THE QUEST FOR THE DENSE MATTER PHASE DIAGRAM AND EOS

3 downloads 2171 Views 3MB Size Report
PHASEDIAGRAM: FREEZE-OUT IN HEAVY-ION COLLISIONS. Ratios. 10. -2 ..... ud|2 + |∆us|2 + |∆ds|2. 4GD ..... 200 400 600 800 1000 1200 1400. T [MeV]. 0.
T HE

QUEST FOR THE DENSE MATTER PHASE DIAGRAM AND

EOS

David Blaschke Institute for Theoretical Physics, University of Wroclaw, Poland Bogoliubov Laboratory for Theoretical Physics, JINR Dubna, Russia • Current QCD Phase Diagram: – Lattice QCD – HIC: Chem. Freezeout – Astrophysics: Compact Stars • (Nonlocal) PNJL Model • Compact Stars and Supernovae • Freeze-out in Chiral HRG • Outlook HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

HIC: H ADRONIC ( CHEMICAL )

FREEZE - OUT

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

Ratios

P HASEDIAGRAM : F REEZE - OUT

Λ /Λ

p /p

Ξ /Ξ

π-/π+ K /K -

+

K /π-

p /π- K /h K /h *0

-

*0

1

T

f.o.

-1

10

= 174 MeV

µf.o.= 46 MeV STAR PHENIX PHOBOS BRAHMS

-

IN

H EAVY-I ON C OLLISIONS

Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters. X gi Z ∞ ln Z[T, V, {µ}] = ±V dp p2 ln[1 ± λi exp(−βεi(p))] 2 2π 0 i λi (T, {µ}) = exp[β(µB Bi + µS Si + µQ Qi)]

Braun-Munzinger, Redlich, Stachel, in QGP III (2003)

RHIC

Brookhaven

-2

10

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

Ratios

P HASEDIAGRAM : F REEZE - OUT

Λ /Λ

p /p

Ξ /Ξ

π-/π+ K /K -

+

K /π-

p /π- K /h K /h *0

-

*0

1

T

f.o.

-1

10

= 174 MeV

µf.o.= 46 MeV STAR PHENIX PHOBOS BRAHMS

-

IN

H EAVY-I ON C OLLISIONS (II)

Statistical model describes composition of hadron yields in Heavy-Ion Collisions with few freeze-out parameters. X gi Z ∞ dp p2 ln[1 ± λi exp(−βεi(p))] ln Z[T, V, {µ}] = ±V 2 2π 0 i λi (T, {µ}) = exp[β(µB Bi + µS Si + µQ Qi)]

Braun-Munzinger, Redlich, Stachel, in QGP III (2003)

RHIC

Brookhaven

-2

10

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P HASEDIAGRAM : F REEZE - OUT

IN

H EAVY-I ON C OLLISIONS (III)

Strange MatterHorn (Pisarski) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

IN

H EAVY-I ON C OLLISIONS (III)

10 9 8

Total

7

3

6

s/T

P HASEDIAGRAM : F REEZE - OUT

5

Mesons

4 3

Baryons

2 1 0

10

20

30

40 ___ 50 60 \/s NN (GeV)

Baryon → Meson Dominance

70

80

90

100

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

IN

H EAVY-I ON C OLLISIONS (IV)

10 9 8

Total

7

3

6

s/T

P HASEDIAGRAM : F REEZE - OUT

5

Mesons

4 3

Baryons

2 1 0

10

20

30

40 ___ 50 60 \/s NN (GeV)

Baryon → Meson Dominance

70

80

90

100

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P HASEDIAGRAM : F REEZE - OUT

IN

H EAVY-I ON C OLLISIONS (V)

10 9 8

Total

7

s/T

3

6 5

Mesons

4 3

Baryons

2 1 0

10

20

30

40 ___ 50 60 \/s NN (GeV)

70

80

90

100

Andronic et al., arxiv:0911.4806; NPA (2010) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

Q UIESCENT L OW-M ASS X- RAY B INARIES ( Q LMXB S )

