The Luminosity Profiles of Brightest Cluster Galaxies

5 downloads 0 Views 395KB Size Report
Sep 5, 2011 - Australia. ABSTRACT. We have derived detailed R band luminosity .... In order to flat field the images a series of dome .... 6 list the Abell BCG name, Sérsic parameters µe, ..... companions, while the five single profile BCGs.
The Luminosity Profiles of Brightest Cluster Galaxies

arXiv:1109.0996v1 [astro-ph.CO] 5 Sep 2011

C.J. Donzelli, H. Muriel IATE, Observatorio Astron´ omico OAC, Laprida 854, X5000BGR, C´ ordoba, Argentina Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET), Avenida Rivadavia 1917, C1033AAJ, Buenos Aires, Argentina

J. P. Madrid Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia

ABSTRACT We have derived detailed R band luminosity profiles and structural parameters for a total of 430 brightest cluster galaxies (BCGs), down to a limiting surface brightness of 24.5 magarcsec−2 . Light profiles were initially fitted with a S´ersic’s R1/n model, but we found that 205 (∼ 48%) BCGs require a double component model to accurately match their light profiles. The best fit for these 205 galaxies is an inner S´ersic model, with indices n ∼ 1 − 7, plus an outer exponential component. Thus, we establish the existence of two categories of the BCGs luminosity profiles: single and double component profiles. We found that double profile BCGs are brighter (∼ 0.2 mag) than single profile BCG. In fact, the Kolmogorov-Smirnov test applied to these subsamples indicates that they have different total magnitude distributions, with mean values MR = −23.8 ± 0.6 mag for single profile BCGs and MR = −24.0 ± 0.5 mag for double profile BCGs. We find that partial luminosities for both subsamples are indistinguishable up to r = 15 kpc, while for r > 20 kpc the luminosities we obtain are on average 0.2 mag brighter for double profile BCGs. This result indicates that extra-light for double profile BCGs does not come from the inner region but from the outer regions of these galaxies. The best fit slope of the Kormendy relation for the whole sample is a = 3.13 ± 0.04. However, when fitted separately, single and double profile BCGs show different slopes: asingle = 3.29 ± 0.06 and adouble = 2.79 ± 0.08. Also, the logarithmic slope of the metric luminosity α is higher in double profile BCGs (αdouble = 0.65 ± 0.12) than in single profile BCGs (αsingle = 0.59 ± 0.14). The mean isophote outer ellipticity (calculated at µ ∼ 24 mag arcsec−2 ) is higher in double profile BCGs (edouble = 0.30 ± 0.10) than in single profile BCGs (esingle = 0.26 ± 0.11). Similarly, the mean absolute value of inner minus outer ellipticity is also higher in double profile BCGs On the other hand, we did not find differences between these two BCGs categories when we compared global cluster properties such as the BCG-projected position relative to the cluster X-ray center emission, X-ray luminosity, or BCG orientation with respect to the cluster position angle. Subject headings: galaxies: clusters: general — galaxies: elliptical and lenticular

1.

verse today. BCGs are so massive (Mstar > 1011 M⊙ ) that their formation and evolution is closely tied to the large scale structure of the universe (Conroy et al. 2007). Semi-analytical mod-

Introduction

Brightest cluster galaxies (BCGs) are the most massive and most luminous galaxies in the uni-

1

els show how BCGs are formed through complex hierarchical merging of many small galaxies and originate within the densest dark matter halos of primordial density fluctuations. BCGs reside only in overdense regions of the Universe such as galaxy clusters and groups where merging occurs at a high rate over cosmic time (de Lucia & Blaizot 2007). It is precisely the accretion of numerous stellar systems that give the BCGs their apparently homogenous properties. For instance, their total luminosities are relatively constant and can be used as standard candles (Lauer & Postman 1992). For several decades the luminosity profiles of elliptical galaxies were modeled with the empirical R1/4 de Vaucouleurs law (de Vaucouleurs 1948). However Lugger (1984) and Schombert (1986) showed that most elliptical galaxies have a flux excess at large radii with respect to the R1/4 model. Schombert (1987) modelled the BCG light profiles with a power law rather than the de Vaucouleurs law underscoring the different nature of BCGs and standard elliptical galaxies. A model used virtually by every author in recent years to fit the light profiles of a wide range of stellar systems is the generalization of the de Vaucouleurs law introduced by S´ersic (1963, 1968). The S´ersic model in the form R1/n is a mixture of bulge and disk components using only three free parameters (µe , re , and ns ) instead of four (µe , re , µ0 , and r0 ) (see Section 3 and the comprehensive review of Graham and Driver 2005). More recently, several papers have suggested that a simple S´ersic R1/n law does not properly model the luminosity profile of some elliptical (usually cD) galaxies. Gonzalez et al. (2003, 2005) found that the best fit to the light profiles of 30 BCGs was a double R1/4 de Vaucouleurs profile. Seigar et al. (2007) studied the light profiles of five cD galaxies and showed that a S´ersic plus an exponential function are necessary to accurately reproduce an inner and an outer component present in their surface brightness profiles. Donzelli et al. (2007) estimated that roughly half of 82 elliptical galaxies belonging to the 3CR radio catalog also require a S´ersic + exponential model to properly fit their light profiles. Using numerical simulations Hopkins et al. (2009) propose that dissipational mergers are at the origin of the double components light profiles in the core of elliptical galaxies. According to their models a violent re-

laxation of stars whose parent galaxies participate in the merger is responsible for the creation of an outer component while a central starburst gives rise to the inner component. We use a homogeneous and uniquely large sample of ground-based imaging of Abell clusters to carefully examine the luminosity profiles of 430 BCGs and determine the best fitting function and structural parameters. This is key to properly constrain dynamical models and the merging history of these galaxies. The paper is organized as follows. In Section 2, we present the observations and reductions, while in Section 3 we describe data processing. Light profile fitting procedure and structural parameters are discussed in Section 4, while in Section 5 we discuss the results and in Section 6 we summarize the conclusions. 2.

Observations

BCG images used in this work were provided by M. Postman (STScI) who kindly gave us access to the raw data. They were obtained under photometric conditions using the KPNO 2.1 m and 4 m telescopes, and the CTIO 1.5 m telescope between 1989 November and 1995 April over a total of 13 observing runs (see Table 1). Five of these runs are described in more detail in Postman & Lauer (1995). Briefly, all the images were acquired in the Kron-Cousins Rc band and have typically exposure times of 200-600 s. During these runs seeing conditions were very good to fair, namely, FWHM = 1”-2”, and nights were photometric. In order to flat field the images a series of dome flats were obtained each night. This allowed for flatfielding with a typical accuracy better than 0.5% of the sky level. Photometric calibration was obtained by observing 10-15 Landolt (1983) standard stars per night. This also enabled us to calculate extinction coefficients and to check the zero point on each night of the observing runs. The overall photometric accuracy was better than 0.02 mag, much smaller than the typical errors of the BCG photometric parameters, which are more sensitive to background subtraction, and fitting models. One of the key points of this homogeneous sample is that approximately 50 BCGs were observed in common between the different runs. Many of

2

these BCGs were actually observed in five or more runs. This not only allowed us to verify and compare reductions for all observing runs, but also to improve the accuracy of the luminosity profiles as discussed in the next section. The rms scatter for the integrated magnitudes of the galaxies is 0.03 mag, while for the luminosity profiles at µR = 22.5 mag arcsec−2 is 0.11 mag arcsec−2 . 3.

ordinates, ellipticity, and position angle of the isophotes), and construct a model BCG galaxy that is subtracted from the original image. The residual image is then used to extract the luminosity profile of the overlapping galaxies. The process is repeated several times until the profile of the target galaxy converges. Isophote fitting was performed down to a count level of 2σsky ; i.e., the fitting procedure was stopped when the isophote level was around twice the background dispersion (pixel-to-pixel variance), which in our case corresponds to surface magnitudes between µR ∼ 23.5 - 24.5 mag arcsec−2 , depending on the observational run when the cluster was observed. For each cluster, we usually obtain the luminosity profiles for the three brightest galaxies in the field. This preliminary selection is made by eye. In those cases where the selection is not obvious, we also obtain additional luminosity profiles, i.e., for the five brightest galaxies. The final BCG selection is made through the galaxy metric luminosity, that is the luminosity enclosed in a radius of 14.5 kpc, we also included galaxy redshift to ensure cluster membership. Redshift data were obtained from the NASA/IPAC Extragalactic Database (NED). As discussed in the introduction, there are a wide variety of functions to perform luminosity profile fitting. We adopted the S´ersic profile Rβ , where the concentration parameter β = 1/n is the inverse of the S´ersic index (S´ersic 1968):

Data Processing and Sky Level

All images were processed following the standard recipes: bias and flat field corrections using IRAF routines. After this process we carefully inspect the images in order to determine the best method to subtract the sky background. Gauging the sky is a crucial step since sky subtraction has a significant influence on the faint end of the luminosity profiles and therefore on the structural parameters we derive. In most cases a twodimensional first-degree polynomial was sufficient to give an accurate fit to the sky, and we used the residuals distribution to estimate the uncertainty of the sky level σsky . The importance of sky cleaning is summarized in detail in Coenda et al. (2005). Similar tests were made to measure the effect of seeing on the luminosity profiles. The effects of seeing dictate that the minimum radius for a suitable fit to the luminosity profile is r = 1.5×FWHM, this is particularly true for large galaxies, i.e., apparent radius greater than ∼ 12×FWHM (Coenda et al. 2005). We show in detail in the next section that BCG galaxies were relatively bright and extended and in most cases the apparent radius of the galaxy was greater than 20′′ . 4.

io h r β n −1 . I(r) = Ie exp − bn re

(1)

In this equation Ie is the intensity at r = re the radius that encloses half of the total luminosity (also known as the effective radius or half-light radius). In this context bn can be calculated using bn ∼ 2n − 0.33 (Caon et al. 1993). We use the nfit1d routine within STSDAS to find the coefficients that best fit the light profiles of each galaxy. This task uses a χ2 minimization scheme to fit the best non linear functions to the light profiles tables we obtained with ellipse (Schombert & Bothun 1987). The fitting procedure is carried out only in the portion of the galaxy surface brightness profile where the signalto-noise ratio was greater than 3 (S/N > 3). We

Luminosity Profiles and Profile Fitting

We use the ellipse routine (Jedrzejeswki, 1987) within Space Telescope Science Analysis System (STSDAS) to extract the luminosity profiles of the BCGs. We apply this routine to the processed, sky subtracted images. In many cases galaxy overlapping is an issue due to the crowded fields around BCGs. To solve this, we apply the technique described in Coenda et al. (2005) which consists in masking the overlapping regions before profile extraction. Then we obtain the luminosity profile and structural parameters (center co3

did this in order to avoid the regions at the faint end of the luminosity profiles, in which errors are large. Moreover, we have also excluded the inner 3”-4” of the luminosity profiles to avoid the blurring effects of seeing (see the test described in Coenda et al. 2005). Errors on the structural parameters were calculated following the method described by Coenda et al. (2005). Briefly, this technique consists of creating test images with model galaxies that have known luminosity profile parameters. Then we artificially add and subtract to those images a constant value corresponding to σsky . Finally we extract and refit the new luminosity profile as explained above. These newly obtained parameters give us the respective upper and lower limits. To a first approximation a single S´ersic model provides a good fit to the light profile of our sample of BCGs, as shown by Graham et al. (1996). However, for almost half of the sample we noticed that a single S´ersic function fails to properly reproduce the BCGs surface brightness in the range ∼ 22.0 mag arcsec−2 . Note that this case is very similar to that presented in La Barbera et al. (2008, their Figure 18). It is evident that the S´ersic function do not properly fit the luminosity profiles of these elliptical galaxies in the inner 4′′ , where the residuals are almost ∼ 0.3 mag arcsec−2 . It is not necessary to have very deep luminosity profiles, as in the case of Seigar et al. (2007), to realize that for certain galaxies, even in regions of bright surface luminosity, a single S´ersic model cannot account for the concave shape of the luminosity profile. For these galaxies their light profiles were best fitted adding to the S´ersic model of Equation (1) an outer exponential function (Freeman, 1970): r  . I(r) = I0 exp − r0 

with a second S´ersic function since it has three degrees of freedom instead two. However, in terms of the χ2 coefficient it is not better than the S´ersic plus exponential fit. Figure 1 shows a good example: the case of BCG A0690 where clearly a single S´ersic function cannot account for the concavity of the luminosity profile. Even when the fitting becomes adequate at the faint end of the profile, the model cannot reproduce the surface magnitude in the interval between 7 and 15 kpc, which corresponds to a surface magnitude in the range of 21-22 mag arcsec−2 . Error bars in this region have approximately the size of the squares. On the other hand, Figure 2 shows a much better fit due to the inclusion of the exponential component (dashed line) in the fitting model. We show that the 21-22 mag arcsec−2 region is now in perfect agreement with the model and the fitting functions can also properly describe the faint end of the luminosity profile. In fact, the reduced χ2 coefficient we obtain with a S´ersic + Exponential model is about one order of magnitude smaller than those obtained with the single S´ersic fit. As a general rule, for most of those cases that are initially fitted with the single S´ersic function and in which n > 8 and re > 300 kpc, it is necessary to include the exponential component to obtain a proper fit. Intensity parameters are then converted into surface brightness, expressed in mag arcsec−2 by the equation m = −2.5log(I), while units of re , and r0 are converted to kpc. Errors for re and r0 are smaller than 15% while for µe , and µ0 errors are below 0.20 mag arcsec−2 . Total luminosities of both S´ersic and the exponential components are finally computed using the derived photometric parameters and integrating separately both components of Equations (1) and (2) as follows: L=

(2)

Z



I(r)2πrdr,

(3)

0

which yields

In this equation I0 is the central intensity and r0 is the length scale. The inclusion of this equation in the fitting function does not necessarily means that the galaxy has a disk component in the usual sense of rotation-supported stellar system. We have chosen the exponential function since it is the simplest function to account for the ”extra-light” observed in the above mentioned galaxies. It is worth to mention that we also tried

LSersic = Ie re2 π

2exp(b) Γ(2/β) βk 2/β

(4)

for the S´ersic component and Lexp = 2πI0 r02

(5)

for the exponential component. Γ(2/β) is the gamma function. Total apparent magnitudes 4

are then converted into absolute magnitudes. Throughout this paper we assume a Hubble constant H0 = 70 km s−1 M pc−1 together with ΩM = 0.27 and ΩΛ = 0.73.

5.

ellipticities. We calculated an average outer ellipticity e = 0.32 ± 0.09, which is slightly higher than the average found for double profile BCGs (see the next section). In general terms we have also noticed that the inner components of the double profile BCGs have effective radii re ∼ 1 − 10 kpc and S´ersic indices n ∼ 1 − 6, being the averages re = 5 ± 4 kpc and n = 3.7 ± 1.5 respectively. This values are quite similar to those reported by Gonzalez et al. (2003) in their preliminary paper for a sample of 31 BCGs. However, these authors use a different approach to fit the luminosity profiles. They use two S´ersic functions instead our S´ersic + exponential approach.

