¦
We need the pullback fibration ππβ π½1 ππ = {(π, π½π₯1 π) β ππ Γ π½1 ππ|ππ (π) = π₯} over ππ. We have the commutative diagram β 1 ππ π½ ππ
π½1 ππ 1 ππ
ππ
ππ
π
in which the left vertical arrow is the restriction of the first Cartesian projection ππ1 : ππ Γ π½1 ππ β ππ and the upper horizontal arrow is the restriction of the second Cartesian projection ππ2 : ππ Γ π½1 ππ β π½1 ππ. We denote
(4)
(5)
Any chart (π, π), π = (π₯π ), on π induces a chart on the pullback manifold ππβ π½1 ππ. Denoting by π₯π (π) = π₯π (π₯), π₯Μ π (π) = ππ the coordinates of a vector π β ππβ1 (π) at π₯ β π and by π₯π (π½π₯1 π) = π₯π (π₯), π₯Μ π (π½π₯1 π) = ππ , π₯Μ ππ (π½π₯1 π) = πππ the coordinates of a 1-jet π½π₯1 π β (ππ1 )β1 (π), then the induced chart on ππβ π½1 ππ, Μ 1 ), Ξ¦ Μ 1 = (π₯π , π₯Μ π , π§Μ π , π§Μ π ), is defined by (ππ₯β1 (ππβ1 (π)), Ξ¦ π π₯π (π, π½π₯1 π) = π₯π (π₯) , π§Μ π (π, π½π₯1 π) = ππ ,
π₯Μ π (π, π½π₯1 π) = ππ , π§Μ ππ (π, π½π₯1 π) = πππ .
(6)
In these coordinates, ππ is the mapping (π₯π , π₯Μ π , π§Μ π , π§Μ ππ ) β (π₯π , π₯Μ π ) and the second Cartesian projection is (π₯π , π₯Μ π , π§Μ π , π§Μ ππ ) β (π₯π , π₯Μ π , π§Μ ππ ).
3. Differential Groups and Differential Invariants Recall that for any positive integer π, the πth differential group πΏππ is the group of invertible π-jets with source and target at the origin 0, endowed with its natural Lie group structure; the group multiplication in πΏππ is the jet composition πΏππ Γ πΏππ β π½0π πΌ β π½0π π½ = π½0π (πΌ β π½) β πΏππ . The first differential group πΏ1π is just the group πΊπΏ π (R). For all π β₯ π , we denote by ππ,π : πΏππ β πΏπ π the canonical jet projection and by π1,π : πΏ1π β πΏππ the canonical injective Lie group morphism. The normal subgroup πΎππ = πΎππππ,1 of πΏππ is nilpotent, and πΏππ is the interior semidirect product of π1,π (πΏ1π ) and πΎππ [13, 17]; we denote πΏππ = πΏ1π Γ π πΎππ . The first canonical coordinates on πΏππ are the functions π ππ1 , πππ 1 π2 , . . . , πππ 1 π2 β
β
β
ππ , where 1 β€ π1 β€ π2 β€ β
β
β
β€ ππ β€ π, π = 1, 2, . . . , π, defined as follows. If π½0π πΌ β πΏππ is an πjet and πΌ = (πΌπ ) its representative, then πππ 1 π2 β
β
β
ππ (π½0π πΌ) = π·π1 π·π2 β
β
β
π·ππ πΌπ (0). Similarly, the formula πππ1 π2 β
β
β
ππ (π½0π πΌ) = πππ 1 π2 β
β
β
ππ (π½0π πΌβ1 ) defines the second canonical coordinates πππ1 , πππ1 π2 , . . . , πππ1 π2 β
β
β
ππ ; clearly, these coordinates satisfy π
πππ ππ = πΏππ .
(7)
Equations of the subgroup πΎππ are πππ = πΏππ , and equations of the subgroup π1,π (πΏ1π ) are πππ 1 π2 = 0,. . ., πππ 1 π2 β
β
β
ππ = 0. By a differential invariant, we mean an πΏππ -equivariant mapping π : π β π of left πΏππ -manifolds [13]. Given the actions of πΏππ on π and π, we get the equation for the differential invariant π: π (π½0π πΌ β
π) = π½0π πΌ β
π (π) ,
(8)
Geometry
3
where π β π and π½0π πΌ β πΏππ . Equation (8) splits to an equivalent system: π (π½0π πΌ
β
π) =
π½0π πΌ
π (π½0π π½
β
π (π) ,
β
π) =
π½0π π½
β
π (π) , (9)
where π½0π πΌ β πΏ1π and π½0π π½ β πΎππ (the orbit reduction method [18]). The problem we consider in this paper reduces to solving (9) for some specific left πΏ2π -manifolds π and π. In our case, the orbit reduction method simplifies (8) and allows us to obtain its complete solution.
(1) Ξ is a canonical vector field. (2) For any points π₯, π¦ β π, any charts (π, π), π = (π₯π ), at π₯ and (π, π), π = (π¦π ), at π¦, and any diffeomorphism πΌ : π β π such that πΌ(π₯) = π¦, π π Ξπ(π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ )
= πππ Ξπ(π,π) (ππ , ππ , πππ ) ,
π π π π π π = πππ π Ξ(π,π) (ππ , ππ , ππ ) + πππ ΞΜ (π,π) (ππ , ππ , ππ ),
4. Canonical Vector Fields on Tangent Bundles Any diffeomorphism πΌ : π β π, defined on an open set π in π, induces the corresponding lifted diffeomorphisms ππΌ : ππ β ππ, π½1 ππΌ : π½1 ππ β π½1 ππ, and (ππΌ, π½1 ππΌ) : ππβ π½1 ππ β ππβ π½1 ππ. By a canonical vector field on ππ, we mean a morphism Ξ : ππβ π½1 ππ β π2 π such that πππ β Ξ = ππ ,
(17)
π π π ΞΜ (π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ )
where πππ = (
π(π¦π πΌπβ1 ) ) , ππ₯π π(π₯) πππ
(10)
π πππ =(
π2 (π¦π πΌπβ1 ) ) , ππ₯π ππ₯π π(π₯)
π(π₯π πΌβ1 πβ1 ) =( ) . ππ¦π π(π₯)
(18)
and for all diffeomorphisms πΌ : π β π of π, Ξ β (ππΌ, π½1 ππΌ) = π (ππΌ) β Ξ.
