The Ulam Type Stability of a Generalized Additive Mapping and ...

3 downloads 0 Views 2MB Size Report
Dec 27, 2012 - Hiroyoshi Oda,1 Makoto Tsukada,1 Takeshi Miura,2 Yuji Kobayashi,3 and Sin-Ei ... Correspondence should be addressed to Makoto Tsukada;Β ...
Hindawi Publishing Corporation International Journal of Mathematics and Mathematical Sciences Volume 2013, Article ID 109754, 7 pages http://dx.doi.org/10.1155/2013/109754

Research Article The Ulam Type Stability of a Generalized Additive Mapping and Concrete Examples Hiroyoshi Oda,1 Makoto Tsukada,1 Takeshi Miura,2 Yuji Kobayashi,3 and Sin-Ei Takahasi4 1

Department of Information Sciences, Toho University, Funabashi, Chiba 274-8501, Japan Yamagata University, Yonezawa, Yamagata 273-0866, Japan 3 Toho University, Funabashi, Chiba 274-8501, Japan 4 Toho University, Yamagata University, Funabashi, Chiba 273-0866, Japan 2

Correspondence should be addressed to Makoto Tsukada; [email protected] Received 27 December 2012; Accepted 21 February 2013 Academic Editor: Irena Lasiecka Copyright Β© 2013 Hiroyoshi Oda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We give an Ulam type stability result for the following functional equation: 𝑓(𝛼π‘₯βˆ’π›Όπ‘₯σΈ€  +π‘₯0 ) = 𝛽𝑓(π‘₯)βˆ’π›½π‘“(π‘₯σΈ€  )+𝑦0 (for all π‘₯, π‘₯σΈ€  ∈ 𝑋) π‘ž under a suitable condition. We also give a concrete stability result for the case taking up 𝛿‖π‘₯‖𝑝 β€–π‘₯σΈ€  β€– as a control function.

1. Introduction In 1940, Ulam [1] proposed the following stability problem: β€œWhen is it true that a function which satisfies some functional equation approximately must be close to one satisfying the equation exactly?” Next year, Hyers [2] gave an answer to this problem for additive mappings between Banach spaces. Furthermore, Aoki [3] and Rassias [4] obtained independently generalized results of Hyers’ theorem which allow the Cauchy difference to be unbounded. Let 𝑋 and π‘Œ be normed spaces over K, which denotes either the real field R or the complex field C. Throughout the paper, we fix scalars π‘Ž, 𝑏, 𝑐, 𝑑 ∈ K \ {0} and vectors π‘₯0 ∈ 𝑋 and 𝑦0 ∈ π‘Œ. We say that a mapping 𝑓 of 𝑋 into π‘Œ is (π‘Ž, 𝑏, 𝑐, 𝑑; π‘₯0 , 𝑦0 )-additive if 𝑓 (π‘Žπ‘₯ + 𝑏π‘₯σΈ€  + π‘₯0 ) = 𝑐𝑓 (π‘₯) + 𝑑𝑓 (π‘₯σΈ€  ) + 𝑦0 σΈ€ 

(1)

for all π‘₯, π‘₯ ∈ 𝑋. When π‘₯0 = 𝑦0 = 0, we say it to be (π‘Ž, 𝑏, 𝑐, 𝑑)-additive. AczΒ΄el [5] specified what this generalized Cauchy equation is. The Ulam type stability problem for such an 𝑓 has been investigated in [6–8]. However, these results have been obtained in cases where either π‘Ž + 𝑏 =ΜΈ 0 or 𝑐 + 𝑑 =ΜΈ 0 (see Theorems A and B). In this paper, we will investigate the problem for (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive

mappings, that is, in the case π‘Ž + 𝑏 = 𝑐 + 𝑑 = 0. In Section 2, we state the details of (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mappings (Theorem 3). In Section 3, we give our main results about the stability for them (see Theorems 7–10). In the final section, we apply the results to some concrete examples, where we take π‘ž up 𝛿‖π‘₯‖𝑝 β€–π‘₯σΈ€  β€– as a control function πœ€(π‘₯, π‘₯σΈ€  ) (see Corollaries 11–14).

2. (π‘Ž,βˆ’π‘Ž,𝑐,βˆ’π‘;π‘₯0 ,𝑦0 )-Additive Mappings The following result asserts that any (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )additive mapping is transformed into some (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)additive mapping by a certain translation and that any (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mapping is an additive mapping in usual sense with some extra condition. Proposition 1. Let 𝑓 and 𝑔 be two mappings of 𝑋 into π‘Œ such that 𝑔(π‘₯) = 𝑓(π‘₯ + π‘₯0 ) βˆ’ 𝑦0 for all π‘₯ ∈ 𝑋. Then the following three statements are equivalent: (i) 𝑓 is (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive, (ii) 𝑔 is (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive, (iii) 𝑔 is additive and 𝑔(π‘Žπ‘₯) = 𝑐𝑔(π‘₯) for all π‘₯ ∈ 𝑋.

2

International Journal of Mathematics and Mathematical Sciences (i) If both π‘Ž and 𝑐 are transcendental numbers, then there exists a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping of 𝑋 into π‘Œ.

Proof. (i)⇔(ii) Since 𝑓 (π‘Žπ‘₯ βˆ’ π‘Žπ‘₯σΈ€  + π‘₯0 )

(ii) If one of π‘Ž and 𝑐 is transcendental and the other is algebraic, then the constant 𝑦0 is a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping of 𝑋 into π‘Œ.

= 𝑔 (π‘Žπ‘₯ βˆ’ π‘Žπ‘₯σΈ€  ) + 𝑦0 = 𝑔 (π‘Ž (π‘₯ βˆ’ π‘₯0 ) βˆ’ π‘Ž (π‘₯σΈ€  βˆ’ π‘₯0 )) + 𝑦0 , 𝑐 (π‘₯) βˆ’ 𝑐𝑓 (π‘₯σΈ€  ) + 𝑦0

(2)

= 𝑐 (𝑓 (π‘₯) βˆ’ 𝑦0 ) βˆ’ 𝑐 (𝑓 (π‘₯σΈ€  ) βˆ’ 𝑦0 ) + 𝑦0

(iv) If π‘Ž and 𝑐 are algebraic with distinct minimal polynomials, then the constant 𝑦0 is a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping of 𝑋 into π‘Œ.