• When the LMXB is accreting, we mostly observe Xrays from the disc • In some sources (“transients”) accretion can stop - and then we see only the neutron star

System names: LMXB’s, Soft X-ray transients, Neutron star binaries HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

M-R lit us a ca

Ce

• Luminosity measured 4 F = σTeff (R∞ /D)2

13

1

• Spectrum measured (ROSAT, XMM, Chandra)

→ effective temperature Teff :

M

M [Msun]

n

6 85 J1

RX

ω

1.5

M7

• Distance measured

y

2

CONSTRAINTS FROM Q LMXB’ S AND

→ photospheric radius:

p R∞ = R/ 1 − RS /R , RS = 2GM p → redshift z = 1/ 1 − RS /R − 1 ≈ RS /(2R)

0.5 DBHF 6

8

10 12 R [km]

14

Object R∞ [km] RXJ 1856 16.8 ωCen 13.6 ± 0.3 M13 12.8 ± 0.4

Reference Trumper ¨ et al. (2004) Gendre et al. (2003) Gendre et al. (2004)

Lower limit from RXJ 1856 incompatible with ω Cen and M13 ? HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

M-R Probability Distributions 2.4 0.0014 2.2

2

M (M )

1.8 1.6

ω Cen

2

0.0012 2

0.6

0.002 2 0.0018

0.001 1.8

0.5 1.5

0.0016 1.5 0.0014

0.0008 1.6

0.0012

0.4

0.0006 1.4

0.3

1.2

0.0004 1.2

0.2 0.5

1

0.0002 1

0.1

0.8 0

0 0 0

6

8

10

12

14

16

18

6

8

10

R (km)

12

14

16

18

0.001 1

1

1.4

0.8

0.0022 4U 1820-30

0.7

M (M )

M13

2.2

2.5 0.0024

EXO 1745-248

M (M )

2.4

×10-3 2.5 0.8

0.0008 0.0006 0.5 0.0004 0.0002 2

4

6

R (km)

8

10

12

14

16

18

0 0 0

R (km)

2

4

6

8

10

12

14

16

18

R (km)

Steiner, Lattimer & Brown 2010 ×10-3 0.45 2.4 0.4 2.2 0.35 2 0.3

2.2 2

M (M )

1.8 1.6

1.2

1.2 0.1

0.8

6

8

RXJ 1856

0.0016

2 0.0008

0.0014 0.0012

1.5 0.0006

1.6 0.2 1.4 0.15

X7

4U 1608-52

1.8 0.25

1.4

1

2.5 0.001

M (M )

2.4

0.001 0.0008

1 0.0004 0.0006 0.0004

0.5 0.0002

1 0.05 10

12

R (km)

14

16

18

0.8 0

0.0002 6

8

10

12

R (km)

14

16

18

0 0 0

2

4

6

8

10

12

14

16

18

0

R (km)

J.M. Lattimer, NFQCD 2010, 18 January 2010 – p. 28/36

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

Bayesian TOV Inversion • • • • •

n < 0.5ns : EOS is BBP and NV 0.5ns < n < n1 : EOS is determined by K, K ′ , Sv , γ n1 < n < n2 : EOS is polytropic with γ1 ; n > n2 : EOS is polytropic with γ2 M and R probability distributions for 7 neutron stars treated equally (0.8 M⊙ < M < 2.5 M⊙ ; 5 km < R < 18 km) Assume all prior model parameters are uniformly distributed 2.5

10

50000

22000

Steiner, Lattimer & Brown 2010

20000 2

16000 30000

10-1 20000

14000

M (M⊙ )

p (fm−4 )

18000

40000

1

1.5

12000 10000 1

8000 6000

10-2 10000

4000 0.5 2000

-3

10

1

2

3

4

5

ǫ

6 −4 (fm )

7

8

9

10

0

6

8

10

12

14

16

18

0

R (km) J.M. Lattimer, NFQCD 2010, 18 January 2010 – p. 29/36

“Measuring” the EoS with Compact Stars: M-R −→ P(e) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

