The virB operon of the Agrobacterium tumefaciens ... - BioMedSearch

3 downloads 0 Views 183KB Size Report
NIOA IA I AIALC.ALLLFILFRMIRAVDAL.K.RSKDACLADLLNYA. PTor fD. SHLSTS,.LITHCADLVRSWRVOCIAFESAEPELVSIORHEOLNCL;WRA ISC. VirB.
\./ 1993 Oxford University Press

Nucleic Acids Research, 1993, Vol. 21, No. 2 353-354

The virB operon of the Agrobacterium tumefaciens virulence regulon has sequence similarities to B, C and D open reading frames downstream of the pertussis toxinoperon and to the DNA transfer-operons of broad-hostrange conjugative plasmids Ken Shirasu and Clarence l.Kado* Davis Crown Gall Group, Department of Plant Pathology, University of California, Davis, CA 95616, USA Received December 1, 1992; Accepted December 4, 1992 The 28.6 kDa virulence regulon of te pTiC58 plasmid is comprised of six major operons (1), of which the virB operon is required for the transfer of the T-DNA from the resident Ti plasmid in Agrobacterium tumefaciens to plant cells. A growing body of indirect evidence suggests tat this operon encodes proteins that may simulate a bacterial conjugative transfer A Vi rB2

IPLKDLRASLPRLAFMAAC .........TLLS5ATLPDLAO. II.: .1. -:: .. 1. II I..: .1. MRCFERYRtVNIIRL.SLSNAVI"tVSCYAPSVVGAMGWS IFSS9G.PAAAOS .: It II .:,1: :11 1:.