(11)
Condition (10) means that the diagram β 1 π½ ππ ππ
Ξ
π¦Μ π (ππ₯ πΌ β
π) = πππ ππ ,
π2 π
ππ
πππ
ππ
Proof. Consider condition (14). With the abbreviations (18), 1 the coordinates of the vector ππ₯ πΌ β
π and the 1-jet π½πΌ(π₯) (ππΌ β π β β1 πΌ ) are
id ππ
1 (ππΌ β π β πΌβ1 )) = πππ ππ , π¦Μ π (π½πΌ(π₯)
(12)
ππ
1 π π π (ππΌ β π β πΌβ1 )) = πππ ππ π + πππ πππ πππ . π¦Μ ππ (π½πΌ(π₯)
commutes or, which is the same, for all (π, π½π₯1 π) β ππβ π½1 ππ, Ξ(π, π½π₯1 π) is a second-order vector on π at the point π β ππ, πππ (Ξ (π, π½π₯1 π)) = π.
The coordinates of the vector ππ ππΌ β
Ξ(π, π½π₯1 π) are determined by
(13)
ππ ππΌ β
Ξ (π, π½π₯1 π)
1 Since π½1 ππΌ(π½π₯1 π) = π½πΌ(π₯) (ππΌ β π β πΌβ1 ), condition (11) can also be written as 1 (ππΌ β π β πΌβ1 )) = ππ ππΌ β
Ξ (π, π½π₯1 π) . Ξ (ππ₯ πΌ β
π, π½πΌ(π₯)
= πππ Ξπ(π,π) (π, π½π₯1 π) (
(14)
π π π ) + ΞΜ (π,π) (π, π½π₯1 π) ( π ) . π ππ₯ π ππ₯Μ π (15)
Then for fixed π₯, the components are functions of the coordinates ππ , ππ , and πππ ; that is, Ξπ(π,π)
=
Ξπ(π,π)
π
(π , π
π
, πππ ) ,
ππβ π½1 ππ
π π ΞΜ (π,π) = ΞΜ (π,π) (ππ , ππ , πππ ) . (16) 2
β π π be a morphism over the Theorem 3. Let Ξ : identity idππ . The following two conditions are equivalent:
π ) ππ¦π ππ₯ πΌβ
π (20)
π π + (πππ π₯Μ (π) Ξπ(π,π) (π, π½π₯1 π)
We express conditions (13) and (14) in coordinates. We write in a chart (π, π), π = (π₯π ), Ξ (π, π½π₯1 π) = Ξπ(π,π) (π, π½π₯1 π) (
(19)
π
+πππ ΞΜ (π,π) (π, π½π₯1 π)) (
π ) . ππ¦Μ π ππ₯ πΌβ
π
Writing 1 Ξ (ππ₯ πΌ β
π, π½πΌ(π₯) (ππΌ β π β πΌβ1 )) 1 = Ξπ(π,π) (ππ₯ πΌ β
π, π½πΌ(π₯) (ππΌ β π β πΌβ1 )) (
π
π ) ππ¦π ππ₯ πΌβ
π
1 + ΞΜ (π,π) (ππ₯ πΌ β
π, π½πΌ(π₯) (ππΌ β π β πΌβ1 )) (
π ) , ππ¦Μ π ππ₯ πΌβ
π (21)
4
Geometry
we can express condition (14), with help of (19) and (20), as π πππ π₯Μ π (π½π₯1 π)+πππ πππ π₯Μ ππ (π½π₯1 π)) Ξπ(π,π) (πππ π₯Μ π (π) , πππ π₯Μ π (π½π₯1 π) , πππ
= πππ Ξπ(π,π) (π, π½π₯1 π) , π π ΞΜ (π,π) (πππ π₯Μ π (π) , πππ π₯Μ π (π½π₯1 π) , πππ πππ π₯Μ π (π½π₯1 π)
πππ =
+πππ πππ π₯Μ ππ (π½π₯1 π) ) =
π π πππ π₯Μ
(π) Ξπ(π,π)
(π, π½π₯1 π)
+
π πππ ΞΜ (π,π)
(π, π½π₯1 π) .
πππ (22)
In the well-known sense, the canonical vector fields are completely determined by certain differential invariants, that 2 is, equivariant mappings from the type fibre Rπ Γ Rπ Γ Rπ of ππβ π½1 ππ into the type fibre Rπ Γ Rπ Γ Rπ of π2 π over π with respect to the canonical actions of the differential group πΏ2π , induced by diffeomorphisms of π. We can characterize these actions explicitly in terms of the first and second canonical π and πππ , πππ π on the differential group πΏ2π . coordinates πππ , πππ Note that πππ πππ If π΄ =
π (πππ , πππ )
πΏππ ,
=
π πππ πππ
+
πππ πππ πππ π
= 0.
(23)
is an element of the differential group π
π
πΏ2π , π2
denote by πΌπ΄ (resp., π½π΄ ) the transformation of R Γ R Γ R (resp., Rπ Γ Rπ Γ Rπ ), defined by π΄. For any points (ππ , ππ , πππ ) β 2 π Rπ Γ Rπ Γ Rπ and (ππ , Ξπ , ΞΜ ) β Rπ Γ Rπ Γ Rπ , we denote π
π
π
π
π
π
(24)
The following lemma defines the points (24) explicitly. π ) be an element of the differential Lemma 4. Let π΄ = (πππ , πππ group πΏ2π . 2
(a) The canonical group action of πΏ2π on Rπ Γ Rπ Γ Rπ is given by the equations: π
π
π = πππ ππ ,
π
π π ππ = πππ πππ ππ + πππ πππ ππ .
(25)
(b) The canonical group action of πΏ2π on Rπ Γ Rπ Γ Rπ is given by the equations: π
πππ ππ ,
π = π
ππ₯π = π, ππ¦
π πππ =
πππ π
π 2 π¦π , ππ₯π ππ₯π
π2 π₯π = π π . ππ¦ ππ¦
(27)
Since a canonical vector field is always a morphism over the identity mapping idππ , the corresponding differential 2 invariant πΉ : Rπ Γ Rπ Γ Rπ β Rπ Γ Rπ Γ Rπ has an expression π (ππ , ππ , πππ ) β πΉ(ππ , ππ , πππ ) = (ππ , πΉπ (ππ , ππ , πππ ), πΉΜ (ππ , ππ , πππ )); we π denote πΉ = (πΉπ , πΉΜ ). π Theorem 5. A mapping πΉ = (πΉπ , πΉΜ ) is a differential invariant if and only if π π π π π π ππ π + ππ ππ ππ ) πΉπ (ππ π ππ , ππ π ππ , ππ π
= πππ πΉπ (ππ , ππ , ππ π ) , π π π π π π π πΉΜ (ππ π ππ , ππ π ππ , ππ π ππ π + ππ ππ ππ )
(28)
π π π π π πΉ (ππ , ππ , ππ π ) + πππ πΉΜ (ππ , ππ , ππ π ) , = πππ 2
(π , Ξ , ΞΜ ) = π½π΄ (ππ , Ξπ , ΞΜ ) .