Results and Discussion

Table 2 lists the photometric parameters obtained through the fitting procedure described in Section 3 for all BCGs of the sample. Columns 16 list the Abell BCG name, S´ersic parameters µe , re , n, exponential parameters µ0 and r0 . Columns 7-10 give absolute magnitude of the S´ersic component, absolute magnitude of the exponential component, total absolute magnitude of the BCG and S´ersic to exponential component light ratio. Column 11 contains the logarithmic slope of the metric luminosity or α parameter which is defined as α = d(Log(Lm ))/d(log(rm )), where Lm is the total BCG luminosity within a circular aperture of radius rm centered on the BCG nucleus. Following Postman & Lauer (1995) we have calculated this parameter at r = 14.5 kpc. Columns 12-15 list the inner ellipticity (measured at 10′′ ), outer ellipticity (measured at ∼ 23 − 24 mag arcsec−2 ), and inner and outer position angles of the isophotes where the ellipticities are measured. Position angles are from north to east and the typical observed errors are ∼ 5o , while typical errors for ellipticities are 0.06. Finally, column 16 lists the metric absolute magnitude also calculated at r = 14.5 kpc. The data above show that 225 out of 430 BCGs, or 52% of the sample, have a single S´ersic luminosity profile, while the remaining 205 BCGs (48%) need a double component of S´ersic + exponential to properly fit their luminosity profiles. We note that we find 27 galaxies (∼ 6% of the whole sample) that have n < 1.5 for the inner S´ersic component, which is nearer to an exponential rather than a de Vaucoleurs profile (n ∼ 4). Moreover, all but three, have double component luminosity profiles. This is particularly interesting since it has been suggested that BCGs usually have high S´ersic indices (Graham et al. 1996). However, Seigar et al. (2007) observe an inner exponential behavior in 3 out of 5 galaxies of their sample, suggesting that this may be more common in cD galaxies than previously thought. A visual inspection of these galaxies reveals that they have high

5.1.

Single Profile BCGs versus Double Profile BCGs

A question that arises after our analysis is to establish if single profile BCGs actually differ in morphology from double profile BCGs. The models of the light profiles we apply do not imply conjectures on galaxy morphologies. Are BCGs with single and double profile of a different nature? If so, is this difference environmental or intrinsic? In order to answer these questions we carried out a series of tests in which we explored BCGs properties together with the global cluster properties. One of them is the Kormendy relation (KR; Kormendy 1977) which is presented in Figure 3. This is an empirical scaling relation between surface brightness µe and effective radius re and it represents the projection of the Fundamental Plane (Djorgovski & Davies 1987). For the case of single profile BCGs both µe and re are directly obtained from the fitting profile. However, in the case of double profile BCGs, we calculate these parameters from the double profile, i.e., using the sum of the S´ersic and exponential profiles. A linear regression applied to the whole sample gives µe = 18.72(±0.06) + 3.13(±0.05) log(re /kpc) The slope of the KR obtained for all BCGs is aBCG = 3.13 ± 0.05 which is similar to the value obtained by Oegerle & Hoesel (1991) for a sample of 43 BCGs (i.e., aBCG = 3.12 ± 0.14). However, Bildfell et al. (2008) obtain for a sample of BCGs selected from 48 X-ray luminous clus5

ters (aBCG = 3.44 ± 0.13), which is considerably steeper than our value and than the value of ”normal” ellipticals aellip = 3.02 ± 0.14 (Oegerle & Hoesel, 1991). Nevertheless, when we apply the same analysis to single profile and double profile BCGs separately we obtain for single profile BCGs

be seen in Figure 5 where we plot the absolute integrated magnitude versus the radius of the circular diaphragm expressed in kpc. The vertical line indicates r = 14.5 kpc where metric luminosity and alpha parameter are calculated. Average integrated luminosities beyond 20 kpc are ∼ 0.2 mag brighter for double profile BCGs. We have applied the K-S test to both subsamples and results indicate that they do not statistically differ for r = 5, 10, and 14.5 kpc, while for larger radii the integrated luminosity distribution are truly different at the 99 % confidence level. We highlight that r = 20 kpc is close to value for which the S´ersic component equals the exponential component (see the case for A0690 in Figure 2). From the data tabulated in Table 2, it is straightforward to compute the radius where ISersic = Iexp for each of the double profile BCGs. Averaging these values we find < r >= 13 ± 5 kpc at < µ >= 22.5 ± 0.7 mag arcsec−2 . In other words, this result corroborates that the extra-light observed in double profile BCGs originates in the intermediate regions of the galaxies and not in the inner regions. The same conclusion can also be derived from Figure 6 where we plotted the total sum of the luminosity profiles corresponding to the single and double profile BCGs. Prior to the sum, individual profiles are normalized to their effective radii. Note that the extra-light of the double profile BCGs becomes apparent in the region 1 < r/re = 0.30±0.10 for double profile BCGs and < esingle >= 0.26±0.11 for single profile BCGs. A 6

K-S test applied to these data indicates that the ellipticity distributions for single and double profile BCGs are statistically different at a 98.3% confidence level. Similar results are obtained for the inner minus outer ellipticity of these subsamples. We obtain an average < ∆edouble >= 0.15 ± 0.10 for the double profile BCGs, while for single profile BCGs we have < ∆esingle >= 0.10 ± 0.09. Again, the K-S test indicates different distributions at 99.9% confidence level. The logarithmic slope of the metric luminosity (calculated at r = 14.5 kpc) α is also higher in double profile BCGs (< αdouble >= 0.65 ± 0.12) than in single profile BCGs (< αsingle >= 0.59 ± 0.14). Figure 9 presents the distributions of α for single and double profile BCGs respectively. A K-S test applied to these data establishes that the distributions are statistically different at a 99.9% confidence level. The presence of isophote twisting was also explored. We calculated the outer minus inner position angle of the isophotes for those galaxies with ellipticities greater than 0.15 since position angle errors associated with rounder isophotes are large. We found similar values for both single and double profile BCGs (< ∆pa >= 8o ± 9o ). 5.3.

BCG A0690 in Figure 10. The agreement between model and measurements is excellent and the Hopkins model properly accounts for the luminosity profile. We also compared the rms and χ2 values with those obtained with our original S´ersic + exponential model and we find that both models are equally good. In other words, our approach and the Hopkins model are, from a mathematical point of view, equivalent. The results of fitting exponential + S´ersic models to our double profile galaxies are summarized in Table 3, which lists the same 10 parameters as in Table 2. In this case S´ersic parameters µe , re and n correspond to the outer component, while the exponential µ0 and r0 parameters correspond to the inner component. Obtained χ2 values indicate that this fit proved to be equally good as the inner S´ersic + outer exponential form. However, for some galaxies we inexorably obtained unrealistic (≥ 300 kpc) effective radius using the Hopkins model, this is not the case for the S´ersic + exponential approach. Given that our results suggest that the extra-light comes from the intermediate regions (see also the next section), we believe that the S´ersic + exponential profile fitting is the appropriate selection for the BCGs analized in the present work.

S´ ersic + Exponential or Exponential + S´ ersic?

5.4.

By combining a large set of hydrodynamical simulations spanning a broad range of luminosity profiles of various masses, Hopkins et al. (2009) show an alternative way to separate luminosity profiles into an inner starburst component and outer pre-starburst component for ”cusp” ellipticals which are formed via gas-rich mergers. These authors show that dissipational mergers give rise to two-component luminosity profiles which can be accounted by an exponential function (inner component) plus a S´ersic model (outer component). The exponential function accounts for the extra-light that was formed in a compact central starburst and makes the inner light profile of the galaxy deviate from a single S´ersic in the galaxy core. The outer component was formed by violent relaxation of the stars already present in the precursor galaxies. We fitted to our double component BCGs an exponential (inner) + S´ersic (outer) model in the order proposed by Hopkins et al. (2009). As an example, we show the results of this fitting for the

Extra-light and D-cD Envelopes

Around ∼ 20% of giant elliptical galaxies have extensive, low-luminosity envelopes. These galaxies are known as D type, and those with the largest envelopes are denominated cD galaxies (Mackie, 1992). The envelopes, which are seen as deviations from the de Vaucouleurs profile, are quite faint, occur below 24 mag arcsec−2 in the V band, and they extend well beyond 100 kpc in projected size. Thus, only few giant ellipticals have confirmed envelopes. We explore if the extra-light found at intermediate radii is related to an eventual cD envelope. From the works of Kemp et al. (2007), Seigar et al. (2007), Mackie (1992), and Schombert (1986, 1987, 1988), we have found 24 BCGs, cataloged as cD galaxies with confirmed envelopes, in common with our sample. These are: A85, A150, A151, A193, A262, A358, A539, A779, A1177, A1238, A1767, A1795, A1809, A1904, A1913, A2028, A2147, A2162, A2199, A2366, A2572, A2589, A2634,and A2670. Table 2 shows that 19 (79%) of 7

these 24 galaxies are double profile BCGs, while 5 (21%) are single profile BCGs. Note that three galaxies (A151, A1767, and A2589) from those five single profile BCGs, have re > 100 kpc, and n > 6. These parameters are very close (see Section 4) to the limit (re > 300 kpc, n > 8) where it is necessary to include an additional exponential profile to obtain a reasonable fit. On the other hand, one must also note that a visual classification as cD, does not necessarily imply the presence of an envelope. Schombert (1986), and Seigar et al. (2007) cataloged A496, A505, A1691, A2029, A2052, A2107, A2197, and A2666, as cDs without envelopes. For all those galaxies, except A2197, our surface profile modeling is consistent with just one component. These results strongly suggest that the extralight found in double component BCGs at intermediate radii is related to the faint envelope. Moreover, they indicate that this component is not only confined to the outskirt of the parent galaxy. Galaxy halos generally considered an outer component in galaxy structure appear to originate in the inner regions of BCGs. 5.5.

mostly interacting galaxies with two or three near companions, while the five single profile BCGs with unkown classification appear to us as normal ellipticals. We have scrutinized the infrared emission of a subsample of our BCGs using data from Quillen et al. (2008). They report on an imaging survey with the SpitzerSpaceT elescope of 62 BCGs with optical line emission. We have 12 BCGs in common with Quillen et al. (2008), 6 having single component luminosity profiles and 6 having double component luminosity profiles. Analysis of the 24-8 µm flux ratios shows that only one (17%) of single profile BCG (A2052) have infrared excess, while for double profile BCGs this number increases to 4 (67%). Infrared excess is a star formation signature. In fact, O’Dea et al. (2010) in their study of seven BCGs using HubbleSpaceT elescope(HST ) ultra-violet and Spitzer infrared data found that all these galaxies have extended UV continuum and L − α emission as well as an infrared excess. Based on their findings O’Dea et al. (2010) confirm that the BCGs they study are actively forming stars. Moreover, they suggest that the IR excess is indeed associated with star formation and they also confirm that the FUV continuum emission extends over a region ∼ 7-28 kpc. Although these results are only for a few BCGs in our sample, they suggest that the ”extra-light” observed in the double profile BCGs indicates active star formation in the intermediate regions of these galaxies.

BCGs Morphologies and IR Emission

Although a visual inspection of our BCGs suggests that they all are early-type galaxies, we probe the possibility that the differences we observe in the profiles are due to actual differences in the morphology. The Galaxy Zoo project (http://zoo1.galaxyzoo.org/) provides the morphological types for a large sample of galaxies observed by the Sloan Digital Sky Survey (SDSS; Lintott et al. 2010). In this catalog 66 of the BCGs studied here have a morphological classification: 31 (47%) are single profile BCGs, while 35 (53%) are double profile BCGs. The Lintott et al. (2010) catalog gives the probability that a particular galaxy is an early-type galaxy or latetype (spiral) galaxy. We find that both single and double profile BCGs have the same probability to be classified as elliptical galaxies in the Galaxy Zoo catalog. However, from the 31 single profile BCGs with morphological classification only 5 (16%) belong to the ’unknown’ category, while for the 35 double profile BCGs in the catalog this number rises up to 9 (26%). It is also interesting to note that a visual inspection of these nine double profile BCGs with unknown morphology are

5.6.

Global Cluster Properties

In this section we compare BCGs properties to those of the host cluster such as cluster X-ray luminosity, the projected distance of the BCG with respect to the center of the X-ray emission and the BCG position angle with respect to that of the cluster. We have used data taken from Ledlow et al. (2003) to determine the offset in kpc between the X-ray peak and the optical position of the BCG. X-ray cluster luminosities were taken from Sadat et al. (2004) data, while the position angle of the clusters are obtained from Plionis (1994), Rhee & Katgert (1987), and Binggeli (1982). In this case we have only selected those clusters with ellipticities > 0.15, since for smaller ellipticities position angles have large errors.

8

of the deviation from the S´ersic law of the light profile in the inner regions of galaxies i.e. cusps and evacuated cores (Ferrarese et al. 2006). However, HST detectors do not provide the field of view necessary to truthfully derive the structural parameters of galaxies with a light profile that deviates from a single S´ersic law at large radii.

Single and double profile BCGs have similar orientations relative to the whole cluster and X-ray luminosity distributions. We did not observe any difference between the single profile and double profile BCG samples with respect to the cluster position angle and X-ray cluster luminosity. However, Bildfell et al. (2008) report that brighter BCGs are located closer to the X-ray peak emission. In our case, considering that on average double profile BCGs are brighter than single profile BCGs we should observe larger offsets in single profile BCGs. Nevertheless, we find no significant differences between single profile and double profile BCGs offsets with respect to the X-ray center emission of the cluster. Moreover, we do not find any correlation between the total absolute magnitude and X-ray offset. Figure 11 shows that there is no obvious trend between the total absolute magnitude of both single profile and double profile BCGs. 6.

7.

Acknowledgments

We are thankful to M. Postman (STScI) for giving us access to the data used in this study. We also wish to thank the anonymous referee for his useful comments which helped to clarify and strengthen this paper. This research has made use of the NASA Astrophysics Data System Bibliographic services (ADS) and the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This work has been partially supported with grants from Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas de la Rep´ ublica Argentina (CONICET), Secretar´ıa de Ciencia y Tecnolog´ıa de la Universidad de C´ordoba and Ministerio de Ciencia y Tecnolog´ıa de C´ordoba, Argentina.