The Proposed International X-Ray Observatory (IXO)

• Neutron Star Masses and Radii can be measured from H-atmosphere neutron stars with ∼ few % accuracy with IXO • Field sources are most promising targets due to their brightness, but they must be identified first • Path: simultaneous M-R measurements determine the cold dense matter EoS • Launch 2021 (NASA)

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

E QUATION

OF

S TATE

AND

S TABILITY

OF

C OMPACT S TARS

Tolman-Oppenheimer-Volkoff Equations 1. Stability: General Relativistic Hydrostatic Equilibrium    −1  m(r)ε(r) 4πr3P (r) dP (r) P (r) 2Gm(r) = −G 1+ 1+ 1− dr r2 ε(r) m(r) r

M [Msun]

3

0.4

0.6 0.5 -3 nB [fm ]

0.7

0.8

GD/GS=

1.20 1.25 1.30 1.35 DBHF

0.5

0.9

6

6

0.3

85

0.2

1

13

ηD=1.20 ηD=1.25 ηD=1.30 ηD=1.35 DBHF (Bonn A)

J1

en

1.5

10

1

C

Flow constraint Danielewicz et al. (2002)

M

P [MeV/fm ]

2

ω

100

ε(r) 4π r2 dr

RX

ηV=0.1

0

G ENERAL R EL . T HEORY

ity

m(R) =

RR

C ORRECTIONS

ca us

2. Mass Distribution:

E INSTEIN

al

N EWTON

8

10 12 R [km]

14

DB, T. Kl¨ahn, R. Łastowiecki, F. Sandin, arxiv:1002.1299 [nucl-th]; J. Phys. G 37 (2010) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

C HIRAL M ODEL F IELD T HEORY

FOR

Q UARK M ATTER

• Partition function as a Path Integral (imaginary time τ = i t)  Z β Z  Z ¯ ¯ µ∂µ − m − γ 0(µ + λ8µ8 + iλ3φ3]ψ − Lint + U (Φ)] Z[T, V, µ] = D ψDψ exp − dτ d3x[ψ[iγ V

Polyakov loop: Φ = Nc−1Trc[exp(iβλ3φ3)]

Order parameter for deconfinement

• Current-current interaction (4-Fermion coupling) P ¯ M ψ)2 + P GD (ψ¯C ΓD ψ)2 Lint = M=π,σ,... GM (ψΓ D

• Bosonization (Hubbard-Stratonovich Transformation)   Z  X M2  |∆D |2 1 † −1 M Z[T, V, µ] = DMM D∆D D∆D exp − − + Tr lnS [{MM }, {∆D }, Φ] + U (Φ)   4GM 4GD 2 M,D

• Collective quark fields: Mesons (MM ) and Diquarks (∆D ); Gluon mean field: Φ

• Systematic evaluation: Mean fields + Fluctuations – Mean-field approximation: order parameters for phase transitions (gap equations) – Lowest order fluctuations: hadronic correlations (bound & scattering states) – Higher order fluctuations: hadron-hadron interactions HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

NJL

MODEL FOR NEUTRAL

3- FLAVOR

QUARK MATTER

Thermodynamic Potential Ω(T, µ) = −T ln Z[T, µ]

  X Z d3p 1 φ2u + φ2d + φ2s |∆ud|2 + |∆us|2 + |∆ds|2 1 −1 Tr ln S (iωn, p~) + Ωe − Ω0. Ω(T, µ) = + −T 32 8GS 4GD (2π) T n InverseNambu − GorkovPropagator

S −1 (iωn, p~) =

"

b p) γµp − M (~p) + µγ ∆(~ b †(~p) ∆ γµ pµ − M (~p) − µγ 0 µ

0

#

C b p) = iγ5ǫαβγ ǫijk ∆kγ g(~p) ; ∆kγ = 2GD h¯ ∆(~ qiα iγ5ǫαβγ ǫijk g(~q)qjβ i. P18 −1 Fermion Determinant (Tr ln D = ln det D): lndet[β S (iωn , p~)] = 2 a=1 ln{β 2[ωn2 + λa(~p)2]} .