Tr,bC

WMTAPFRLSWMNRXILFYIAVFFVLALAL.SAH .......PAASE

PTortB

PTor."B

VirB2 TrbC

1A11IAWAaYKLLFR

.HA

CSVIV I..;CSGN A00SIPASKTIMICTFILCIPF.C0

RA

ACCCLOR

VMAIVVVLRCAkSV

CGTCCLPYESWtLTNLRNSVTCPV

.AFALSIICIWVA

CCVLIFCC.ELNA

PT.rfS DVLDNVRVVLACLLICMASAIARYLLT 102 VirB2

S LLVA

, 121 'VCIVIUSLCTLSCCC

T rbC

rLFatLTVLIGFVLVVLVMNAILLVGASNVNRTC(AE

TrbC

AVRAVAAGltLA 140

IAAAISNGALHOVOVAAAD

B PTor fC V i,rB3

TrbD

PSor fC V irB3

...MRDPLFICOCTRPAlIAMCPATPLAVCSCTrIALLG IWFS IAFLALr NNDRLEEATLYLAATR PALFIA

PLSLACLLVKFACW IVIVONPLY

..4LRT IPIRRGRNM).. DRELVNFSCl^FALI FSAOELRtA PVALL1.. R IlURRDDOOtR IWL LRM§tLSRDRTHAFWOSMVAP EVVLVPLWrG M

v

r

CR

V

C

IbICCASVSPN P

TrbD TVYGLILWFGA.LYAFRIMAKADPKMFRVYLRHRRYKPYY.. PARSTP

PT.rfC LRYAERRRRLRKP 104 Vir,B3 TrbD

lltVPMAROtA 1011

FRNMS=CAYR 103

PSor.fD

NRRCOSWAFAAIARNERAIAAFIPYS

TrbE

NIOA IA I AIALC.ALLLFILFRMIRAVDAL.K.RSKDACLADLLNYA

PTor fD SHLSTS,.LITHCADLVRSWRVOCIAFESAEPELVSIORHEOLNCL;WRA ISC V i rB

CHSD IVLLECCSIU-''11W-lv_

Ar

TLRA lN IAD

Tr,bE AVVDDC;VIVCKNCSrFAWLYKGDNHASSSDOOREVVSAR I NALAGLGS

PSorfD

DOVALWIHCIRRKTOACLDAR YENPFCRALDASYNA

DHVS IYAH LVRHDDYVPPS PARNHFRSArSASLSEAFEE ..RVLSGK LLR.N

TrbE

GWM. IHVDVRR .PAPNYAERCLSAFPDRLTAAIEE.Er.RMNRr ESLGTMY

DHFLTLIVSP.RAALCKVM"FTKRYROKEN. DLTAQRNLEDLWHLVA

TrbE

EGYFVLT LTW rFPPLLAORKr'VELMFDMDATAPDRtBARTRGL IDO FKRDV

Comparative sequence analyses between the virB operon and those present in the data bank revealed striking similarities to the Tra2 operon of RP4 (8) and to the PilW operon of R388 (9-11) that are required for conjugative transfer between bacteria. Here, we report that these DNA transfer related proteins have striking sequence similarities to the open reading frames downstream of the PT operon (12) involved in pertussis toxin biosynthesis in Bordetella pertussis (Figure 1). The amino acid sequence similarity (and identity) between VirB2 and PT-orfB, between VirB3 and PT-orfC, and between the amino terminal portion of VirB4 and PT-orfD are 54% (31%), 54% (26%) and 53 % (25 %), respectively (calculated by the BESTFIT program, GCG, Wisconsin). Noteworthy is that the genetic arrangement are also alike (Figure 2). Although the function of each of the genes of the above operons (virB, Tra2, PilW and PTdownstream orfs') remain to be identified, these genes (and orfs') are likely encoding accessory proteins to facilitate the secretion of either DNA or polypeptide, or both as complexes. That VirBi 1 protein sequence is similar to secretory proteins of Gram-negative bacteria (13) support this concept that the virB operon encodes the secretion machinery necessary for the transfer of T-DNAprotein complexes from A. tumefaciens to plant cells.

ACKNOWLEDGEMENTS We thank the collaborative efforts of Dr Fernando de la Cruz. This work was support by NIH Grant GM-45550-22.

GALE...AYGLRRLG1RE1KoD LrrEVGEA ...LRLIPMTRrTPVP RS IES RLS SAVSLTR LKGHK

C

D

B1

B2

B3

B4

C

D

E

VirB

VNEDS1TTVTH DDFLRWLOFCVrGLMHH W

B

Trb

iSgume 1. Amino acid sequence comparisons between VirB, PT and Trb proteins. A. VirB2 compared withi PTorfB and TrbC. B. VirB3 compared withi PTorfC and TrbD. C. VirB4 compared wit PTorfD and TrbE. *

B

PTorf

PT.rfD TTLR ...SHGE-NH ..EO ITV GETDSA ...CR ...RYSRTL

T rbE

J03320

apparatus to facilitate T-DNA transfer to plants (2-7).

OLLAHVRRMDIGSLI E

VirB4

VirB4

no.

RLOARO

V irB4

PTor fD EFYLTLVWRPGHAALCKRAIHHCOAEVRR

GenBank accession

To whom correspondence should be addressed

LU~~~~~~~Am~~~

Figure 2. Identical genetic arrangement of the ORFs of P, VirB and Trb operons.

354 Nucleic Acids Research, 1993, Vol. 21, No. 2

REFERENCES 1. 2. 3. 4.

5. 6. 7. 8.

Rogowsky,P.M., et al. (1990) Plasmid 23, 85106. Ream,W. (1989) Annu. Rev. Phytopathol. 27, 583-618. Kado,C.I. (1991) Crit. Revs. Plant Sci. 10, 1-32. Zambryski,P. (1992) Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 465-490. Winans,S.C. (1992) Microbiol. Rev. 56, 12-31. Beijersbergen,A., et al. (1992) Science 256, 1324-1327. Kado,C.I. (1993) In: Clewell,D.B., Bacterial Conjugation. Plenum Publ. NY. Lessl,M., et al. (1992) J. Biol. Chemn. 267, 20471-20480.

9. Bolland,S., et al. (1990) J. Bacteriol. 172, 5795-5802. 10. Shirasu,K., et al. (1993) Proc. Natl. Acad. Sci. USA, submitted. 11. Bolland,S., Llosa,M. and de la Cruz,F. unpublished. 12. Nicoisa,A., et al. (1986) Proc. Natl. Acad. Sci. USA 83, 4631-4635. 13. Dums,F., et al. (1991) Mol. Gen. Genet. 229, 357-364.