Conclusions

We have established the existence of two subpopulations of BCGs based on their luminosity profiles. We analyze a uniquely large sample of 430 BCGs and find that 48% of these galaxies have a light profile that deviates from the standard single S´ersic model. The luminosity profiles of these galaxies are in fact better described by a double component model consisting of an inner S´ersic profile and an outer exponential component. The necessity of an outer exponential component conveys the presence of extra-light at intermediate radii corresponding to surface magnitudes ∼ 22magarcsec−2. We have found strong evidence from a subsample of 24 BCGs that extralight is closely related to the presence of a faint envelope. Similarly, from other subsample of 12 BGCs we also found evidence that links extra-light and star formation. This work highlights the need to cover a large spatial scale when deriving the structural parameters of large galaxies. Accurate parameters can only be obtained when the entire galaxy is considered and this often requires the creation of composite light profiles using data from different telescopes as clearly illustrated by Kormendy et al. (2009). HST detectors provide a superb spatial resolution that has been fundamental for the study

Bernardi, M., Hyde, J.B., Sheth, R.K., Miller, C.J., Nichol, R.C. 2007, AJ, 133, 1741 Bildfell, C.; Hoekstra, H.; Babul, A.; Mahadavi, A. 2008, MNRAS, 389, 1637 Binggeli, B. 1982, A&A, 107, 338 Caon, N., Capaccioli, M., & D’Onofrio, M. 1993, MNRAS, 265, 1013 Coenda, V., Donzelli, C.J., Muriel, H., Quintana, H., & Infante, L. 2005, AJ, 129, 1237 Conroy, C., Wechsler, R. H., & Kravtsov, A. V. 2007, ApJ, 668, 826 de Lucia, G. & Blaizot, J. 2007, MNRAS, 375, 2 de Vaucouleurs, G. 1948, Ann. Astrophys., 11, 247

9

Lauer, T. R., & Postman, M. 1992, ApJ, 400, L50

Djorgovski, S., & Davis, M. 1987, ApJ, 313, 59

Lauer, T.R., et al. 2007, ApJ, 662, 808

Donzelli, C.J., Chiaberge, M., Macchetto, F. D., Madrid, J.P., Capetti, A., & Marchesini, D. 2007, ApJ, 667, 780

Ledlow, M.J., Voges, W., Owen, F.N., & Burns, J.O. 2003, AJ, 126, 2740

Ferrarese, L., et al. 2006, ApJS, 164, 334 Lintott, C. et al. 2011, MNRAS, 410, 166 Freeman, K. C. 1970, ApJ, 160, 811 Lugger, P.M. 1984, ApJ, 286, 106 Gonzalez, A. H., Zabludoff, A. I., & Zaritsky, D. 2003, Ap&SS, 285, 67

Mackie, G. 1992, ApJ, 400, 65

Gonzalez, A. H., Zabludoff, A. I., & Zaritsky, D. 2005, ApJ, 618, 195

Oegerle, W.R.; Hoessel, J.G. 1991, ApJ, 375, 150

Graham, A.W., & Driver, S.P. 2005, PASA, 22, 118

O’Dea, K. et al. 2010, ApJ, 719, 1619 Plionis, M. 1994, ApJS, 95, 401

Graham, A.W., Lauer, T.R., Colless, M. & Postman, M. 1996, ApJ, 465, 534

Postman, M. & Lauer, T. R. 1995, ApJ, 440, 28

Hopkins, P.F., Cox, T. J., Dutta, S. N., Hernquist, Lars., Kormendy, J., Lauer, T. R. 2009, ApJS, 181, 135

Quillen, A.C. et al. 2008, ApJS, 176, 39 Rhee, G., & Katgert, P. 1987, A&A, 183, 217

Jedrzejewski, R. 1987, MNRAS, 226, 747

Sadat, R., Blanchard, A., Kneib, J.P., Mathez, G., Madore, B., & Mazzarella, J.M. 2004, A&A, 424, 1097

Kent, S.M. 1985, ApJS, 59, 115 Kent, S.N., Guzm´ an Jim´enez, V., Ram´ırez Beraud, P., Hern´andez Ibarra, F.J., & P´erez Grana, J.A. 2007, in IAU Symp. 235, Galaxy Evolution Across the Hubble Time, ed. F. Combes & J. Palous (Cambridge: Cambridge Univ. Press), 213

Seigar, M.S., Graham, A.W., Jerjen, H. 2007, MNRAS, 378, 1575 Schombert, J.M. 1986, ApJS, 60, 603 Schombert, J.M. 1987, ApJS, 64, 643

Kormendy, J. 1977, ApJ, 218, 333 Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216

Schombert, J.M. 1988, ApJ, 328, 475 Schombert, J.M. & Bothun, G.D. 1987, AJ, 93,

La Barbera, F., Busarello, G., Merluzzi, P., De La Rosa, I., Coppola, G., & Haynes, C.P. 2008, PASP, 120, 681

60 S´ersic, J.L. 1963, Boletin de la Asociaci´ on Argentina de Astronom´ıa, 6, 41

Landolt, A.U. 1983, AJ, 88, 853

S´ersic, J.L. 1968, Atlas de Galaxias Australes 10

(C´ ordoba: Obs. Astron´om.) von der Linden, A., Best, P.N., Kauffmann, G., & White, S. 2007, MNRAS, 379, 867

Fig. 1.— BCG A0690 luminosity profile with the single S´ersic fitting. Upper scale is in arcsec.

Fig. 2.— Inner S´ersic (short dashed line) + outer exponential (long dashed line) fitting model for A0690 luminosity profile.

11

Fig. 3.— Kormedy relation for sample galaxies. Black dots represent single profile BCGs, while red dots represent double profile BCGs. Best fits for both subsamples are also shown.

Fig. 5.— Integrated absolute magnitudes vs. diaphragm radius in kpc. The vertical line indicates where alpha parameter and metric magnitudes are calculated.

Fig. 4.— Total magnitude distributions for single (black line) and double profile (red line) BCGs.

Fig. 6.— Luminosity profiles obtained using the stacking technique for all single and double profile BCGs. Prior to the stacking the individual profiles were normalized at the effective radius.

12

Fig. 7.— Outer ellipticity distributions for single (black line) and double profile (red line) BCGs.

Fig. 9.— α parameter distributions for single (black line) and double profile (red line) BCGs.

Fig. 8.— Outer minus inner ellipticity distributions for single (black line) and double profile (red line) BCGs.

Fig. 10.— Exp + S´ersic model fit for A0690 luminosity profile. Outer S´ersic (short dashed line) and inner exponential (long dashed lined) can be observed.

13

Fig. 11.— BCGs total absolute magnitude vs. X-ray offset for the whole BCG sample.

14

Table 1 BCGs Imaging Runs Run 1 2 3 4 5 6 7 8 9 10 11 12 13

Date

Observatory

Pixel Scale (”)

FOV (’)

1989 Oct 1989 Nov 1990 Nov 1991 Mar 1991 Apr 1993 Sep 1993 Nov 1994 May 1994 May 1994 Oct 1994 Dec 1995 Apr 1995 Apr

CTIO KPNO 4m CTIO KPNO 2.1m CTIO KPNO 2.1m CTIO KPNO 2.1m CTIO KPNO 2.1m CTIO CTIO KPNO 2.1m

0.273 0.299 0.273 0.304 0.434 0.304 0.434 0.304 0.434 0.304 0.434 0.434 0.304

3.6 4.0 3.6 5.2 7.4 5.2 7.4 5.2 7.4 5.2 7.4 7.4 5.2

15

Table 2 BCGs Photometrical Parameters Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A0014 A0027 A0071 A0074 A0075 A0076 A0077 A0080 A0085 A0086 A0102 A0114 A0116 A0117 A0119 A0126 A0133 A0134 A0147 A0150 A0151 A0152 A0154 A0158 A0160 A0161 A0168 A0171 A0174 A0179 A0189 A0193 A0194 A0195 A0208 A0225 A0240 A0245 A0246 A0257 A0260 A0261 A0262 A0267 A0268 A0279 A0292 A0295 A0311 A0326 A0347 A0357 A0358 A0376 A0396 A0397 A0399 A0401

26.65 24.41 20.73 23.24 21.86 24.08 26.39 21.59 21.43 22.55 23.73 22.73 21.44 24.06 26.71 20.74 21.10 21.19 21.75 20.93 25.86 18.92 21.82 19.06 20.38 20.53 24.51 22.75 20.44 21.14 21.13 18.60 18.59 21.62 21.66 25.24 24.61 21.95 23.73 19.86 20.95 20.19 20.33 25.90 20.23 22.81 23.37 21.47 22.79 21.06 20.95 21.61 23.57 25.76 20.47 20.31 21.82 28.27

387.58 32.51 5.18 23.04 10.58 34.80 190.00 5.92 12.43 14.89 32.22 20.87 9.44 47.47 247.61 3.10 7.64 5.86 10.17 6.34 146.25 1.38 11.13 1.66 3.04 3.65 48.01 17.23 3.71 5.27 7.32 1.78 1.30 8.16 7.95 84.64 55.91 8.70 24.12 2.99 6.17 4.08 3.18 105.21 2.85 18.86 45.49 4.64 15.71 5.91 3.99 7.00 32.81 94.82 2.35 3.82 10.41 968.92

5.08 7.58 5.49 6.45 4.74 7.58 6.94 2.24 0.86 6.17 7.41 5.85 4.52 6.06 7.87 3.61 1.11 4.72 6.06 1.91 8.06 5.65 5.21 4.15 1.04 4.74 7.41 6.49 0.98 3.73 3.06 4.13 1.53 6.58 5.32 7.09 5.38 3.28 6.33 4.26 4.50 2.60 1.75 6.29 3.70 5.29 3.11 2.99 5.43 3.14 3.66 2.51 5.13 8.00 1.66 3.44 1.22 7.46

— — — — — — — — 21.63 — — — — — — — 21.46 — — 22.01 — 20.93 22.33 20.97 21.05 22.33 — — 21.56 21.92 — 21.52 19.95 — 22.36 — — — — 21.13 21.85 21.69 21.16 — 22.80 22.56 — 21.44 22.36 — — — — — — 21.78 21.83 —

— — — — — — — — 26.00 — — — — — — — 23.80 — — 26.20 — 11.80 28.00 10.20 12.50 23.50 — — 13.02 16.30 — 22.00 7.70 — 26.80 — — — — 11.90 20.90 15.30 16.60 — 14.30 30.60 — 17.30 38.00 — — — — — — 19.20 33.30 —

-26.65 -23.67 -23.28 -24.05 -23.55 -24.09 -25.65 -22.29 -23.47 -23.76 -24.36 -24.26 -23.74 -24.73 -25.77 -21.78 -22.87 -22.98 -23.64 -22.91 -25.51 -22.24 -23.76 -22.28 -21.49 -22.64 -24.38 -24.04 -21.97 -22.62 -23.15 -22.84 -21.51 -23.42 -23.37 -24.95 -24.50 -23.02 -23.70 -22.91 -23.17 -22.79 -21.54 -24.66 -22.31 -24.01 -25.01 -21.84 -23.59 -22.87 -21.82 -22.68 -24.34 -24.66 -20.87 -22.66 -22.92 -27.25

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -24.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -24.23 0.00 0.00 -23.89 0.00 -23.32 -23.72 -22.90 -23.18 -23.40 0.00 0.00 -22.89 -22.93 0.00 -23.97 -23.12 0.00 -23.76 0.00 0.00 0.00 0.00 -23.21 -23.46 -23.00 -23.33 0.00 -21.89 -23.76 0.00 -23.48 -24.38 0.00 0.00 0.00 0.00 0.00 0.00 -23.38 -24.65 0.00

-26.65 -23.67 -23.28 -24.05 -23.55 -24.09 -25.65 -22.29 -24.68 -23.76 -24.36 -24.26 -23.74 -24.73 -25.77 -21.78 -24.50 -22.98 -23.64 -24.26 -25.51 -23.66 -24.50 -23.39 -23.38 -23.84 -24.38 -24.04 -23.27 -23.54 -23.15 -24.30 -23.34 -23.42 -24.34 -24.95 -24.50 -23.02 -23.70 -23.83 -24.08 -23.65 -23.52 -24.66 -22.88 -24.65 -25.01 -23.70 -24.81 -22.87 -21.82 -22.68 -24.34 -24.66 -20.87 -23.83 -24.85 -27.25

— — — — — — — — 0.49 — — — — — — — 0.29 — — 0.40 — 0.37 1.04 0.56 0.21 0.50 — — 0.43 0.75 — 0.36 0.23 — 0.70 — — — — 0.75 0.76 0.83 0.19 — 1.47 1.25 — 0.22 0.48 — — — — — — 0.51 0.20 —

1.10 0.59 0.49 0.54 0.55 0.57 0.91 0.46 1.30 0.56 0.61 0.59 0.58 0.76 0.83 0.26 0.93 0.47 0.49 0.75 0.78 0.84 0.66 0.71 0.78 0.67 0.65 0.63 0.66 0.63 0.40 0.59 0.68 0.50 0.67 0.78 0.86 0.57 0.62 0.64 0.62 0.57 0.76 0.90 0.47 0.81 0.88 0.66 0.80 0.38 0.32 0.35 0.76 0.73 0.22 0.61 1.13 1.02

0.35 0.24 0.06 0.28 0.09 0.05 0.13 0.11 0.11 0.26 0.13 0.16 0.17 0.12 0.12 0.04 0.07 0.14 0.16 0.11 0.17 0.04 0.22 0.13 0.03 0.05 0.06 0.14 0.02 0.22 0.42 0.04 0.25 0.09 0.06 0.15 0.09 0.21 0.16 0.26 0.12 0.10 0.07 0.19 0.14 0.11 0.31 0.11 0.17 0.42 0.30 0.41 0.17 0.05 0.47 0.14 0.23 0.26

0.56 0.28 0.05 0.30 0.23 0.17 0.51 0.06 0.35 0.17 0.11 0.28 0.17 0.28 0.33 0.09 0.43 0.05 0.09 0.43 0.26 0.28 0.39 0.12 0.24 0.31 0.25 0.12 0.16 0.38 0.50 0.23 0.36 0.05 0.33 0.27 0.21 0.27 0.39 0.42 0.33 0.18 0.41 0.33 0.27 0.24 0.58 0.44 0.53 0.11 0.21 0.47 0.28 0.27 0.35 0.40 0.43 0.58

56.5 -54.0 51.1 42.2 85.0 -66.4 -62.5 -64.2 -27.3 70.6 -64.2 72.9 5.5 -7.7 34.8 -38.6 33.7 10.5 33.6 -2.9 73.5 39.0 -38.9 -59.4 -73.1 4.9 -25.6 86.5 5.9 -27.3 -2.8 -69.9 56.6 -84.7 10.7 81.2 4.6 -65.2 17.8 9.9 46.3 -2.7 -73.6 78.4 2.7 40.2 -84.9 76.4 15.7 21.5 -76.7 -42.1 3.9 -82.9 7.7 39.2 46.5 35.8

52.0 -61.2 31.1 39.6 60.4 -118.7 -64.0 -71.0 -32.1 74.8 -41.3 73.6 15.5 -19.9 35.9 38.9 22.4 1.6 31.6 -4.8 76.9 17.2 -44.1 -48.6 -92.1 -42.9 -26.5 30.7 -64.9 -25.6 -6.7 -73.3 60.5 11.2 25.5 81.6 9.3 -81.4 11.0 24.1 73.2 -9.8 42.0 72.0 -11.5 47.6 -85.6 67.0 29.0 87.7 -66.5 -39.9 11.0 81.7 7.7 60.5 39.8 24.7

-22.87 -22.18 -22.45 -22.93 -22.74 -22.80 -23.04 -21.98 -23.18 -22.90 -22.97 -23.01 -22.93 -23.20 -23.01 -21.55 -22.95 -22.40 -22.83 -22.81 -23.11 -22.64 -23.05 -22.58 -22.44 -22.07 -22.83 -23.00 -22.53 -22.35 -22.24 -22.88 -22.58 -22.69 -22.95 -22.92 -22.74 -22.30 -22.42 -22.76 -22.89 -22.81 -22.21 -22.58 -22.06 -23.10 -22.94 -22.76 -22.83 -22.22 -21.28 -21.85 -22.87 -22.71 -20.42 -22.87 -22.80 -23.01

16

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A0404 A0415 A0419 A0423 A0428 A0450 A0496 A0497 A0500 A0505 A0514 A0533 A0536 A0539 A0543 A0548 A0550 A0553 A0564 A0568 A0569 A0576 A0582 A0592 A0595 A0600 A0602 A0607 A0612 A0634 A0644 A0671 A0690 A0695 A0744 A0757 A0779 A0780 A0819 A0834 A0838 A0841 A0865 A0912 A0930 A0957 A0970 A0978 A0979 A0993 A0994 A0999 A1003 A1016 A1020 A1021 A1032 A1035

