The Wilkinson Microwave Anisotropy Probe (WMAP) Source Catalog

14 downloads 0 Views 344KB Size Report
Oct 17, 2008 - E. L. Wright2, X. Chen2, N. Odegard3, C. L. Bennett4, R. S. Hill3, G. Hinshaw5, N. ... 8Canadian Institute for Theoretical Astrophysics, 60 St. George St, University of ... Jy in the K, Ka, Q, V & W bands (Chen & Wright 2008).
submitted to ApJS

arXiv:0803.0577v2 [astro-ph] 17 Oct 2008

The Wilkinson Microwave Anisotropy Probe (WMAP1) Source Catalog E. L. Wright2 , X. Chen2 , N. Odegard3 , C. L. Bennett4 , R. S. Hill3 , G. Hinshaw5 , N. Jarosik6 , E. Komatsu7 , M. R. Nolta8 , L. Page6 , D. N. Spergel9,10 , J. L. Weiland3 , E. Wollack5 , J. Dunkley6,9,11 , B. Gold4 , M. Halpern12 , A. Kogut5 , D. Larson4 , M. Limon13 , S. S. Meyer14 , G. S. Tucker15 [email protected] ABSTRACT We present the list of point sources found in the WMAP 5-year maps. The technique used in the first-year and three-year analysis now finds 390 point 1

WMAP is the result of a partnership between Princeton University and NASA’s Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team. 2

UCLA Physics & Astronomy, PO Box 951547, Los Angeles, CA 90095–1547

3

Adnet Systems, Inc., 7515 Mission Dr., Suite A100 Lanham, Maryland 20706

4

Dept. of Physics & Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218-2686 5

Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771

6

Dept. of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708

7

Univ. of Texas, Austin, Dept. of Astronomy, 2511 Speedway, RLM 15.306, Austin, TX 78712

8

Canadian Institute for Theoretical Astrophysics, 60 St. George St, University of Toronto, Toronto, ON Canada M5S 3H8 9

Dept. of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001

10

Princeton Center for Theoretical Physics, Princeton University, Princeton, NJ 08544

11

Astrophysics, University of Oxford, Keble Road, Oxford, OX1 3RH, UK

12

Dept. of Physics and Astronomy, University of British Columbia, Vancouver, BC Canada V6T 1Z1

13

Columbia Astrophysics Laboratory, 550 W. 120th St., Mail Code 5247, New York, NY 10027-6902

14

Depts. of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637

15

Dept. of Physics, Brown University, 182 Hope St., Providence, RI 02912-1843

–2– sources, and the five-year source catalog is complete for regions of the sky away from the galactic plane to a 2 Jy limit, with SNR > 4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the CMB anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2:1 range between the minimum and maximum fluxes. Subject headings: radio sources, variable sources, cosmic microwave background, cosmology: observations, space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

1.

INTRODUCTION

The Wilkinson Microwave Anisotropy Probe (WMAP) (Bennett et al. 2003a) is a Mediumclass Explorer (MIDEX) mission designed to study cosmology by producing full-sky maps of the cosmic microwave background (CMB) anisotropy. WMAP has measured the angular power spectrum of the CMB anisotropy over 103 different values of the spherical harmonic index l. All of these data can be adequately fit by a simple 6 parameter ΛCDM model, and this model can also fit other datasets (Spergel et al. 2007). A determination of the interference from foreground sources is an essential part of the analysis of CMB data (Nolta et al. 2008). The most important foreground at small angular scales is due to extragalactic flatspectrum radio sources. Sources are found by searching the maps for bright spots that approximate the beam profile, but due to the limited angular resolution of WMAP it is possible to confuse positive CMB excursions with point sources. Nonetheless, WMAP provides the only all-sky survey of the millimeter-wave sky so its point source catalogs are valuable for the study of flat-spectrum radio sources. In addition, the WMAP point source catalog is used to mask out contaminated spots in the high galactic latitude sky used for cosmological analyses. 208 point sources were found in a search of the first year of WMAP observations (Bennett et al. 2003b). A search for point sources in the three-year WMAP data found 323 sources (Hinshaw et al. 2007). In this paper we report on 390 point sources found in the WMAP five-year maps. The signal to noise ratio on point sources found in WMAP depends on the the sensitivity in Janskies per pixel and the number of pixels that can be averaged to estimate the flux. Since WMAP was designed to give approximately equal sensitivity in each band, and the

–3– conversion factor from Janskies to Rayleigh-Jeans brightness temperature in Kelvins within a constant pixel size is determined by the illuminated area of the telescope, the sensitivity in Janskies per pixel is fairly constant. The Γf f factors tabulated by Hill et al. (2008) give the peak temperature expected for a 1 Jansky source as 262.7, 211.9, 219.6, 210.1 & 179.2 µK for the K through W bands of WMAP. But the number of pixels that can be averaged to estimate the flux is proportional to the wavelength squared, so the overall radiometer noise contribution to the point source flux uncertainty is approximately proportional to the frequency. WMAP actually illuminates different fractions of the primary mirror in different bands, and does not have exactly the same sensitivity in Kelvins per pixel in each band, so the actual radiometer noise contributions to point source flux estimates are 0.067, 0.11, 0.13, 0.23 & 0.40 Jy divided by the square root of the number of years of observations for sources on the ecliptic where the coverage is smallest. The anisotropy of the CMB itself is also a source of noise that does not integrate down with more years of observation. Using the point-source flux estimating filters on simulated noise-free CMB maps generated using the parameters in Spergel et al. (2007) gives 1σ flux noises of 0.27, 0.41, 0.36, 0.27 & 0.14 Jy in the K, Ka, Q, V & W bands (Chen & Wright 2008). This “CMB noise” term peaks where the beam size matches the first acoustic peak.

2.

POINT SOURCES IN INDIVIDUAL BAND MAPS

Extragalactic point sources contaminate the WMAP anisotropy data and a few hundred of them are strong enough that they should be masked and discarded prior to undertaking any CMB analysis. In this section we describe a new direct search for sources in the five-year WMAP band maps. Based on this search, we update the source mask that was used in the five-year analysis. In the three-year analysis, we produced a catalog of bright point sources in the WMAP sky maps, independent of their presence in external surveys. This process has been repeated 1/2 with the five-year maps as follows. We filter the weighted maps, Nobs T (Nobs is the number of observations per pixel) in harmonic space by bl /(b2l Clcmb +Clnoise ), (Tegmark & de Oliveira-Costa 1998; Refregier et al. 2000), where bl is the transfer function of the WMAP beam response (Page et al. 2003; Jarosik et al. 2007; Hill et al. 2008), Clcmb is the CMB angular power spectrum, and Clnoise is the noise power. Note that the CMB angular power spectrum used in this filtering has been updated to match the parameters from the WMAP three-year analysis, and that the importance of the noise power spectrum goes down as one over the number of years of data. Peaks that are >5σ in the filtered map in any band are fit in the unfiltered maps for all bands to a Gaussian profile plus a planar baseline. The Gaussian amplitude

–4– is converted to a source flux density using the conversion factors given in Hill et al. (2008). When a source is identified with >5σ confidence in any band, the flux densities for other bands are given if they are >2σ and the fit source width is within a factor of 2 of the true beam width. We cross-correlate detected sources with the GB6 (Gregory et al. 1996), PMN (Griffith et al. 1994), and K¨ uhr et al. (1981) catalogs to identify 5 GHz counterparts. If a 5 ′ GHz source is within 11 of the WMAP source position (the WMAP source position uncertainty is 4′ ) we identify the WMAP source with the 5 GHz source and list the identification in Table 1. When more than one source lies within the cutoff radius the brightest one is assumed to be the WMAP counterpart.

–5–

Fig. 1.— Map showing the location of the 390 point sources found by searching individual band maps. The shaded region shows the mask used to exclude extended foreground emission. The size of the plotted points indicates the flux of the source: the area of the dot scales like the maximum flux over the 5 WMAP bands plus 4 Jy. Galactic coordinates are plotted.

–6–

log(S

5/2

dN/dS [Jy

3/2

/sr])

2.5 2.0

30 GHz Toffolatti et al. (1998) model model rescaled by 0.64 de Zotti et al. (2005) model at 33 GHz

1.5 CBI DASI

1.0 VSA

WMAP Ka

0.5 0.0 -3

-2

-1 0 log(S[Jy])

1

2

Fig. 2.— Differential source counts from the WMAP five-year catalog compared the Toffolatti et al. (1998) model, and to CBI counts at 31 GHz (Mason et al. 2003), 33 GHz VSA counts (Cleary et al. 2005), and DASI 31 GHz counts (Kovac et al. 2002). Models from Toffolatti et al. (1998) and de Zotti et al. (2005) are shown as well. Error bars for WMAP are statistical only. The WMAP catalog in the 0.35 to 0.75 Jy bin is quite incomplete, leading to the low data point with the upward arrow on the plot.

–7–

#

60

0 -1.5

-1.0

-0.5

0.0 α

0.5

1.0

1.5

Fig. 3.— A histogram of the spectral indices of WMAP sources in the five-year maps. The smooth curve is a Gaussian with a mean of −0.09 and a standard deviation of 0.28, normalized to the total number of sources.

–8– The catalog of 390 sources obtained from the five-year maps is listed in Table 1. In the first-year catalog, source ID numbers were assigned on the basis of position (sorted by galactic longitude). Now, rather than assigning new numbers to the newly detected sources, we follow Hinshaw et al. (2007) and recommend that WMAP sources be referred to by their coordinates, e.g., WMAP J0006-0622. For reference, we give the first-year source ID in column 3 of Table 1. The 5 GHz IDs are given in the last column. The three-year catalog contained 323 sources. Given the increased sensitivity in the five-year maps, the number of new sources detected is consistent with expectations based on differential source count models. At the same time, three sources from the first-year catalog are not present in the five-year list (numbers 15, 61 & 156). Source numbers 31, 96 and 168 which were missing in the three-year list have been resurrected. Simulations of the first-year catalog suggested that it contained 5 ± 4 false detections, so the number of dropped firstyear sources is consistent with expectations. Nine sources from the three-year catalog are missing from the five-year catalog: WMAP J0513-2015, 0734+5021, 1227+1124, 1231+1351, 1302+4856, 1309+1155, 1440+4958, 1556-7912 & 1648+4114. The sources J1227+1124 and J1231+1351 were spurious detections caused by sidelobes in the filtered maps around the strong source J1230+1223. The problem of strong source sidelobes is handled as follows in the 5-year analysis: after identification of each source with signal-to-noise ratio greater than 30 in a filtered map, the map is cleaned by subtracting the point spread function scaled to the source peak. A total of 6 out of the 323 sources in the three-year catalog could not be identified with 5 GHz counterparts; now 17 out of the 390 sources in the five-year catalog do not have 5 GHz identifications. The strong source J1924-2914 is included in the five-year catalog but not in the previous catalogs because of a small change in the mask used to exclude Galactic plane and Magellanic cloud regions. Isolated mask regions with fewer than 500 contiguous HEALPix res 9 pixels are no longer included in the mask (compare Figure 1 with the Kp0 mask in Figure 2 of Bennett et al. (2003b)). The point source catalog mask shown in Figure 1 is available on the LAMBDA web site, http://lambda.gsfc.nasa.gov. Trushkin (2003) has compiled multifrequency radio spectra and high resolution radio maps of the sources in the first-year WMAP catalog. Reliable identifications are claimed for 205 of the 208 first-year sources. Of the 203 sources with optical identifications, Trushkin (2003) finds 141 quasars, 42 galaxies, or active galactic nuclei, 19 BL Lac-type objects and one planetary nebula, IC418. Forty percent of the sources are identified as having flat and inverted radio spectra, 13% might have GHz-peaked spectra, 8% are classical power-law sources, and 7% have a classical low frequency power-law combined with a flat or inverted spectrum component (like 3C84). Trushkin (2003) suggests that WMAP source number 116 is likely to be spurious and, for source 61 no radio component was found. Indeed, source 61 is not present in either the three-year catalog or the five-year catalog. Giommi et al. (2007)

–9– observed the 23 objects in the first WMAP sample that were not reported as X-ray sources and detected all of these objects in the 0.3 -10 keV band. They report a strong correlation between X-ray and microwave properties for these blazars. The distribution of five-year sources on the sky is shown in Figure 1. A Kp0+LMC+SMC mask was used when finding point sources. This mask excluded 22% of the sky. The source counts in the 33 GHz band are shown in Figure 2. The scaling of the Toffolatti et al. (1998) model has decreased from 0.66 to 0.64. The slope of the WMAP source counts is quite close to the Euclidean dN/dS ∝ S −2.5 slope, while both the models (Toffolatti et al. 1998; de Zotti et al. 2005) and the more sensitive data (Mason et al. 2003; Cleary et al. 2005) show sub-Euclidean faint source counts. The spectral indices of the sources are clustered near a flat spectrum, α = 0 in Fν ∝ ν α . A histogram of the measured α’s is shown in Figure 3. The smooth curve is a Gaussian with a mean of hαi = −0.09 and σ = 0.28. This σ includes measurement errors and is thus an upper limit on the true dispersion of spectral indices. Assuming for simplicity that the underlying distributions of spectral indices is a Gaussian with standard deviation σ◦ , then the intrinsic dispersion that gives χ2 per degree of freedom equal to unity is σ◦ = 0.176 and the weighted mean hαi = −0.09.