σΈ€ 

= 𝑐𝑔 (π‘₯ βˆ’ π‘₯0 ) βˆ’ 𝑐𝑔 (π‘₯ βˆ’ π‘₯0 ) + 𝑦0 for all π‘₯, π‘₯σΈ€  ∈ 𝑋, it follows that 𝑓 : (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive ⇔ 𝑔(π‘Ž(π‘₯ βˆ’ π‘₯0 ) βˆ’ π‘Ž(π‘₯σΈ€  βˆ’ π‘₯0 )) + 𝑦0 = 𝑐𝑔(π‘₯ βˆ’ π‘₯0 ) βˆ’ 𝑐𝑔(π‘₯σΈ€  βˆ’ π‘₯0 ) + 𝑦0 (for all π‘₯, π‘₯σΈ€  ∈ 𝑋) ⇔ 𝑔(π‘Žπ‘₯ βˆ’ π‘Žπ‘₯σΈ€  ) = 𝑐𝑔(π‘₯) βˆ’ 𝑐𝑔(π‘₯σΈ€  ) (for all π‘₯, π‘₯σΈ€  ∈ 𝑋) ⇔ 𝑔 : (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive. (ii)β‡’(iii) Suppose that 𝑔 (π‘Žπ‘₯ βˆ’ π‘Žπ‘₯σΈ€  ) = 𝑐𝑔 (π‘₯) βˆ’ 𝑐𝑔 (π‘₯σΈ€  )

(3)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. When π‘₯ = π‘₯σΈ€  , we have 𝑔(0) = 0. Using this, 𝑔(π‘Žπ‘₯) = 𝑐𝑔(π‘₯) and also 𝑔(βˆ’π‘Žπ‘₯) = βˆ’π‘π‘”(π‘₯) for all π‘₯ ∈ 𝑋. Therefore, 𝑔 (π‘₯ + π‘₯σΈ€  ) = 𝑔 (π‘Ž

π‘₯ π‘₯σΈ€  βˆ’ π‘Ž (βˆ’ )) π‘Ž π‘Ž

π‘₯ π‘₯σΈ€  = 𝑐𝑔 ( ) βˆ’ 𝑐𝑔 (βˆ’ ) π‘Ž π‘Ž

(iii) If both π‘Ž and 𝑐 are algebraic with a common minimal polynomial, then there exists a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping of 𝑋 into π‘Œ.

(4)

π‘₯ π‘₯σΈ€  = 𝑐𝑔 ( ) + (βˆ’π‘) 𝑔 (βˆ’ ) = 𝑔 (π‘₯) + 𝑔 (π‘₯σΈ€  ) π‘Ž π‘Ž for all π‘₯, π‘₯σΈ€  ∈ 𝑋. (iii)β‡’(ii) Because 𝑔(βˆ’π‘₯) = βˆ’π‘”(π‘₯) for all π‘₯ ∈ 𝑋 (see also the following remark), it is trivial. Remark 2. We denote by Q the field of all rational numbers. It is well known that if 𝑔 is additive, then 𝑔(π‘žπ‘₯) = π‘žπ‘”(π‘₯) for every π‘ž ∈ Q and π‘₯ ∈ 𝑋, that is, 𝑔 is Q-linear. Hence, if 𝑔 is additive and continuous, 𝑔 must be R-linear. On the other hand, when K = C, we have a lot of continuous additive nonlinear mappings by considering the composition of linear transformations on R2 and the R-linear isometry (π‘₯, 𝑦) 󳨃→ π‘₯ + 𝑖𝑦. The constant 𝑦0 is a trivial (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping of 𝑋 into π‘Œ. The following theorem says that unless it is a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping, discontinuous one always exists. Theorem 3. (I) If π‘Ž = 𝑐, then there exists a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping of 𝑋 into π‘Œ. (II) If π‘Ž =ΜΈ 𝑐, then the followings hold:

Moreover, when K = R, there is no nontrivial continuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping 𝑓 of 𝑋 into π‘Œ. On the other hand, when K = C, if π‘Ž is not real and π‘Ž = 𝑐 (the complex conjugate of 𝑐), then the mapping π‘₯ 󳨃→ 𝑓(π‘₯ + π‘₯0 ) βˆ’ 𝑦0 must be conjugate linear for every continuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping 𝑓 of 𝑋 into π‘Œ. In order to show Theorem 3, we need some lemmas for K-valued (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive functions defined on K. For any π‘₯ ∈ K, we denote by Q(π‘₯) the subfield of K generated by π‘₯ over Q. By the following proofs of Lemma 6 and Theorem 3, if there is a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mapping, then there are sufficiently many such mappings in the sense that there exists such a mapping which separates any Q(π‘Ž)-linear independent points of 𝑋. Lemma 4. Any (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive πœ‘ of K into itself satisfies πœ‘(𝑝(π‘Ž)π‘₯) = 𝑝(𝑐)πœ‘(π‘₯) for all π‘₯ ∈ K and 𝑝(𝑋) ∈ Q[𝑋]. Proof. Note that πœ‘ is additive and πœ‘(π‘Žπ‘₯) = π‘πœ‘(π‘₯) for each π‘₯ ∈ K by Proposition 1. Let 𝑝(𝑋) = π‘Ž0 + π‘Ž1 𝑋 + β‹… β‹… β‹… + π‘Žπ‘› 𝑋𝑛 with π‘Ž0 , π‘Ž1 , . . . , π‘Žπ‘› ∈ Q. Since πœ‘ is Q-linear, πœ‘ (𝑝 (π‘Ž) π‘₯) = π‘Ž0 πœ‘ (π‘₯) + π‘Ž1 πœ‘ (π‘Žπ‘₯) + β‹… β‹… β‹… + π‘Žπ‘› πœ‘ (π‘Žπ‘› π‘₯) = π‘Ž0 πœ‘ (π‘₯) + π‘Ž1 π‘πœ‘ (π‘₯) + β‹… β‹… β‹… + π‘Žπ‘› 𝑐𝑛 πœ‘ (π‘₯)

(5)

= 𝑝 (𝑐) πœ‘ (π‘₯) for all π‘₯ ∈ K. Lemma 5. Let 𝐸 and 𝐹 be subfields of K and πœ“ an isomorphism of 𝐸 onto 𝐹. Then, πœ“ has an additive bijective extension πœ‘ to the full space K such that πœ‘ (πœ€π‘₯) = πœ“ (πœ€) πœ‘ (π‘₯)

(6)

for all πœ€ ∈ 𝐸 and π‘₯ ∈ K. Moreover, one has a discontinuous one whenever R \ 𝐸 =ΜΈ 0. Proof. Let {𝑒𝑗 : 𝑗 ∈ 𝐽} and {𝑓𝑗 : 𝑗 ∈ 𝐽󸀠 } be an 𝐸-linear base and an 𝐹-linear base of K, respectively. Because both of them have same cardinality, we take 𝐽 = 𝐽󸀠 . Moreover, we may assume without loss of generality that 𝑒𝑗0 = 𝑓𝑗0 = 1 for some 𝑗0 ∈ 𝐽.