20.33 22.20 21.68 25.05 18.82 22.01 25.74 20.95 20.90 24.64 23.13 22.59 25.23 21.03 19.33 21.41 22.20 21.69 20.09 21.59 22.11 20.35 20.38 20.55 21.76 23.54 21.18 21.59 23.12 21.72 24.11 20.14 21.65 22.59 24.10 20.80 20.70 21.94 24.42 17.97 24.18 21.15 21.03 22.18 19.48 22.10 21.81 20.74 21.87 22.54 22.61 20.89 19.43 19.77 20.27 20.33 21.19 23.46

4.04 9.26 7.33 61.90 1.65 8.26 101.00 2.41 5.92 78.09 21.69 16.32 84.14 5.56 2.39 7.07 10.71 9.57 3.86 11.11 13.01 4.19 3.79 4.44 7.99 24.95 5.32 8.46 30.92 10.91 29.04 4.99 9.54 17.78 40.05 4.44 7.99 10.39 57.38 0.68 30.16 7.34 3.79 9.14 1.93 14.38 6.50 5.67 9.13 12.29 18.69 6.10 1.90 2.90 3.93 4.44 7.93 28.91

1.09 3.88 4.55 6.80 3.51 4.35 5.62 3.58 2.90 6.80 5.56 4.98 6.54 4.76 2.48 4.08 4.26 3.44 1.28 2.87 4.72 4.74 4.88 4.29 5.62 4.52 3.30 2.68 5.13 3.07 5.59 2.21 5.24 3.75 6.33 2.17 3.72 3.70 6.85 2.87 7.04 4.35 1.17 5.75 4.03 3.89 5.24 5.21 4.59 6.41 4.90 5.08 2.58 3.89 5.41 1.58 3.86 5.38

21.26 21.95 — — 21.71 — — 21.51 22.44 — — — — 22.31 — 20.39 23.00 23.30 23.03 — — — 22.95 22.00 — — — — — — 22.34 21.33 22.54 — — 23.23 21.60 22.30 — 19.55 — 22.88 — — 22.16 22.90 23.01 21.91 22.63 — — 23.28 20.89 22.23 22.73 21.67 — —

12.40 26.00 — — 6.80 — — 9.70 30.00 — — — — 22.30 — 6.60 51.50 57.80 29.20 — — — 26.60 13.30 — — — — — — 31.40 23.30 28.30 — — 23.50 27.20 26.25 — 4.20 — 33.50 — — 14.80 25.20 23.90 23.70 20.10 — — 33.50 11.80 13.50 18.60 15.70 — —

-22.27 -22.91 -22.85 -24.48 -22.43 -22.92 -24.57 -21.31 -23.03 -25.29 -23.98 -23.75 -25.15 -22.91 -22.63 -22.98 -23.33 -23.48 -22.64 -23.84 -23.22 -22.94 -22.92 -22.17 -23.27 -23.89 -22.56 -23.26 -24.96 -23.22 -23.64 -23.23 -23.72 -23.90 -24.43 -22.31 -23.57 -23.30 -24.94 -21.21 -23.70 -23.48 -21.53 -23.03 -22.14 -23.89 -22.61 -23.36 -23.19 -23.35 -23.98 -23.15 -21.96 -22.52 -23.10 -22.82 -23.52 -24.33

-23.03 -24.02 0.00 0.00 -21.29 0.00 0.00 -22.44 -23.79 0.00 0.00 0.00 0.00 -23.15 0.00 -22.45 -24.52 -24.46 -23.28 0.00 0.00 0.00 -23.09 -21.67 0.00 0.00 0.00 0.00 0.00 0.00 -24.01 -24.29 -23.65 0.00 0.00 -22.42 -23.97 -23.60 0.00 -22.38 0.00 -23.61 0.00 0.00 -22.50 -23.92 -22.70 -23.76 -22.68 0.00 0.00 -22.94 -23.30 -22.02 -22.46 -23.31 0.00 0.00

-23.47 -24.36 -22.85 -24.48 -22.75 -22.92 -24.57 -22.77 -24.23 -25.29 -23.98 -23.75 -25.15 -23.79 -22.63 -23.50 -24.83 -24.83 -23.76 -23.84 -23.22 -22.94 -23.76 -22.70 -23.27 -23.89 -22.56 -23.26 -24.96 -23.22 -24.59 -24.64 -24.44 -23.90 -24.43 -23.12 -24.54 -24.21 -24.94 -22.70 -23.70 -24.30 -21.53 -23.03 -23.09 -24.66 -23.41 -24.33 -23.71 -23.35 -23.98 -23.80 -23.58 -23.05 -23.58 -23.84 -23.52 -24.33

0.50 0.36 — — 2.86 — — 0.35 0.50 — — — — 0.80 — 1.63 0.34 0.40 0.55 — — — 0.86 1.58 — — — — — — 0.71 0.38 1.06 — — 0.90 0.69 0.76 — 0.34 — 0.89 — — 0.72 0.97 0.92 0.69 1.60 — — 1.22 0.29 1.59 1.79 0.64 — —

0.62 0.86 0.40 0.70 0.41 0.49 0.78 0.81 0.63 0.84 0.61 0.55 0.84 0.50 0.27 0.64 0.76 0.67 0.39 0.69 0.50 0.32 0.51 0.52 0.49 0.73 0.47 0.69 0.96 0.50 0.85 0.73 0.66 0.70 0.76 0.49 0.58 0.86 0.71 0.47 0.62 0.63 0.23 0.43 0.58 0.86 0.61 0.64 0.65 0.58 0.54 0.44 0.70 0.43 0.53 0.64 0.50 0.73

0.27 0.12 0.28 0.19 0.03 0.21 0.16 0.20 0.21 0.14 0.19 0.24 0.29 0.04 0.07 0.34 0.15 0.16 0.23 0.18 0.13 0.17 0.01 0.07 0.06 0.10 0.17 0.02 0.06 0.17 0.23 0.21 0.10 0.23 0.03 0.10 0.16 0.12 0.25 0.36 0.11 0.09 0.45 0.11 0.08 0.20 0.10 0.08 0.07 0.06 0.35 0.19 0.06 0.10 0.05 0.17 0.36 0.06

0.37 0.32 0.32 0.47 0.09 0.16 0.37 0.28 0.37 0.17 0.31 0.17 0.41 0.36 0.02 0.14 0.38 0.57 0.35 0.11 0.15 0.08 0.04 0.21 0.16 0.35 0.23 0.07 0.01 0.14 0.49 0.27 0.20 0.29 0.06 0.12 0.41 0.32 0.45 0.27 0.27 0.30 0.51 0.13 0.18 0.22 0.16 0.24 0.11 0.06 0.41 0.24 0.29 0.14 0.16 0.25 0.32 0.15

22.4 -20.1 -61.2 -75.5 8.0 12.5 -8.6 26.5 9.0 -51.9 -53.3 -61.2 -34.1 -11.3 -64.1 64.4 -43.4 -68.4 29.5 31.9 -4.4 -60.2 -52.3 84.6 76.2 26.8 58.0 -60.2 -81.9 -77.2 7.4 23.7 41.7 -53.4 71.6 26.2 -23.7 -36.5 -22.9 -10.2 6.5 -29.8 -31.6 68.6 -27.0 -81.9 -54.6 7.7 -50.0 52.8 -21.3 -9.1 -31.5 9.6 -46.6 -88.3 31.5 -9.4

24.7 -12.5 -25.0 -70.3 48.6 -2.2 -3.9 31.0 33.0 11.0 -49.9 -44.8 -29.2 -2.0 -47.6 82.7 -56.8 -67.1 42.1 -22.7 34.3 46.9 16.2 -86.6 78.8 -1.1 41.3 31.1 4.2 67.5 10.4 30.7 53.0 -54.3 -49.6 69.8 -21.0 -34.6 -27.4 -5.7 86.0 -28.1 -29.9 -9.1 -8.2 57.3 -61.3 -18.1 -39.3 1.8 -18.6 -29.4 -53.8 0.1 -41.8 -89.8 25.1 -14.6

-22.57 -22.72 -22.06 -22.56 -22.18 -22.25 -22.75 -21.95 -22.83 -23.39 -22.90 -22.69 -23.05 -22.59 -22.06 -22.73 -22.79 -22.87 -22.54 -23.07 -22.54 -22.37 -22.63 -22.58 -22.51 -22.60 -22.39 -22.81 -23.54 -22.46 -22.55 -23.20 -23.06 -22.79 -22.86 -22.23 -23.10 -22.85 -22.98 -22.17 -22.39 -22.95 -21.08 -22.29 -22.07 -23.00 -22.19 -22.99 -22.71 -23.05 -22.70 -22.55 -22.65 -22.35 -22.76 -22.92 -22.59 -22.99

17

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A1066 A1069 A1100 A1139 A1142 A1145 A1149 A1169 A1171 A1177 A1185 A1187 A1190 A1203 A1213 A1216 A1228 A1238 A1257 A1267 A1270 A1279 A1308 A1314 A1317 A1318 A1334 A1344 A1365 A1367 A1371 A1377 A1400 A1424 A1436 A1452 A1474 A1507 A1520 A1526 A1534 A1569 A1589 A1610 A1630 A1631 A1644 A1648 A1691 A1709 A1736 A1741 A1749 A1767 A1773 A1775 A1780 A1795

20.73 21.28 20.49 21.39 22.65 21.49 19.97 22.08 20.03 23.13 21.45 20.80 23.57 21.58 20.93 19.77 19.39 21.00 17.37 21.28 20.34 24.32 21.99 19.76 21.93 23.96 21.66 24.04 22.79 23.00 21.74 21.90 23.35 19.58 20.96 23.87 19.71 20.54 22.35 22.00 20.75 19.78 24.90 20.83 20.07 15.76 23.78 20.47 22.55 23.08 23.34 21.56 20.41 25.23 21.22 20.71 22.04 20.94

6.52 6.61 4.99 6.74 15.08 6.31 3.11 9.21 3.54 20.88 10.10 5.69 21.29 9.28 7.84 2.69 2.34 4.64 0.82 7.21 6.21 38.01 9.41 3.67 10.26 35.95 8.47 52.80 15.86 25.76 7.06 10.47 22.75 3.02 5.57 34.05 1.74 4.45 16.82 9.05 6.44 3.06 76.44 6.07 4.01 0.36 67.02 4.95 22.89 17.18 39.24 7.88 5.81 101.01 7.12 5.77 13.08 6.02

2.26 5.03 2.33 4.83 6.67 3.56 3.95 6.41 2.62 6.41 1.87 2.93 4.74 2.54 2.42 1.85 4.18 4.67 2.54 4.42 1.59 6.80 4.13 2.54 4.98 5.38 5.05 5.08 6.62 5.56 5.88 4.98 3.34 4.27 5.49 6.85 1.10 3.45 5.85 5.92 3.46 3.17 8.20 5.15 1.44 2.89 3.08 0.96 2.99 6.80 6.21 6.58 3.27 6.02 5.62 1.06 3.40 1.88

23.01 21.20 21.97 22.45 23.46 — 21.58 — 22.42 22.29 23.94 21.80 21.85 23.43 — 21.22 21.81 22.15 20.26 — — — 23.29 21.67 22.52 — — — — — 22.66 — — 20.60 — — 19.63 21.48 22.29 — 22.32 20.37 — 22.38 21.70 22.56 — 21.81 — — — — 22.04 — 21.18 21.30 — 21.70

47.10 16.30 20.90 22.60 49.00 — 16.30 — 22.00 29.00 95.70 16.70 20.50 39.10 — 9.80 12.10 22.50 4.70 — — — 34.60 23.70 51.90 — — — — — 19.90 — — 9.90 — — 7.40 15.60 34.30 — 20.90 11.00 — 19.50 21.10 4.50 — 24.20 — — — — 22.40 — 27.70 17.80 — 27.50

-23.31 -23.18 -22.88 -22.92 -23.51 -22.70 -22.74 -23.21 -22.78 -23.70 -23.21 -23.14 -23.48 -23.33 -23.41 -22.18 -22.52 -22.67 -21.97 -23.05 -23.44 -24.07 -23.09 -22.84 -23.50 -24.18 -23.32 -24.98 -23.80 -23.97 -22.99 -23.50 -23.66 -23.17 -23.21 -24.34 -21.20 -22.88 -24.23 -23.29 -23.50 -22.85 -25.19 -23.46 -22.66 -22.00 -25.38 -22.58 -24.39 -23.57 -25.00 -23.49 -23.53 -25.30 -23.52 -22.70 -23.75 -22.83

-24.22 -23.71 -23.39 -22.99 -23.60 0.00 -23.35 0.00 -23.18 -23.62 -24.60 -23.25 -23.63 -23.44 0.00 -22.54 -22.25 -23.48 -21.72 0.00 0.00 0.00 -23.20 -23.82 -24.92 0.00 0.00 0.00 0.00 0.00 -22.72 0.00 0.00 -23.30 0.00 0.00 -23.67 -23.34 -24.25 0.00 -23.17 -23.77 0.00 -22.92 -23.76 -19.48 0.00 -24.01 0.00 0.00 0.00 0.00 -23.54 0.00 -24.93 -23.83 0.00 -24.37

-24.61 -24.23 -23.92 -23.71 -24.31 -22.70 -23.84 -23.21 -23.75 -24.41 -24.87 -23.95 -24.31 -24.14 -23.41 -23.12 -23.14 -23.90 -22.61 -23.05 -23.44 -24.07 -23.90 -24.19 -25.18 -24.18 -23.32 -24.98 -23.80 -23.97 -23.62 -23.50 -23.66 -23.99 -23.21 -24.34 -23.78 -23.89 -24.99 -23.29 -24.10 -24.16 -25.19 -23.98 -24.10 -22.10 -25.38 -24.27 -24.39 -23.57 -25.00 -23.49 -24.29 -25.30 -25.19 -24.16 -23.75 -24.60

0.43 0.62 0.62 0.93 0.92 — 0.57 — 0.69 1.08 0.28 0.91 0.87 0.90 — 0.72 1.28 0.47 1.26 — — — 0.90 0.41 0.27 — — — — — 1.28 — — 0.89 — — 0.10 0.65 0.98 — 1.35 0.43 — 1.65 0.36 10.17 — 0.27 — — — — 0.99 — 0.27 0.35 — 0.24

0.72 0.78 0.55 0.57 0.54 0.44 0.65 0.48 0.63 0.71 0.66 0.64 0.95 0.75 0.50 0.52 0.43 0.68 0.24 0.33 0.48 0.63 0.55 0.57 0.73 0.54 0.51 0.72 0.50 0.56 0.65 0.54 0.81 0.63 0.44 0.66 0.67 0.70 0.75 0.49 0.65 0.78 0.73 0.55 0.61 0.67 1.02 0.52 0.92 0.55 0.58 0.48 0.59 0.81 0.65 0.85 0.64 0.81

0.18 0.28 0.19 0.06 0.15 0.17 0.11 0.22 0.30 0.13 0.12 0.18 0.28 0.16 0.27 0.22 0.06 0.08 0.10 0.23 0.43 0.17 0.10 0.19 0.18 0.22 0.21 0.39 0.21 0.13 0.08 0.23 0.16 0.25 0.10 0.08 0.51 0.20 0.16 0.12 0.20 0.24 0.25 0.09 0.23 0.12 0.24 0.32 0.18 0.08 0.33 0.16 0.25 0.09 0.27 0.12 0.29 0.10