2.1.

Analysis of Simulated Maps

The point source analysis was repeated on simulated maps constructed with point sources, CMB fluctuations, and radiometer noise. 106 sources were sampled from from a power law N(> S) distribution at 30 GHz. This distribution was matched to the de Zotti et al. (2005) source count model. Spectral indices were then chosen from a Gaussian with mean -0.09 and standard deviation 0.176, and the fluxes were scaled to the 5 WMAP band centers. For each source, the appropriate temperature in each band was then added to a randomly chosen HEALpix pixel at resolution 11 (a total of 12 × 411 pixels). These point source maps, one for each band, were then smoothed with the beam window function and converted to a resolution 9 map, and added to a simulated CMB plus radiometer noise maps. The point source detection process was then applied to these simulated maps, yielding 363 point sources. Of these, only 6 were spurious. The recovered N(> S) agreed with the simulation input for fluxes > 1 Jy, but fell well below the input at lower fluxes. Since sources with fluxes < 1 Jy are unlikely to be detected, the ones that are detected tend to have “benefited” from a positive noise or CMB fluctuation, leading to a bias at low fluxes (Eddington 1913). The mean ratio of the derived flux to the input flux in bands K-V is within 5% of unity for fluxes > 1 Jy, but then increases by 10-20% or more for fluxes < 1 Jy. In the W band the measured

– 10 – flux is about 10% below the input flux for fluxes > 2 Jy, and rises to > 20% above the input flux for fluxes < 1 Jy. The bias in the W band flux for high fluxes could be due to the Gaussian approximation used in flux fitting. The deviation of the mean measured spectral index from the input spectral index is about -0.02 for Q band fluxes > 2 Jy, but rises to +0.04 Jy at 1 Jy and is higher than +0.10 for fluxes less than 1 Jy. We conclude that the fluxes and spectral indices are reliable for fluxes > 2 Jy, but small biases are present for fluxes ∼ 1 Jy.

3.

POINT SOURCES IN CMB-FREE ILC MAPS

The number of sources detected by WMAP as a function of integration times varied as 0.37 N ∝ t0.4 int between the one-year and the three-year catalogs, but slowed slightly to ∝ tint between the three-year and the five-year maps. This could be due to the “noise” from the CMB, which does not integrate down with increased observing time. An approach to circumvent this noise term has been developed by Chen & Wright (2008). It involves forming internal linear combination (ILC) maps from the WMAP bands, but unlike the normal ILC maps which preserve the CMB and suppress foregrounds, these ILC maps are designed to suppress the CMB. Applying this technique to the WMAP V and W bands alone, Chen & Wright (2008) found 31 sources in the one-year maps and 64 sources in the three-year maps. This gives N ∝ t0.66 int indicating that the ILC technique improves rapidly with increased observing time. We have applied this ILC V-W technique to the five-year maps and there are 99 sources detected in the region with |b| > 10◦ . These are listed in Table 2. Among them, 64 are in the WMAP 5 year source catalog, 17 can be identified with sources in NED based on continuity of spectral energy distributions, 17 are in complex galactic emission regions, leaving only one source at 09h 21m 28s , +7◦ 24′22′′ without any identification. The V-W technique can find sources sitting in negative peaks of the CMB where the standard flux finding technique returns an insignificant or even negative flux. V band fluxes for these sources have been estimated by multiplying the value of the V-W map in mK, tabulated in Table 2, by the median conversion factor derived from the sources identified in Table 1. This factor is 6.28 Jy per mK. Of the 99 sources in Table 2, 12 are in the source list by Nie & Zhang (2007) using the cross-correlation detection method, 8 are in the are in the new detections of the non-blind catalog by L´opez-Caniego et al. (2007), 27 are in the AT20G Bright Source Sample (Massardi et al. 2008), and 70 are in the CRATES catalog Healey et al. (2007). The number of sources found by the ILC V-W technique continues to increase fairly quickly with increased integration time, going like t0.72 from 1 year to 5 years. For Euclidean

– 11 – source counts the expected scaling is t0.75 .

4.

FLUX VARIABILITY OVER FIVE YEARS

– 12 –

4

J1256-0547 C=2.4 J1229+0203 C=2.3

J0423-0120 C=2.6

J0538-4405 C=1.9

J0403-3604 C=2.1

J2258-2757 C=2.2

3

J1337-1257 C=1.3

log(Fν [Jy])+C

J0635-7517 C=1.4 J2056-4716 C=1.3

2 J0721+7122 C=1.0

J1642+3948 C=0.3 J1635+3807 C=0.2

1

J0440-4333 C=0

K Ka Q V W J1159+2914 C=-0.4 J2232+1144 C=-0.8

0

-1 1

2

3

Year

4

5

1

2

3

Year

4

5

1

2

3

4

5

Year

Fig. 4.— The 15 sources with the highest χ2 for a fit of a constant flux with an arbitrary spectrum. The 23 GHz data are plotted in red, the 33 GHz data are plotted in orange, the 41 GHz data are plotted in green, the 61 GHZ data are plotted in blue, and the 94 GHz data are plotted in purple.

– 13 – An analysis of the variability of the WMAP point sources has been performed by forming fluxes from the individual year maps. It is possible to measure the variability of a source without any noise contribution from the CMB by subtracting the five-year average map from each individual year. The fit of a Gaussian beam plus planar baseline to this difference map then gives a ∆Fi for the ith year, and the flux for the ith year is then given by Fi = hF i + ∆Fi where the five-year average flux is hF i. There are 25 data points for a source detected in all five bands, and fitting an arbitrary spectrum that is constant in time leaves 20 degrees of freedom. 137 of the 390 sources in Table 1 give χ2 > 37.6 relative to this fit and thus are variable at greater than 99% confidence. Sources with χ2 > 37.6 are flagged with a “v” in the notes column of Table 1. The 54 sources with χ2 > 100 have a “V” in the notes column. These are generally the brighter sources which have smaller relative flux errors, allowing a better detection of variability. The 5 band lightcurves for the 15 sources with χ2 > 450 are plotted in Figure 4. The median rms variability of the Q band fluxes among the 25 brightest Q band sources is 23%, after allowing for the flux variations due to radiometer noise. It is clear from Figure 4 that most of the variability involves the entire spectrum of a source moving up and down together, at least on the one year time resolution of this analysis. The full table of year-by-year and band-by-band fluxes for WMAP sources will be available on LAMBDA.

5.

POLARIZATION

In general the WMAP detected point sources are not strongly polarized. Of the 390 sources in Table 3, only 5 have polarizations greater than 4σ in two or more bands. These sources are listed in Table 3. In order to assess the average polarization of the sources, the 2 square of the polarized flux, evaluated as Q2 + U 2 − σQ − σU2 , was fit to the form p2 I 2 . This gave mean polarization percentages of p = 2.9, 2.2, 1.9, < 3.4 & < 8.5% in K, Ka, Q, V & W. For the V & W bands 2σ upper limits on the mean polarization percentage are given.

6.

EFFECT ON THE POWER SPECTRUM

Uncorrelated point sources contribute a power spectrum Cl = const to the power spectrum. Since one has to divide by the beam function b2l and multiply by l(l + 1)/2π to put this on the usual angular power spectrum plot, point sources give a large contribution to the power spectrum at high l. This can be estimated and removed from the cosmological signal

– 14 – in several different ways. The first technique puts an adjustable constant term in the model Cl , while a second technique fits the difference between frequency bands to a constant Cl . The CMB gives the same angular power spectrum in different bands, but the contribution of radio point sources is strongly frequency dependent: Cli,src

= A gi gi′



νi νQ

β 

νi′ νQ



wli ,

(1)

where Cli,src is the point source contribution to the observed cross-power spectrum between bands i and i′ , the factors gi convert the result to thermodynamic temperature, νQ ≡ 40.7 GHz, and we assume a power law frequency spectrum with index β = hαi − 2. The window ′ function wli = bil bil p2l as in Hinshaw et al. (2007). A third technique computes the effect of unresolved point sources using a model for the counts of sources too faint to be in the catalog. This gives −2 Z Slim    dN ∂Bν 2 S dS (2) Cl = ∂T dS 0 for uncorrelated sources, where ∂Bν /∂T converts temperature into intensity, or equivalently the integral of T dΩ in the definition of alm into flux. Thus the point source contribution to an observed cross-power spectrum can be written   Z c4 i,src i ′ Cl = (3) gi gi wl Si Si′ dN 4k 2 (νi νi′ )2 where the integral is over all unmasked sources. If the wrong spectral index is used to convert the difference between power spectra at different frequencies into a point source contribution, then there will be a systematic error in the cosmological parameters, primarily in the spectral index ns . This effect can be estimated using a simple model for the correction to the 61 GHz Cl derived from the difference between the 41 and 94 GHz spectra: ∆ClV = νVβ

ClQ − ClW ≈ ClV (β = −2)(1 + 0.59(β + 2) + . . .) β β νQ − νW

(4)

Thus if β were really -2.09 instead of -2 then the correction to the 61 GHz power spectrum should be 5% smaller than that which would be estimated assuming β = −2. Huffenberger et al. (2006) found that decreasing the point source correction by 44% changed the spectral index ns by 0.018 so changing β from -2.0 to -2.09 would change ns by 0.0022, or 0.15σ.

– 15 – 7.

SUMMARY AND CONCLUSIONS

There are no other radio surveys that provide the wide coverage of WMAP at frequencies from 23-100 GHz. In addition, WMAP provides year by year fluxes to track the variability of bright millimeter-wave sources. We present catalogs of point sources found in the WMAP 5 year dataset. Two different approaches have been used: the standard approach of looking for peaks in single band maps that have been convolved with a matched filter, and a new approach that constructs CMB-free internal linear combination maps. Using the 61 and 94 GHz data gives a catalog with somewhat lower sensitivity than the standard approach, but with better positional accuracy. The estimated contamination of the CMB angular power spectrum by unmasked point sources has been estimated, with results that are consistent with previous analyses and with the differences between angular power spectra in different bands (Nolta et al. 2008). Remaining uncertainties in the point source correction contribute to the uncertainty of the cosmological parameters, with the biggest effect occurring for ns . The WMAP mission is made possible by the support of the Science Mission Directorate Office at NASA Headquarters. This research was additionally supported by NASA grants NNG05GE76G, NNX07AL75G S01, LTSA03-000-0090, ATPNNG04GK55G, and ADP030000-092. EK acknowledges support from an Alfred P. Sloan Research Fellowship. This research has made use of NASA’s Astrophysics Data System Bibliographic Services. We acknowledge use of the HEALPix, CAMB, and CMBFAST packages.