International Journal of Mathematics and Mathematical Sciences For any π‘₯ ∈ K, there exist a finite 𝐼 βŠ‚ 𝐽 and {π‘₯𝑖 }π‘–βˆˆπΌ βŠ† 𝐸 such that π‘₯ = βˆ‘π‘₯𝑖 𝑒𝑖 , π‘–βˆˆπΌ

(7)

and this decomposition is unique. Hence, we can define πœ‘ : K β†’ K by πœ‘ (π‘₯) = βˆ‘πœ“ (π‘₯𝑖 ) 𝑓𝑖 . π‘–βˆˆπΌ

(8)

This πœ‘ is a desired extension. In order to get a discontinuous extension, we consider the base {𝑒𝑗 : 𝑗 ∈ 𝐽} and {𝑓𝑗 : 𝑗 ∈ 𝐽} such that 𝑓𝑗1 =ΜΈ 𝑒𝑗1 ∈ R \ 𝐸 for some 𝑗1 ∈ 𝐽. Because Q βŠ† 𝐸, take a rational sequence {πœ€π‘› } converging to 𝑒𝑗1 . Suppose that πœ‘ is continuous. Then, πœ‘ (πœ€π‘› ) 󳨀→ πœ‘ (𝑒𝑗1 ) = 𝑓𝑗1 , πœ‘ (πœ€π‘› ) = πœ“ (πœ€π‘› ) = πœ€π‘› 󳨀→ 𝑒𝑗1 ,

(9)

as 𝑛 β†’ ∞. This is contradiction. Thus πœ‘ is discontinuous. Lemma 6. Suppose that π‘Ž =ΜΈ 𝑐. (i) If both π‘Ž and 𝑐 are transcendental numbers, then there exists a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function of K into itself. (ii) If one of π‘Ž and 𝑐 is transcendental and the other is algebraic, then the constant 0 is a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)additive function of K into itself. (iii) If both π‘Ž and 𝑐 are algebraic with a common minimal polynomial, then there exists a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function of K into itself. (iv) If π‘Ž and 𝑐 are algebraic with distinct minimal polynomials, then the constant 0 is a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)additive function of K into itself. Moreover, when K = R, every nontrivial (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function of K into itself is discontinuous. On the other hand, when K = C, if π‘Ž is not real and π‘Ž = 𝑐, then any continuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function 𝑓 of C into itself must be of form 𝑓(π‘₯) = 𝛼π‘₯ (π‘₯ ∈ C) for some 𝛼 ∈ C. Proof. (i) Suppose that both π‘Ž and 𝑐 are transcendental. Then, Q(π‘Ž) (resp., Q(𝑐)) is isomorphic to the rational function field in indeterminate π‘Ž (resp., 𝑐). So, the substitution π‘Ž β†’ 𝑐 induces an isomorphism πœ‘π‘Žπ‘ : Q(π‘Ž) β†’ Q(𝑐) of fields. By Lemma 5, because R \ Q(π‘Ž) =ΜΈ 0, πœ‘π‘Žπ‘ has a discontinuous additive extension πœ‘ to K such that πœ‘(πœ€π‘₯) = πœ‘π‘Žπ‘ (πœ€)πœ‘(π‘₯) for every πœ€ ∈ Q(π‘Ž) and π‘₯ ∈ K. Then, πœ‘(π‘Žπ‘₯) = πœ‘π‘Žπ‘ (π‘Ž)πœ‘(π‘₯) = π‘πœ‘(π‘₯) for all π‘₯ ∈ K, and, hence, πœ‘ is (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive by Proposition 1. (ii) Let πœ‘ be any (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function. If π‘Ž is transcendental and 𝑐 is algebraic with nonzero polynomial such that 𝑝(𝑐) = 0, then from Lemma 4, we have πœ‘ (π‘₯) = πœ‘ (𝑝 (π‘Ž) 𝑝(π‘Ž)βˆ’1 π‘₯) = 𝑝 (𝑐) πœ‘ (𝑝(π‘Ž)βˆ’1 π‘₯) = 0

(10)

3 for all π‘₯ ∈ K. If 𝑐 is transcendental and π‘Ž is algebraic with nonzero polynomial such that π‘ž(π‘Ž) = 0, then from Lemma 4, we have πœ‘ (π‘₯) =

1 1 1 π‘ž (𝑐) πœ‘ (π‘₯) = πœ‘ (π‘ž (π‘Ž) π‘₯) = πœ‘ (0) = 0 π‘ž (𝑐) π‘ž (𝑐) π‘ž (𝑐) (11)

for all π‘₯ ∈ K. (iii) If π‘Ž is algebraic with minimal polynomial 𝑝(𝑋) ∈ Q[𝑋], then Q(π‘Ž) consists of all polynomials 𝑓(π‘Ž) in π‘Ž of degree up to deg 𝑝 βˆ’ 1. So, if 𝑐 is also algebraic with the same minimal polynomial 𝑝, then the substitution π‘Ž β†’ 𝑐 induces an automorphism πœ‘π‘Žπ‘ : Q(π‘Ž) β†’ Q(𝑐) = Q(π‘Ž). As same as (i), πœ‘π‘Žπ‘ has a discontinuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive extension. (iv) Suppose that π‘Ž and 𝑐 are algebraic with distinct minimal polynomials 𝑝 and π‘ž over the field Q, respectively. Let πœ‘ be any (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function. To show πœ‘ = 0, we assume, on the contrary, that there is an π‘₯0 ∈ K with πœ‘(π‘₯0 ) =ΜΈ 0. Then, from Lemma 5, we have 𝑝(𝑐)πœ‘(π‘₯0 ) = πœ‘(𝑝(π‘Ž)π‘₯0 ) = πœ‘(0) = 0, and hence 𝑝(𝑐) = 0. This contradicts the prerequisite for π‘Ž and 𝑐. Hence, πœ‘ must be zero. When K = R, since every continuous additive function is R-linear and π‘Ž =ΜΈ 𝑐, there is no continuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)additive function by Proposition 1. Now, we consider the case K = C. Let πœ‘ be a nontrivial continuous (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function. Note that πœ‘ is R-linear. If π‘Ž is not real and π‘Ž = 𝑐, we can easily see that πœ‘(𝑖π‘₯) = βˆ’π‘–πœ‘(π‘₯) for all π‘₯ ∈ C. Thus, πœ‘ is conjugate linear, and hence πœ‘(π‘₯) = 𝛼π‘₯ (π‘₯ ∈ C), where 𝛼 = πœ‘(1). Proof of Theorem 3. (I) We assume without loss of generality that π‘₯0 = 𝑦0 = 0 with the help of Proposition 1. Given an (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive function πœ‘, take a 𝑦1 ∈ π‘Œ with ‖𝑦1 β€– = 1 and a nonzero functional β„Ž in π‘‹βˆ— , the dual space of 𝑋. Put 𝑓 (π‘₯) = πœ‘ (β„Ž (π‘₯)) 𝑦1