,

Result for the thermodynamic Potential (Meanfield approximation) Z 18  i φ2u + φ2d + φ2s |∆ud|2 + |∆us|2 + |∆ds|2 d3p X h −λa /T Ω(T, µ) = + − λa + 2T ln 1 + e + Ωe − Ω0 . 8GS 4GD (2π)3 a=1 Color and electric charge neutrality constraints: nQ = n8 = n3 = 0, ni = −∂Ω/∂µi = 0, Equations of state: P = −Ω, etc. HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (I) SU (Nc ) pure gauge sector: Polyakov line   Z β dτ A4 (~x, τ ) ; A4 = iA0 = λ3φ3 + λ8φ8 L (~x) ≡ P exp i 0

Polyakov loop

1 TrL(~x) , hl(~x)i = e−β∆FQ (~x). Nc ZNc symmetric phase: hl(~x)i = 0 =⇒ ∆FQ → ∞: Confinement ! Polyakov loop field: 1 Trc hhL(~x)ii Φ(~x) ≡ hhl(~x)ii = Nc Potential for the PL-meanfield Φ(~x) =const., which fits quenched QCD lattice thermodynamics  ¯ U Φ, Φ; T b3 3 ¯ 3  b4 ¯ 2 b2 (T ) ¯ Φ +Φ + ΦΦ − ΦΦ , = − T4 2 6 4 l(~x) =

b2 (T ) = a0 + a1



T0 T



+ a2



T0 T

2

+ a3



T0 T

3

.

a0 a1 a2 a3 b3 b4 6.75 -1.95 2.625 -7.44 0.75 7.5 HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (II) ¯ T) Temperature dependence of the Polyakov-loop potential U (Φ, Φ;

5

U( Φ ) / T4

U( Φ ) / T4

0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4

4 5 4 3 2 1 0 -1 -2

3 2 1 0

0.5 0 -0.5 -1 -1.5 -2 -2.5 -3

1.5

1.5

1

1

0.5 -1.5

0.5 -1.5

0

-1 -0.5

-0.5

0 Re Φ

0.5

Im Φ

-1 1

-1.5 1.5

T = 0.26 GeV< T0 “Color confinement”

0

-1 -0.5

-0.5

0 Re Φ

0.5

Im Φ

-1 1

-1.5 1.5

T = 1.0 GeV> T0 “Color deconfinement”

Critical temperature for pure gauge SUc (3) lattice simulations: T0 = 270 MeV. Hansen et al., Phys.Rev. D75, 065004 (2007) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (III) Lagrangian for Nf = 2, Nc = 3 quark matter, coupled to the gauge sector h i  2 2 µ ¯ LP NJL = q¯(iγ Dµ − m ˆ + γ0µ)q + G1 (¯ q q) + (¯ q iγ5~τ q) − U Φ[A], Φ[A]; T ,

D µ = ∂ µ − iAµ ; Aµ = δ0µ A0 (Polyakov gauge), with A0 = −iA4 >

Diagrammatic Hartree equation:

=

+

= −(p/ − m + γ 0(µ − iA4))−1 p Dynamical chiral symmetry breaking σ = m − m0 = 6 0? Solve Gap Equation! (E = p2 + m2) +∞ Z X d3p −1 m − m0 = 2G1T Tr 3 /p − m + γ 0(µ − iA4) n=−∞ Λ (2π) Z d3 p 2m + − = 2G1Nf Nc [1 − f (E) − f (E)] Φ Φ 3 E Λ (2π) S0(p) =