REFERENCES Bennett, C. L., Bay, M., Halpern, M., Hinshaw, G., Jackson, C., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Page, L., Spergel, D. N., Tucker, G. S., Wilkinson, D. T., Wollack, E., & Wright, E. L. 2003a, ApJ, 583, 1 Bennett, C. L., Hill, R. S., Hinshaw, G., Nolta, M. R., Odegard, N., Page, L., Spergel, D. N., Weiland, J. L., Wright, E. L., Halpern, M., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., & Wollack, E. 2003b, ApJS, 148, 97 Chen, X. & Wright, E. 2008, ApJ, 681, 747 Cleary, K. A., Taylor, A. C., Waldram, E., Battye, R. A., Dickinson, C., Davies, R. D., Davis, R. J., Genova-Santos, R., Grainge, K., Jones, M. E., Kneissl, R., Pooley, G. G., Rebolo, R., Rubi˜ no-Mart´ın, J. A., Saunders, R. D. E., Scott, P. F., Slosar, A., Titterington, D., & Watson, R. A. 2005, MNRAS, 360, 340

– 16 – de Zotti, G., Ricci, R., Mesa, D., Silva, L., Mazzotta, P., Toffolatti, L., & Gonz´alez-Nuevo, J. 2005, A&A, 431, 893 Eddington, A. S. 1913, MNRAS, 73, 359. Giommi, P., Capalbi, M., Cavazzuti, E., Colafrancesco, S., Cucchiara, A., Falcone, A., Kennea, J., Nesci, R., Perri, M., Tagliaferri, G., Tramacere, A., Tosti, G., Blustin, A. J., Branduardi-Raymont, G., Burrows, D. N., Chincarini, G., Dean, A. J., Gehrels, N., Krimm, H., Marshall, F., Parsons, A. M., & Zhang, B. 2007, A&A, 468, 571 Gregory, P. C., Scott, W. K., Douglas, K., & Condon, J. J. 1996, ApJS, 103, 427 Griffith, M. R., Wright, A. E., Burke, B. F., & Ekers, R. D. 1994, ApJS, 90, 179 Healey, S. E., Romani, R. W., Taylor, G. B., Sadler, E. M., Ricci, R., Murphy, T., Ulvestad, J. S., & Winn, J. N. 2007, ApJS, 171, 61 Hill, R. et al. 2008, ApJS submitted Hinshaw, G., Nolta, M. R., Bennett, C. L., Bean, R., Dor´e, O., Greason, M. R., Halpern, M., Hill, R. S., Jarosik, N., Kogut, A., Komatsu, E., Limon, M., Odegard, N., Meyer, S. S., Page, L., Peiris, H. V., Spergel, D. N., Tucker, G. S., Verde, L., Weiland, J. L., Wollack, E., & Wright, E. L. 2007, ApJS, 170, 288 Huffenberger, K. M., Eriksen, H. K., & Hansen, F. K. 2006, ApJ, 651, L81 Jarosik, N., Barnes, C., Greason, M. R., Hill, R. S., Nolta, M. R., Odegard, N., Weiland, J. L., Bean, R., Bennett, C. L., Dor´e, O., Halpern, M., Hinshaw, G., Kogut, A., Komatsu, E., Limon, M., Meyer, S. S., Page, L., Spergel, D. N., Tucker, G. S., Wollack, E., & Wright, E. L. 2007, ApJS, 170, 263 Kovac, J. M., Leitch, E. M., Pryke, C., Carlstrom, J. E., Halverson, N. W., & Holzapfel, W. L. 2002, Nature, 420, 772 K¨ uhr, H., Witzel, A., Pauliny-Toth, I. I. K., & Nauber, U. 1981, A&AS, 45, 367 L´opez-Caniego, M., Gonz´alez-Nuevo, J., Herranz, D., Massardi, M., Sanz, J. L., De Zotti, G., Toffolatti, L., & Arg¨ ueso, F. 2007, ApJS, 170, 108 Mason, B. S., Pearson, T. J., Readhead, A. C. S., Shepherd, M. C., Sievers, J., Udomprasert, P. S., Cartwright, J. K., Farmer, A. J., Padin, S., Myers, S. T., Bond, J. R., Contaldi, C. R., Pen, U., Prunet, S., Pogosyan, D., Carlstrom, J. E., Kovac, J., Leitch, E. M., Pryke, C., Halverson, N. W., Holzapfel, W. L., Altamirano, P., Bronfman, L., Casassus, S., May, J., & Joy, M. 2003, ApJ, 591, 540

– 17 – Massardi, M., Ekers, R. D., Murphy, T., Ricci, R., Sadler, E. M., Burke, S., De Zotti, G., Edwards, P. G., Hancock, P. J., Jackson, C. A., Kesteven, M. J., Mahony, E., Phillips, C. J., Staveley–Smith, L., Subrahmanyan, R., Walker, M. A., & Wilson, W. E. 2008, MNRAS, 384, 775 Nie, J.-Y. & Zhang, S.-N. 2007, Chinese Journal of Astronomy and Astrophysics, 7, 199 Nolta, M. R. et al. 2008, ApJS submitted Page, L., Barnes, C., Hinshaw, G., Spergel, D. N., Weiland, J. L., Wollack, E., Bennett, C. L., Halpern, M., Jarosik, N., Kogut, A., Limon, M., Meyer, S. S., Tucker, G. S., & Wright, E. L. 2003, ApJS, 148, 39 Refregier, A., Spergel, D. N., & Herbig, T. 2000, ApJ, 531, 31 Spergel, D. N., Bean, R., Dor´e, O., Nolta, M. R., Bennett, C. L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H. V., Verde, L., Halpern, M., Hill, R. S., Kogut, A., Limon, M., Meyer, S. S., Odegard, N., Tucker, G. S., Weiland, J. L., Wollack, E., & Wright, E. L. 2007, ApJS, 170, 377 Tegmark, M. & de Oliveira-Costa, A. 1998, ApJ, 500, L83 Toffolatti, L., Argueso Gomez, F., de Zotti, G., Mazzei, P., Franceschini, A., Danese, L., & Burigana, C. 1998, MNRAS, 297, 117 Trushkin, S. A. 2003, Bull. Spec. Astrophys. Obs. N. Caucasus, 55, 90

This preprint was prepared with the AAS LATEX macros v5.2.

– 18 –

Table 1. WMAP Source Catalog RA [hms] 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 02 02 02 02 02 02

03 06 10 12 19 19 25 26 29 38 43 47 49 50 50 51 00 06 08 08 15 16 21 25 32 33 33 37 37 49 52 04 05 05 10 18 20

20 06 37 53 18 40 22 07 34 14 12 19 50 48 49 02 08 43 30 43 21 18 46 21 36 08 26 01 37 10 28 49 01 03 51 27 57

Dec [dm] −47 −06 11 −39 26 20 −26 −35 05 −24 52 −25 −57 −42 −06 −09 −56 −40 13 01 −01 −11 11 −00 −16 −52 −36 47 −24 05 22 15 32 −17 −51 01 35

52 23 01 52 03 20 02 10 54 59 08 14 39 24 49 27 54 35 19 35 29 37 50 10 53 00 27 53 28 53 08 13 13 04 00 38 58

ID

060 202

062 179

077 171 079 081

086 097 168 080

092 085 158 096

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

··· 2.3 ± 0.06 1.1 ± 0.07 1.3 ± 0.04 1.0 ± 0.06 1.0 ± 0.06 0.9 ± 0.05 1.1 ± 0.07 1.1 ± 0.06 0.7 ± 0.06 1.0 ± 0.04 1.1 ± 0.06 1.4 ± 0.05 1.3 ± 0.03 1.1 ± 0.06 1.0 ± 0.06 0.5 ± 0.04 2.2 ± 0.04 1.4 ± 0.06 1.9 ± 0.06 0.9 ± 0.05 1.3 ± 0.07 1.2 ± 0.05 1.1 ± 0.06 1.8 ± 0.05 0.8 ± 0.05 0.6 ± 0.06 3.8 ± 0.05 1.3 ± 0.06 1.0 ± 0.06 1.2 ± 0.09 1.3 ± 0.06 1.6 ± 0.07 0.7 ± 0.1 2.7 ± 0.05 1.3 ± 0.05 1.2 ± 0.06

0.7 ± 0.06 2.3 ± 0.1 1.2 ± 0.1 1.3 ± 0.08 0.7 ± 0.1 1.1 ± 0.08 0.7 ± 0.09 1.1 ± 0.09 1.3 ± 0.09 0.8 ± 0.1 0.6 ± 0.07 0.9 ± 0.1 1.4 ± 0.07 1.3 ± 0.06 1.1 ± 0.09 1.0 ± 0.08 0.7 ± 0.08 2.4 ± 0.07 1.1 ± 0.1 1.9 ± 0.08 1.2 ± 0.08 1.0 ± 0.1 1.1 ± 0.1 1.2 ± 0.09 1.8 ± 0.09 1.1 ± 0.08 0.6 ± 0.1 3.8 ± 0.09 1.3 ± 0.09 0.7 ± 0.09 1.3 ± 0.2 1.3 ± 0.1 1.5 ± 0.1 ··· 2.7 ± 0.08 1.2 ± 0.08 1.2 ± 0.09

0.7 ± 0.09 2.3 ± 0.1 1.2 ± 0.1 1.0 ± 0.09 0.8 ± 0.1 0.9 ± 0.09 0.5 ± 0.08 1.4 ± 0.1 1.0 ± 0.09 0.6 ± 0.1 0.5 ± 0.08 1.1 ± 0.1 1.2 ± 0.07 1.2 ± 0.06 0.7 ± 0.1 0.8 ± 0.09 0.8 ± 0.08 2.2 ± 0.09 0.8 ± 0.2 1.7 ± 0.1 1.0 ± 0.09 1.0 ± 0.1 1.2 ± 0.1 1.1 ± 0.1 1.8 ± 0.1 0.7 ± 0.07 ··· 3.6 ± 0.1 1.8 ± 0.1 0.8 ± 0.1 1.3 ± 0.1 1.1 ± 0.1 1.2 ± 0.1 0.9 ± 0.2 2.8 ± 0.09 0.8 ± 0.1 0.9 ± 0.1

0.4 ± 0.1 2.0 ± 0.2 1.0 ± 0.2 1.3 ± 0.2 0.5 ± 0.2 1.3 ± 0.2 ··· 1.0 ± 0.2 0.7 ± 0.2 1.1 ± 0.3 0.5 ± 0.1 1.0 ± 0.2 1.2 ± 0.2 0.7 ± 0.1 1.3 ± 0.2 1.1 ± 0.2 0.5 ± 0.1 2.0 ± 0.2 ··· 1.5 ± 0.2 1.1 ± 0.1 1.5 ± 0.3 0.6 ± 0.2 0.8 ± 0.2 1.6 ± 0.2 ··· ··· 3.2 ± 0.2 1.4 ± 0.2 ··· 1.4 ± 0.2 1.6 ± 0.3 0.7 ± 0.2 0.8 ± 0.1 2.7 ± 0.2 ··· 1.1 ± 0.2

··· ··· 1.6 ± 0.5 0.8 ± 0.2 1.4 ± 0.3 ··· ··· ··· ··· ··· ··· 0.9 ± 0.2 0.8 ± 0.3 0.8 ± 0.2 1.2 ± 0.5 ··· ··· 1.5 ± 0.3 ··· ··· ··· ··· ··· ··· 1.3 ± 0.3 ··· ··· 1.8 ± 0.2 ··· ··· 1.7 ± 0.5 ··· ··· 0.6 ± 0.3 2.1 ± 0.4 0.7 ± 0.3 1.3 ± 0.3

−0.7 ± 1 −0.1 ± 0.2 0.1 ± 0.3 −0.2 ± 0.2 0.0 ± 0.3 0.1 ± 0.3 −0.8 ± 0.6 0.2 ± 0.3 −0.1 ± 0.3 0.3 ± 0.5 −1.0 ± 0.4 −0.1 ± 0.3 −0.2 ± 0.2 −0.2 ± 0.2 −0.0 ± 0.3 −0.1 ± 0.3 0.3 ± 0.4 −0.0 ± 0.1 −0.8 ± 0.6 −0.1 ± 0.2 0.2 ± 0.3 −0.1 ± 0.4 −0.3 ± 0.4 −0.0 ± 0.3 −0.1 ± 0.2 0.0 ± 0.4 −0.3 ± 1 −0.2 ± 0.09 0.4 ± 0.3 −0.4 ± 0.5 0.2 ± 0.3 0.0 ± 0.3 −0.5 ± 0.3 0.0 ± 0.5 0.0 ± 0.1 −0.5 ± 0.3 −0.1 ± 0.2

··· PMN J0006-0623 GB6 J0010+1058 PMN J0013-3954 GB6 J0019+2602 GB6 J0019+2021 PMN J0025-2602 PMN J0026-3512 GB6 J0029+0554B PMN J0038-2459 GB6 J0043+5203 PMN J0047-2517 PMN J0050-5738 PMN J0051-4226 PMN J0051-0650 PMN J0050-0928 ··· PMN J0106-4034 GB6 J0108+1319 GB6 J0108+0135 PMN J0115-0127 PMN J0116-1136 GB6 J0121+1149 PMN J0125-0005 PMN J0132-1654 PMN J0133-5159 PMN J0134-3629 GB6 J0136+4751 PMN J0137-2430 GB6 J0149+0555 GB6 J0152+2206 GB6 J0204+1514 GB6 J0205+3212 PMN J0204-1701 PMN J0210-5101 ··· GB6 J0221+3556

Notes

v V

a v a

v v

V

a,V

a

a V V

v

v

– 19 –

Table 1—Continued RA [hms] 02 02 02 02 02 02 02 02 02 02 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04

22 23 31 31 37 38 41 45 53 59 03 08 09 09 12 12 19 22 25 29 34 36 39 40 48 58 03 05 07 08 11 16 23 23 24 24 28

45 10 37 39 58 48 18 18 33 31 33 26 16 50 21 50 45 25 14 45 20 49 24 29 51 47 57 36 02 50 23 32 16 50 53 56 27

Dec [dm] −34 43 13 −47 28 16 −08 −44 −54 −00 −62 04 10 −61 −76 01 41 −37 22 −23 −40 −12 −01 −21 −27 10 −36 −13 −38 −75 76 −20 −01 02 00 −37 −37

40 03 20 42 48 37 21 56 42 15 12 05 28 02 45 31 31 11 25 54 07 57 43 19 47 29 04 04 25 06 54 51 20 18 35 57 57