π = πππ ππ ,
ππ¦π , ππ₯π
π ) β πΏ2π . for all (ππ , ππ , ππ π ) β Rπ Γ Rπ Γ Rπ and (πππ , πππ
(π , π , ππ ) = πΌπ΄ (ππ , ππ , πππ ) , π
Proof. The left πΏ2π -actions on the type fibres of ππβ π½1 ππ and π2 π can be derived from the general theory of differential groups and differential invariants [13]. Note that these πΏ2π actions can also be defined by transformation properties of components of jets and tangent vectors; compare with Lemmas 1 and 2 with the substitution
π
Ξ =
πππ Ξπ ,
π π π π ΞΜ = πππ π Ξ + πππ ΞΜ .
Proof. Equations (28) are direct consequences of (25) and (26). Remark 6. Note that our definition of the canonical vector field differs from the lifting of a vector field from a base manifold to its tangent bundle, which is defined by means of the lifting of diffeomorphisms and 1-parameter groups of diffeomorphisms to the tangent bundle [2, 9]. Remark 7. We can specify Theorem 3 to diffeomorphisms πΌ, preserving a given point π₯ β π, such that πΌ(π₯) = π₯, and to charts (π, π) and (π, π) such that (π, π) = (π, π) π and π(π₯) = 0. Then, the components Ξπ(π,π) and ΞΜ (π,π) of a canonical vector field Ξ satisfy π π Ξπ(π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ ) π ), = πππ Ξπ(π,π) (ππ , ππ , ππ π π π ΞΜ (π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ )
(26)
π
π π π π π = πππ π Ξ(π,π) (ππ , ππ , ππ ) + πππ ΞΜ (π,π) (ππ , ππ , ππ ),
(29)
Geometry
5 Properties of πΉπ are completely determined by the subgroup πΏ1π of πΏ2π . If ππ π = ππΏπ π , π =ΜΈ 0, then by (38) πΉπ satisfies the positive homogeneity condition
where πππ = (
π(π₯π πΌπβ1 ) ), ππ₯π 0
π πππ =(
π2 (π₯π πΌπβ1 ) ), ππ₯π ππ₯π 0
π(π₯π πΌβ1 πβ1 ) πππ = ( ). ππ₯π 0
5. Canonical Vector Fields: Classification π We find all solutions πΉ = (πΉπ , πΉΜ ) of the equations for differential invariants, associated with canonical vector fields Ξ : ππβ π½1 ππ β π2 π (Theorem 5). These equations can be written in coordinates as π π π π π π ππ π§Μ + ππ ππ π§Μ π ) πΉπ (ππ π π₯Μ π , ππ π π§Μ π , ππ π
(31)
= πππ πΉπ (π₯Μ π , π§Μ π , π§Μ π π ), π π π π π π π πΉΜ (ππ π π₯Μ π , ππ π π§Μ π , ππ π ππ π§Μ + ππ ππ π§Μ π )
=
π πππ π₯Μ π πΉπ
π
π
(π₯Μ , π§Μ
, π§Μ π π )
+
π πππ πΉΜ
π
π
(π₯Μ , π§Μ
, π§Μ π π ).
πΉπ (ππ₯Μ π , ππ§Μ π ) = ππΉπ (π₯Μ π , π§Μ π ) .
(30)
(39)
We suppose, however, that the functions πΉπ are defined at the origin π₯Μ π = 0, π§Μ π = 0; then it is easily seen that (39) also holds for π = 0. Indeed, in this case, we have πΉπ (π β
0, π β
0) = πΉπ (0, 0) = ππΉπ (0, 0) for all π =ΜΈ 0, hence πΉπ (0, 0) = 0. On the other hand, the points ππ₯Μ π and ππ§Μ π are always defined for π = 0; then πΉπ (0 β
π₯Μ π , 0 β
π§Μ π ) = πΉπ (0, 0) = 0 = 0 β
πΉπ (π₯Μ π , π§Μ π ), which proves (39) for π = 0. Then, we have from (28) π·1,π πΉπ (ππ₯Μ π , ππ§Μ π )π₯Μ π + π·2,π πΉπ (ππ₯Μ π , ππ§Μ π )π§Μ π = πΉπ (π₯Μ π , π§Μ π ) by differentiation with respect to π; we see that the expression on the left does not depend on π. For π = 0, we get π·1,π πΉπ (0, 0)π₯Μ π +π·2,π πΉπ (0, 0)π§Μ π = πΉπ (π₯Μ π , π§Μ π ), showing that πΉπ is linear in π₯Μ π and π§Μ π ; that is, πΉπ (π₯Μ π , π§Μ π ) = πππ π₯Μ π + πππ π§Μ π .
(32)
(40)
Substituting now into (38), we get
The following lemma solves (31). Lemma 8. The functions πΉπ satisfy condition (31) if and only if
πππ ππ π π₯Μ π + πππ ππ π π§Μ π = πππ (πππ π₯Μ π + πππ π§Μ π ) .
(41)
π
(33)
That is, πππ ππ π = πππ ππ π and πππ ππ π = πππ ππ π . Thus, πππ ππ πΏπ π = πΏππ πππ ππ π ,
Proof. (1) First we consider (31) for the group elements, belonging to the subgroup πΎπ2 of πΏ2π ; equations of πΎπ2 are
Analogously, ππππ = πΏππ πππ . These expressions together with (40) prove formula (33). (3) If condition (33) is satisfied, then we get (31) by immediate substitution.
π
πΉπ (π₯Μ π , π§Μ π , π§Μ π ) = π΄π₯Μ π + π΅π§Μ π , for some constants π΄, π΅ β R.
ππ π = πΏπ π ,
(34)
π π πΉπ (π₯Μ π , π§Μ π , πππ π§Μ + π§Μ ππ ) = πΉπ (π₯Μ π , π§Μ π , π§Μ π π ).