= −(p/ − m0 + γ 0(µ − iA4 ))−1 ; S(p) =

¯ = 0: “poor man’s nucleon”: EN = 3E, µN = 3µ) Modified quark distribution functions (Φ = Φ   −β E ∓µ ( ) p ¯ e−β (Ep∓µ) + e−3β (Ep∓µ) Φ + 2Φe 1   −→ f0± (E) = fΦ± (E) = 1 + eβ(EN ∓µN ) ¯ −β (Ep∓µ) e−β (Ep ∓µ) + e−3β (Ep ∓µ) 1 + 3 Φ + Φe HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P OLYAKOV- LOOP NAMBU –J ONA -L ASINIO M ODEL (IV) 1

  XΨΨ\XΨΨ\T=0

F

0.8 0.6 0.4 0.2 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 T @GeVD

1

3

nq/T

0.8 0.6

Grand canonical thermodynamical potential Z  σ2 d3p 2 2 E θ Λ − p ~ Ω(T, µ; Φ, m) = − 6Nf 2G (2π)3 Z h i d3p  −(E−µ)/T − 2Nf T 3 Trc ln 1 + L e (2π) h i  † −(E+µ)/T ¯ + U Φ, Φ, T + Trc ln 1 + L e

Appearance of quarks below Tc largely suppressed: h i h i −(E−µ)/T † −(E+µ)/T ln det 1 + L e + ln det 1 + L e h   i −(E−µ)/T −(E−µ)/T −3(E−µ)/T ¯ = ln 1 + 3 Φ + Φe e +e h   i −(E+µ)/T −(E+µ)/T −3(E+µ)/T ¯ + ln 1 + 3 Φ + Φe e +e .

Accordance with QCD lattice susceptibilities! Example: 0.4

nq (T, µ) 1 ∂Ω (T, µ) , = − T3 T 3 ∂µ

0.2 0 0

µ=0.6 Tc 0.5

1

1.5

2

Ratti, Thaler, Weise, PRD 73 (2006) 014019.

T/Tc

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P HASES

OF

QCD @ E XTREMES :

NO

C OLOR N EUTRALITY

χSB

Confinement

2SC

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

N ONLOCAL P OLYAKOV L OOP C HIRAL Q UARK M ODEL 3-flavor, rank-2, 4D separable susceptibilities:

2-flavor, rank-1, 4D separable order parameters: 1.0

40

0.6

qq

T

/

qq

,

susceptibilities

0.8

0.4

0.2

dΦ(Τ)/dT dmu,d(T)/dT

Nf=2+1

Nf=2

dms(T)/dT

30 20 10

0.0 0

50

100

150

200

250

300

T (MeV)

D.B., Buballa, Radzhabov, Volkov, Yad. Fiz. 71 (2008); arXiv:0705.0384

350

0.18

0.19

0.20

temperature T[GeV]

0.19

0.2

temperature T[GeV]

D.B., Horvatic, Klabucar, in prep. HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

Hadronic Matter

P HASE D IAGRAM

120 80 40 0 0

Liquid-Gas Transition

T [MeV]

160

FOR

Normal Quark 4 3

S YMMETRIC M ATTER (HIC)

0.5

Matter

Color Superc (2SC) Quark onducting Matter 4 0.25

3 Φ = 0.1

2 1

2 0.5

0.3

CFL

s/n = 0.25

0.6

0.9 1.2 -3 n [fm ]

• Almost crossover (masquerade!), i.e. small density jump, small latent heat/ time delay in heavy-ion coll.! • High Tc ≈ 0.9Td for 2SC phase due to Polyakov loop.

0.75

1

• Critical density for chiral restoration nχ ≥ 1.5 n0 increasing (!) with low T

1.5

1.8

DB, Sandin, Skokov, NICA WhitePaper (2009)

• 2SC - CFL phase transition at n ≥ 6 n0 with density jump and latent heat/ time delay! Provided the temperature can be kept low T ≤ 100 MeV HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

S UPERNOVA

POSTBOUNCE EVOLUTION IN THE PHASE DIAGRAM

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

BAG

VS .