ID

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

137 084

1.0 ± 0.03 1.8 ± 0.06 1.3 ± 0.07 0.7 ± 0.05 3.8 ± 0.06 1.5 ± 0.08 1.0 ± 0.06 0.5 ± 0.05 2.4 ± 0.04 1.1 ± 0.06 1.4 ± 0.06 1.3 ± 0.07 1.1 ± 0.07 1.1 ± 0.05 1.0 ± 0.05 0.9 ± 0.06 11.3 ± 0.06 18.5 ± 3.1 0.8 ± 0.08 1.2 ± 0.05 1.4 ± 0.05 1.0 ± 0.05 2.4 ± 0.07 1.1 ± 0.05 1.2 ± 0.03 1.2 ± 0.1 3.4 ± 0.05 2.0 ± 0.06 1.1 ± 0.06 0.8 ± 0.04 1.0 ± 0.05 1.1 ± 0.05 8.2 ± 0.06 1.2 ± 0.05 1.5 ± 0.08 1.5 ± 0.05 1.5 ± 0.05

1.0 ± 0.05 1.4 ± 0.1 1.2 ± 0.08 0.9 ± 0.09 3.4 ± 0.1 1.6 ± 0.1 0.7 ± 0.09 0.7 ± 0.1 2.7 ± 0.07 1.4 ± 0.08 1.3 ± 0.1 1.3 ± 0.1 1.3 ± 0.1 1.2 ± 0.08 1.2 ± 0.08 0.8 ± 0.2 8.9 ± 0.09 12.6 ± 2.0 0.9 ± 0.1 1.3 ± 0.07 1.5 ± 0.07 0.9 ± 0.07 2.3 ± 0.1 1.1 ± 0.07 1.0 ± 0.06 1.1 ± 0.2 3.8 ± 0.08 1.8 ± 0.09 1.0 ± 0.1 0.5 ± 0.06 0.7 ± 0.1 1.1 ± 0.08 8.3 ± 0.1 1.0 ± 0.08 1.6 ± 0.1 1.2 ± 0.1 1.4 ± 0.08

··· 1.4 ± 0.1 1.2 ± 0.1 0.9 ± 0.07 3.5 ± 0.1 1.6 ± 0.1 0.7 ± 0.1 0.6 ± 0.09 2.5 ± 0.08 1.2 ± 0.08 1.4 ± 0.08 1.2 ± 0.1 1.3 ± 0.1 0.9 ± 0.07 1.1 ± 0.07 0.9 ± 0.1 7.5 ± 0.1 10.6 ± 1.9 1.1 ± 0.2 1.2 ± 0.1 1.4 ± 0.07 1.1 ± 0.1 2.2 ± 0.1 1.1 ± 0.09 0.9 ± 0.07 ··· 3.6 ± 0.08 1.7 ± 0.1 0.9 ± 0.08 0.3 ± 0.08 0.7 ± 0.1 1.0 ± 0.08 7.9 ± 0.1 0.7 ± 0.09 1.8 ± 0.1 1.2 ± 0.1 1.3 ± 0.07

0.7 ± 0.1 1.3 ± 0.3 0.9 ± 0.2 1.2 ± 0.1 3.2 ± 0.3 1.6 ± 0.3 ··· 0.7 ± 0.2 2.2 ± 0.1 0.8 ± 0.1 1.3 ± 0.1 0.9 ± 0.3 1.5 ± 0.2 0.9 ± 0.2 0.9 ± 0.1 0.8 ± 0.2 5.6 ± 0.2 8.4 ± 2.5 0.5 ± 0.2 1.0 ± 0.1 1.4 ± 0.1 0.9 ± 0.1 1.7 ± 0.2 1.2 ± 0.1 1.5 ± 0.2 ··· 3.4 ± 0.1 1.5 ± 0.2 0.8 ± 0.1 ··· 0.8 ± 0.2 0.8 ± 0.2 7.1 ± 0.2 ··· 1.3 ± 0.2 1.5 ± 0.2 1.3 ± 0.2

··· 1.2 ± 0.2 ··· 0.7 ± 0.2 2.1 ± 0.4 ··· ··· ··· 1.8 ± 0.3 ··· 1.0 ± 0.2 ··· 1.5 ± 0.5 0.7 ± 0.3 0.8 ± 0.3 ··· 3.9 ± 0.4 ··· ··· 0.9 ± 0.2 1.5 ± 0.4 0.7 ± 0.3 2.1 ± 0.3 1.2 ± 0.2 ··· ··· 3.0 ± 0.3 ··· ··· ··· 0.8 ± 0.2 ··· 4.9 ± 0.4 ··· ··· ··· 1.2 ± 0.4

−0.2 ± 0.3 −0.4 ± 0.2 −0.2 ± 0.3 0.3 ± 0.2 −0.2 ± 0.1 0.1 ± 0.3 −0.8 ± 0.5 0.5 ± 0.5 0.0 ± 0.1 0.0 ± 0.3 −0.1 ± 0.2 −0.1 ± 0.4 0.3 ± 0.3 −0.2 ± 0.3 −0.0 ± 0.2 0.0 ± 0.4 −0.7 ± 0.04 −0.8 ± 0.2 0.1 ± 0.5 −0.0 ± 0.2 0.0 ± 0.2 −0.1 ± 0.3 −0.2 ± 0.1 0.1 ± 0.2 −0.2 ± 0.2 −0.1 ± 1 0.0 ± 0.07 −0.3 ± 0.2 −0.4 ± 0.3 −1.4 ± 0.6 −0.3 ± 0.3 −0.1 ± 0.3 −0.1 ± 0.05 −0.8 ± 0.4 0.2 ± 0.3 −0.1 ± 0.2 −0.2 ± 0.2

PMN J0222-3441 GB6 J0223+4259 GB6 J0231+1323 PMN J0231-4746 GB6 J0237+2848 GB6 J0238+1637 PMN J0241-0815 PMN J0245-4459 PMN J0253-5441 PMN J0259-0020 PMN J0303-6211 GB6 J0308+0406 GB6 J0309+1029 PMN J0309-6058 PMN J0311-7651 GB6 J0312+0132 GB6 J0319+4130 1Jy 0320-37 GB6 J0325+2223 PMN J0329-2357 PMN J0334-4008 PMN J0336-1302 PMN J0339-0146 PMN J0340-2119 PMN J0348-2749 GB6 J0358+1026 PMN J0403-3605 PMN J0405-1308 PMN J0406-3826 PMN J0408-7507 1Jy 0403+76 PMN J0416-2056 PMN J0423-0120 GB6 J0424+0226 GB6 J0424+0036 PMN J0424-3756 PMN J0428-3756

093

155 162 102 160 174 094 138 123 146 106 129 136 114 141 082 110 109 140

Notes

a

V v v

V

v b

V

v

V v

V

v V a

– 20 –

Table 1—Continued RA [hms] 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 05 06 06 06 06 06 06 06 06 06 06 06 06

33 40 42 49 53 55 56 01 06 13 15 19 19 23 25 25 27 34 38 39 40 42 50 55 59 07 08 09 21 23 26 29 32 33 34 35 36

13 16 45 18 19 55 59 18 55 56 20 21 42 02 05 31 34 23 52 48 44 28 39 59 53 00 47 37 02 03 34 28 21 51 38 51 31

Dec [dm] 05 −43 −00 −81 −28 −46 −23 −01 −61 −21 −45 −05 −45 −36 −23 −48 −12 −61 −44 −28 −54 49 −57 39 −45 67 −22 −15 −25 −64 −35 −19 −69 −22 −23 −75 −20

21 32 17 00 06 17 22 59 08 55 58 39 46 27 37 26 41 07 05 44 15 51 31 42 28 23 20 41 16 36 23 58 28 18 37 17 31

ID

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

108 147

2.4 ± 0.06 2.5 ± 0.06 0.9 ± 0.06 1.7 ± 0.05 1.5 ± 0.06 3.9 ± 0.05 2.4 ± 0.04 1.1 ± 0.07 2.1 ± 0.04 1.1 ± 0.04 ··· 2.4 ± 0.06 6.8 ± 0.05 4.2 ± 0.05 0.7 ± 0.04 0.9 ± 0.04 1.4 ± 0.05 0.5 ± 0.03 5.6 ± 0.05 0.6 ± 0.09 1.4 ± 0.05 1.7 ± 0.07 1.2 ± 0.04 3.0 ± 0.06 0.7 ± 0.05 1.2 ± 0.04 1.1 ± 0.04 3.7 ± 0.05 0.6 ± 0.06 0.9 ± 0.03 0.7 ± 0.06 1.5 ± 0.04 0.4 ± 0.03 0.5 ± 0.06 0.6 ± 0.05 4.3 ± 0.04 1.1 ± 0.04

2.4 ± 0.1 2.3 ± 0.09 0.8 ± 0.1 1.8 ± 0.08 1.5 ± 0.09 4.0 ± 0.09 2.5 ± 0.07 1.2 ± 0.1 1.8 ± 0.06 1.1 ± 0.06 ··· 1.8 ± 0.07 5.3 ± 0.08 3.9 ± 0.08 0.9 ± 0.06 1.3 ± 0.07 1.6 ± 0.09 0.5 ± 0.05 5.9 ± 0.08 0.6 ± 0.08 1.4 ± 0.07 1.3 ± 0.1 1.0 ± 0.05 2.4 ± 0.09 1.0 ± 0.07 0.9 ± 0.05 1.1 ± 0.06 3.3 ± 0.09 0.5 ± 0.1 0.8 ± 0.05 0.5 ± 0.1 1.4 ± 0.07 0.5 ± 0.04 0.6 ± 0.07 0.7 ± 0.08 3.9 ± 0.06 1.1 ± 0.06

2.3 ± 0.1 2.2 ± 0.08 1.2 ± 0.2 1.6 ± 0.09 1.4 ± 0.08 4.0 ± 0.09 2.4 ± 0.1 1.1 ± 0.1 1.6 ± 0.07 0.9 ± 0.09 0.9 ± 0.1 1.2 ± 0.09 4.4 ± 0.1 3.8 ± 0.1 0.7 ± 0.07 1.3 ± 0.09 1.4 ± 0.1 0.6 ± 0.05 6.0 ± 0.09 0.6 ± 0.1 1.4 ± 0.09 1.3 ± 0.1 1.0 ± 0.08 1.7 ± 0.1 0.9 ± 0.06 0.7 ± 0.08 0.9 ± 0.08 3.1 ± 0.1 0.3 ± 0.1 0.8 ± 0.04 ··· 1.4 ± 0.1 0.4 ± 0.04 0.7 ± 0.1 0.6 ± 0.08 3.6 ± 0.07 1.0 ± 0.08

2.5 ± 0.3 1.7 ± 0.2 0.8 ± 0.2 1.6 ± 0.1 1.2 ± 0.2 3.5 ± 0.2 1.9 ± 0.2 1.0 ± 0.3 1.1 ± 0.1 ··· 1.1 ± 0.2 0.8 ± 0.1 3.3 ± 0.2 3.5 ± 0.2 0.8 ± 0.2 1.1 ± 0.1 1.2 ± 0.1 0.6 ± 0.09 5.4 ± 0.2 0.7 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 0.9 ± 0.1 ··· 0.7 ± 0.1 0.6 ± 0.2 0.6 ± 0.1 2.2 ± 0.2 ··· 0.9 ± 0.06 ··· 1.2 ± 0.2 0.7 ± 0.1 0.8 ± 0.2 0.6 ± 0.2 2.6 ± 0.1 0.7 ± 0.1

2.4 ± 0.4 0.9 ± 0.2 0.8 ± 0.3 1.4 ± 0.2 1.5 ± 0.4 2.7 ± 0.4 1.9 ± 0.5 ··· 0.8 ± 0.2 1.0 ± 0.3 ··· ··· 2.2 ± 0.3 2.6 ± 0.2 ··· 0.8 ± 0.2 1.1 ± 0.3 ··· 4.6 ± 0.3 ··· ··· ··· ··· ··· ··· ··· 0.5 ± 0.2 1.9 ± 0.5 ··· 0.9 ± 0.1 ··· 1.1 ± 0.3 0.6 ± 0.2 0.9 ± 0.2 ··· 2.5 ± 0.4 ···

−0.0 ± 0.2 −0.3 ± 0.1 0.0 ± 0.4 −0.0 ± 0.1 −0.1 ± 0.2 −0.0 ± 0.08 −0.1 ± 0.1 −0.0 ± 0.4 −0.5 ± 0.1 −0.1 ± 0.3 0.4 ± 1 −1.0 ± 0.2 −0.7 ± 0.06 −0.2 ± 0.07 0.1 ± 0.3 0.3 ± 0.2 −0.1 ± 0.2 0.0 ± 0.3 0.0 ± 0.05 0.2 ± 0.5 −0.1 ± 0.2 −0.7 ± 0.3 −0.3 ± 0.2 −0.8 ± 0.2 0.4 ± 0.4 −0.7 ± 0.3 −0.3 ± 0.3 −0.3 ± 0.1 −1.0 ± 1 −0.1 ± 0.1 −0.9 ± 2 −0.2 ± 0.2 0.5 ± 0.3 0.5 ± 0.4 0.1 ± 0.5 −0.3 ± 0.06 −0.3 ± 0.3