(35)
and we get the system
This equation is obviously satisfied at all points where π§Μ π = 0. On the other hand, suppose that there exists at least one index π such that π§Μ π =ΜΈ 0; then to every point π¦Μ ππ one can find the π π π group parameters πππ π§Μ + π§Μ ππ = π¦Μ ππ . Indeed, if, such that πππ for example, π§Μ 1 =ΜΈ 0, we set π
ππ,1 =
π¦Μ ππ β π§Μ ππ π§Μ 1
π
π
π ππ,2 , ππ,3 , . . . , ππ,π = 0.
,
(36)
hence πππ πΏπ π = πΏππ ππ π and by the trace operation, ππππ = πΏππ πππ .
Now, we wish to solve (32). In view of Lemma 8, these equations are of the form π π π π π π π ππ π§Μ + ππ ππ π§Μ π ) πΉΜ (ππ π π₯Μ π , ππ π π§Μ π , ππ π π
π = πππ π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) + πππ πΉΜ (π₯Μ π , π§Μ π , π§Μ π π ).
We prove separately the following lemma. Lemma 9. The following two conditions are equivalent: ππ
π π π = πππ ππ π ππ (π₯Μ π , π§Μ π ) . ππππ (ππ π π₯Μ π , ππ π π§Μ π ) ππ
(43)
ππ
(37)
π
which shows that πΉπ (π₯Μ π , π₯Μ π , π₯Μ π ) is independent of π₯Μ ππ . (2) In view of (37), we can write πΉπ (π₯Μ π , π₯Μ π ) instead of π πΉπ (π₯Μ π , π₯Μ π , π₯Μ π ). Turning back to conditions (31), we have the following equations for the functions πΉπ : πΉπ (ππ π π₯Μ π , ππ π π§Μ π ) = πππ πΉπ (π₯Μ π , π§Μ π ) .
ππ
(a) The functions ππ = ππ (π₯Μ π , π§Μ π ) satisfy
This choice of the group parameters yields πΉπ (π₯Μ π , π§Μ π , π¦Μ ππ ) = πΉπ (π₯Μ π , π§Μ π , π§Μ π π ),
(42)
(38)
(b) The functions ππ are of the form ππ (π₯Μ π , π§Μ π ) ππ π π π π π π + πΏπ πΏπ ) + π (πΏππ πΏπ β πΏπ πΏπ )) π₯Μ π = (π (πΏππ πΏπ π π π π π π + (π
(πΏππ πΏπ + πΏπ πΏπ ) + π (πΏππ πΏπ β πΏπ πΏπ )) π§Μ π ,
where π, π, π
, π β R.
(44)
6
Geometry
ππ Proof. (1) If πππ = ππΏππ , Lemma 9, equation (43) πππ (ππ₯Μ π , ππ§Μ π ) 2 ππ π π = π ππ (π₯Μ , π§Μ ) yields ππ ππ π ππ π (π₯Μ π , π§Μ π ) = πππ π§Μ , ππ π₯Μ + πππ
(45)
ππ ππ , πππ β R (Lemma 8). Substituting back to (43), for some πππ
ππ ππ we get conditions for the coefficients πππ , πππ β R: ππ π π ππ π₯Μ (ππ π
+
π π ππ πππ ππ π§Μ π ) ππ
(46)
π
ππ π‘ π ππ‘ π ππ‘ πππ = πΏπ πΏπ π (πππ or, which is the same, (ππ π π₯Μ + ππ πππ π§Μ π‘ )πΏπ π₯Μ + π
π‘π π π§Μ )ππ‘ πππ ; that is, πππ π
π
ππ π π π πππ ππ‘ ππ = πππ ππ π πππ‘ ,
ππ π π π πππ ππ‘ ππ = πππ ππ π πππ‘ .
π π ππ ππ π πΏππ πΏππ πππ‘ from which it follows that
+
ππ π π πππ πΏπ‘ πΏπ
=
π π πΏππ πΏππ πππ‘
+
π π + (π
(πΏπ πΏππ + πΏππ πΏππ ) + π (πΏπ πΏππ β πΏππ πΏππ )) π§Μ π , π π π π π π π π ππ = (π (πΏππ πΏπ + πΏπ πΏπ ) + π (πΏππ πΏπ β πΏπ πΏπ )) π₯Μ π
π π ππππ (ππ π π₯Μ π , ππ π π§Μ π ) ππ ππ
π π π π π‘ π π π π π‘ π§Μ + π
πΏπ π§Μ β ππΏπ + π
ππ ππ‘ π§Μ + πππ ππ‘ π§Μ , π π (π₯Μ π , π§Μ π ) ππ π ππ
(48)
ππ πΏππ πΏππ πππ and
π π π π π π π π π π π§Μ + π
πΏπ π§Μ β ππΏπ + π
ππ ππ π§Μ + πππ ππ π§Μ ,
proving (13). Now, we are in position to give a solution to (42). π
ππ ππ π π ππ π2 πππ + ππππ = πΏππ πΏππ πππ + πΏππ πΏππ πππ .
(49)
Lemma 10. The functions πΉΜ satisfy condition (42) if and only if π΄ = 0,
(55)
π π πΉΜ (π₯Μ π , π§Μ π , π§Μ π ) = πΎπ₯Μ π + πΏπ§Μ π + π΅π₯Μ π π§Μ ππ
(56)
ππ π ππ π πΏπ‘ + ππππ πΏπ‘ = Contractions in π , π and in π, π‘ yield πππ ππ πΏππ πΏππ πππ‘
ππ ππππ
+ and + From these formulas, we find
ππ π2 πππ
=
ππ‘ πΏππ πΏππ πππ‘
+
π‘π πΏππ πΏππ πππ‘ .
for some constants πΎ, πΏ β R.
ππ ππ ππ π‘π π (π + 1) (πππ + πππ ) = (πΏππ πΏππ + πΏππ πΏππ ) (πππ + πππ‘ ),
π (π β ππ πππ
+
ππ 1) (πππ
β
ππ πππ )
=
(πΏππ πΏππ
β
π‘π πΏππ πΏππ ) (πππ‘
+
π Proof. (1) Suppose that πΉΜ satisfy (42). Then if ππ π = πΏπ π , we have
ππ‘ πππ‘ ),
1 ππ π‘π = + πππ‘ ), (πΏπ πΏπ + πΏππ πΏππ ) (πππ π (π + 1) π π
ππ πππ
ππ ππ πππ β πππ =
(50)
π π π π§Μ + π§Μ ππ ) πΉΜ (π₯Μ π , π§Μ π , πππ π π = πππ π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) + πΉΜ (π₯Μ π , π§Μ π , π§Μ π π ).