PNJL

MODEL IN THE PHASE DIAGRAM

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

E VOLUTION

OF CENTRAL MASS ELEMENTS IN

S HEN /PNJL P H D

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

P HASE

DIAGRAM

/

COMPACT STARS FOR

S HEN /BAG

MODEL

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

A DDITIONAL

NEUTRINO BURST FROM QUARK - HADRON TRANSITION

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

PNJL

BEYOND

MF: PION (q q¯) AND

NUCLEON

(qqq) MEDIUM

Idea: melting h¯ q qi → swelling hadrons → flavor kinetics = quark percolation → freeze-out h¯ q qi(T, µ) =

∂ Ω(T, µ) , Ω(T, µ) = ΩPNJL,MF (T, µ) + Ωmeson (T, µ) + Ωbaryon(T, µ) ∂m0 Z

Z o  dω d3k n ω −βω AM (ω, k) , Ωmeson (T, µ) = dM + T ln 1 − e π (2π)3 2 M=π,... Z Z h i o X d3k n ω dω −β(ω−µB ) + T ln 1 + e + (µB ↔ −µB ) AB (ω, k) , Ωbaryon(T, µ) = − dB π (2π)3 2 X

B=N,...

AM (ω, k) = πδ(ω − EM (k)) + continuum , AB (ω, k) . . . analoguous

Remove vacuum terms; neglect continuum (for the freeze-out); q qi and σN = m0(∂mN /∂m0) = 45 MeV, use GMOR: Mπ2 fπ2 = −m0h¯ Enforce Mπ (T, µ) = const by setting fπ2(T , µ) = −m0h¯ q qi(T , µ)/Mπ2, (“BRST”, arxiv:1005.4610) Mπ2T 2 σN + ns,N (T , µ) q qiPNJL,MF (T , µ) + −h¯ q qi(T , µ) = −h¯ 8m0 m0 R∞ 2 with the scalar nucleon density ns,N (T, µ) = π2 0 dp p2 EmN(p) {fN (T, µ) + fN (T, −µ)} N

J. Berdermann, D.B., J. Cleymans, K. Redlich, in progress (2010)

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

PNJL M ODEL −h¯ q qi = −h¯ q qiPNJL,MF

BEYOND

MF -

RESULTS

Mπ2 T 2 σN + ns,N (T, µ)+. . . −h¯ qqi = −h¯ qqiPNJL,MF + 8m0 m0

J. Berdermann, D.B., J. Cleymans, K. Redlich, in progress (2010) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

PNJL M ODEL

BEYOND

−h¯ q qi = −h¯ q qiPNJL,MF Mπ2T 2 σN +κM + κB ns,N (T, µ) 8m0 m0

MF -

RESULTS

−h¯ q qi = −h¯ q qiPNJL,MF Mπ2T 2 σN + + ns,N (T, µ) + . . . 8m0 m0

J. Berdermann, D.B., J. Cleymans, K. Redlich, in progress (2010) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

PNJL M ODEL

BEYOND

nb = n(T, µ) + n ¯ (T, µ) =

X

i=N,∆,xB

MF

di

Z

VS .

P HENOMENOLOGICAL F IT

  dp p2 1 + (µ ↔ −µ) 2π 2 exp(β[Ei(p) − µ]) + 1 0.5 0.45

250 NICA energies

0.4 0.35

150

−3

0.3

n+n [fm ]

T [MeV]

200

0.25 0.2

100 0.15 0.1

50

0.05 0

200

400

600 800 1000 1200 1400 µ [MeV] B

J. Berdermann, D.B., J. Cleymans, K. Redlich, in progress (2010) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

εR(T, {µj }) =

L ATTICE QCD E O S

AND

Z

Z

X

i=π,K,...