GB6 J0433+0521 PMN J0440-4332 PMN J0442-0017 PMN J0450-8100 PMN J0453-2807 PMN J0455-4616 PMN J0457-2324 PMN J0501-0159 PMN J0506-6109 PMN J0513-2159 PMN J0515-4556 PMN J0520-0537 PMN J0519-4546 PMN J0522-3628 PMN J0525-2338 PMN J0526-4830 PMN J0527-1241 PMN J0534-6106 PMN J0538-4405 PMN J0539-2839 PMN J0540-5418 GB6 J0542+4951 PMN J0550-5732 GB6 J0555+3948 PMN J0559-4529 GB6 J0607+6720 PMN J0608-2220 PMN J0609-1542 PMN J0620-2515 PMN J0623-6436 PMN J0627-3529 PMN J0629-1959 ··· PMN J0633-2223 PMN J0634-2335 PMN J0635-7516 PMN J0636-2041

175 131 151 128 154 127 116 150 139

122 148 152 095 153 100 091 126

130 135 167 134

Notes v v

v

V V

a,v v a c a V a a,v

V v v

a

V

V

v

v

V a

– 21 –

Table 1—Continued RA [hms] 06 06 07 07 07 07 07 07 07 07 07 07 07 07 07 07 08 08 08 08 08 08 08 08 08 08 08 08 08 08 08 09 09 09 09 09 09

39 46 20 20 21 25 27 38 39 41 43 45 46 50 53 57 05 08 13 16 23 24 25 31 34 36 38 40 41 47 54 02 07 09 09 14 18

39 30 05 36 54 52 09 13 15 18 49 24 04 52 32 03 43 22 26 19 26 54 50 00 51 47 11 42 28 45 47 17 58 16 48 41 10

Dec [dm] 73 44 −62 04 71 −00 67 17 01 31 −67 10 −00 12 53 09 61 −07 48 −24 22 39 03 24 55 −20 58 13 70 −07 20 −14 −20 01 42 02 −12

27 49 22 03 22 50 49 43 36 11 27 16 45 30 54 57 33 50 17 25 25 14 11 11 33 15 22 12 53 04 06 13 20 19 53 48 03

ID

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

087 099

0.8 ± 0.05 2.9 ± 0.06 0.6 ± 0.04 0.9 ± 0.05 1.6 ± 0.04 0.9 ± 0.1 0.6 ± 0.05 1.3 ± 0.06 1.7 ± 0.06 1.2 ± 0.06 1.2 ± 0.04 1.1 ± 0.06 1.1 ± 0.07 2.7 ± 0.06 1.0 ± 0.06 1.3 ± 0.08 0.7 ± 0.05 1.3 ± 0.05 1.0 ± 0.06 0.8 ± 0.05 1.1 ± 0.06 1.2 ± 0.07 1.6 ± 0.06 1.3 ± 0.08 0.9 ± 0.06 2.8 ± 0.05 1.1 ± 0.04 1.9 ± 0.07 1.7 ± 0.04 0.9 ± 0.06 3.8 ± 0.07 1.2 ± 0.06 1.1 ± 0.05 2.1 ± 0.06 1.0 ± 0.07 1.4 ± 0.06 2.0 ± 0.07

0.4 ± 0.1 2.4 ± 0.1 0.7 ± 0.06 0.7 ± 0.08 1.8 ± 0.07 1.2 ± 0.1 0.5 ± 0.08 1.3 ± 0.1 1.9 ± 0.1 1.1 ± 0.1 0.9 ± 0.07 0.8 ± 0.1 1.0 ± 0.1 2.6 ± 0.1 1.0 ± 0.08 1.3 ± 0.1 0.5 ± 0.06 1.3 ± 0.08 1.0 ± 0.09 1.0 ± 0.06 1.2 ± 0.09 1.0 ± 0.1 1.9 ± 0.09 1.3 ± 0.1 0.7 ± 0.08 2.4 ± 0.09 1.1 ± 0.07 2.0 ± 0.1 1.7 ± 0.07 1.0 ± 0.09 4.4 ± 0.1 1.3 ± 0.08 1.0 ± 0.09 2.0 ± 0.1 1.1 ± 0.1 1.6 ± 0.1 1.0 ± 0.1

0.8 ± 0.1 2.1 ± 0.1 0.8 ± 0.05 0.6 ± 0.1 1.9 ± 0.08 1.1 ± 0.1 0.6 ± 0.1 1.0 ± 0.1 2.1 ± 0.1 0.8 ± 0.1 0.7 ± 0.08 0.7 ± 0.1 0.8 ± 0.1 2.6 ± 0.1 0.9 ± 0.09 1.5 ± 0.1 0.7 ± 0.08 1.2 ± 0.1 0.7 ± 0.1 1.1 ± 0.08 1.2 ± 0.1 1.1 ± 0.1 1.9 ± 0.1 1.5 ± 0.2 0.5 ± 0.1 2.3 ± 0.09 0.9 ± 0.09 1.8 ± 0.1 1.8 ± 0.09 1.0 ± 0.1 4.1 ± 0.1 1.2 ± 0.09 0.7 ± 0.1 1.9 ± 0.2 1.2 ± 0.1 1.4 ± 0.1 0.9 ± 0.2

0.8 ± 0.1 1.6 ± 0.2 0.5 ± 0.09 ··· 1.8 ± 0.2 1.0 ± 0.3 0.8 ± 0.3 1.3 ± 0.3 2.3 ± 0.2 1.0 ± 0.3 0.7 ± 0.2 1.0 ± 0.4 0.7 ± 0.1 2.1 ± 0.2 0.9 ± 0.2 1.4 ± 0.3 1.0 ± 0.3 1.3 ± 0.2 0.7 ± 0.2 0.8 ± 0.2 0.6 ± 0.2 1.1 ± 0.2 1.6 ± 0.2 1.5 ± 0.2 1.1 ± 0.4 1.8 ± 0.2 1.0 ± 0.2 1.0 ± 0.2 1.5 ± 0.2 1.2 ± 0.3 4.2 ± 0.2 1.3 ± 0.1 1.0 ± 0.1 2.0 ± 0.2 0.9 ± 0.2 0.8 ± 0.4 0.9 ± 0.3

1.0 ± 0.2 1.3 ± 0.3 0.7 ± 0.3 ··· 1.5 ± 0.2 1.1 ± 0.2 ··· ··· 2.8 ± 1 ··· 1.0 ± 0.2 ··· ··· 1.8 ± 0.3 ··· ··· ··· 0.9 ± 0.2 ··· ··· ··· 1.4 ± 0.7 ··· 1.3 ± 0.3 0.7 ± 0.3 0.8 ± 0.3 ··· ··· 0.5 ± 0.2 ··· 3.5 ± 0.5 ··· ··· ··· ··· 1.4 ± 0.3 ···

0.1 ± 0.3 −0.5 ± 0.2 0.2 ± 0.3 −0.6 ± 0.5 0.2 ± 0.1 0.1 ± 0.4 −0.0 ± 0.5 −0.2 ± 0.3 0.3 ± 0.2 −0.3 ± 0.4 −0.5 ± 0.2 −0.5 ± 0.5 −0.5 ± 0.4 −0.2 ± 0.1 −0.2 ± 0.3 0.2 ± 0.3 0.0 ± 0.4 −0.1 ± 0.2 −0.4 ± 0.4 0.3 ± 0.3 0.0 ± 0.4 −0.1 ± 0.3 0.1 ± 0.2 0.2 ± 0.3 −0.4 ± 0.5 −0.4 ± 0.1 −0.2 ± 0.3 −0.1 ± 0.2 −0.1 ± 0.2 0.2 ± 0.4 0.1 ± 0.1 0.1 ± 0.2 −0.3 ± 0.3 −0.1 ± 0.2 0.2 ± 0.4 0.0 ± 0.2 −1.3 ± 0.5

GB6 J0639+7324 GB6 J0646+4451 PMN J0719-6218 GB6 J0720+0404 GB6 J0721+7120 PMN J0725-0054 GB6 J0728+6748 GB6 J0738+1742 GB6 J0739+0136 GB6 J0741+3112 PMN J0743-6726 GB6 J0745+1011 PMN J0745-0044 GB6 J0750+1231 GB6 J0753+5353 GB6 J0757+0956 ··· PMN J0808-0751 GB6 J0813+4813 PMN J0816-2421 GB6 J0823+2223 GB6 J0824+3916 GB6 J0825+0309 GB6 J0830+2410 GB6 J0834+5534 PMN J0836-2017 GB6 J0837+5825 GB6 J0840+1312 GB6 J0841+7053 PMN J0847-0703 GB6 J0854+2006 PMN J0902-1415 PMN J0907-2026 GB6 J0909+0121 GB6 J0909+4253 GB6 J0914+0245 PMN J0918-1205

113 124 107 161 118 117 120 133 145

125 112 144 121 089 115

132

143

Notes

v

V

v V

v a v

v

v

† a v v

v a v v

V

v

– 22 –

Table 1—Continued RA [hms] 09 09 09 09 09 09 09 09 09 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 11 11 11 11 11 11 11 11 11 11 11 11

20 21 21 27 48 55 57 58 59 14 15 17 18 21 32 37 38 41 41 43 47 47 53 58 59 02 07 18 18 18 27 30 30 36 46 46 47

40 05 39 05 53 47 24 08 25 01 20 37 53 33 33 22 38 27 38 01 44 56 29 27 22 13 11 06 33 46 06 12 45 57 20 43 07

Dec [dm] 44 62 −26 39 40 69 55 47 65 23 −45 35 −31 40 41 −29 05 06 −47 24 71 −19 81 01 −80 −44 −44 −46 −12 12 −18 −14 38 −74 −48 40 −38

41 15 19 01 38 35 27 22 30 06 11 51 32 03 18 34 10 11 38 07 43 09 09 34 03 03 46 33 33 40 58 51 14 16 42 01 11

ID

105 104 088 098 119

103 142 163 083

149 176 166

159 157 101

169

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

1.3 ± 0.07 0.9 ± 0.05 1.5 ± 0.05 6.7 ± 0.07 1.3 ± 0.06 1.3 ± 0.05 0.9 ± 0.05 1.6 ± 0.06 0.9 ± 0.05 1.1 ± 0.06 1.1 ± 0.04 0.9 ± 0.05 0.9 ± 0.05 0.9 ± 0.04 0.9 ± 0.05 1.6 ± 0.06 1.4 ± 0.06 1.2 ± 0.07 1.1 ± 0.05 0.8 ± 0.08 1.4 ± 0.06 1.3 ± 0.06 0.9 ± 0.05 4.6 ± 0.06 2.1 ± 0.05 0.7 ± 0.04 1.5 ± 0.04 1.0 ± 0.04 1.0 ± 0.06 0.9 ± 0.06 1.5 ± 0.06 1.8 ± 0.06 1.2 ± 0.06 0.8 ± 0.04 0.7 ± 0.04 0.9 ± 0.06 2.1 ± 0.05

1.4 ± 0.1 0.8 ± 0.07 1.4 ± 0.08 5.8 ± 0.1 1.5 ± 0.1 1.2 ± 0.07 0.9 ± 0.1 1.4 ± 0.09 0.9 ± 0.06 0.9 ± 0.1 0.8 ± 0.06 0.9 ± 0.08 0.9 ± 0.07 0.9 ± 0.07 0.8 ± 0.09 1.6 ± 0.09 1.5 ± 0.1 1.4 ± 0.1 ··· 0.8 ± 0.1 1.4 ± 0.1 1.1 ± 0.09 0.9 ± 0.07 4.4 ± 0.09 2.3 ± 0.07 0.8 ± 0.05 1.5 ± 0.05 0.8 ± 0.07 0.9 ± 0.07 0.9 ± 0.1 1.5 ± 0.1 1.7 ± 0.1 1.0 ± 0.09 0.7 ± 0.07 0.7 ± 0.06 1.0 ± 0.07 2.3 ± 0.09

1.4 ± 0.1 0.9 ± 0.1 1.3 ± 0.1 5.5 ± 0.1 1.3 ± 0.1 1.0 ± 0.07 1.0 ± 0.1 1.4 ± 0.09 0.7 ± 0.08 0.7 ± 0.07 0.7 ± 0.08 0.8 ± 0.1 0.7 ± 0.09 0.9 ± 0.08 0.7 ± 0.1 1.4 ± 0.1 1.1 ± 0.2 1.2 ± 0.1 0.5 ± 0.06 0.8 ± 0.1 1.2 ± 0.1 1.1 ± 0.2 ··· 4.5 ± 0.1 2.2 ± 0.08 0.8 ± 0.1 1.2 ± 0.07 0.7 ± 0.07 0.8 ± 0.09 0.7 ± 0.1 1.4 ± 0.1 1.9 ± 0.1 1.1 ± 0.1 0.5 ± 0.09 0.5 ± 0.08 1.1 ± 0.07 2.2 ± 0.09