1 π‘π ππ‘ (πΏπ πΏπ β πΏππ πΏππ ) (πππ‘ + πππ‘ ), π (π β 1) π π
π
1 ππ π‘π = + πππ‘ ), (πΏπ πΏπ + πΏππ πΏππ ) (πππ 2π (π + 1) π π +
1 π‘π ππ‘ (πΏπ πΏπ β πΏππ πΏππ ) (πππ‘ + πππ‘ ). 2π (π β 1) π π
The same computation applies to ππ πππ
=
π (πΏππ πΏππ
+
πΏππ πΏππ )
+
ππ . πππ
(
β
πΏππ πΏππ ) ,
ππ = π
(πΏππ πΏππ + πΏππ πΏππ ) + π (πΏππ πΏππ β πΏππ πΏππ ) , πππ
ππΉΜ ) ππ§Μ ππ (π₯Μ π ,π§Μπ ,ππ
π π ππ π§Μ +π§Μ π )
(51)
π
=(
ππΉΜ ) , ππ§Μ ππ (π₯Μ π ,π§Μπ ,π§Μπ )
(58)
π
π which shows that the derivative ππΉΜ /ππ§Μ ππ does not depend on π§Μ ππ . Then, however, π π πΉΜ (π₯Μ π , π§Μ π , π§Μ π ) = ππ (π₯Μ π , π§Μ π ) + ππ ππ (π₯Μ π , π§Μ π ) π§Μ π π ,
Thus,
π (πΏππ πΏππ
(57)
Differentiating with respect to π§Μ ππ , we have
hence ππ πππ
(54)
π π π π π π π π π π ππ π₯Μ + πππ ππ π₯Μ = πππ π₯Μ + ππΏπ π₯Μ β ππΏπ
ππ πΏππ πΏππ πππ‘ .
We apply to this formula various trace operations. Contracπ ππ π π π tions in π , π‘ and then in π, π yield ππππππ πΏπ + πππ πΏπ = πΏππ πΏππ πππ +
ππ πΏππ πΏππ πππ‘
(53)
and substituting these expressions into (44), we have
(47)
ππ ππ π π π , we write πππ πΏπ‘ πΏπ ππ ππ = To determine the constants πππ
ππ π π πππ πΏπ‘ πΏπ
π
π π π π π‘ π π π π π‘ = πππ ππ‘ π₯Μ + πππ ππ‘ π₯Μ π₯Μ + ππΏπ π₯Μ β ππΏπ
π
π
π
ππππ = (π (πΏπ πΏππ + πΏππ πΏππ ) + π (πΏπ πΏππ β πΏππ πΏππ )) π₯Μ π
π π π π π π + (π
(πΏππ πΏπ + πΏπ πΏπ ) + π (πΏππ πΏπ β πΏπ πΏπ )) π§Μ π
ππ‘ π π‘π π π§Μ ) , = ππ‘π πππ (πππ π₯Μ + πππ π
ππ satisfies (44). Writing (2) Conversely, suppose that ππ
(59)
where the functions ππ and ππ ππ do not depend on π§Μ ππ . Substituting from (59) back to (57), we have (52)
for some constants π, π, π
, π β R. Formula (44) now follows from (52) and (45).
π π§Μ π + π§Μ π π ) ππ (π₯Μ π , π§Μ π ) + ππ ππ (π₯Μ π , π§Μ π ) (πππ π = πππ π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) + ππ (π₯Μ π , π§Μ π ) + ππ ππ (π₯Μ π , π§Μ π ) π§Μ π π , (60)
Geometry
7
π π π§Μ π = πΏπ π πππ hence ππ ππ (π₯Μ π , π§Μ π )πππ π₯Μ π (π΄π₯Μ π + π΅π§Μ π ). Thus, the π ππ functions π and ππ in (59) must satisfy
ππ ππ (π₯Μ π , π§Μ π ) π§Μ π + ππ ππ (π₯Μ π , π§Μ π ) π§Μ π = πΏπ π π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) + πΏπ π π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) .
(π (π + 1) + π (π β 1)) (π₯Μ π π§Μ π + π₯Μ π π§Μ π ) = ππ΅ (π₯Μ π π§Μ π + π₯Μ π π§Μ π ) (π
(π + 1) + π (π β 1)) π§Μ π π§Μ π = 0,
(61)
(70) hence
Note that the trace operation in π and π yields 1 π π π π π (π (π₯Μ , π§Μ ) π§Μ + ππ π π (π₯Μ π , π§Μ π ) π§Μ π ) π π
Consequently, π΄ = 0 and
π΄ = 0, π (π + 1) + π (π β 1) = ππ΅,
(62)
π
(π + 1) + π (π β 1) = 0.
= π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) + π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) . π (2) We now use (56) for the group parameters πππ = 0. We have the condition π π π π π ππ π§Μ π ) = πππ πΉΜ (π₯Μ π , π§Μ π , π§Μ π πΉΜ (ππ π π₯Μ π , ππ π π§Μ π , ππ π ),
(63)
and, from (59), π π‘ π ππ (ππ π π₯Μ π , ππ π π§Μ π ) + ππ ππ (ππ π π₯Μ π , ππ π π§Μ π ) ππ ππ π§Μ π‘
= πππ ππ (π₯Μ π , π§Μ π ) + πππ ππ ππ (π₯Μ π , π§Μ π ) π§Μ π π .