(π‘₯ ∈ 𝑋) .

(12)

Then, we can easily see that 𝑓 is an (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mapping of 𝑋 into π‘Œ. Also, if πœ‘ is discontinuous, then so is 𝑓. In fact, if πœ‘ is discontinuous, we can find a sequence {π‘Žπ‘› } in K such that lim𝑛 β†’ ∞ π‘Žπ‘› = 0 and |πœ‘(π‘Žπ‘› )| β‰₯ 1 (𝑛 = 1, 2, . . .). Choose an π‘₯1 in 𝑋 with β„Ž(π‘₯1 ) = 1 and put π‘₯𝑛 = π‘Žπ‘› π‘₯1 for each 𝑛 ∈ N. Then, β€–π‘₯𝑛 β€– = |π‘Žπ‘› | β€–π‘₯1 β€– β†’ 0 as 𝑛 β†’ ∞ and ‖𝑓(π‘₯𝑛 )β€– = |πœ‘(π‘Žπ‘› )| β‰₯ 1 (𝑛 = 1, 2, . . .), so 𝑓 is discontinuous, as required. Therefore Theorem 3(I), (II)-(i), and (II)-(iii) follow easily from Lemmas 4 and 6. Given an (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mapping 𝑓 of 𝑋 into π‘Œ, take π‘₯ ∈ 𝑋 and β„Ž ∈ π‘Œβˆ— arbitrarily, and put πœ‘(𝑑) = β„Ž(𝑓(𝑑π‘₯)) for each 𝑑 ∈ K. Then, πœ‘ : K β†’ K is (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive. If πœ‘ = 0 for each β„Ž ∈ π‘Œβˆ— and π‘₯ ∈ 𝑋, then 𝑓 = 0 by the HahnBanach theorem. Therefore, Theorem 3(II)-(ii) and (II)-(iv) follow easily from Lemma 6. The final assertion in (II) also follows from Lemma 6 and its proof.

3. A Stability of Generalized Additive Mappings In this section, we consider a couple of cases which are left out in [8] about the Ulam type stability. We take a nonnegative

4

International Journal of Mathematics and Mathematical Sciences

function πœ€ (say a control function) on 𝑋 Γ— 𝑋 and also a certain nonnegative function 𝛿 on 𝑋 which depends on πœ€. We say that a system of all (π‘Ž, 𝑏, 𝑐, 𝑑; π‘₯0 , 𝑦0 )-additive mappings is strictly (πœ€, 𝛿)-stable whenever the following statement is true: β€œIf a mapping 𝑓 of 𝑋 into π‘Œ satisfies σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘Žπ‘₯ + 𝑏π‘₯σΈ€  + π‘₯0 ) βˆ’ 𝑐𝑓 (π‘₯) βˆ’ 𝑑𝑓 (π‘₯σΈ€  ) βˆ’ 𝑦0 σ΅„©σ΅„©σ΅„© ≀ πœ€ (π‘₯, π‘₯σΈ€  ) σ΅„© σ΅„©

(†)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋, then there exists a unique (π‘Ž, 𝑏, 𝑐, 𝑑; π‘₯0 , 𝑦0 )additive mapping π‘“βˆž such that 󡄩󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 𝛿 (π‘₯) (‑) σ΅„© σ΅„© for all π‘₯ ∈ 𝑋.” Throughout the remainder of this paper, we assume that π‘Œ is a Banach space. This is because all of our results depend on the following theorems whose proofs need the Banach fixed point theorem. Theorem A (see [8, Theorem 3.1]). Let π‘Ž + 𝑏 =ΜΈ 0 and 𝐾 β‰₯ 0 with 𝐾|𝑐 + 𝑑| < 1. One takes a control function πœ€ which satisfies πœ€ (π‘₯, π‘₯σΈ€  ) ≀ πΎπœ€ ((π‘Ž + 𝑏) π‘₯ + π‘₯0 , (π‘Ž + 𝑏) π‘₯σΈ€  + π‘₯0 )

(13)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋 and puts

for all π‘₯, π‘₯σΈ€  ∈ 𝑋, and puts 𝛿 (π‘₯) =

πΎπœ€ ((π‘Žβˆ’1 + 1) π‘₯ βˆ’ π‘Žβˆ’1 π‘₯0 , π‘₯) |𝑐| βˆ’ 𝐾 |1 + 𝑐|

(18)

for each π‘₯ ∈ 𝑋. Then, the strict (πœ€, 𝛿)-stability holds for the system of (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mappings. Proof. Put 𝑒 = π‘Žπ‘₯ βˆ’ π‘Žπ‘₯σΈ€  + π‘₯0 and 𝑒󸀠 = π‘₯σΈ€  for each π‘₯, π‘₯σΈ€  ∈ 𝑋. Then, (†) changes into σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘Žβˆ’1 𝑒 + 𝑒󸀠 βˆ’ π‘Žβˆ’1 π‘₯0 ) βˆ’ π‘βˆ’1 𝑓 (𝑒) βˆ’ 𝑓 (𝑒󸀠 ) + π‘βˆ’1 𝑦0 σ΅„©σ΅„©σ΅„© σ΅„© σ΅„© (19) ≀ πœ€1 (𝑒, 𝑒󸀠 ) , where πœ€1 (𝑒, 𝑒󸀠 ) =