1.4 ± 0.2 ··· 1.2 ± 0.2 4.4 ± 0.2 0.9 ± 0.2 0.9 ± 0.1 0.8 ± 0.2 0.9 ± 0.1 0.8 ± 0.1 0.7 ± 0.2 ··· 0.6 ± 0.2 0.6 ± 0.2 ··· 0.8 ± 0.2 1.6 ± 0.3 1.1 ± 0.2 1.1 ± 0.2 ··· ··· 1.3 ± 0.3 1.2 ± 0.3 ··· 4.4 ± 0.2 2.3 ± 0.2 0.8 ± 0.1 1.4 ± 0.2 0.7 ± 0.3 0.9 ± 0.2 0.8 ± 0.2 1.1 ± 0.2 1.3 ± 0.2 0.8 ± 0.2 0.5 ± 0.2 0.8 ± 0.1 0.4 ± 0.1 1.9 ± 0.2

0.6 ± 0.3 ··· 0.8 ± 0.3 2.8 ± 0.3 1.0 ± 0.3 1.3 ± 0.4 ··· ··· 0.8 ± 0.2 ··· ··· 0.9 ± 0.3 ··· ··· 0.8 ± 0.3 1.7 ± 0.3 0.9 ± 0.3 ··· ··· ··· ··· ··· ··· 3.1 ± 0.9 1.4 ± 0.3 ··· 0.9 ± 0.2 ··· ··· ··· 1.3 ± 0.3 ··· 0.9 ± 0.3 ··· ··· ··· 1.1 ± 0.2

0.0 ± 0.3 −0.1 ± 0.5 −0.2 ± 0.2 −0.4 ± 0.07 −0.1 ± 0.3 −0.3 ± 0.2 −0.0 ± 0.4 −0.4 ± 0.2 −0.2 ± 0.3 −0.6 ± 0.3 −0.8 ± 0.4 −0.1 ± 0.3 −0.3 ± 0.4 −0.1 ± 0.4 −0.2 ± 0.3 0.0 ± 0.2 −0.3 ± 0.3 0.0 ± 0.3 −1.3 ± 0.5 −0.0 ± 0.7 −0.1 ± 0.3 −0.3 ± 0.4 −0.1 ± 0.6 −0.1 ± 0.08 0.0 ± 0.1 0.2 ± 0.3 −0.3 ± 0.2 −0.5 ± 0.3 −0.3 ± 0.3 −0.3 ± 0.5 −0.1 ± 0.2 −0.1 ± 0.2 −0.3 ± 0.3 −0.5 ± 0.5 0.0 ± 0.3 0.1 ± 0.3 −0.1 ± 0.1

GB6 J0920+4441 GB6 J0921+6215 PMN J0921-2618 GB6 J0927+3902 GB6 J0948+4039 GB6 J0955+6940 GB6 J0957+5522 GB6 J0958+4725 GB6 J0958+6534 ··· PMN J1014-4508 GB6 J1018+3550 PMN J1018-3123 GB6 J1022+4004 GB6 J1033+4115 PMN J1037-2934 GB6 J1038+0512 GB6 J1041+0610 PMN J1041-4740 GB6 J1043+2408 GB6 J1048+7143 PMN J1048-1909 ··· GB6 J1058+0133 PMN J1058-8003 PMN J1102-4404 PMN J1107-4449 PMN J1118-4634 PMN J1118-1232 GB6 J1118+1234 PMN J1127-1857 PMN J1130-1449 GB6 J1130+3815 PMN J1136-7415 PMN J1145-4836 GB6 J1146+3958 PMN J1147-3812

Notes v

v v v

a

v

v V v

V

V V

v

a a

v a

a a V

– 23 –

Table 1—Continued RA [hms] 11 11 11 11 11 11 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13

50 50 53 55 57 59 03 09 15 18 19 22 23 29 30 39 46 48 54 56 58 58 58 59 02 05 10 16 24 27 29 30 31 32 33 36 37

12 53 15 02 44 35 30 02 56 53 21 06 53 06 51 25 53 50 50 12 09 26 54 27 22 54 38 06 32 35 01 53 17 52 29 50 40

Dec [dm] −79 −00 49 81 16 29 48 −24 −17 48 05 04 −83 02 12 07 −25 −46 11 −05 −31 32 −22 51 57 −49 32 −33 −10 22 32 25 30 02 27 −33 −12

27 24 32 04 38 15 08 03 29 30 49 14 06 03 23 28 47 00 42 47 58 26 23 41 48 30 22 37 47 13 00 02 30 00 23 58 57

ID

090 078 111 172 173 164 178 170 165 177

181 180

052 182

040 026

185 188

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

1.2 ± 0.04 0.8 ± 0.08 2.1 ± 0.04 1.2 ± 0.06 0.8 ± 0.05 2.0 ± 0.05 0.8 ± 0.04 1.3 ± 0.06 1.4 ± 0.06 0.7 ± 0.03 2.7 ± 0.06 0.7 ± 0.07 0.8 ± 0.06 20.0 ± 0.06 19.7 ± 0.06 1.0 ± 0.06 1.3 ± 0.06 0.8 ± 0.08 0.9 ± 0.06 17.1 ± 0.06 1.3 ± 0.05 0.7 ± 0.05 1.0 ± 0.06 0.6 ± 0.06 0.8 ± 0.05 1.1 ± 0.05 2.5 ± 0.05 1.7 ± 0.06 0.8 ± 0.08 0.9 ± 0.06 0.8 ± 0.04 1.1 ± 0.05 2.2 ± 0.05 1.4 ± 0.05 0.8 ± 0.06 1.9 ± 0.06 5.8 ± 0.06

0.7 ± 0.06 0.7 ± 0.1 2.2 ± 0.07 1.0 ± 0.1 1.1 ± 0.09 2.2 ± 0.09 0.7 ± 0.06 1.0 ± 0.09 1.2 ± 0.1 0.7 ± 0.05 2.2 ± 0.1 0.7 ± 0.1 0.9 ± 0.06 18.4 ± 0.1 15.5 ± 0.09 1.0 ± 0.1 1.4 ± 0.1 0.8 ± 0.1 0.9 ± 0.08 17.9 ± 0.1 1.1 ± 0.07 0.6 ± 0.09 0.8 ± 0.1 0.6 ± 0.09 0.7 ± 0.06 1.0 ± 0.08 2.5 ± 0.09 1.7 ± 0.09 0.8 ± 0.1 0.8 ± 0.08 0.6 ± 0.08 1.0 ± 0.07 1.8 ± 0.09 1.4 ± 0.09 0.9 ± 0.08 1.5 ± 0.07 6.0 ± 0.1

0.6 ± 0.08 0.7 ± 0.2 2.2 ± 0.08 0.9 ± 0.09 0.8 ± 0.09 2.2 ± 0.1 0.6 ± 0.08 0.9 ± 0.09 1.1 ± 0.1 0.7 ± 0.08 2.0 ± 0.1 1.0 ± 0.2 0.8 ± 0.06 16.8 ± 0.1 13.3 ± 0.1 0.9 ± 0.09 1.6 ± 0.1 0.9 ± 0.09 0.8 ± 0.09 18.2 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.6 ± 0.1 0.5 ± 0.09 0.8 ± 0.09 2.3 ± 0.1 1.9 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 0.4 ± 0.07 0.9 ± 0.09 1.4 ± 0.1 1.3 ± 0.1 0.8 ± 0.08 1.2 ± 0.09 6.1 ± 0.1

0.6 ± 0.1 ··· 2.0 ± 0.2 1.0 ± 0.2 0.8 ± 0.2 2.0 ± 0.2 0.7 ± 0.3 ··· 0.8 ± 0.2 0.7 ± 0.1 1.4 ± 0.2 ··· 0.7 ± 0.1 14.6 ± 0.2 9.7 ± 0.2 1.0 ± 0.2 1.5 ± 0.2 0.9 ± 0.2 ··· 17.0 ± 0.2 0.5 ± 0.2 0.5 ± 0.2 0.7 ± 0.2 0.9 ± 0.2 0.6 ± 0.2 1.1 ± 0.2 1.6 ± 0.2 1.9 ± 0.2 1.2 ± 0.2 0.4 ± 0.2 0.4 ± 0.2 0.8 ± 0.1 1.2 ± 0.2 1.2 ± 0.2 0.7 ± 0.1 1.1 ± 0.2 5.7 ± 0.2

··· ··· 1.2 ± 0.3 1.1 ± 0.3 0.7 ± 0.3 2.0 ± 0.4 0.6 ± 0.2 ··· ··· 0.6 ± 0.2 2.0 ± 0.6 ··· 0.8 ± 0.3 10.5 ± 0.4 6.2 ± 0.4 ··· 1.4 ± 0.5 1.4 ± 0.3 ··· 13.3 ± 0.4 1.6 ± 0.5 0.5 ± 0.2 ··· 1.0 ± 0.3 0.6 ± 0.2 1.0 ± 0.3 ··· 1.6 ± 0.4 2.1 ± 0.6 ··· ··· 0.7 ± 0.2 ··· 1.2 ± 0.3 ··· ··· 3.9 ± 0.3

−1.1 ± 0.3 −0.2 ± 0.8 −0.0 ± 0.1 −0.2 ± 0.3 0.0 ± 0.3 0.0 ± 0.1 −0.3 ± 0.3 −0.6 ± 0.4 −0.4 ± 0.3 0.0 ± 0.3 −0.5 ± 0.2 0.4 ± 0.7 −0.1 ± 0.3 −0.3 ± 0.02 −0.7 ± 0.02 −0.2 ± 0.3 0.2 ± 0.2 0.3 ± 0.3 −0.2 ± 0.4 0.0 ± 0.02 −0.2 ± 0.3 −0.1 ± 0.5 −0.3 ± 0.4 0.4 ± 0.4 −0.4 ± 0.4 −0.1 ± 0.3 −0.2 ± 0.1 0.1 ± 0.2 0.5 ± 0.4 −0.4 ± 0.5 −0.9 ± 0.5 −0.4 ± 0.3 −0.7 ± 0.2 −0.1 ± 0.2 −0.1 ± 0.4 −0.7 ± 0.2 0.0 ± 0.06

PMN J1150-7918 PMN J1150-0024 GB6 J1153+4931 1Jy 1150+81 GB6 J1157+1639 GB6 J1159+2914 GB6 J1203+4803 PMN J1209-2406 PMN J1215-1731 GB6 J1219+4830 GB6 J1219+0549A GB6 J1222+0413 PMN J1224-8312 GB6 J1229+0202 GB6 J1230+1223 GB6 J1239+0730 PMN J1246-2547 PMN J1248-4559 GB6 J1254+1141 PMN J1256-0547 PMN J1257-3154 GB6 J1257+3229 PMN J1258-2219 GB6 J1259+5141 GB6 J1302+5748 PMN J1305-4928 GB6 J1310+3220 PMN J1316-3339 PMN J1324-1049 GB6 J1327+2210 ··· GB6 J1330+2509 GB6 J1331+3030 GB6 J1332+0200 GB6 J1333+2725 PMN J1336-3358 PMN J1337-1257

No

– 24 –

Table 1—Continued RA [hms] 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16

44 47 54 55 56 56 08 11 15 19 19 20 27 27 37 42 46 57 58 04 06 10 12 13 16 17 40 49 49 50 02 04 08 13 18 23 26

00 48 51 56 53 56 53 25 46 32 38 07 28 53 02 57 55 20 32 32 55 38 46 49 38 44 58 21 32 39 00 34 52 42 01 25 17

Dec [dm] 66 12 −10 76 −15 19 −07 52 13 54 38 27 −33 −42 63 51 −16 −35 71 10 −16 −05 −09 −10 00 −24 14 50 02 05 33 57 10 34 −77 −68 41

01 18 41 47 25 19 49 17 22 25 22 04 02 06 37 55 21 36 40 30 44 46 04 00 14 21 47 36 36 26 29 18 27 12 16 17 27

ID

197

004 203

042 193 191

071 006

207 002 205

005 007

009 023 183

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

0.7 ± 0.07 1.0 ± 0.06 1.6 ± 0.06 0.7 ± 0.06 0.8 ± 0.08 1.4 ± 0.06 1.1 ± 0.07 0.9 ± 0.05 0.9 ± 0.06 0.8 ± 0.06 1.1 ± 0.04 0.9 ± 0.06 1.0 ± 0.06 3.1 ± 0.05 0.5 ± 0.06 0.8 ± 0.05 1.0 ± 0.06 0.8 ± 0.1 1.3 ± 0.07 1.6 ± 0.05 1.4 ± 0.08 1.1 ± 0.07 1.8 ± 0.06 1.3 ± 0.06 1.6 ± 0.06 2.0 ± 0.06 1.0 ± 0.06 0.9 ± 0.06 2.7 ± 0.06 2.5 ± 0.06 0.9 ± 0.04 0.7 ± 0.04 2.0 ± 0.06 4.1 ± 0.05 2.4 ± 0.05 0.7 ± 0.04 0.9 ± 0.05