π π‘ ππ = πππ ππ ππ (π₯Μ π , π§Μ π ) . ππ ππ (ππ π π₯Μ π , ππ π π§Μ π ) ππ
(64)
(π (πΏππ πΏπ π + πΏπ π πΏππ ) + π (πΏππ πΏπ π β πΏπ π πΏππ )) π₯Μ π π§Μ π + π(
(65)
+ π(
1βπ π π (πΏ πΏ + πΏπ π πΏππ ) + (πΏππ πΏπ π β πΏπ π πΏππ )) π§Μ π π§Μ π π+1 π π (72)
The terms containing π§Μ π π§Μ π should vanish separately. Since these terms are 1 π (β (π β 1) πΏπ π π§Μ π π§Μ π β (π β 1) πΏπ π π§Μ π π§Μ π π+1 + (π + 1) πΏπ π π§Μ π π§Μ π β (π + 1) πΏπ π π§Μ π π§Μ π )
(66) +
for some constants πΎ, πΏ β R (Lemma 8), and ππ ππ (π₯Μ π , π§Μ π )
1 π (β (π β 1) πΏπ π π§Μ π π§Μ π β (π β 1) πΏπ π π§Μ π π§Μ π π+1
(73)
+ (π + 1) πΏπ π π§Μ π π§Μ π β (π + 1) πΏπ π π§Μ π π§Μ π )
= (π (πΏππ πΏπ π + πΏπ π πΏππ ) + π (πΏππ πΏπ π β πΏπ π πΏππ )) π₯Μ π
(67)
+ (π
(πΏππ πΏπ π + πΏπ π πΏππ ) + π (πΏππ πΏπ π β πΏπ π πΏππ )) π§Μ π ,
+
πΏπ π πΏππ )
+
π (πΏππ πΏπ π
β
πΏπ π πΏππ )) π₯Μ π π§Μ π
= πΏπ π (2π΄π₯Μ π π₯Μ π + π΅ (π₯Μ π π§Μ π + π₯Μ π π§Μ π )) .
=
β2π π (πΏπ π π§Μ π π§Μ π + πΏπ π π§Μ π π§Μ π ) , π+1
we have, from (71) and (73),
where π, π, π
, π β R (Lemma 9). These functions satisfy (61); that is, (π (πΏππ πΏπ π
1βπ π π (πΏ πΏ + πΏπ π πΏππ ) + (πΏππ πΏπ π β πΏπ π πΏππ )) π§Μ π π§Μ π π+1 π π
= πΏπ π π΅ (π₯Μ π π§Μ π + π₯Μ π π§Μ π ) .
Then, however, ππ (π₯Μ π , π§Μ π ) = πΎπ₯Μ π + πΏπ§Μ π ,
Then from (68),
+ (π (πΏππ πΏπ π + πΏπ π πΏππ ) + π (πΏππ πΏπ π β πΏπ π πΏππ )) π₯Μ π π§Μ π
These equations split to the system ππ (ππ π π₯Μ π , ππ π π§Μ π ) = πππ ππ (π₯Μ π , π§Μ π ) ,
(71)
(68)
π = 0,
π
= 0.
(74)
Analogously, the terms with π₯Μ π π§Μ π should vanish separately; that is, (π (πΏππ πΏπ π + πΏπ π πΏππ ) + π (πΏππ πΏπ π β πΏπ π πΏππ )) π₯Μ π π§Μ π + (π (πΏππ πΏπ π + πΏπ π πΏππ ) + π (πΏππ πΏπ π β πΏπ π πΏππ )) π₯Μ π π§Μ π (75)
The trace in π and π yields (π (π + 1) + π (π β 1)) π₯Μ π π§Μ π + (π
(π + 1) + π (π β 1)) π§Μ π π§Μ π + (π (π + 1) + π (π β 1)) π₯Μ π π§Μ π
= πΏπ π π΅ (π₯Μ π π§Μ π + π₯Μ π π§Μ π ) . Since this equation can be written as (π + π) πΏπ π (π₯Μ π π§Μ π + π₯Μ π π§Μ π ) + (π β π) (πΏπ π π₯Μ π π§Μ π + πΏπ π π₯Μ π π§Μ π )
+ (π
(π + 1) + π (π β 1)) π§Μ π π§Μ π = π (2π΄π₯Μ π π₯Μ π + π΅ (π₯Μ π π§Μ π + π₯Μ π π§Μ π )) . (69)
= πΏπ π π΅ (π₯Μ π π§Μ π + π₯Μ π π§Μ π ) ,
(76)
8
Geometry
we get π + π = π΅ and π β π = 0; thus, 1 π = π = π΅. 2
(77)
such that for any points π₯, π¦ β π, any charts (π, π), π = (π₯π ), at π₯ and (π, π), π = (π¦π ), at π¦, and any diffeomorphism πΌ : π β π such that πΌ(π₯) = π¦, π π πππ ππ + πππ πππ ππ ) Ξπ(π,π) (πππ ππ , πππ ππ , πππ
Summarizing, we see that condition (42) implies, from (59), (66), (67), (71), (74), and (77), π΄ = 0,
(78)
π ), = πππ Ξπ(π,π) (ππ , ππ , ππ π π π ΞΜ (π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ ) π
π π π π = πππ ) + πππ ΞΜ (π,π) (ππ , ππ , ππ ). π₯Μ (π) Ξπ(π,π) (ππ , ππ , ππ (84)
(48) and π π πΉΜ (π₯Μ π , π§Μ π , π§Μ π ) = πΎπ₯Μ π + πΏπ§Μ π + π΅π₯Μ π π§Μ ππ .
(79)
(3) It remains to prove that conditions (55) and (56) imply (42). The left-hand side of (42) is π π π π π π π ππ π§Μ + ππ ππ π§Μ π ) πΉΜ (ππ π π₯Μ π , ππ π π§Μ π , ππ π π π π π§Μ π + ππ π§Μ π‘ ) , = πΎππ π π₯Μ π + πΏππ π π§Μ π + π΅π₯Μ π‘ (ππ‘π
(80)
and the right-hand side is π π πππ π₯Μ π (π΄π₯Μ π + π΅π§Μ π ) + πππ πΉΜ (π₯Μ π , π§Μ π , π§Μ π π ) π π = πππ πΎπ₯Μ π + πππ πΏπ§Μ π + π΅π₯Μ π (πππ π§Μ + πππ π§Μ ππ ) .
(81)
We can now summarize our results in the following theorem. 2
β ππ Theorem 11. Let π be a manifold and let Ξ : be a morphism over idππ . The following two conditions are equivalent:
(b) For any chart (π, π), π = (π₯π ), on π π π π + π₯Μ π π§Μ ππ π ) + (πΎπ₯Μ π + πΏπ§Μ π ) π , π ππ₯ ππ₯Μ ππ₯Μ
π π π = π΅ (π’Μ π + π¦Μ π π’Μ ππ π ) + (πΎπ¦Μ π + πΏπ’Μ π ) π ; ππ¦ ππ¦Μ ππ¦Μ
(85)
that is, in the notation of Lemma 1, π΅π’Μ π =
ππ¦π π π΅π§Μ , ππ₯π
πΎπ¦Μ π + πΏπ’Μ π + π΅π¦Μ π π’Μ ππ =
(86)
π 2 π¦π ππ¦π π π Μ Μ π§ π΅ π₯ + (πΎπ₯Μ π + πΏπ§Μ π + π₯Μ π π§Μ ππ ) . ππ₯π ππ₯π ππ₯π
πΉπ = π΅π§Μ π , (82)
where π΅, πΎ, πΏ β R are arbitrary constants. Proof. (1) We show that (a) implies (b). Suppose that we have a canonical vector field Ξ. Then, in any chart on π the 2ndorder vector field Ξ has an expression Ξ (π, π½π₯1 π) = Ξπ(π,π) (π, π½π₯1 π) (
π π π + π₯Μ π π§Μ ππ π ) + (πΎπ₯Μ π + πΏπ§Μ π ) π π ππ₯ ππ₯Μ ππ₯Μ
Each element of the family of vector fields (82) defines a π differential invariant πΉ = (πΉπ , πΉΜ ), where
(a) Ξ is a canonical vector field.