1 πœ€ (π‘Žβˆ’1 𝑒 + 𝑒󸀠 βˆ’ π‘Žβˆ’1 π‘₯0 , 𝑒󸀠 ) |𝑐|

(20)

for all 𝑒, 𝑒󸀠 ∈ 𝑋. By denoting π‘Ž1 = π‘Žβˆ’1 , 𝑏1 = 1, 𝑐1 = π‘βˆ’1 , 𝑑1 = 1, 𝑒0 = βˆ’π‘Žβˆ’1 π‘₯0 and V0 = βˆ’π‘βˆ’1 𝑦0 in (19), (†) changes up to the following estimate of 𝑓 by the control function πœ€1 : 󡄩󡄩󡄩𝑓 (π‘Ž 𝑒 + 𝑏 𝑒󸀠 + 𝑒 ) βˆ’ 𝑐 𝑓 (𝑒) βˆ’ 𝑑 𝑓 (𝑒󸀠 ) βˆ’ V σ΅„©σ΅„©σ΅„© ≀ πœ€ (𝑒, 𝑒󸀠 ) σ΅„©σ΅„© 1 1 0 1 1 0σ΅„© 1 σ΅„© (21)

for each π‘₯ ∈ 𝑋. Then, the strict (πœ€, 𝛿)-stability holds for the system of (π‘Ž, 𝑏, 𝑐, 𝑑; π‘₯0 , 𝑦0 )-additive mappings.

for all 𝑒, 𝑒󸀠 ∈ 𝑋. Under these transformations, π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 , and πœ€1 are equipped with 󡄨 󡄨 𝐾 󡄨󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨󡄨 < 1, π‘Ž1 + 𝑏1 =ΜΈ 0, (22) πœ€1 (𝑒, 𝑒󸀠 ) ≀ πΎπœ€1 ((π‘Ž1 + 𝑏1 ) 𝑒 + 𝑒0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 )

Theorem B (see [8, Theorem 3.2]). Let 𝑐 + 𝑑 =ΜΈ 0 and 𝐾 β‰₯ 0 with 𝐾 < |𝑐 + 𝑑|. One takes a control function πœ€ which satisfies

for all 𝑒, 𝑒󸀠 ∈ 𝑋. The latter follows from the inequality in which πœ€ must satisfy because by using (20), we get

πΎπœ€ (π‘₯, π‘₯) 𝛿 (π‘₯) = 1 βˆ’ 𝐾 |𝑐 + 𝑑|

πœ€ ((π‘Ž + 𝑏) π‘₯ + π‘₯0 , (π‘Ž + 𝑏) π‘₯σΈ€  + π‘₯0 ) ≀ πΎπœ€ (π‘₯, π‘₯σΈ€  )

(14)

(15)

πœ€ ((π‘Žβˆ’1 + 1) π‘₯ βˆ’ π‘Žβˆ’1 π‘₯0 , (π‘Žβˆ’1 + 1) π‘₯σΈ€  βˆ’ π‘Žβˆ’1 π‘₯0 )

for all π‘₯, π‘₯σΈ€  ∈ 𝑋 and puts 𝛿 (π‘₯) =

|𝑐| πœ€1 (𝑒, 𝑒󸀠 ) = πœ€ (π‘Žβˆ’1 𝑒 + 𝑒󸀠 + 𝑒0 , 𝑒󸀠 ) = πœ€ (π‘₯, π‘₯σΈ€  ) ,

πœ€ (π‘₯, π‘₯) |𝑐 + 𝑑| βˆ’ 𝐾

(16)

for each π‘₯ ∈ 𝑋. Then, the strict (πœ€, 𝛿)-stability holds for the system of (π‘Ž, 𝑏, 𝑐, 𝑑; π‘₯0 , 𝑦0 )-additive mappings. Both of these theorems do not say about (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mappings at all; however, we will get the following stability theorems for them. Theorem 7 is of the case π‘Ž =ΜΈ βˆ’ 1, Theorem 8 is of the case 𝑏 =ΜΈ βˆ’ 1, and Theorems 9 and 10 are for (βˆ’1, 1, βˆ’1, 1; π‘₯0 , 𝑦0 )-additive mappings. These cover all of the systems of (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mappings. Theorem 7. Let π‘Ž + 1 =ΜΈ 0 and 𝐾 β‰₯ 0 with 𝐾|1 + 𝑐| < |𝑐|. One takes a control function πœ€ which satisfies πœ€ (π‘₯, π‘₯σΈ€  ) ≀ πΎπœ€ ((π‘Žβˆ’1 + 1) π‘₯ βˆ’ π‘Žβˆ’1 π‘₯0 , (π‘Žβˆ’1 + 1) π‘₯σΈ€  βˆ’ π‘Žβˆ’1 π‘₯0 ) (17)

= πœ€ ((π‘Žβˆ’1 + 1) π‘₯ βˆ’ π‘Žβˆ’1 π‘₯0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 ) = πœ€ ((π‘Žβˆ’1 + 1) (π‘Žβˆ’1 𝑒 + 𝑒󸀠 + 𝑒0 ) βˆ’π‘Žβˆ’1 π‘₯0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 )

(23)

= πœ€ (π‘Žβˆ’1 ((π‘Ž1 + 𝑏1 ) 𝑒 + 𝑒0 ) + ((π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 ) βˆ’π‘Žβˆ’1 π‘₯0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 ) = |𝑐| πœ€1 ((π‘Ž1 + 𝑏1 ) 𝑒 + 𝑒0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 ) for all 𝑒, 𝑒󸀠 ∈ 𝑋. Since (21) and (22) hold, it follows from Theorem A that there exists a unique (π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 ; 𝑒0 , V0 )additive mapping π‘“βˆž such that πΎπœ€1 (π‘₯, π‘₯) σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 󡄨 󡄨 1 βˆ’ 𝐾 󡄨󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨󡄨

(24)

International Journal of Mathematics and Mathematical Sciences for all π‘₯ ∈ 𝑋. However, we can easily see the following two assertions: (i) π‘“βˆž is (π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 ; 𝑒0 , V0 )-additive if and only if π‘“βˆž is (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive, (ii) (24) is equivalent to (‑). This completes the proof. Theorem 8. Let 𝑐 + 1 =ΜΈ 0 and 𝐾 β‰₯ 0 with 𝐾|𝑐| < |𝑐 + 1|. One takes a control function πœ€ which satisfies πœ€ ((π‘Žβˆ’1 + 1) π‘₯ βˆ’ π‘Žβˆ’1 π‘₯0 , (π‘Žβˆ’1 + 1) π‘₯σΈ€  βˆ’ π‘Žβˆ’1 π‘₯0 )