0.4 ± 0.1 1.1 ± 0.09 1.2 ± 0.1 0.8 ± 0.1 0.9 ± 0.2 1.6 ± 0.09 1.0 ± 0.1 0.3 ± 0.1 1.0 ± 0.09 0.8 ± 0.09 1.2 ± 0.06 1.1 ± 0.08 1.4 ± 0.09 2.9 ± 0.08 ··· 0.9 ± 0.07 1.0 ± 0.09 0.9 ± 0.1 1.2 ± 0.1 1.5 ± 0.09 1.3 ± 0.2 1.1 ± 0.1 1.7 ± 0.1 1.0 ± 0.1 1.8 ± 0.09 2.1 ± 0.1 0.8 ± 0.09 0.8 ± 0.09 2.9 ± 0.1 2.1 ± 0.09 0.8 ± 0.06 0.7 ± 0.07 2.0 ± 0.1 3.7 ± 0.08 2.1 ± 0.07 0.6 ± 0.06 0.8 ± 0.08

0.5 ± 0.1 0.9 ± 0.1 1.2 ± 0.2 0.4 ± 0.1 0.7 ± 0.2 1.4 ± 0.1 1.0 ± 0.1 ··· 0.8 ± 0.09 0.8 ± 0.08 1.1 ± 0.06 1.0 ± 0.07 1.7 ± 0.1 2.8 ± 0.1 ··· 0.8 ± 0.08 0.8 ± 0.09 1.0 ± 0.1 0.9 ± 0.09 1.3 ± 0.09 1.0 ± 0.2 1.1 ± 0.1 1.9 ± 0.1 0.9 ± 0.2 1.7 ± 0.1 2.1 ± 0.1 0.8 ± 0.1 1.0 ± 0.1 2.4 ± 0.1 1.9 ± 0.1 0.8 ± 0.06 0.8 ± 0.06 1.9 ± 0.1 3.4 ± 0.08 1.9 ± 0.08 0.6 ± 0.07 0.7 ± 0.08

0.2 ± 0.1 0.9 ± 0.2 1.4 ± 0.3 ··· 0.8 ± 0.3 1.4 ± 0.2 0.6 ± 0.2 ··· 1.1 ± 0.5 1.3 ± 0.2 1.3 ± 0.1 0.8 ± 0.1 1.5 ± 0.2 2.7 ± 0.2 0.7 ± 0.2 0.9 ± 0.2 0.9 ± 0.1 0.9 ± 0.2 ··· 0.8 ± 0.1 0.8 ± 0.2 0.8 ± 0.2 1.9 ± 0.2 1.3 ± 0.3 1.5 ± 0.2 2.0 ± 0.2 0.8 ± 0.2 0.7 ± 0.2 2.1 ± 0.2 2.0 ± 0.2 0.5 ± 0.1 0.5 ± 0.1 1.5 ± 0.2 2.8 ± 0.2 1.5 ± 0.2 ··· 0.7 ± 0.2

0.9 ± 0.2 ··· 0.7 ± 0.3 ··· 0.9 ± 0.3 ··· ··· ··· 0.8 ± 0.3 ··· ··· 1.0 ± 0.2 ··· 1.9 ± 0.3 ··· 1.0 ± 0.3 ··· 1.0 ± 0.4 0.6 ± 0.2 ··· ··· ··· 1.6 ± 0.4 ··· 0.7 ± 0.3 2.3 ± 0.5 ··· 0.6 ± 0.3 2.2 ± 0.6 1.4 ± 0.3 0.8 ± 0.3 0.6 ± 0.2 1.1 ± 0.4 1.8 ± 0.3 0.9 ± 0.2 ··· ···

−0.2 ± 0.4 −0.0 ± 0.4 −0.4 ± 0.3 −0.3 ± 0.8 0.0 ± 0.5 0.1 ± 0.2 −0.3 ± 0.4 −2.8 ± 2 0.1 ± 0.4 0.2 ± 0.4 0.2 ± 0.2 0.1 ± 0.3 0.6 ± 0.3 −0.2 ± 0.1 0.3 ± 0.7 0.1 ± 0.3 −0.3 ± 0.3 0.2 ± 0.4 −0.6 ± 0.3 −0.4 ± 0.2 −0.5 ± 0.4 −0.1 ± 0.4 0.0 ± 0.2 −0.3 ± 0.4 0.0 ± 0.2 0.0 ± 0.2 −0.4 ± 0.4 −0.1 ± 0.4 −0.2 ± 0.1 −0.4 ± 0.2 −0.2 ± 0.3 −0.1 ± 0.3 −0.2 ± 0.2 −0.3 ± 0.08 −0.4 ± 0.1 −0.3 ± 0.4 −0.3 ± 0.3

GB6 J1344+6606 GB6 J1347+1217 PMN J1354-1041 ··· PMN J1357-1527 GB6 J1357+1919 1Jy 1406-076 GB6 J1411+5212 GB6 J1415+1320 GB6 J1419+5423 GB6 J1419+3822 GB6 J1419+2706 PMN J1427-3306 PMN J1427-4206 GB6 J1436+6336 GB6 J1443+5201 ··· PMN J1457-3538 GB6 J1459+7140 GB6 J1504+1029 PMN J1507-1652 PMN J1510-0543 1Jy 1510-08 ··· GB6 J1516+0015 PMN J1517-2422 GB6 J1540+1447 GB6 J1549+5038 GB6 J1549+0237 GB6 J1550+0527 GB6 J1602+3326 GB6 J1604+5714 GB6 J1608+1029 GB6 J1613+3412 PMN J1617-7717 PMN J1624-6809 GB6 J1625+4134

Notes a

v d v v

a,v V a

v a

v V a

v

V

a V V

a

– 25 –

Table 1—Continued RA [hms] 16 16 16 16 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 18 18 18 18

33 35 37 37 38 42 42 51 54 57 57 58 58 59 03 07 15 24 27 34 36 38 40 40 48 53 53 58 59 00 01 03 06 08 19 20 24

20 16 31 52 16 34 55 07 10 01 26 05 51 52 37 37 50 00 23 16 12 26 11 34 55 24 33 58 50 27 32 00 47 32 57 03 09

Dec [dm] 82 38 47 −77 57 68 39 04 39 57 47 07 05 68 −62 01 68 −65 45 38 −79 50 47 52 70 44 28 66 38 78 44 −65 69 56 −55 −63 56

26 07 13 14 22 54 48 58 39 06 54 42 13 27 14 48 39 00 30 57 34 15 40 12 06 08 48 32 52 27 04 07 49 58 21 43 50

ID

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

076 033

1.3 ± 0.04 3.9 ± 0.05 0.9 ± 0.05 1.4 ± 0.05 1.3 ± 0.04 1.4 ± 0.05 6.5 ± 0.05 1.6 ± 0.07 1.2 ± 0.05 0.5 ± 0.06 1.1 ± 0.04 1.4 ± 0.05 0.8 ± 0.06 0.2 ± 0.06 1.7 ± 0.04 0.8 ± 0.06 0.6 ± 0.04 2.3 ± 0.05 0.9 ± 0.04 1.2 ± 0.05 1.0 ± 0.04 0.8 ± 0.04 0.8 ± 0.05 1.2 ± 0.04 0.6 ± 0.03 0.7 ± 0.06 2.1 ± 0.05 0.6 ± 0.02 0.9 ± 0.05 1.8 ± 0.05 1.2 ± 0.04 1.2 ± 0.05 1.4 ± 0.03 0.6 ± 0.05 0.9 ± 0.07 1.7 ± 0.05 1.5 ± 0.04

1.5 ± 0.07 4.3 ± 0.08 1.0 ± 0.08 0.9 ± 0.09 1.3 ± 0.07 1.5 ± 0.08 6.0 ± 0.08 1.1 ± 0.1 1.2 ± 0.08 0.6 ± 0.09 0.9 ± 0.06 1.5 ± 0.07 0.6 ± 0.09 0.5 ± 0.08 1.7 ± 0.07 0.9 ± 0.1 0.6 ± 0.06 2.0 ± 0.08 1.0 ± 0.08 1.3 ± 0.08 1.1 ± 0.07 0.5 ± 0.08 0.8 ± 0.06 1.2 ± 0.07 0.7 ± 0.06 0.6 ± 0.1 1.9 ± 0.07 0.6 ± 0.03 0.8 ± 0.07 1.7 ± 0.07 1.4 ± 0.07 1.1 ± 0.08 1.4 ± 0.06 0.7 ± 0.06 0.5 ± 0.2 1.5 ± 0.08 1.3 ± 0.07

1.5 ± 0.08 4.2 ± 0.08 1.0 ± 0.1 0.8 ± 0.09 1.4 ± 0.08 1.5 ± 0.09 5.5 ± 0.08 1.0 ± 0.2 0.9 ± 0.07 0.6 ± 0.1 0.7 ± 0.06 1.4 ± 0.1 0.5 ± 0.09 0.6 ± 0.08 1.7 ± 0.07 0.7 ± 0.08 0.6 ± 0.07 1.6 ± 0.09 0.8 ± 0.07 1.2 ± 0.09 1.2 ± 0.07 0.6 ± 0.08 0.9 ± 0.08 1.3 ± 0.1 0.8 ± 0.06 0.8 ± 0.09 2.1 ± 0.08 0.6 ± 0.05 0.7 ± 0.1 1.6 ± 0.08 1.6 ± 0.1 1.3 ± 0.09 1.2 ± 0.07 0.8 ± 0.06 0.6 ± 0.1 1.2 ± 0.09 1.3 ± 0.09

1.2 ± 0.1 3.8 ± 0.1 0.9 ± 0.1 0.7 ± 0.1 1.7 ± 0.2 1.7 ± 0.2 4.9 ± 0.2 0.7 ± 0.1 0.5 ± 0.2 0.7 ± 0.1 ··· 1.6 ± 0.2 0.4 ± 0.2 0.7 ± 0.09 1.4 ± 0.1 0.8 ± 0.2 ··· 1.1 ± 0.2 1.2 ± 0.2 1.3 ± 0.2 0.9 ± 0.1 0.5 ± 0.1 0.8 ± 0.2 1.2 ± 0.2 1.0 ± 0.1 ··· 2.2 ± 0.2 0.4 ± 0.1 ··· 1.5 ± 0.2 1.5 ± 0.2 1.1 ± 0.2 1.4 ± 0.1 0.7 ± 0.09 ··· 1.2 ± 0.2 1.4 ± 0.2

0.7 ± 0.3 3.1 ± 0.3 ··· ··· 1.0 ± 0.3 1.2 ± 0.2 3.9 ± 0.3 ··· ··· 0.8 ± 0.2 ··· 1.6 ± 0.7 ··· 0.6 ± 0.1 ··· ··· 0.7 ± 0.2 1.2 ± 0.3 1.1 ± 0.3 ··· ··· ··· ··· 0.8 ± 0.3 0.7 ± 0.1 1.1 ± 0.3 1.6 ± 0.7 ··· ··· 0.9 ± 0.2 1.1 ± 0.2 0.9 ± 0.2 1.2 ± 0.3 ··· ··· 1.2 ± 0.2 0.8 ± 0.2

−0.0 ± 0.2 0.1 ± 0.07 0.0 ± 0.3 −0.8 ± 0.3 0.1 ± 0.2 0.0 ± 0.2 −0.3 ± 0.05 −0.9 ± 0.4 −0.5 ± 0.3 0.4 ± 0.4 −0.6 ± 0.3 0.1 ± 0.2 −0.8 ± 0.5 0.5 ± 0.5 −0.1 ± 0.2 −0.0 ± 0.4 0.1 ± 0.4 −0.6 ± 0.2 0.1 ± 0.3 0.1 ± 0.2 0.1 ± 0.2 −0.5 ± 0.4 0.1 ± 0.3 −0.0 ± 0.2 0.4 ± 0.2 0.3 ± 0.4 −0.0 ± 0.1 −0.1 ± 0.2 −0.4 ± 0.5 −0.3 ± 0.2 0.2 ± 0.2 −0.0 ± 0.2 −0.1 ± 0.1 0.3 ± 0.3 −0.8 ± 0.8 −0.3 ± 0.2 −0.3 ± 0.2