0.30 0.12 0.38 0.32 0.24 0.16 0.33 0.28 0.49 0.42 0.07 0.21 0.32 0.17 0.09 0.30 0.19 0.43 0.13 0.30 0.20 0.31 0.12 0.36 0.57 0.29 0.22 0.32 0.22 0.24 0.19 0.10 0.23 0.15 0.10 0.12 0.58 0.29 0.33 0.29 0.18 0.14 0.41 0.25 0.37 0.12 0.48 0.41 0.07 0.16 0.43 0.11 0.22 0.39 0.07 0.16 0.30 0.34

-40.4 -86.8 -10.0 -51.2 36.6 -44.3 68.8 -32.0 44.6 47.5 39.5 -81.6 -7.6 -47.1 66.5 -50.2 13.8 -79.9 -46.5 44.9 -46.1 59.4 -26.0 86.8 38.9 -8.8 88.8 80.3 -56.0 4.1 59.6 59.1 -61.3 72.4 -79.8 48.0 -12.1 48.0 -17.7 -88.4 -48.9 -74.2 73.4 -85.0 83.1 19.0 47.4 59.4 -34.3 -53.0 -44.4 -34.9 -85.8 -47.5 30.0 -19.2 83.4 9.5

-60.3 -85.6 -17.5 -82.0 51.1 -50.1 69.7 -75.3 43.7 39.8 -15.0 -65.2 -12.4 -25.8 88.5 -46.5 -42.3 -77.7 -43.0 53.4 -45.3 55.8 -38.3 -86.2 55.4 -7.6 77.4 78.8 -62.1 -10.8 44.0 69.5 -65.9 70.3 -65.4 52.9 -10.0 44.1 -32.1 -54.0 -52.9 -71.1 65.8 -68.0 86.4 18.6 42.8 55.1 -14.1 -20.1 -45.1 -39.2 -76.0 -3.6 12.5 -28.6 75.8 15.4

-22.84 -22.98 -22.74 -22.55 -22.55 -22.12 -22.76 -22.25 -22.26 -22.77 -22.87 -22.95 -22.72 -22.81 -22.75 -22.38 -22.42 -22.56 -22.10 -22.43 -22.76 -22.56 -22.61 -22.81 -22.89 -22.75 -22.53 -23.05 -22.67 -22.74 -22.50 -22.66 -22.45 -23.12 -22.56 -22.80 -22.57 -22.82 -23.26 -22.39 -23.01 -23.19 -23.21 -23.01 -22.85 -21.75 -23.00 -22.78 -23.16 -22.63 -23.26 -22.69 -23.10 -23.16 -22.82 -23.00 -22.70 -22.94

18

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A1800 A1809 A1825 A1827 A1828 A1831 A1836 A1873 A1890 A1898 A1899 A1904 A1913 A1964 A1982 A1983 A1991 A2020 A2022 A2025 A2028 A2029 A2040 A2052 A2055 A2063 A2065 A2107 A2143 A2147 A2152 A2162 A2184 A2197 A2198 A2199 A2247 A2248 A2250 A2256 A2271 A2293 A2296 A2308 A2309 A2319 A2331 A2361 A2362 A2366 A2372 A2381 A2382 A2383 A2388 A2399 A2401 A2412

22.88 21.78 22.29 22.01 21.04 22.75 23.22 20.62 23.78 23.37 21.50 21.91 21.99 19.74 20.94 21.89 26.26 19.37 19.94 19.89 21.57 26.30 20.57 24.76 21.19 24.15 23.87 23.19 21.06 22.28 21.86 20.85 21.65 19.25 21.42 21.18 21.13 22.53 21.28 20.84 23.96 23.19 19.63 24.51 20.02 25.16 22.07 22.83 22.52 19.64 20.16 17.19 20.41 21.35 25.06 21.75 23.47 20.33

45.78 12.38 10.97 10.76 7.22 18.26 26.32 5.55 49.81 18.80 9.54 12.00 10.73 2.78 5.80 11.28 201.64 1.43 3.62 4.84 10.27 439.41 3.67 73.57 5.15 44.25 27.62 35.86 5.41 14.87 9.98 7.19 7.05 3.71 5.64 7.95 6.67 13.34 7.12 8.91 52.68 19.05 1.42 44.68 3.49 71.27 6.98 15.13 15.75 3.60 4.35 0.43 3.97 5.54 57.29 12.37 26.80 4.55

2.38 4.93 4.90 6.06 2.53 4.98 5.24 2.30 5.18 6.13 2.83 4.76 6.02 5.29 3.09 6.29 6.41 4.08 3.55 2.07 3.32 5.78 5.21 3.89 3.80 4.27 7.30 3.68 6.21 3.23 6.45 3.92 3.19 1.54 5.00 1.40 2.19 6.41 4.02 1.87 3.86 5.99 4.35 6.37 4.18 5.00 5.18 7.14 6.13 1.64 1.55 4.10 1.55 3.64 6.71 3.91 6.99 1.79

— 22.81 23.24 — — 21.80 — 22.40 — — — 21.85 — 22.10 21.44 — — 19.76 21.98 21.90 22.78 — 21.94 — 21.86 — — — 21.87 23.15 — 22.46 — 20.32 — 21.82 — — — — — — 21.02 — 22.17 21.19 21.67 — — 21.32 21.97 20.31 21.31 — — — — 23.43

— 45.50 27.90 — — 28.20 — 22.50 — — — 22.30 — 23.00 16.10 — — 4.70 22.70 22.30 35.40 — 26.20 — 21.00 — — — 15.10 78.10 — 28.20 — 13.50 — 26.90 — — — — — — 8.60 — 17.80 17.60 17.50 — — 16.50 17.40 3.20 16.30 — — — — 90.80

-25.46 -24.07 -23.26 -23.64 -23.28 -23.99 -24.14 -23.07 -25.08 -23.54 -23.41 -23.88 -23.55 -22.89 -22.96 -23.76 -25.74 -21.59 -22.99 -23.61 -23.68 -27.40 -22.54 -24.58 -22.51 -24.21 -23.90 -24.64 -23.20 -23.58 -23.53 -23.40 -22.66 -23.05 -22.66 -22.76 -22.73 -23.56 -23.22 -23.73 -24.86 -23.68 -21.31 -24.28 -22.88 -24.40 -22.57 -23.58 -23.91 -22.87 -22.75 -20.86 -22.33 -22.62 -24.22 -23.91 -24.16 -22.81

0.00 -24.37 -22.84 0.00 0.00 -24.37 0.00 -23.23 0.00 0.00 0.00 -23.80 0.00 -23.58 -23.42 0.00 0.00 -22.38 -23.61 -23.86 -23.86 0.00 -23.90 0.00 -23.52 0.00 0.00 0.00 -22.99 -25.04 0.00 -23.38 0.00 -23.88 0.00 -23.91 0.00 0.00 0.00 0.00 0.00 0.00 -22.39 0.00 -22.86 -23.83 -23.44 0.00 0.00 -23.56 -23.05 -20.70 -23.59 0.00 0.00 0.00 0.00 -25.23

-25.46 -24.98 -23.82 -23.64 -23.28 -24.95 -24.14 -23.90 -25.08 -23.54 -23.41 -24.59 -23.55 -24.04 -23.96 -23.76 -25.74 -22.81 -24.10 -24.49 -24.52 -27.40 -24.17 -24.58 -23.88 -24.21 -23.90 -24.64 -23.85 -25.29 -23.53 -24.14 -22.66 -24.29 -22.66 -24.23 -22.73 -23.56 -23.22 -23.73 -24.86 -23.68 -22.73 -24.28 -23.62 -24.91 -23.84 -23.58 -23.91 -24.02 -23.66 -21.54 -23.89 -22.62 -24.22 -23.91 -24.16 -25.34

— 0.76 1.47 — — 0.70 — 0.87 — — — 1.08 — 0.53 0.65 — — 0.49 0.57 0.79 0.84 — 0.28 — 0.39 — — — 1.21 0.26 — 1.02 — 0.47 — 0.35 — — — — — — 0.37 — 1.02 1.69 0.45 — — 0.53 0.76 1.15 0.31 — — — — 0.11

1.09 0.69 0.63 0.57 0.44 0.86 0.60 0.60 0.76 0.60 0.58 0.76 0.56 0.57 0.67 0.34 0.90 0.46 0.65 0.56 0.71 1.05 0.72 0.88 0.42 0.80 0.67 0.79 0.72 0.81 0.48 0.57 0.49 0.60 0.42 0.81 0.41 0.56 0.44 0.52 0.90 0.73 0.60 0.74 0.57 1.12 0.86 0.52 0.55 0.59 0.58 0.22 0.82 0.36 0.68 0.62 0.67 0.57

0.39 0.18 0.12 0.15 0.36 0.10 0.09 0.13 0.21 0.11 0.36 0.17 0.04 0.16 0.30 0.26 0.18 0.48 0.12 0.21 0.20 0.26 0.12 0.16 0.25 0.04 0.18 0.13 0.06 0.23 0.07 0.24 0.15 0.29 0.12 0.15 0.10 0.07 0.16 0.35 0.21 0.26 0.19 0.07 0.21 0.15 0.06 0.07 0.15 0.14 0.13 0.22 0.17 0.33 0.13 0.32 0.07 0.15

0.57 0.33 0.23 0.07 0.37 0.41 0.29 0.26 0.34 0.17 0.33 0.35 0.00 0.10 0.40 0.29 0.36 0.44 0.12 0.06 0.32 0.52 0.44 0.35 0.35 0.38 0.09 0.26 0.08 0.64 0.08 0.36 0.26 0.37 0.20 0.36 0.23 0.19 0.10 0.30 0.37 0.33 0.40 0.26 0.22 0.18 0.27 0.16 0.09 0.15 0.29 0.35 0.10 0.36 0.44 0.21 0.17 0.11

-18.6 64.7 -15.0 36.0 -33.6 -20.0 48.6 -80.8 40.6 1.9 -43.1 20.9 24.3 14.6 48.3 28.4 15.6 -35.5 -34.2 -51.1 -81.1 20.5 -55.2 34.6 -26.1 39.0 2.9 -71.3 21.1 12.8 16.4 5.1 -15.0 -39.7 -8.2 27.1 27.2 14.9 -36.6 -80.6 -57.8 76.8 68.1 38.5 -61.2 4.4 -86.3 50.6 68.6 -30.6 7.2 6.1 8.6 -47.7 -80.5 -77.3 -12.2 31.0

-22.2 54.7 -8.4 54.2 -28.7 -29.8 37.8 -87.1 42.9 21.2 82.3 44.4 -72.1 -24.2 46.9 26.9 9.7 -35.4 -56.8 -45.9 -81.4 26.6 -55.8 35.5 27.1 29.1 11.1 -63.5 16.3 11.9 -70.5 1.0 -17.7 -35.3 -3.6 33.3 3.4 13.0 -74.4 -76.1 -53.3 72.4 72.4 17.9 -68.0 20.1 89.4 49.7 85.0 -21.7 -4.4 4.8 -67.8 -49.8 -75.2 -70.1 -34.9 22.6

-23.23 -23.26 -22.60 -22.77 -22.53 -23.23 -22.91 -22.88 -23.26 -22.44 -22.59 -23.18 -22.76 -22.52 -22.72 -22.59 -22.86 -21.96 -22.88 -23.44 -23.05 -23.58 -22.43 -22.56 -21.89 -22.71 -22.51 -23.09 -22.84 -22.68 -22.68 -22.81 -22.17 -23.24 -21.98 -22.81 -22.34 -22.66 -22.59 -22.97 -22.94 -22.61 -21.72 -22.73 -22.67 -22.99 -22.59 -22.67 -23.01 -23.08 -22.81 -21.03 -22.76 -21.98 -22.46 -22.92 -23.03 -22.65

19

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A2415 A2457 A2459 A2462 A2480 A2492 A2495 A2511 A2524 A2525 A2559 A2572 A2589 A2593 A2596 A2618 A2622 A2625 A2626 A2630 A2634 A2637 A2644 A2656 A2657 A2660 A2661 A2665 A2666 A2670 A2675 A2678 A2716 A2717 A2731 A2734 A2764 A2765 A2799 A2800 A2806 A2814 A2819 A2824 A2836 A2841 A2854 A2859 A2864 A2870 A2877 A2881 A2889 A2896 A2911 A2923 A2954 A2955

23.75 21.10 21.25 20.29 19.86 20.93 21.70 21.60 21.19 20.52 23.97 19.18 28.54 21.93 19.91 20.79 24.53 21.60 24.10 22.56 20.33 23.01 23.31 20.46 21.24 22.08 26.51 23.94 22.97 21.13 24.31 21.85 20.71 20.15 22.31 21.70 22.17 19.33 22.79 22.38 19.85 22.20 20.27 21.68 21.80 21.11 21.39 20.74 18.86 22.96 19.91 19.41 19.88 18.95 19.64 22.24 20.76 19.71

31.01 8.46 8.03 4.35 3.45 5.61 6.56 7.66 7.10 3.78 36.62 2.54 725.91 6.60 2.30 6.60 51.76 10.49 37.52 15.00 4.66 22.64 22.24 3.20 2.74 10.53 104.60 50.12 25.07 7.49 40.53 8.54 5.35 2.80 16.35 9.87 14.97 2.05 16.32 14.39 3.12 12.53 5.19 7.93 6.84 7.02 4.80 4.48 1.55 22.83 5.63 2.00 1.44 2.21 2.34 13.42 3.80 2.58

6.94 2.60 2.36 5.13 3.82 2.81 1.30 2.83 4.65 4.31 5.18 1.37 9.52 4.83 1.02 1.69 6.13 3.10 4.48 5.56 3.16 6.58 5.46 4.29 3.94 5.62 6.13 4.15 6.37 5.43 6.45 6.41 6.45 2.84 6.62 1.27 5.43 4.59 6.10 4.42 3.32 5.10 2.62 5.26 2.75 4.93 5.59 5.29 5.08 4.63 3.68 2.67 1.01 3.68 2.82 4.15 1.68 5.21

— 22.33 — 22.37 22.23 22.25 21.52 — 22.03 23.00 21.65 21.31 — 20.54 20.50 21.94 — — 21.48 — 21.27 — — 21.22 19.76 22.42 — — — 21.75 — — — 21.25 — 22.08 — 21.75 — — 21.11 — — — — 22.16 22.11 22.48 21.75 — 21.04 21.66 22.05 21.01 22.01 — — 21.53

— 31.60 — 26.20 22.80 18.50 26.60 — 17.90 22.60 22.80 17.30 — 12.00 6.10 25.50 — — 17.00 — 20.60 — — 13.20 3.50 20.60 — — — 22.30 — — — 18.60 — 32.30 — 9.30 — — 7.20 — — — — 20.23 24.50 15.90 10.20 — 19.90 8.70 5.70 8.50 11.90 — — 19.00

-24.20 -23.52 -23.25 -23.40 -23.16 -22.98 -22.20 -22.92 -23.44 -22.69 -24.28 -22.43 -26.43 -22.40 -21.62 -23.11 -24.49 -23.67 -24.14 -23.83 -22.98 -24.38 -23.94 -22.48 -21.04 -23.40 -24.53 -24.77 -24.34 -23.69 -24.24 -23.32 -23.43 -22.08 -24.12 -22.91 -24.13 -22.58 -23.73 -23.70 -22.59 -23.73 -23.36 -23.29 -22.46 -23.46 -22.41 -22.91 -22.48 -23.97 -23.63 -22.12 -20.29 -22.71 -21.72 -23.69 -22.04 -22.92