Ξ = π΅ (π§Μ π
π΅ (π§Μ π
π
These formulas already verify condition (42). The proof is complete.
ππβ π½1 ππ
(Theorem 3). If π₯ = π¦ and (π, π) = (π, π), the components π π Ξπ(π,π) and ΞΜ (π,π) define a differential invariant πΉ = (πΉπ , πΉΜ ) (Theorem 5); then, however, Ξ must be of the form (82) (Lemmas 9 and 10). (2) To prove that (b) implies (a), we first show that any two members of the family of vector fields (82) agree on intersection of their domains. Let (π, π), π = (π₯π ), and (π, π), π = (π¦π ), be two charts on π such that π β© π =ΜΈ 0, let (π₯π , π₯Μ π , π§Μ π , π§Μ ππ ) and (π¦π , π¦Μ π , π’Μ π , π’Μ ππ ) be the corresponding coordinates on ππβ π½1 ππ. We want to show that
π π π ) + ΞΜ (π,π) (π, π½π₯1 π) ( π ) π ππ₯ π ππ₯Μ π (83)
π πΉΜ = πΎπ₯Μ π + πΏπ§Μ π + π΅π₯Μ π π§Μ ππ .
(87)
Recall that π π π π π π πΉπ (ππ π π₯Μ π , ππ π π§Μ π , ππ π ππ π§Μ + ππ ππ π§Μ π )
= πππ πΉπ (π₯Μ π , π§Μ π , π§Μ π π ),
(88)
π π π π π π π ππ π§Μ + ππ ππ π§Μ π ) πΉΜ (ππ π π₯Μ π , ππ π π§Μ π , ππ π π π π π Μπ π π π π πΉ (π₯Μ π , π§Μ π , π§Μ π = πππ π ) + ππ πΉ (π₯Μ , π§Μ , π§Μ π ) ,
(Theorem 5). Now the right-hand sides of (86) can be written as πππ πΉπ (π₯Μ π , π§Μ π , π§Μ ππ ) ,
π
π πΉπ (π₯Μ π , π§Μ π , π§Μ ππ ) π§Μ π + πππ πΉΜ (π₯Μ π , π§Μ π , π§Μ ππ ) , πππ (89)
Geometry
9
and the left-hand sides are
We substitute these expressions into formulas (17) of Theorem 3,
πΉπ (π¦Μ π , π’Μ π , π’Μ ππ ) =πΉ
π
π (ππ π π₯Μ π , ππ π π§Μ π , (ππ π π₯Μ π
+
π π πππ ππ + πππ πππ ππ ) Ξπ(π,π) (πππ ππ , πππ ππ , πππ
π π ππ π₯Μ π ) πππ ) ,
= πππ Ξπ(π,π) (ππ , ππ , πππ ) ,
(90)
π πΉΜ (π¦Μ π , π’Μ π , π’Μ ππ )
π π π ΞΜ (π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ )
π π π π = πΉΜ (π¦Μ π , π’Μ π , (ππ π π₯Μ π + ππ π₯Μ π ) πππ ) ,
(95)
π π π π π π = πππ π Ξ(π,π) (ππ , ππ , ππ ) + πππ ΞΜ (π,π) (ππ , ππ , ππ ).
where
Then since πππ = ( π =( πππ
πππ
π
ππ¦ ) , ππ₯π Ξ¨(π)
π π Μ π ππ , πππ ππ + πππ πππ ππ ) = π΅π Ξπ(π,π) (πππ ππ , πππ ππ , πππ π
πππ Ξπ(π,π) (ππ , ππ , πππ ) = πππ π΅ππ ,
2 π
ππ¦ ) , ππ₯π ππ₯π Ξ¨(π)
(91)
π π π ΞΜ (π,π) (πππ ππ , πππ ππ , πππ πππ ππ + πππ πππ ππ )
ππ₯π =( π) . ππ¦ Ξ¦(π)
Μ π ππ + π΅π Μ π ππ (ππ ππ ππ + ππ ππ ππ ) , Μ π ππ + πΏπ = πΎπ π π π ππ π π π π
Expressions (89) and (90) prove (86) as well as existence of Ξ. (3) To complete the proof, it remains to show that the vector field Ξ is a canonical vector field; to this purpose, we verify condition (2) of Theorem 3. Express the vectors 1 (ππΌ β π β πΌβ1 )) as in formula (15), Ξ(π, π½π₯1 π) and Ξ(ππ₯ πΌ β
π, π½πΌ(π₯) Section 4,
π π π π π π π Ξ(π,π) (ππ , ππ , ππ ) + πππ ΞΜ (π,π) (ππ , ππ , ππ ) πππ
= π΅ππππ ππ ππ + πππ (πΎππ + πΏππ + π΅ππ πππ ) , we have Μ π ππ = π΅ππ ππ , π΅π π π Μ π ππ + π΅π Μ π ππ (ππ ππ ππ + ππ ππ ππ ) Μ π ππ + πΏπ πΎπ π π π ππ π π π π
Ξ (π, π½π₯1 π) =
Ξπ(π,π)
(π, π½π₯1 π) (
π π π ) + ΞΜ (π,π) (π, π½π₯1 π) ( π ) , π ππ₯ π ππ₯Μ π
1 Ξ (ππ₯ πΌ β
π, π½πΌ(π₯) (ππΌ β π β πΌβ1 )) 1 = Ξπ(π,π) (ππ₯ πΌ β
π, π½πΌ(π₯) (ππΌ β π β πΌβ1 )) (
π ) ππ¦π π
π π 1 + ΞΜ (π,π) (ππ₯ πΌ β
π, π½πΌ(π₯) (ππΌ β π β πΌβ1 )) ( π ) . ππ¦Μ π (92)
Ξ = π΅π’Μ π
π π + (πΎπ¦Μ π + πΏπ’Μ π + π΅π¦Μ π π’Μ ππ ) π , ππ¦π ππ¦Μ
Μ = π΅, πΎ Μ = πΎ, and But these conditions are equivalent to π΅ Μ πΏ = πΏ as required. Having in mind that the canonical constructions are geometric constructions independent of charts, we can also state our theorem in an equivalent way as follows. Let π be an π-dimensional manifold. Then for any vector field π on π, there are exactly three independent canonical vector fields π on ππ that can canonically be constructed from π. If in a chart π , ππ₯π
(98)
π π π π ππ π Μ + π₯ ) + (πΎπ₯Μ π + πΏππ ) π , ππ₯π ππ₯π ππ₯Μ π ππ₯Μ
(99)
π = ππ then
(93)
on the corresponding coordinate neighbourhoods. Thus, the components of these vector fields are Ξπ(π,π) = π΅π§Μ π ,
π ΞΜ (π,π) = πΎπ₯Μ π + πΏπ§Μ π + π΅π₯Μ π π§Μ ππ ,
Μ π’Μ π , Ξπ(π,π) = π΅
π Μ π¦Μ π + πΏ Μ π’Μ π + π΅ Μ π¦Μ π π’Μ π . ΞΜ (π,π) = πΎ π
(97)
= π΅ππππ ππ ππ + πππ (πΎππ + πΏππ + π΅ππ πππ ) .