(25)

σΈ€ 

≀ πΎπœ€ (π‘₯, π‘₯ )

βˆ’1

πœ€ ((π‘Ž

𝛿 (π‘₯) =

πΎπœ€ (π‘₯, 2π‘₯ βˆ’ π‘₯0 ) 1 βˆ’ 2𝐾

(33)

for each π‘₯ ∈ 𝑋. Then the strict (πœ€, 𝛿)-stability holds for the system of (βˆ’1, 1, βˆ’1, 1; π‘₯0 , 𝑦0 )-additive mappings. Proof. Put 𝑒 = π‘₯, 𝑒󸀠 = βˆ’π‘₯ + π‘₯σΈ€  + π‘₯0 for each π‘₯, π‘₯σΈ€  ∈ 𝑋. Then, (†) changes into the following estimate of 𝑓 by the control function πœ€1 : σ΅„©σ΅„© σ΅„© 󡄩󡄩𝑓 (𝑒 + 𝑒󸀠 βˆ’ π‘₯0 ) βˆ’ 𝑓 (𝑒) βˆ’ 𝑓 (𝑒󸀠 ) + 𝑦0 σ΅„©σ΅„©σ΅„© ≀ πœ€1 (𝑒, 𝑒󸀠 ) , (34) σ΅„© σ΅„©

πœ€1 (𝑒, 𝑒󸀠 ) = πœ€ (𝑒, 𝑒 + 𝑒󸀠 βˆ’ π‘₯0 ) .

βˆ’1

+ 1) π‘₯ βˆ’ π‘Ž π‘₯0 , π‘₯)

(26)

|𝑐 + 1| βˆ’ 𝐾 |𝑐|

for each π‘₯ ∈ 𝑋. Then the strict (πœ€, 𝛿)-stability holds for the system of (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )-additive mappings. Proof. We consider the same transformations and the same estimate (21) of 𝑓 by πœ€1 in the proof of Theorem 7. Under these transformations, we have 𝑐1 + 𝑑1 =ΜΈ 0,

for all π‘₯, π‘₯σΈ€  ∈ 𝑋 and puts

where

for all π‘₯, π‘₯σΈ€  ∈ 𝑋 and puts 𝛿 (π‘₯) =

5

󡄨 󡄨 𝐾 < 󡄨󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨󡄨 .

π‘Ž1 + 𝑏1 = 2 =ΜΈ 0,

󡄨 󡄨 𝐾 󡄨󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨󡄨 = 2𝐾 < 1,

πœ€1 (𝑒, 𝑒󸀠 ) ≀ πΎπœ€1 ((π‘Ž1 + 𝑏1 ) 𝑒 βˆ’ π‘₯0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 βˆ’ π‘₯0 )

(36)

for all 𝑒, 𝑒󸀠 ∈ 𝑋. The latter follows from the following inequality: πœ€1 (𝑒, 𝑒󸀠 ) = πœ€ (𝑒, 𝑒 + 𝑒󸀠 βˆ’ π‘₯0 )

Moreover, for every 𝑒, 𝑒 ∈ 𝑋 we have σΈ€ 

πœ€1 ((π‘Ž1 + 𝑏1 ) 𝑒 + 𝑒0 , (π‘Ž1 + 𝑏1 ) 𝑒 + 𝑒0 ) ≀ πΎπœ€1 (𝑒, 𝑒 ) , (28) because |𝑐| πœ€1 (𝑒, 𝑒󸀠 ) = πœ€ (π‘Žβˆ’1 𝑒 + 𝑒󸀠 + 𝑒0 , 𝑒󸀠 ) = πœ€ (π‘₯, π‘₯σΈ€  ) ,

(29)

|𝑐| πœ€1 ((π‘Ž1 + 𝑏1 ) 𝑒 + 𝑒0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 + 𝑒0 ) = πœ€ ((π‘Žβˆ’1 + 1) π‘₯ βˆ’ π‘Žβˆ’1 π‘₯0 , (π‘Žβˆ’1 + 1) π‘₯σΈ€  βˆ’ π‘Žβˆ’1 π‘₯0 ) . (30) Since (21), (27) and (28) hold, it follows from Theorem B that there exists a unique (π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 ; 𝑒0 , V0 )-additive mapping π‘“βˆž such that πœ€ (π‘₯, π‘₯) σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 󡄨󡄨 1 󡄨󡄨 󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨 βˆ’ 𝐾

for all 𝑒, 𝑒󸀠 ∈ 𝑋. Put π‘Ž1 = 𝑏1 = 𝑐1 = 𝑑1 = 1. Under these transformations, π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 , and πœ€1 are equipped with

(27)

σΈ€ 

σΈ€ 

(35)

(31)

for all π‘₯ ∈ 𝑋. This means (‑) and π‘“βˆž is (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘; π‘₯0 , 𝑦0 )additive.

≀ πΎπœ€ (2𝑒 βˆ’ π‘₯0 , 2 (𝑒 + 𝑒󸀠 βˆ’ π‘₯0 ) βˆ’ π‘₯0 ) = πΎπœ€ (2𝑒 βˆ’ π‘₯0 , (2𝑒 βˆ’ π‘₯0 ) + (2𝑒󸀠 βˆ’ π‘₯0 ) βˆ’ π‘₯0 )

(37)

= πΎπœ€1 (2𝑒 βˆ’ π‘₯0 , 2𝑒󸀠 βˆ’ π‘₯0 ) for all 𝑒, 𝑒󸀠 ∈ 𝑋. Since (34), (36) hold, it follows from Theorem A that there exists a unique (π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 ; βˆ’π‘₯0 , βˆ’π‘¦0 )additive mapping π‘“βˆž such that πΎπœ€1 (π‘₯, π‘₯) σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 󡄨 󡄨 1 βˆ’ 𝐾 󡄨󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨󡄨

(38)

for all π‘₯ ∈ 𝑋. However we can easily see the following two assertions: (i) π‘“βˆž is (π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 ; βˆ’π‘₯0 , βˆ’π‘¦0 )-additive if and only if π‘“βˆž is (βˆ’1, 1, βˆ’1, 1; π‘₯0 , 𝑦0 )-additive; (ii) (38) is equivalent to (‑). This completes the proof.