0.00 -23.98 0.00 -23.70 -23.51 -23.04 -24.59 0.00 -23.14 -22.66 -24.04 -23.62 0.00 -23.65 -22.44 -23.95 0.00 0.00 -23.58 0.00 -24.00 0.00 0.00 -23.37 -21.67 -22.94 0.00 0.00 0.00 -23.88 0.00 0.00 0.00 -23.88 0.00 -24.29 0.00 -21.98 0.00 0.00 -21.86 0.00 0.00 0.00 0.00 -23.21 -23.66 -22.37 -22.16 0.00 -23.89 -21.88 -20.41 -22.23 -21.67 0.00 0.00 -23.89

-24.20 -24.52 -23.25 -24.32 -24.10 -23.76 -24.71 -22.92 -24.05 -23.43 -24.91 -23.93 -26.43 -23.95 -22.86 -24.36 -24.49 -23.67 -24.65 -23.83 -24.35 -24.38 -23.94 -23.76 -22.15 -23.95 -24.53 -24.77 -24.34 -24.54 -24.24 -23.32 -23.43 -24.07 -24.12 -24.56 -24.13 -23.08 -23.73 -23.70 -23.04 -23.73 -23.36 -23.29 -22.46 -24.10 -23.96 -23.43 -23.08 -23.97 -24.52 -22.76 -21.10 -23.25 -22.45 -23.69 -22.04 -24.27

— 0.65 — 0.76 0.72 0.95 0.11 — 1.33 1.03 1.25 0.34 — 0.33 0.47 0.46 — — 1.67 — 0.39 — — 0.44 0.56 1.53 — — — 0.84 — — — 0.19 — 0.28 — 1.74 — — 1.97 — — — — 1.26 0.32 1.64 1.34 — 0.78 1.26 0.90 1.56 1.04 — — 0.41

0.60 0.73 0.49 0.61 0.51 0.63 1.01 0.49 0.63 0.56 0.86 0.50 0.78 0.90 0.55 0.80 0.78 0.54 1.05 0.59 0.67 0.58 0.57 0.81 0.36 0.63 0.92 0.93 0.61 0.70 0.71 0.48 0.43 0.87 0.55 1.03 0.60 0.54 0.63 0.62 0.46 0.59 0.63 0.45 0.49 0.63 0.65 0.53 0.55 0.70 0.68 0.46 0.34 0.40 0.47 0.66 0.32 0.74

0.21 0.26 0.28 0.03 0.03 0.13 0.18 0.22 0.19 0.07 0.29 0.23 0.12 0.18 0.05 0.06 0.20 0.37 0.24 0.05 0.18 0.21 0.19 0.09 0.11 0.25 0.28 0.13 0.26 0.09 0.09 0.18 0.21 0.05 0.36 0.19 0.16 0.24 0.22 0.25 0.16 0.21 0.24 0.14 0.07 0.26 0.18 0.15 0.17 0.27 0.14 0.16 0.42 0.27 0.17 0.03 0.18 0.11

0.35 0.41 0.26 0.26 0.48 0.29 0.43 0.22 0.28 0.16 0.53 0.18 0.51 0.38 0.16 0.26 0.42 0.36 0.37 0.31 0.45 0.37 0.30 0.22 0.07 0.45 0.30 0.32 0.32 0.08 0.44 0.23 0.17 0.18 0.23 0.50 0.18 0.29 0.25 0.42 0.20 0.26 0.18 0.03 0.10 0.36 0.50 0.23 0.26 0.24 0.28 0.15 0.38 0.33 0.23 0.29 0.26 0.49

27.1 86.2 13.2 -89.8 -18.0 -70.0 50.4 81.3 14.5 -61.4 29.7 -85.8 -11.1 75.2 -76.0 77.2 -43.3 84.9 32.3 -49.4 31.0 62.9 16.9 -27.1 1.8 -35.3 -76.0 -64.7 60.6 81.4 43.8 17.7 -78.3 -17.3 88.0 21.5 -37.4 51.7 42.8 63.4 -62.5 -34.6 42.4 65.4 -53.4 -14.2 -2.6 -89.4 28.6 10.5 -69.5 46.4 -44.4 -62.6 -18.4 66.1 27.3 78.6

25.5 83.0 3.0 -52.5 -40.0 89.6 50.7 75.1 1.9 -48.7 31.8 -19.2 5.0 73.8 -70.8 -86.4 -55.4 85.9 32.0 -50.5 34.3 86.1 28.3 -8.4 -9.3 -27.8 -36.4 -80.7 60.7 -39.7 45.0 19.0 -81.0 8.3 77.0 21.6 1.5 51.8 32.0 75.7 -58.7 -31.0 35.2 30.1 -37.0 -10.8 -15.7 -77.9 34.4 11.6 -92.9 65.0 -41.4 -65.8 14.5 75.8 33.6 67.6

-22.76 -23.06 -22.68 -23.05 -23.00 -22.80 -22.70 -22.31 -22.93 -22.35 -23.01 -22.81 -22.96 -22.44 -22.47 -23.15 -22.78 -22.78 -22.92 -22.87 -22.98 -23.17 -22.73 -22.81 -21.95 -22.65 -22.27 -23.00 -23.05 -23.28 -22.78 -22.55 -22.66 -22.64 -22.76 -22.76 -23.06 -22.09 -22.54 -22.71 -22.60 -22.78 -22.62 -22.51 -22.12 -22.87 -22.28 -22.92 -22.17 -22.72 -23.44 -22.22 -20.49 -22.44 -21.78 -22.89 -21.73 -22.84

20

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A2992 A3004 A3009 A3027 A3047 A3074 A3077 A3078 A3089 A3093 A3094 A3095 A3098 A3100 A3104 A3107 A3108 A3109 A3110 A3111 A3112 A3120 A3122 A3123 A3125 A3128 A3133 A3135 A3142 A3144 A3151 A3152 A3153 A3158 A3164 A3188 A3193 A3195 A3223 A3225 A3229 A3231 A3234 A3266 A3301 A3332 A3336 A3341 A3351 A3354 A3367 A3374 A3376 A3380 A3381 A3389 A3390 A3391

21.38 22.51 23.29 23.36 21.99 23.73 22.53 23.86 20.44 22.00 22.38 19.63 26.40 21.92 18.96 20.72 22.79 24.03 20.30 21.72 24.95 21.67 20.51 18.69 19.83 23.58 24.37 22.71 20.80 22.52 18.38 23.10 23.84 23.45 23.18 19.77 23.10 23.28 20.01 19.61 20.06 22.28 21.60 20.23 21.83 20.94 22.95 21.09 21.63 20.15 21.91 14.82 20.91 21.71 24.08 21.84 21.20 22.44

7.57 13.82 32.22 20.33 8.22 45.61 11.53 38.66 3.42 10.57 15.17 2.88 186.16 10.00 2.03 4.07 12.73 47.17 6.54 7.84 71.55 8.16 5.83 1.70 2.86 32.96 25.14 14.77 5.23 11.20 1.22 20.44 25.55 30.76 20.63 2.00 19.45 22.96 4.49 2.40 2.40 7.98 7.72 4.04 13.08 5.94 20.24 4.95 7.82 3.80 10.08 0.24 7.24 7.91 29.06 13.47 5.15 22.42

4.69 5.24 3.58 5.75 4.55 4.33 4.55 4.83 4.65 3.44 5.24 3.11 6.90 2.11 3.22 3.28 4.67 6.41 1.89 5.18 6.54 4.18 5.78 3.60 3.04 6.10 6.80 5.88 3.32 7.35 2.70 6.29 5.78 6.02 7.04 6.02 6.49 5.99 1.84 0.93 2.07 5.56 4.93 5.59 3.11 4.12 4.12 6.06 6.25 2.38 3.46 2.79 2.87 5.38 6.45 3.07 5.65 3.31

— — — 23.01 21.93 — — — 21.50 21.64 — 21.50 — — 21.38 22.92 — — 20.87 21.70 22.01 22.01 22.82 20.69 21.83 — — — 21.92 — 21.27 — — — — — — — 21.61 20.28 — — — 21.02 23.26 23.16 23.28 21.71 — 22.75 — 19.08 22.28 23.40 — — 21.91 —

— — — 32.60 23.03 — — — 10.40 18.40 — 11.20 — — 21.04 25.49 — — 12.80 16.70 33.50 24.50 27.10 8.10 9.70 — — — 17.64 — 11.10 — — — — — — — 16.00 7.50 — — — 26.10 80.22 36.36 42.50 16.80 — 22.40 — 4.00 30.50 56.80 — — 15.90 —

-23.31 -23.58 -24.43 -23.67 -23.01 -24.88 -23.17 -24.45 -22.55 -23.34 -23.92 -22.77 -25.55 -22.97 -22.73 -22.47 -23.04 -24.81 -23.67 -23.18 -24.87 -23.03 -23.76 -22.63 -22.52 -24.45 -23.18 -23.56 -22.94 -23.20 -22.09 -24.05 -23.85 -24.43 -23.91 -22.19 -23.72 -24.02 -23.06 -21.74 -21.54 -22.69 -23.41 -23.20 -23.81 -23.24 -23.90 -22.72 -23.43 -22.69 -23.19 -22.02 -23.37 -23.12 -23.60 -23.77 -22.66 -24.41

0.00 0.00 0.00 -23.46 -23.84 0.00 0.00 0.00 -22.43 -23.60 0.00 -22.59 0.00 0.00 -24.11 -22.96 0.00 0.00 -23.55 -23.31 -24.50 -23.67 -23.20 -22.68 -21.92 0.00 0.00 0.00 -23.16 0.00 -22.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -23.23 -22.88 0.00 0.00 0.00 -24.89 -25.06 -23.55 -23.77 -23.14 0.00 -22.82 0.00 -22.67 -23.91 -24.16 0.00 0.00 -22.83 0.00

-23.31 -23.58 -24.43 -24.32 -24.26 -24.88 -23.17 -24.45 -23.24 -24.23 -23.92 -23.43 -25.55 -22.97 -24.38 -23.50 -23.04 -24.81 -24.36 -24.00 -25.45 -24.15 -24.27 -23.41 -23.01 -24.45 -23.18 -23.56 -23.81 -23.20 -23.27 -24.05 -23.85 -24.43 -23.91 -22.19 -23.72 -24.02 -23.90 -23.21 -21.54 -22.69 -23.41 -25.09 -25.36 -24.16 -24.59 -23.70 -23.43 -23.51 -23.19 -23.14 -24.43 -24.51 -23.60 -23.77 -23.50 -24.41

— — — 1.22 0.46 — — — 1.12 0.79 — 1.18 — — 0.28 0.63 — — 1.11 0.89 1.40 0.56 1.68 0.95 1.73 — — — 0.81 — 0.52 — — — — — — — 0.85 0.35 — — — 0.21 0.32 0.75 1.12 0.68 — 0.89 — 0.55 0.61 0.38 — — 0.86 —

0.43 0.63 0.88 0.69 0.81 0.84 0.50 0.81 0.61 0.81 0.69 0.48 0.84 0.73 0.66 0.54 0.58 0.71 0.61 0.75 0.88 0.79 0.60 0.54 0.49 0.67 0.59 0.56 0.64 0.48 0.70 0.56 0.71 0.73 0.59 0.32 0.54 0.67 0.56 0.64 0.24 0.49 0.49 0.83 0.81 0.52 0.82 0.72 0.52 0.47 0.39 0.46 0.68 0.58 0.64 0.69 0.65 0.74

0.29 0.12 0.16 0.26 0.22 0.32 0.46 0.16 0.17 0.28 0.16 0.15 0.24 0.32 0.25 0.19 0.25 0.33 0.50 0.12 0.33 0.27 0.27 0.33 0.07 0.19 0.25 0.13 0.21 0.14 0.09 0.32 0.16 0.11 0.10 0.20 0.10 0.32 0.26 0.13 0.46 0.07 0.20 0.12 0.07 0.12 0.22 0.21 0.10 0.09 0.27 0.44 0.28 0.07 0.11 0.18 0.04 0.24

0.30 0.13 0.44 0.38 0.45 0.43 0.49 0.32 0.29 0.46 0.17 0.31 0.48 0.14 0.45 0.18 0.36 0.16 0.39 0.14 0.59 0.48 0.39 0.34 0.13 0.20 0.36 0.27 0.30 0.12 0.28 0.34 0.39 0.14 0.20 0.28 0.24 0.39 0.26 0.16 0.48 0.15 0.13 0.31 0.37 0.44 0.34 0.33 0.06 0.15 0.35 0.40 0.44 0.41 0.18 0.16 0.12 0.38

-59.6 -54.9 -71.3 84.0 -59.4 35.2 74.3 30.6 76.4 20.3 34.3 -5.3 -40.0 67.0 63.0 -30.2 70.5 16.0 -2.1 33.2 9.2 -26.5 38.0 -81.9 -2.9 11.3 -26.8 33.2 -12.1 -69.1 -67.3 0.9 87.1 63.3 -59.8 -50.7 -82.5 64.0 0.6 -11.3 -78.7 84.4 27.9 77.4 -45.8 48.5 19.5 11.8 -34.1 3.9 52.1 -70.5 64.4 81.2 36.0 60.3 -79.5 76.1

-53.9 37.2 -74.5 85.7 -48.3 33.8 67.3 16.0 79.6 18.8 52.3 -16.0 -39.4 70.4 68.7 -44.7 65.7 22.2 -2.1 62.9 6.7 -37.1 61.4 -64.7 -34.0 25.5 -29.0 51.3 -21.4 -26.7 -17.0 2.6 92.6 59.7 30.3 -66.8 87.3 60.6 -6.8 -8.0 -85.9 84.5 33.3 63.4 -42.7 47.7 17.8 21.7 71.5 1.2 54.9 -70.6 67.9 69.2 29.9 19.8 -75.0 45.6

-22.51 -22.59 -23.02 -22.62 -22.80 -23.04 -22.08 -22.90 -22.41 -22.89 -22.84 -22.75 -22.80 -22.33 -22.77 -22.21 -22.08 -22.89 -23.21 -22.87 -23.06 -22.57 -22.96 -22.65 -22.46 -22.99 -21.82 -22.57 -22.71 -22.38 -22.33 -22.59 -22.56 -23.06 -22.94 -21.40 -22.57 -22.72 -22.98 -22.68 -21.07 -21.90 -22.55 -23.19 -23.15 -22.83 -22.82 -22.44 -22.58 -22.63 -22.24 -22.17 -22.87 -22.56 -22.28 -22.88 -22.55 -23.15

21

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A3395 A3404 A3407 A3408 A3420 A3429 A3490 A3497 A3528 A3530 A3531 A3532 A3537 A3549 A3549 A3552 A3553 A3554 A3556 A3559 A3559 A3560 A3562 A3564 A3564 A3565 A3570 A3571 A3572 A3574 A3575 A3581 A3605 A3626 A3631 A3651 A3656 A3667 A3677 A3687 A3698 A3703 A3716 A3731 A3733 A3736 A3742 A3744 A3747 A3756 A3764 A3771 A3775 A3781 A3782 A3785 A3796 A3806