εi(T, {µi})+

X

r=M,B

gr

mr

dm

M OTT-H AGEDORN G AS ds ρ(m)A(s, m; T )

Z

3

dp (2π)3

p

p2 + s √ 

exp Hagedorn mass spectrum: ρ(m)

p2 +s−µr T

+ δr

Spectral function for heavy resonances:

TH=1.2 Tc

A(s, m; T ) = Ns

resonances

10

ε/T

4

15

quarks + gluons

5

0

mΓ(T ) (s − m2)2 + m2Γ2(T )

Ansatz with Mott effect at T = TH = 180 MeV:  2.5  6   m m T Γ(T ) = BΘ(T − TH ) exp TH TH TH No width below TH : Hagedorn resonance gas Apparent phase transition at Tc ∼ 150 MeV Blaschke & Bugaev, Fizika B13, 491 (2004)

0.5

1

1.5

2 T/Tc

2.5

3

3.5

Prog. Part. Nucl. Phys. 53, 197 (2004) Blaschke & Yudichev, in preparation Bugaev, Petrov, Zinovjev, arXiv:0812.2189 HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

εR(T, {µj }) =

L ATTICE QCD E O S

AND

Z

Z

X

i=π,K,...

εi(T, {µi})+

X

gr

r=M,B

mr

dm

M OTT-H AGEDORN G AS ds ρ(m)A(s, m; T )

Z

3

dp (2π)3

p

p2 + s √ 

exp Hagedorn mass spectrum: ρ(m)

p2 +s−µr T

+ δr

Spectral function for heavy resonances:

20 p/T

ε/T 2 cs *30

mΓ(T ) (s − m2)2 + m2Γ2(T )

Ansatz with Mott effect at T = TH = 180 MeV:  2.5  6   m m T Γ(T ) = BΘ(T − TH ) exp TH TH TH

4

p[T ], ε[T ], cs

2

4

15

A(s, m; T ) = Ns

Hadron resonance gas with broadened resonances (Blaschke, Prorok, ...)

4

10

4

No width below TH : Hagedorn resonance gas Apparent phase transition at Tc ∼ 150 MeV

5

Blaschke & Bugaev, Fizika B13, 491 (2004)

0 0

Prog. Part. Nucl. Phys. 53, 197 (2004)

100

200

300 400 T [MeV]

500

600

Bugaev, Petrov, Zinovjev, arXiv:0812.2189 Blaschke & Prorok, in preparation HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

H ADRON εR(T, {µj }) =

DECAY WIDTHS : ANALYTICAL CONFINEMENT MODEL

X

i=π,K,...

εi(T, {µi})+

X

r=M,B

gr

Z

mr

dm

Z

ds ρ(m)A(s, m; T )

Z

3

dp (2π)3

exp

p

p2 + s √  p2 +s−µr T

+ δr

Hagedorn mass spectrum: ρ(m) Spectral function for heavy resonances: A(s, m; T ) = Ns

mΓ(T ) (s − m2)2 + m2Γ2(T )

Breit-Wigner analysis of bound state widths in a confining model: Approximate exponential dependence on mass ! Kalloniatis, Nedelko, von Smekal, PRD 70, 094037 (2004)

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

W HAT

HAPPENS ON

“H APPY I SLAND ”?

“beach”: later “cliff”: • (unmodified) vacuum bound state energies • fast chemical equilibration Explanation:

" ch

"H

ea ic "b on d" ky an ar Isl qu py ap

Strong medium dependence of rates for flavor (quark) exchange processes Reason:

lif

"c f"

• lowering of thresholds • increase of hadron size (Pauli principle) → geometrical overlap (percolation) HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

C OLLABORATIONS Thanks to: Deborah Aguilera, Jens Berdermann, Michael Buballa, Fiorella Burgio, Christian Fuchs, Daniel Gomez Dumm, Hovik Grigorian, Gabriela Grunfeld, Davor Horvatic, Igor Iosilevsky, Dubravko Klabucar, ¨ Thomas Klahn, Gevorg Poghosyan, Sergey ¨ Popov, Krzysztof Redlich, Gerd Ropke, Fredrik Sandin, Norberto Scoccola, Joachim Trumper, ¨ Stefan Typel, Dima Voskresensky, a.m.m.

ESF Research Networking Programme “CompStar”, 2008 - 2013 http://www.compstar-esf.org HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010

T HANKS

FOR YOUR ATTENTION !

HIC10.THI NSTITUTE @ CERN . CH , 10.09.2010