Theorem 9. Let 0 ≀ 𝐾 < 1/2. One takes a control function πœ€ which satisfies

Theorem 10. Let 0 ≀ 𝐾 < 2. One takes a control function πœ€ which satisfies

πœ€ (π‘₯, π‘₯σΈ€  ) ≀ πΎπœ€ (2π‘₯ βˆ’ π‘₯0 , 2π‘₯σΈ€  βˆ’ π‘₯0 )

πœ€ (2π‘₯ βˆ’ π‘₯0 , 2π‘₯σΈ€  βˆ’ π‘₯0 ) ≀ πΎπœ€ (π‘₯, π‘₯σΈ€  )

(32)

(39)

6

International Journal of Mathematics and Mathematical Sciences

for all π‘₯, π‘₯σΈ€  ∈ 𝑋 and puts

Proof. Put 𝐾 = |π‘Žβˆ’1 + 1|βˆ’(𝑝+π‘ž) . Then 𝐾|𝑐 + 1| < |𝑐| and

𝛿 (π‘₯) =

πœ€ (π‘₯, 2π‘₯ βˆ’ π‘₯0 ) 2βˆ’πΎ

(40)

for each π‘₯ ∈ 𝑋. Then the strict (πœ€, 𝛿)-stability holds for the system of (βˆ’1, 1, βˆ’1, 1; π‘₯0 , 𝑦0 )-additive mappings. Proof. We consider the same transformation and the same estimate (34) of 𝑓 by πœ€1 in the proof of Theorem 9. Under these transformations, 𝑐1 , 𝑑1 and πœ€1 are equipped with 󡄨 󡄨 𝐾 < 2 = 󡄨󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨󡄨 ,

𝑐1 + 𝑑1 = 2 =ΜΈ 0,

(41)

σΈ€ 

πœ€1 (2𝑒 βˆ’ π‘₯0 , 2𝑒 βˆ’ π‘₯0 ) = πœ€ (2𝑒 βˆ’ π‘₯0 , (2𝑒 βˆ’ π‘₯0 ) + (2𝑒󸀠 βˆ’ π‘₯0 ) βˆ’ π‘₯0 ) = πœ€ (2π‘₯ βˆ’ π‘₯0 , 2 (𝑒 + 𝑒 βˆ’ π‘₯0 ) βˆ’ π‘₯0 ) = πœ€ (2π‘₯ βˆ’ π‘₯0 , 2π‘₯ βˆ’ π‘₯0 )

(42)

≀ πΎπœ€ (π‘₯, π‘₯σΈ€  )

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. Because of 𝐾 = |π‘Žβˆ’1 + 1| corollary.

βˆ’(𝑝+π‘ž)

(47)

, we have the

Corollary 12. When 𝑐 + 1 =ΜΈ 0 and |π‘Ž + 1|𝑝+π‘ž |𝑐| < |𝑐 + 1||π‘Ž|𝑝+π‘ž , one puts 𝛿|π‘Ž + 1|𝑝 |π‘Ž|π‘ž β€–π‘₯‖𝑝+π‘ž |π‘Ž|𝑝+π‘ž |𝑐 + 1| βˆ’ |π‘Ž + 1|𝑝+π‘ž |𝑐|

(48)

for each π‘₯ ∈ 𝑋. Then the system of (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mappings is strictly (πœ€, 𝛿󸀠 )-stable.

πœ€ ((π‘Žβˆ’1 + 1) π‘₯, (π‘Žβˆ’1 + 1) π‘₯σΈ€  ) = πΎπœ€ (π‘₯, π‘₯σΈ€  )

σΈ€ 

= πΎπœ€1 (𝑒, 𝑒 )

(49)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. By Theorem 8, for a mapping 𝑓 of 𝑋 into π‘Œ satisfying (†) for π‘Ž = βˆ’π‘ and 𝑐 = βˆ’π‘‘, there exists a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mapping π‘“βˆž such that

for all 𝑒, 𝑒󸀠 ∈ 𝑋. So it follows that (43)

σΈ€ 

for all 𝑒, 𝑒 ∈ 𝑋. Since (34), (41) and (43) hold, it follows from Theorem B that there exists a unique (π‘Ž1 , 𝑏1 , 𝑐1 , 𝑑1 ; βˆ’π‘₯0 , βˆ’π‘¦0 )additive mapping π‘“βˆž such that πœ€ (π‘₯, π‘₯) σ΅„© σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 󡄨󡄨 1 󡄨󡄨 󡄨󡄨𝑐1 + 𝑑1 󡄨󡄨 βˆ’ 𝐾

󡄨󡄨 βˆ’1 󡄨󡄨𝑝 𝑝+π‘ž σ΅„©σ΅„© σ΅„©σ΅„© πΎπ›Ώσ΅„¨σ΅„¨σ΅„¨π‘Ž + 1󡄨󡄨󡄨 β€–π‘₯β€– 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„© ≀ |𝑐| βˆ’ 𝐾 |𝑐 + 1|

Proof. Put 𝐾 = |π‘Žβˆ’1 + 1|𝑝+π‘ž . Then 𝐾|𝑐| < |𝑐 + 1| and

= πΎπœ€ (𝑒, 𝑒 + 𝑒󸀠 βˆ’ π‘₯0 )

πœ€1 ((π‘Ž1 + 𝑏1 ) 𝑒 βˆ’ π‘₯0 , (π‘Ž1 + 𝑏1 ) 𝑒󸀠 βˆ’ π‘₯0 ) ≀ πΎπœ€1 (𝑒, 𝑒󸀠 )

(46)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. By Theorem 7, for a mapping 𝑓 of 𝑋 into π‘Œ satisfying (†) for π‘Ž = βˆ’π‘ and 𝑐 = βˆ’π‘‘, there exists a unique (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mapping π‘“βˆž such that

𝛿󸀠 (π‘₯) =

σΈ€ 

σΈ€ 

πœ€ (π‘₯, π‘₯σΈ€  ) = πΎπœ€ ((π‘Žβˆ’1 + 1) π‘₯, (π‘Žβˆ’1 + 1) π‘₯σΈ€  )

(44)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. This means (‑) and π‘“βˆž is (βˆ’1, 1, βˆ’1, 1; π‘₯0 , 𝑦0 )-additive.