26.19 24.18 25.64 22.46 20.70 24.66 21.28 24.02 22.24 22.94 22.03 22.33 22.17 21.91 23.03 22.27 22.33 23.55 22.15 24.73 18.15 20.62 22.28 21.93 21.95 23.47 20.62 25.51 21.12 22.15 20.94 25.38 21.58 22.10 21.57 22.29 24.07 20.88 22.02 25.22 21.89 23.23 22.34 20.21 20.21 24.14 21.57 22.33 22.21 22.03 22.36 19.25 18.69 22.30 22.70 22.46 21.98 21.05

202.47 56.46 99.66 16.24 4.42 53.10 6.22 32.71 14.03 17.98 4.76 11.85 17.15 8.42 11.69 20.56 9.53 20.03 18.39 112.07 1.61 5.86 15.39 7.10 10.15 36.59 4.88 232.87 6.30 11.42 3.70 74.80 10.17 10.36 6.64 19.27 41.74 7.19 8.90 71.69 10.61 19.73 11.69 4.32 2.79 65.96 8.81 12.68 13.72 10.94 12.13 2.00 1.56 7.13 16.45 16.31 8.89 8.54

5.78 3.28 7.87 5.78 4.85 7.04 4.81 5.46 5.15 5.71 6.10 5.65 5.52 5.26 5.81 6.02 4.00 5.78 4.05 4.63 4.88 3.57 2.92 5.78 4.13 7.75 4.22 4.57 5.68 6.17 5.99 8.20 1.46 1.05 0.81 2.46 8.00 1.47 4.78 6.99 6.37 6.13 5.88 3.04 1.22 5.85 7.04 6.37 4.35 5.18 6.25 2.44 2.56 6.10 5.56 5.62 5.26 1.44

— — — 23.25 23.22 — 22.69 — 22.33 21.47 21.98 22.40 — — — — — 21.46 — — 20.60 — 22.96 — — — — — — 20.69 — — 23.35 — — — — 22.01 — — — 23.09 21.57 22.32 21.23 — — — — — — 21.84 20.44 — 23.07 — 22.47 22.26

— — — 46.90 19.60 — 26.70 — 36.20 25.30 17.50 42.40 — — — — — 20.20 — — 14.10 — 72.90 — — — — — — 17.80 — — 56.40 — — — — 32.00 — — — 41.10 20.00 23.17 11.40 — — — — — — 14.90 8.30 — 36.40 — 23.20 31.00

-25.71 -25.09 -24.90 -23.93 -22.86 -24.43 -23.17 -23.97 -23.91 -23.80 -21.76 -23.51 -23.84 -23.05 -22.78 -24.70 -22.81 -23.39 -24.42 -25.76 -23.22 -22.54 -23.74 -22.78 -23.35 -24.10 -22.99 -26.54 -23.22 -22.94 -22.24 -24.22 -23.20 -22.55 -22.01 -24.10 -24.45 -23.09 -22.96 -24.63 -23.16 -23.73 -23.39 -22.99 -21.47 -25.33 -23.01 -23.48 -23.61 -23.49 -23.60 -22.28 -22.44 -22.40 -23.75 -24.07 -23.19 -23.36

0.00 0.00 0.00 -23.85 -22.08 0.00 -23.43 0.00 -24.36 -24.43 -23.02 -24.64 0.00 0.00 0.00 0.00 0.00 -23.91 0.00 0.00 -23.98 0.00 -25.21 0.00 0.00 0.00 0.00 0.00 0.00 -23.74 0.00 0.00 -24.27 0.00 0.00 0.00 0.00 -24.32 0.00 0.00 0.00 -23.84 -23.74 -23.28 -22.71 0.00 0.00 0.00 0.00 0.00 0.00 -22.92 -23.16 0.00 -23.54 0.00 -23.24 -24.08

-25.71 -25.09 -24.90 -24.64 -23.29 -24.43 -24.06 -23.97 -24.91 -24.91 -23.31 -24.97 -23.84 -23.05 -22.78 -24.70 -22.81 -24.43 -24.42 -25.76 -24.42 -22.54 -25.46 -22.78 -23.35 -24.10 -22.99 -26.54 -23.22 -24.17 -22.24 -24.22 -24.62 -22.55 -22.01 -24.10 -24.45 -24.62 -22.96 -24.63 -23.16 -24.54 -24.33 -23.90 -23.01 -25.33 -23.01 -23.48 -23.61 -23.49 -23.60 -23.40 -23.61 -22.40 -24.41 -24.07 -23.97 -24.53

— — — 1.07 2.06 — 0.79 — 0.66 0.56 0.31 0.36 — — — — — 0.62 — — 0.50 — 0.26 — — — — — — 0.48 — — 0.37 — — — — 0.32 — — — 0.90 0.73 0.77 0.32 — — — — — — 0.56 0.51 — 1.22 — 0.95 0.52

0.88 1.14 0.74 0.64 0.44 0.70 0.67 0.75 0.68 0.80 0.85 0.76 0.57 0.45 0.58 0.60 0.56 0.82 0.68 0.99 0.61 0.46 0.80 0.43 0.54 0.64 0.39 1.16 0.40 0.76 0.32 0.65 0.90 0.78 0.49 0.91 0.61 0.90 0.47 0.72 0.42 0.70 0.78 0.56 0.64 0.79 0.45 0.55 0.54 0.50 0.56 0.58 0.61 0.56 0.70 0.61 0.65 0.90

0.38 0.29 0.08 0.08 0.20 0.21 0.13 0.18 0.17 0.23 0.37 0.15 0.31 0.29 0.10 0.08 0.04 0.24 0.32 0.13 0.19 0.21 0.20 0.13 0.14 0.09 0.15 0.24 0.07 0.14 0.07 0.13 0.10 0.31 0.31 0.13 0.17 0.17 0.23 0.22 0.31 0.22 0.05 0.11 0.13 0.31 0.28 0.02 0.35 0.22 0.12 0.16 0.20 0.05 0.08 0.15 0.22 0.14

0.57 0.39 0.02 0.33 0.22 0.47 0.26 0.29 0.47 0.45 0.51 0.39 0.27 0.26 0.09 0.06 0.09 0.34 0.14 0.35 0.42 0.07 0.57 0.05 0.11 0.05 0.12 0.64 0.12 0.45 0.13 0.34 0.22 0.41 0.25 0.19 0.18 0.36 0.31 0.38 0.44 0.47 0.32 0.30 0.20 0.48 0.14 0.11 0.41 0.31 0.23 0.26 0.04 0.24 0.37 0.14 0.32 0.21

-56.2 66.6 -88.9 -43.7 38.7 39.7 37.5 50.6 0.2 -54.7 15.9 64.5 -12.5 3.1 -68.2 22.3 -88.9 -35.6 -35.9 -22.8 28.4 72.8 89.7 -50.0 -0.8 60.3 5.2 1.7 30.0 68.6 -66.8 -65.4 59.0 19.5 -50.9 -34.1 -55.5 67.9 -45.7 -46.5 8.4 -87.8 63.5 -13.0 7.3 24.4 -46.5 39.8 38.7 -37.2 -68.2 21.6 -4.3 72.8 -20.2 5.2 -27.8 67.4

-63.4 70.6 34.5 -39.8 38.8 38.8 57.1 43.8 -5.8 -34.6 15.3 79.2 -26.0 3.0 69.6 87.4 47.3 -49.2 -40.1 -21.0 47.3 -45.3 84.0 -41.9 -12.5 8.7 73.2 3.8 -64.2 67.2 -63.9 -70.8 51.9 32.7 -52.7 -34.8 -67.1 -46.1 -42.1 -44.2 5.4 79.9 56.7 -0.3 -2.2 23.9 -39.1 12.8 25.9 -43.4 -31.7 10.3 84.7 39.8 -52.9 -13.3 -43.8 62.2

-22.56 -22.94 -22.84 -23.02 -22.42 -22.67 -22.73 -22.47 -23.16 -23.05 -21.71 -22.89 -22.70 -22.14 -21.95 -22.58 -22.22 -22.68 -23.18 -23.26 -23.18 -22.11 -22.88 -22.20 -22.62 -22.76 -22.50 -23.14 -22.61 -22.64 -21.78 -22.41 -22.80 -21.97 -21.66 -23.08 -22.84 -23.03 -22.11 -22.57 -22.13 -22.59 -22.91 -22.80 -22.16 -23.24 -22.15 -22.65 -22.52 -22.60 -22.70 -22.44 -22.63 -21.74 -22.89 -23.05 -22.60 -23.12

22

Table 2—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

S/e (10)

α (11)

ein (12)

eout (13)

pain (14)

paout (15)

Mmetric (16)

A3809 A3822 A3825 A3826 A3836 A3837 A3844 A3851 A3864 A3869 A3879 A3880 A3886 A3895 A3912 A3915 A3959 A3969 A3985 A4008 A4038 A4049 A4053 A4059

26.22 24.77 17.26 22.59 22.31 23.70 20.25 20.01 26.28 21.94 19.19 23.46 22.04 23.38 21.36 22.41 17.17 21.92 23.46 22.76 23.76 21.75 21.81 24.17

144.88 66.64 0.61 26.06 15.43 21.38 2.77 3.52 226.18 10.51 2.12 31.92 11.71 25.51 7.55 12.82 0.62 11.74 38.82 21.08 31.17 9.04 9.74 77.05

7.30 6.41 4.05 3.19 4.98 6.67 4.37 1.16 6.67 6.41 3.89 3.83 5.05 3.91 0.99 6.45 3.18 4.78 3.07 4.29 7.41 5.32 7.35 4.41

— — 20.68 — 22.58 — 24.30 20.95 — — 21.61 — — — 21.97 23.36 20.67 — — — — 23.39 — —

— — 4.40 — 64.40 — 56.02 11.90 — — 11.50 — — — 16.90 29.33 6.00 — — — — 43.40 — —

-25.16 -24.87 -21.79 -24.65 -24.16 -23.56 -22.28 -22.29 -26.15 -23.50 -22.67 -24.24 -23.69 -23.85 -22.57 -23.74 -21.92 -24.00 -24.74 -24.10 -23.96 -23.26 -23.63 -25.49

0.00 0.00 -21.26 0.00 -25.49 0.00 -23.32 -23.23 0.00 0.00 -22.55 0.00 0.00 0.00 -23.02 -22.95 -22.07 0.00 0.00 0.00 0.00 -23.48 0.00 0.00

-25.16 -24.87 -22.31 -24.65 -25.77 -23.56 -23.67 -23.61 -26.15 -23.50 -23.36 -24.24 -23.69 -23.85 -23.57 -24.17 -22.75 -24.00 -24.74 -24.10 -23.96 -24.12 -23.63 -25.49

— — 1.62 — 0.29 — 0.38 0.42 — — 1.13 — — — 0.66 2.08 0.87 — — — — 0.81 — —

0.81 0.68 0.28 0.81 0.80 0.58 0.41 0.56 0.88 0.45 0.56 0.89 0.54 0.75 0.91 0.71 0.46 0.67 0.92 0.71 0.57 0.57 0.51 0.98

0.13 0.30 0.34 0.35 0.15 0.14 0.13 0.28 0.25 0.19 0.23 0.05 0.20 0.23 0.17 0.17 0.42 0.13 0.44 0.22 0.15 0.08 0.10 0.22

0.44 0.37 0.26 0.38 0.43 0.16 0.21 0.27 0.58 0.27 0.25 0.38 0.15 0.36 0.26 0.29 0.45 0.08 0.61 0.34 0.36 0.12 0.12 0.41

87.0 -22.8 -46.8 -22.6 -45.5 7.2 57.3 -88.6 -45.9 -51.1 -52.4 20.9 -2.7 2.5 34.8 86.9 22.6 -24.5 30.5 57.3 -39.3 66.6 -85.0 -22.1

88.9 -19.0 -67.6 -23.0 -23.7 0.7 107.8 78.1 -44.6 -52.5 -37.5 -37.4 5.1 -6.2 15.8 87.3 20.3 -106.5 30.4 51.8 -47.1 47.8 -71.0 -23.2

-22.70 -22.87 -21.53 -23.17 -23.30 -22.45 -21.75 -22.68 -23.18 -22.61 -22.42 -22.85 -22.74 -22.61 -22.62 -22.85 -21.72 -23.02 -22.55 -22.91 -22.60 -22.71 -22.71 -23.21

Note.—Col. (1), Abell Cluster; col (2), effective surface magnitude; col. (3), effective radius (kpc); col. (4), n parameter; col. (5), central surface magnitude; col. (6), scale length (kpc); col. (7),Sersic absolute magnitude; col. (8), exponential absolute magnitude; col. (9), total absolute magnitude; col. (10), S´ ersic/exponential ratio; col. (11), α parameter; col. (12), inner ellipticity; col. (13), outer ellipticity; col. (14), inner position angle ; col. (15), outer position angle; col. (16), Metric absolute magnitude.

23

Table 3 BCGs Photometrical Parameters (Hopkins model) Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

e/S (10)

A0085 A0133 A0150 A0152 A0193 A0194 A0208 A0257 A0260 A0262 A0268 A0279 A0295 A0311 A0386 A0397 A0399 A0404 A0415 A0498 A0500 A0539 A0548 A0553 A0564 A0564 A0582 A0671 A0690 A0757 A0779 A0780 A0834 A0841 A0957 A0970 A0978 A0979 A0999 A1003 A1016 A1020 A1066 A1069 A1100 A1139 A1142 A1149 A1155 A1171 A1185 A1187 A1203 A1216 A1228 A1238 A1257 A1308

23.72 23.23 24.34 22.77 25.18 22.05 25.42 22.64 24.83 23.41 23.80 24.02 23.15 25.52 22.21 23.88 23.88 23.08 23.51 25.12 25.48 24.12 21.35 24.88 28.01 27.66 24.16 23.68 24.86 23.71 23.86 23.55 21.45 24.10 23.22 26.34 24.11 24.11 23.77 22.78 23.26 23.68 25.96 22.80 25.24 24.75 24.61 24.61 24.10 25.40 23.56 22.87 22.88 22.89 23.88 25.50 21.74 25.48

47.0 39.0 49.2 20.5 106.4 14.2 92.5 18.5 69.3 34.9 17.9 52.5 25.6 146.2 8.8 37.9 62.9 21.0 40.2 73.3 97.6 39.2 10.1 65.0 334.8 267.4 29.6 51.2 69.3 19.1 59.1 37.2 7.6 44.4 60.2 97.5 51.3 36.7 28.4 20.3 17.5 24.5 159.9 26.3 74.8 52.6 52.3 49.6 31.3 70.1 29.8 22.1 20.5 15.7 25.1 92.3 6.9 70.4

0.6 1.2 3.5 1.4 3.5 1.7 4.6 1.9 5.7 1.8 4.0 3.1 3.5 3.6 2.3 2.9 1.8 1.5 1.4 3.8 4.8 3.8 1.6 4.5 4.3 4.0 3.6 2.9 4.6 3.4 4.9 3.1 0.8 3.3 2.6 6.1 3.1 5.0 6.1 1.5 5.9 3.9 2.4 2.0 6.3 5.3 5.1 5.0 3.5 3.6 4.2 1.9 3.7 3.5 5.7 4.0 1.4 6.5

21.42 21.04 20.84 19.63 18.99 18.39 20.24 19.72 19.43 20.07 20.18 20.46 19.36 20.73 19.40 19.39 21.90 20.35 20.99 20.83 20.32 19.37 19.62 20.60 20.12 20.12 19.78 19.72 20.24 20.67 19.21 19.28 19.92 19.95 20.21 20.98 19.74 20.74 19.73 19.45 19.57 20.14 21.16 20.06 20.61 19.76 19.82 18.58 20.41 21.09 21.01 20.08 21.09 19.78 19.34 20.11 18.32 21.05