We have already proved that π π Ξ = π΅π§Μ π π + (πΎπ₯Μ π + πΏπ§Μ π + π΅π₯Μ π π§Μ ππ ) π , ππ₯ ππ₯Μ
(96)
π = π΅ (ππ
where π΅, πΎ, πΏ β R are arbitrary constants. Taking πΎ, πΏ = 0 and π΅ = 1, we get the variational vector field; if π΅, πΏ = 0 and πΎ = 1, we get the Liouville vector field, and, if π΅, πΎ = 0 and πΏ = 1, we have the vertical lift vector field.
Acknowledgments (94)
The first author (T. Li) is grateful for the support of the National Natural Science Foundation of China (Grant no.
10 10801006). The second author (D. Krupka) acknowledges the support of the National Science Foundation of China (Grant no. 10932002) and the Czech Science Foundation (Grant no. 201/09/0981).
References [1] D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Grossen, Lecture Notes in Mathematics, no. 55, Springer, Berlin, Germany, 1968. [2] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001. [3] O. KrupkovΒ΄a and G. E. Prince, βSecond order ordinary differential equations in jet bundles and the inverse problem of the calculus of variations,β in Handbook of Global Analysis, D. Krupka and D. Saunders, Eds., pp. 837β904, Elsevier Sci. B. V., Amsterdam, The Netherlands, 2008. [4] S. Lang, Fundamentals of Differential Geometry, vol. 191 of Graduate Texts in Mathematics, Springer, New York, NY, USA, 1999. [5] R. S. Palais and C. L. Terng, βNatural bundles have finite order,β Topology, vol. 19, no. 3, pp. 271β277, 1977. [6] D. J. Saunders, βJet fields, connections and second-order differential equations,β Journal of Physics A, vol. 20, no. 11, pp. 3261β 3270, 1987. [7] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, NJ, USA, 1964. [8] H. Goldschmidt and S. Sternberg, βThe Hamilton-Cartan formalism in the calculus of variations,β Annales de lβInstitut Fourier, vol. 23, no. 1, pp. 203β267, 1973. [9] D. Krupka, βSome geometric aspects of variational problems in fibred manifolds,β Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae. Brunensis, vol. 14, pp. 1β65, 1973. [10] R. Abraham and J. E. Marsden, Foundations of Mechanics, Benjamin/Cummings, Reading, Mass, USA, 2nd edition, 1978. [11] D. Krupka, O. KrupkovΒ΄a, G. Prince, and W. Sarlet, βContact symmetries of the Helmholtz form,β Differential Geometry and Its Applications, vol. 25, no. 5, pp. 518β542, 2007. [12] W. Sarlet, A. Vandecasteele, F. Cantrijn, and E. MartΒ΄Δ±nez, βDerivations of forms along a map: the framework for timedependent second-order equations,β Differential Geometry and Its Applications, vol. 5, no. 2, pp. 171β203, 1995. [13] D. Krupka and J. JanyΛska, Lectures on Differential Invariants, vol. 1 of Folia Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis. Mathematica, University J. E. PurkynΛe, Brno, Czech Republic, 1990. [14] D. R. Grigore and D. Krupka, βInvariants of velocities and higher-order Grassmann bundles,β Journal of Geometry and Physics, vol. 24, no. 3, pp. 244β264, 1998. [15] I. KolΒ΄aΛr, P. W. Michor, and J. SlovΒ΄ak, Natural Operations in Differential Geometry, Springer, Berlin, Germany, 1993. [16] D. Krupka and M. Krupka, βJets and contact elements,β in Proceedings of the Seminar on Differential Geometry (Opava, 2000), vol. 2 of Mathematical Publications, pp. 39β85, Silesian Univ. Opava, Opava, Czech Republic, 2000. [17] W. Sarlet and F. Cantrijn, βSpecial symmetries for Lagrangian systems and their analogues in nonconservative mechanics,β in Proceedings of the Conference on Differential Geometry and Its Applications, D. Krupka, Ed., pp. 247β260, Univ. J. E. PurkynΛe, Brno, Czech Republic, 1984.
Geometry [18] D. Krupka, βLocal invariants of a linear connection,β in Differential Geometry (Budapest, 1979), vol. 31 of Colloq. Math. Soc. JΒ΄anos Bolyai, pp. 349β369, North-Holland, Amsterdam, The Netherlands, 1982.
Advances in
Operations Research Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics Volume 2014
The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at http://www.hindawi.com International Journal of
Advances in
Combinatorics Hindawi Publishing Corporation http://www.hindawi.com
Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of Mathematics and Mathematical Sciences
Mathematical Problems in Engineering
Journal of
Mathematics Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Discrete Dynamics in Nature and Society
Journal of
Function Spaces Hindawi Publishing Corporation http://www.hindawi.com
Abstract and Applied Analysis
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation http://www.hindawi.com
Hindawi Publishing Corporation http://www.hindawi.com
Volume 2014
Volume 2014