4. Concrete Examples

󡄨󡄨 βˆ’1 󡄨󡄨𝑝 𝑝+π‘ž σ΅„©σ΅„© σ΅„©σ΅„© π›Ώσ΅„¨σ΅„¨σ΅„¨π‘Ž + 1󡄨󡄨󡄨 β€–π‘₯β€– 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„© ≀ |𝑐 + 1| βˆ’ 𝐾 |𝑐| for all π‘₯ ∈ 𝑋. Because of 𝐾 = |π‘Žβˆ’1 + 1| corollary.

𝑝+π‘ž

(50)

, we have the

Corollary 13. When 𝑝 + π‘ž > 1, one puts 𝛿󸀠 (π‘₯) =

2π‘ž 𝛿‖π‘₯‖𝑝+π‘ž 2𝑝+π‘ž βˆ’ 2

(51)

for each π‘₯ ∈ 𝑋. Then, the system of (βˆ’1, 1, βˆ’1, 1)-additive mappings is strictly (πœ€, 𝛿󸀠 )-stable.

Throughout this section, let π‘₯0 = 𝑦0 = 0. We fix nonnegative constants 𝑝, π‘ž and 𝛿 and take the control function πœ€ defined π‘ž by πœ€(π‘₯, π‘₯σΈ€  ) = 𝛿‖π‘₯‖𝑝 β€–π‘₯σΈ€  β€– for every π‘₯, π‘₯σΈ€  ∈ 𝑋.

Proof. Put 𝐾 = 2βˆ’(𝑝+π‘ž) . Then,

Corollary 11. When π‘Ž + 1 =ΜΈ 0 and |π‘Ž|𝑝+π‘ž |𝑐 + 1| < |𝑐||π‘Ž + 1|𝑝+π‘ž , one puts

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. Since 𝑝 + π‘ž > 1, we also have 0 ≀ 𝐾 < 1/2. By Theorem 9, for a mapping 𝑓 of 𝑋 into π‘Œ satisfying (†) for π‘Ž = 𝑐 = βˆ’1 and 𝑏 = 𝑑 = 1, there exists a unique (βˆ’1, 1, βˆ’1, 1)additive mapping π‘“βˆž such that

𝛿󸀠 (π‘₯) =

𝛿|π‘Ž + 1|𝑝 |π‘Ž|π‘ž β€–π‘₯‖𝑝+π‘ž |𝑐| |π‘Ž + 1|𝑝+π‘ž βˆ’ |𝑐 + 1| |π‘Ž|𝑝+π‘ž

(45)

for each π‘₯ ∈ 𝑋. Then, the system of (π‘Ž, βˆ’π‘Ž, 𝑐, βˆ’π‘)-additive mappings is strictly (πœ€, 𝛿󸀠 )-stable.

πœ€ (π‘₯, π‘₯σΈ€  ) = πΎπœ€ (2π‘₯, 2π‘₯σΈ€  )

𝑝+π‘ž π‘ž σ΅„© 2 𝛿𝐾 β€–π‘₯β€– σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 1 βˆ’ 2𝐾

(52)

(53)

for all π‘₯ ∈ 𝑋. Because of 𝐾 = 2βˆ’(𝑝+π‘ž) , we have the corollary.

International Journal of Mathematics and Mathematical Sciences Corollary 14. When 𝑝 + π‘ž < 1, one puts 𝛿󸀠 (π‘₯) =

2π‘ž 𝛿‖π‘₯‖𝑝+π‘ž 2 βˆ’ 2𝑝+π‘ž

(54)

for each π‘₯ ∈ 𝑋. Then, the system of (βˆ’1, 1, βˆ’1, 1)-additive mappings is strictly (πœ€, 𝛿󸀠 )-stable. Proof. Put 𝐾 = 2𝑝+π‘ž . Then, πœ€ (2π‘₯, 2π‘₯σΈ€  ) = πΎπœ€ (π‘₯, π‘₯σΈ€  )

(55)

for all π‘₯, π‘₯σΈ€  ∈ 𝑋. Since 𝑝 + π‘ž < 1, we also have 0 ≀ 𝐾 < 2. By Theorem 10, for a mapping 𝑓 of 𝑋 into π‘Œ satisfying (†) for π‘Ž = 𝑐 = βˆ’1 and 𝑏 = 𝑑 = 1, there exists a unique (βˆ’1, 1, βˆ’1, 1)additive mapping π‘“βˆž such that 𝑝+π‘ž π‘ž σ΅„© 2 𝛿 β€–π‘₯β€– σ΅„©σ΅„© 󡄩󡄩𝑓 (π‘₯) βˆ’ π‘“βˆž (π‘₯)σ΅„©σ΅„©σ΅„© ≀ 2βˆ’πΎ

(56)

for all π‘₯ ∈ 𝑋. Because of 𝐾 = 2𝑝+π‘ž , we have the corollary. Remark 15. In Corollary 14, taking 𝑝 = π‘ž = 0, we can easily observe that the corollary is just the stability result due to Hyers [2, Theorem 1].

Acknowledgment The third and fifth authors are partially supported by Grantin-Aid for Scientific Research, Japan Society for the Promotion of Science.

References [1] S. M. Ulam, A Collection of Mathematical Problems, vol. 8 of Interscience Tracts in Pure and Applied Mathematics,, Interscience Publishers, New York, NY, USA, 1960. [2] D. H. Hyers, β€œOn the stability of the linear functional equation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 27, pp. 222–224, 1941. [3] T. Aoki, β€œOn the stability of the linear transformation in Banach spaces,” Journal of the Mathematical Society of Japan, vol. 2, pp. 64–66, 1950. [4] T. M. Rassias, β€œOn the stability of the linear mapping in Banach spaces,” Proceedings of the American Mathematical Society, vol. 72, no. 2, pp. 297–300, 1978. [5] J. AczΒ΄el, Lectures on Functional Equations and Their Applications, vol. 19 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1966. [6] S.-E. Takahasi, T. Miura, and H. Takagi, β€œOn a Hyers-UlamAoki-Rassias type stability and a fixed point theorem,” Journal of Nonlinear and Convex Analysis, vol. 11, no. 3, pp. 423–439, 2010. [7] S. -E. Takahasi, T. Miura, H. Takagi, and K. Tanahashi, β€œUlam type stability problems for alternative homomorphisms”. [8] M. Todoroki, K. Kumahara, T. Miura, and S.-E. Takahasi, β€œStability problems for generalized additive mappings and Euler-Lagrange type mappings,” The Australian Journal of Mathematical Analysis and Applications, vol. 9, no. 1, article 19, 2012.

7

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014