14.3 6.9 3.3 1.7 1.9 1.1 2.5 2.1 1.6 2.4 1.9 3.3 1.4 3.6 1.8 2.0 7.6 3.7 4.2 2.6 3.1 1.7 1.6 3.2 3.7 3.7 2.1 3.1 2.9 2.9 2.0 1.6 2.0 2.8 4.6 2.5 2.6 2.2 1.9 1.7 1.5 2.5 7.2 2.4 3.0 1.7 2.0 1.3 2.6 4.3 2.6 3.0 1.8 1.8 1.5 2.3 1.1 2.6

-23.91 -24.29 -24.22 -23.54 -25.04 -23.31 -24.87 -23.68 -24.66 -23.69 -22.77 -24.73 -23.95 -25.48 -22.54 -23.98 -24.97 -23.26 -24.88 -24.48 -24.91 -23.94 -23.32 -24.58 -25.03 -24.86 -23.45 -24.87 -24.74 -22.80 -24.89 -24.36 -22.39 -24.29 -24.69 -24.04 -24.50 -24.01 -23.71 -23.53 -23.16 -23.49 -25.05 -24.18 -24.52 -24.07 -24.12 -24.25 -23.61 -24.05 -23.86 -23.79 -23.94 -23.21 -23.34 -24.59 -21.96 -24.21

-23.84 -22.66 -21.25 -21.07 -21.86 -21.09 -21.43 -21.58 -21.04 -20.92 -20.87 -21.70 -20.76 -21.57 -21.47 -21.50 -22.07 -22.01 -22.32 -20.85 -21.82 -21.24 -20.84 -21.57 -22.43 -22.43 -21.42 -22.19 -21.71 -21.10 -21.35 -21.22 -21.08 -21.86 -21.62 -20.52 -21.79 -20.50 -20.90 -21.26 -20.65 -21.40 -22.70 -21.37 -21.22 -20.79 -20.96 -21.61 -21.30 -21.66 -20.43 -21.93 -19.82 -21.00 -20.89 -21.24 -21.20 -20.55

-24.63 -24.51 -24.29 -23.65 -25.10 -23.44 -24.91 -23.82 -24.70 -23.77 -22.95 -24.79 -24.01 -25.51 -22.88 -24.09 -25.05 -23.56 -24.98 -24.52 -24.97 -24.03 -23.42 -24.65 -25.13 -24.97 -23.61 -24.96 -24.80 -23.00 -24.93 -24.42 -22.68 -24.40 -24.75 -24.08 -24.58 -24.05 -23.79 -23.66 -23.26 -23.64 -25.17 -24.25 -24.57 -24.12 -24.18 -24.34 -23.73 -24.16 -23.91 -23.97 -23.97 -23.34 -23.45 -24.63 -22.40 -24.25

0.935 0.222 0.065 0.102 0.053 0.130 0.042 0.144 0.036 0.078 0.173 0.061 0.053 0.027 0.375 0.101 0.069 0.316 0.095 0.035 0.058 0.083 0.102 0.062 0.091 0.107 0.154 0.085 0.062 0.210 0.038 0.055 0.299 0.106 0.059 0.039 0.083 0.039 0.075 0.123 0.099 0.145 0.115 0.075 0.048 0.049 0.055 0.088 0.120 0.111 0.042 0.180 0.022 0.130 0.105 0.046 0.495 0.034

24

Table 3—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

e/S (10)

A1314 A1317 A1424 A1474 A1507 A1520 A1534 A1569 A1610 A1648 A1749 A1773 A1775 A1795 A1809 A1831 A1904 A1964 A1982 A2022 A2028 A2040 A2147 A2151 A2162 A2197 A2199 A2309 A2319 A2331 A2366 A2372 A2457 A2462 A2480 A2492 A2524 A2559 A2572 A2572 A2593 A2626 A2634 A2656 A2657 A2660 A2670 A2717 A2734 A2806 A2841 A2859 A2864 A2877 A2881 A2896 A3045 A3095

24.79 25.12 21.93 21.45 22.83 24.64 24.13 21.95 24.34 23.72 23.59 23.91 23.22 27.15 24.65 23.96 23.73 24.18 22.43 24.80 25.46 27.66 28.07 22.94 23.02 22.23 24.12 23.92 22.72 24.38 23.62 25.34 24.65 25.41 26.55 23.84 23.20 23.14 28.80 26.02 22.92 22.92 26.93 23.03 21.19 25.01 23.54 23.39 25.48 21.68 23.70 23.75 23.50 22.94 23.03 21.99 23.17 22.61

77.1 137.6 14.6 12.3 22.4 85.8 41.4 17.1 42.5 43.6 35.7 47.2 31.5 354.7 76.6 63.7 45.6 44.1 19.8 65.6 100.1 561.3 691.6 25.4 26.1 23.8 58.2 31.3 31.0 51.1 35.0 64.3 71.8 86.2 144.4 30.6 25.6 41.4 602.5 131.5 19.5 29.0 283.2 22.8 5.5 64.9 40.8 36.5 127.8 9.0 35.1 25.0 18.1 37.7 12.8 11.1 17.9 15.0

4.0 2.4 1.7 1.0 1.5 4.2 5.5 1.5 7.3 1.0 3.6 2.3 1.5 6.2 3.8 3.0 3.6 2.1 1.0 3.7 6.2 5.0 5.8 2.1 3.8 2.6 2.9 4.0 1.7 3.2 3.0 7.2 4.8 4.6 7.5 4.1 2.3 2.2 9.1 5.2 1.4 2.3 7.8 2.0 1.4 6.5 2.6 1.8 3.9 1.4 4.1 3.6 3.2 4.1 3.7 3.5 1.0 1.3

19.18 20.74 19.19 19.65 19.88 19.94 20.55 19.36 19.86 20.55 19.78 20.27 20.76 20.98 20.12 20.23 19.97 20.01 19.98 19.72 21.10 19.87 21.17 19.55 19.33 19.21 21.38 19.46 20.71 20.32 19.58 20.68 20.76 19.83 19.60 20.70 20.34 20.31 19.36 19.25 20.52 19.18 19.56 19.69 17.45 20.11 19.84 19.73 22.45 19.09 19.77 20.30 19.73 18.62 19.62 18.84 20.47 19.73

2.2 4.8 1.9 1.6 2.7 2.8 3.1 2.0 1.8 5.2 2.9 3.4 5.3 3.5 3.5 2.7 2.3 2.8 3.2 2.5 3.8 2.2 5.5 1.9 1.9 2.6 5.6 1.9 1.9 1.8 2.8 3.7 3.8 2.6 2.2 2.8 2.9 2.5 2.2 2.3 1.7 0.8 1.7 1.7 0.5 1.7 2.8 2.0 8.1 1.8 2.2 2.4 1.6 1.8 1.6 1.4 3.7 2.6

-24.66 -25.57 -23.77 -23.68 -23.68 -25.31 -24.41 -24.04 -24.36 -24.06 -24.34 -24.47 -24.04 -26.09 -25.03 -25.23 -24.82 -23.97 -23.56 -24.45 -25.06 -26.34 -26.45 -23.77 -24.02 -24.37 -24.50 -23.72 -24.58 -24.35 -24.14 -24.22 -24.93 -24.71 -24.92 -23.95 -23.95 -24.92 -25.67 -24.84 -23.22 -24.40 -25.77 -23.77 -22.11 -24.49 -24.57 -24.16 -25.27 -22.64 -24.28 -23.42 -22.93 -24.78 -22.70 -23.15 -22.68 -22.94

-21.86 -22.23 -21.87 -21.09 -21.86 -21.86 -21.50 -21.76 -20.91 -22.62 -22.07 -22.00 -22.42 -21.33 -22.16 -21.54 -21.43 -21.75 -22.08 -21.81 -21.37 -21.29 -21.97 -21.20 -21.31 -22.11 -21.64 -21.39 -20.22 -20.52 -22.15 -21.67 -21.66 -21.90 -21.73 -21.19 -21.68 -21.29 -21.82 -21.95 -20.17 -19.93 -21.01 -21.19 -20.30 -20.51 -21.99 -21.29 -21.62 -21.51 -21.48 -21.13 -20.92 -21.80 -20.92 -21.16 -21.95 -21.91

-24.73 -25.62 -23.95 -23.78 -23.87 -25.36 -24.48 -24.17 -24.41 -24.32 -24.46 -24.58 -24.26 -26.11 -25.11 -25.27 -24.86 -24.10 -23.81 -24.54 -25.09 -26.35 -26.47 -23.87 -24.11 -24.50 -24.57 -23.84 -24.60 -24.38 -24.30 -24.32 -24.98 -24.79 -24.98 -24.03 -24.07 -24.96 -25.70 -24.91 -23.28 -24.41 -25.78 -23.87 -22.29 -24.52 -24.67 -24.24 -25.30 -22.96 -24.36 -23.54 -23.08 -24.85 -22.89 -23.31 -23.13 -23.30

0.076 0.046 0.172 0.092 0.187 0.042 0.069 0.122 0.042 0.266 0.124 0.102 0.224 0.012 0.071 0.033 0.044 0.130 0.255 0.088 0.033 0.010 0.016 0.093 0.083 0.125 0.072 0.117 0.018 0.029 0.160 0.095 0.049 0.075 0.053 0.079 0.124 0.035 0.029 0.070 0.060 0.016 0.012 0.093 0.190 0.026 0.092 0.071 0.035 0.355 0.076 0.122 0.158 0.064 0.195 0.159 0.508 0.389

25

Table 3—Continued Name (1)

µe (2)

re (3)

n (4)

µ0 (5)

r0 (6)

MSersic (7)

Mexp (8)

MT (9)

e/S (10)

A3104 A3107 A3110 A3111 A3112 A3120 A3122 A3123 A3125 A3142 A3223 A3225 A3266 A3301 A3332 A3336 A3341 A3354 A3374 A3376 A3380 A3390 A3408 A3420 A3528 A3530 A3531 A3532 A3554 A3559 A3562 A3574 A3605 A3667 A3703 A3716 A3731 A3733 A3741 A3782 A3796 A3806 A3825 A3844 A3851 A3879 A3897 A3912 A4049

23.26 25.84 22.02 23.57 23.91 24.82 24.29 21.98 22.59 24.48 23.05 22.16 22.83 26.53 28.15 24.45 24.76 26.09 20.79 25.10 28.80 24.31 25.06 23.56 24.78 24.04 24.96 28.22 23.45 22.75 28.77 23.36 27.28 28.77 25.45 23.49 25.84 23.48 25.47 26.04 24.66 25.01 22.15 26.38 22.90 23.17 24.94 23.93 23.85

36.3 75.1 18.5 33.6 74.2 74.4 44.8 11.5 11.8 47.9 23.3 12.9 43.6 240.0 326.5 61.0 57.7 80.0 6.5 85.9 593.9 39.8 82.1 19.3 92.0 67.3 56.2 728.6 41.2 29.3 1160.1 48.2 305.7 812.0 101.2 40.6 94.8 24.2 86.1 130.0 54.6 81.3 6.8 66.8 21.1 18.3 67.7 30.6 31.5

1.3 4.5 0.9 2.9 2.5 3.9 6.0 1.3 0.9 4.8 2.8 1.1 1.3 5.2 9.2 2.8 4.5 6.8 1.0 5.2 7.4 4.2 5.1 2.8 3.8 3.2 3.2 6.5 2.5 2.0 6.9 3.3 4.1 8.6 3.6 2.6 7.1 1.9 3.4 6.8 3.6 4.9 0.7 3.7 1.9 3.1 3.8 1.4 4.4

19.82 20.61 19.93 20.66 21.08 20.58 19.48 18.95 19.85 20.69 20.35 19.58 19.92 20.89 20.84 21.20 19.29 20.56 17.99 20.43 20.62 19.74 20.16 20.43 19.92 19.93 19.73 20.37 19.18 18.85 21.30 18.52 21.47 21.39 21.19 19.79 20.15 20.17 21.18 20.76 20.77 21.63 19.41 20.79 20.12 19.24 19.84 21.46 19.63

2.7 2.9 5.0 2.7 4.2 2.8 2.3 1.7 2.6 2.7 3.5 2.3 3.1 5.2 3.7 5.0 1.4 3.4 0.6 3.3 3.3 1.6 2.8 2.7 2.7 2.1 1.2 2.8 1.3 1.9 5.1 1.0 8.2 5.8 4.3 2.1 2.7 2.3 3.9 2.7 3.1 6.7 1.5 3.0 3.1 1.7 2.6 7.6 1.8

-24.25 -23.85 -23.84 -24.18 -25.48 -24.64 -24.43 -22.97 -22.25 -24.26 -23.83 -22.93 -25.01 -25.70 -25.16 -24.60 -24.22 -23.93 -22.72 -24.89 -25.57 -23.84 -24.78 -22.91 -25.30 -25.25 -23.85 -26.64 -24.60 -24.45 -27.08 -24.53 -25.42 -26.37 -24.78 -24.49 -24.53 -23.18 -24.40 -25.02 -24.25 -24.93 -21.23 -22.96 -23.54 -23.26 -24.55 -23.20 -23.77

-21.94 -21.24 -23.13 -21.07 -21.62 -21.07 -21.85 -21.74 -21.74 -21.05 -21.86 -21.75 -22.04 -22.20 -21.63 -21.89 -20.80 -21.63 -20.43 -21.63 -21.44 -20.68 -21.52 -21.29 -21.83 -21.28 -20.09 -21.44 -20.96 -22.08 -21.77 -20.40 -22.67 -21.91 -21.54 -21.31 -21.47 -21.08 -21.35 -20.88 -21.24 -22.09 -20.85 -21.15 -21.83 -21.49 -21.88 -22.49 -21.03

-24.37 -23.94 -24.30 -24.24 -25.51 -24.68 -24.53 -23.27 -22.78 -24.32 -23.99 -23.24 -25.08 -25.74 -25.20 -24.69 -24.26 -24.05 -22.85 -24.95 -25.60 -23.89 -24.84 -23.13 -25.34 -25.28 -23.88 -26.65 -24.64 -24.56 -27.09 -24.55 -25.51 -26.39 -24.83 -24.55 -24.59 -23.33 -24.47 -25.04 -24.32 -25.01 -21.81 -23.15 -23.75 -23.45 -24.64 -23.65 -23.86

0.119 0.091 0.518 0.057 0.028 0.037 0.093 0.322 0.625 0.052 0.164 0.337 0.064 0.040 0.039 0.082 0.043 0.121 0.121 0.050 0.022 0.055 0.049 0.224 0.041 0.026 0.031 0.008 0.035 0.113 0.007 0.022 0.079 0.016 0.051 0.053 0.060 0.144 0.060 0.022 0.062 0.073 0.699 0.188 0.206 0.196 0.085 0.518 0.080

Note.—Col. (1), Abell Cluster; col (2), effective surface magnitude; col. (3), effective radius (kpc); col. (4), n parameter; col. (5), central surface magnitude; col. (6), scale length (kpc); col. (7),Sersic absolute magnitude; col. (8), exponential absolute magnitude; col. (9), total absolute magnitude; col. (10), exponential/S´ ersic ratio.

26