··· GB6 J1635+3808 GB6 J1637+4717 PMN J1636-7713 GB6 J1638+5720 GB6 J1642+6856 GB6 J1642+3948 GB6 J1651+0459 GB6 J1653+3945 GB6 J1657+5705 ··· GB6 J1658+0741 GB6 J1658+0515 GB6 J1700+6830 PMN J1703-6212 GB6 J1707+0148 GB6 J1716+6836 PMN J1723-6500 GB6 J1727+4530 GB6 J1734+3857 PMN J1733-7935 ··· GB6 J1739+4738 GB6 J1740+5211 GB6 J1748+7005 GB6 J1753+4410 GB6 J1753+2847 GB6 J1758+6638 GB6 J1800+3848 1Jy 1803+78 GB6 J1801+4404 PMN J1803-6507 GB6 J1806+6949 GB6 J1808+5709 PMN J1819-5521 PMN J1819-6345 GB6 J1824+5650

056 069 035 010 036

013

198

196 043 038 186

048 068 022 064 072 199 067

200 053

Notes e V

a,V V

a

f V

v

V

v a a v v v v a

– 26 –

Table 1—Continued RA [hms] 18 18 18 18 18 18 18 18 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19 20 20 20 20 20 20 20 20 20 20 20 21 21

25 29 32 34 35 37 40 42 48 49 50 02 15 23 24 27 27 37 38 39 51 52 55 58 00 05 08 10 11 22 23 24 34 35 56 01 09

37 42 41 21 03 23 49 52 40 38 45 53 56 30 51 36 42 07 15 24 28 19 46 02 58 43 21 03 19 30 38 31 54 20 11 37 31

Dec [dm] 67 48 68 −58 32 −71 79 68 32 67 28 31 −80 −21 −29 61 73 −39 −63 −15 67 02 51 −38 −17 77 66 72 −15 61 54 17 −68 10 −47 03 −41

37 45 44 54 45 06 46 08 23 05 23 53 00 05 14 19 57 57 44 25 49 33 39 45 49 55 12 31 47 36 26 12 45 55 16 44 13

ID

046

192 073 066 065 028 034 008 059 070

051 003 011

014 063 031 194 208 001

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

··· 2.8 ± 0.04 ··· 1.1 ± 0.04 0.8 ± 0.05 1.9 ± 0.04 1.3 ± 0.04 1.1 ± 0.03 0.7 ± 0.05 1.2 ± 0.04 1.5 ± 0.04 1.3 ± 0.04 0.7 ± 0.04 2.3 ± 0.06 12.3 ± 0.06 1.0 ± 0.04 3.5 ± 0.04 1.0 ± 0.07 0.9 ± 0.05 1.0 ± 0.07 0.7 ± 0.04 0.8 ± 0.07 0.8 ± 0.05 3.4 ± 0.06 2.0 ± 0.07 0.8 ± 0.05 0.7 ± 0.03 0.7 ± 0.06 1.6 ± 0.05 1.6 ± 0.05 0.7 ± 0.07 0.9 ± 0.04 0.7 ± 0.05 0.6 ± 0.06 2.2 ± 0.05 1.2 ± 0.05 1.5 ± 0.06

··· 2.8 ± 0.07 ··· 1.1 ± 0.07 0.8 ± 0.07 1.7 ± 0.06 0.9 ± 0.08 1.2 ± 0.05 0.8 ± 0.1 1.4 ± 0.06 1.1 ± 0.07 1.1 ± 0.06 0.4 ± 0.07 2.5 ± 0.1 12.0 ± 0.1 1.0 ± 0.07 3.2 ± 0.06 1.3 ± 0.1 0.7 ± 0.07 1.0 ± 0.09 0.9 ± 0.05 0.6 ± 0.09 0.9 ± 0.1 3.5 ± 0.09 1.9 ± 0.09 0.7 ± 0.1 0.5 ± 0.05 0.6 ± 0.08 1.5 ± 0.1 1.4 ± 0.07 0.9 ± 0.07 1.0 ± 0.08 0.8 ± 0.08 1.1 ± 0.1 2.5 ± 0.08 1.1 ± 0.08 1.6 ± 0.1

0.3 ± 0.09 2.6 ± 0.08 0.4 ± 0.07 1.2 ± 0.08 0.7 ± 0.07 1.5 ± 0.06 0.7 ± 0.1 1.2 ± 0.05 0.5 ± 0.1 1.4 ± 0.05 0.9 ± 0.05 0.8 ± 0.07 0.5 ± 0.07 2.5 ± 0.1 11.4 ± 0.1 1.0 ± 0.08 2.8 ± 0.07 1.3 ± 0.1 0.6 ± 0.08 1.0 ± 0.09 0.7 ± 0.05 0.6 ± 0.08 0.8 ± 0.09 3.1 ± 0.1 1.8 ± 0.1 0.8 ± 0.1 0.5 ± 0.05 1.0 ± 0.07 1.5 ± 0.2 1.2 ± 0.07 0.8 ± 0.08 0.9 ± 0.09 0.8 ± 0.08 0.7 ± 0.1 2.4 ± 0.1 1.0 ± 0.2 1.2 ± 0.1

0.6 ± 0.1 2.0 ± 0.1 0.7 ± 0.06 0.9 ± 0.2 0.5 ± 0.2 1.2 ± 0.1 ··· 1.0 ± 0.08 ··· 1.2 ± 0.1 0.6 ± 0.1 0.4 ± 0.2 ··· 2.6 ± 0.2 10.9 ± 0.2 0.7 ± 0.1 2.7 ± 0.1 1.4 ± 0.2 ··· 0.6 ± 0.2 0.7 ± 0.08 0.9 ± 0.2 ··· 2.7 ± 0.2 1.8 ± 0.2 0.8 ± 0.2 0.6 ± 0.2 1.0 ± 0.2 1.2 ± 0.3 0.7 ± 0.1 0.8 ± 0.1 0.8 ± 0.1 0.8 ± 0.09 0.9 ± 0.2 2.2 ± 0.2 1.0 ± 0.2 1.1 ± 0.2

0.6 ± 0.1 1.3 ± 0.2 0.7 ± 0.1 ··· 0.7 ± 0.2 ··· ··· 0.6 ± 0.2 ··· 1.4 ± 0.2 ··· ··· ··· 2.0 ± 0.4 7.6 ± 0.4 0.6 ± 0.2 1.3 ± 0.3 ··· ··· ··· 0.7 ± 0.2 ··· ··· 1.9 ± 0.5 2.0 ± 0.8 0.9 ± 0.2 ··· 0.7 ± 0.2 ··· ··· ··· 0.8 ± 0.3 ··· 1.0 ± 0.3 1.7 ± 0.4 0.9 ± 0.3 1.0 ± 0.3

0.7 ± 0.8 −0.2 ± 0.1 0.8 ± 0.8 0.1 ± 0.3 −0.2 ± 0.3 −0.4 ± 0.1 −1.0 ± 0.4 −0.0 ± 0.1 −0.3 ± 0.8 0.1 ± 0.1 −0.9 ± 0.2 −0.8 ± 0.3 −0.9 ± 0.5 0.1 ± 0.1 −0.1 ± 0.03 −0.2 ± 0.3 −0.3 ± 0.07 0.3 ± 0.3 −0.6 ± 0.4 −0.1 ± 0.4 0.1 ± 0.2 −0.3 ± 0.5 0.1 ± 0.4 −0.1 ± 0.1 −0.1 ± 0.2 0.0 ± 0.3 −0.5 ± 0.3 0.4 ± 0.3 −0.2 ± 0.3 −0.5 ± 0.2 0.1 ± 0.4 −0.1 ± 0.3 0.2 ± 0.3 0.3 ± 0.3 0.1 ± 0.1 −0.2 ± 0.3 −0.3 ± 0.2

··· GB6 J1829+4844 GB6 J1832+6848 PMN J1834-5856 GB6 J1835+3241 PMN J1837-7108 1Jy 1845+79 GB6 J1842+6809 GB6 J1848+3219 GB6 J1849+6705 GB6 J1850+2825 GB6 J1902+3159 PMN J1918-7957 PMN J1923-2104 PMN J1924-2914 GB6 J1927+6117 GB6 J1927+7357 PMN J1937-3957 PMN J1939-6342 PMN J1939-1525 GB6 J1951+6743 GB6 J1952+0230 GB6 J1955+5131 PMN J1957-3845 PMN J2000-1748 1Jy 2007+77 GB6 J2007+6607 GB6 J2009+7229 PMN J2011-1546 GB6 J2022+6137 GB6 J2023+5427 GB6 J2024+1718 PMN J2035-6846 GB6 J2035+1055 PMN J2056-4714 GB6 J2101+0341 PMN J2109-4110

Notes

v

a

a,V

v

V V a

v V v

a

V v

– 27 –

Table 1—Continued RA [hms] 21 21 21 21 21 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 22 23 23 23

09 23 24 31 34 36 39 43 48 48 51 57 58 02 03 03 06 07 11 12 18 25 25 29 29 32 35 36 39 46 54 55 56 58 02 15 22

39 42 10 32 08 37 18 26 05 46 47 05 07 50 19 25 13 12 37 59 52 38 46 42 47 37 13 23 33 13 00 44 29 06 44 49 33

Dec [dm] 35 05 25 −12 −01 00 14 17 06 −77 −30 −69 −15 42 31 17 −18 −53 23 −25 −03 21 −04 −08 −20 11 −48 28 −57 −12 16 42 −20 −27 −68 −50 44

37 36 07 07 54 41 25 41 57 58 27 42 01 17 46 23 38 48 52 24 35 19 55 33 50 44 34 24 01 08 08 01 14 57 08 18 48

ID

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

049 027

0.9 ± 0.06 2.2 ± 0.06 0.8 ± 0.06 2.7 ± 0.06 2.0 ± 0.06 4.4 ± 0.06 2.2 ± 0.05 1.2 ± 0.05 8.0 ± 0.06 1.6 ± 0.04 1.3 ± 0.06 3.6 ± 0.05 2.1 ± 0.07 3.4 ± 0.05 2.7 ± 0.05 1.5 ± 0.06 1.8 ± 0.06 1.0 ± 0.05 1.3 ± 0.06 0.9 ± 0.07 2.3 ± 0.06 0.8 ± 0.06 5.2 ± 0.06 1.9 ± 0.07 0.9 ± 0.06 3.4 ± 0.06 2.0 ± 0.05 1.1 ± 0.07 1.2 ± 0.04 1.8 ± 0.06 7.4 ± 0.06 1.0 ± 0.04 0.8 ± 0.05 5.2 ± 0.06 0.6 ± 0.07 1.1 ± 0.04 0.8 ± 0.03

0.7 ± 0.08 1.8 ± 0.1 0.6 ± 0.09 2.4 ± 0.1 1.9 ± 0.1 3.5 ± 0.1 2.0 ± 0.08 1.3 ± 0.07 7.7 ± 0.09 1.4 ± 0.07 1.4 ± 0.1 2.9 ± 0.08 1.8 ± 0.09 3.5 ± 0.07 2.4 ± 0.08 1.6 ± 0.09 1.6 ± 0.09 0.8 ± 0.07 1.5 ± 0.09 0.7 ± 0.1 2.0 ± 0.1 1.0 ± 0.09 4.9 ± 0.1 2.3 ± 0.1 0.8 ± 0.09 4.0 ± 0.1 2.2 ± 0.08 1.2 ± 0.08 1.4 ± 0.05 1.8 ± 0.1 7.5 ± 0.1 0.7 ± 0.06 0.7 ± 0.08 5.2 ± 0.09 0.5 ± 0.08 1.1 ± 0.06 0.9 ± 0.05

0.6 ± 0.07 1.8 ± 0.1 0.4 ± 0.08 2.4 ± 0.1 1.7 ± 0.1 3.0 ± 0.1 1.9 ± 0.09 1.0 ± 0.09 7.5 ± 0.1 1.2 ± 0.07 1.4 ± 0.1 2.6 ± 0.08 1.8 ± 0.1 3.6 ± 0.07 2.1 ± 0.1 1.6 ± 0.1 1.2 ± 0.1 0.7 ± 0.1 1.4 ± 0.08 0.6 ± 0.1 1.9 ± 0.1 0.9 ± 0.09 4.3 ± 0.1 2.2 ± 0.1 0.9 ± 0.1 4.1 ± 0.1 2.1 ± 0.1 1.2 ± 0.1 1.1 ± 0.07 1.7 ± 0.2 7.5 ± 0.1 0.6 ± 0.08 0.8 ± 0.09 5.0 ± 0.1 0.5 ± 0.1 0.9 ± 0.1 0.8 ± 0.07

0.8 ± 0.2 1.3 ± 0.2 0.5 ± 0.2 1.7 ± 0.2 1.6 ± 0.2 1.4 ± 0.2 1.3 ± 0.2 0.8 ± 0.2 6.5 ± 0.2 0.7 ± 0.1 1.6 ± 0.2 2.1 ± 0.2 1.4 ± 0.3 3.3 ± 0.2 1.7 ± 0.2 1.5 ± 0.2 1.1 ± 0.2 0.4 ± 0.1 1.0 ± 0.1 0.8 ± 0.1 1.6 ± 0.2 0.6 ± 0.2 4.1 ± 0.2 2.9 ± 0.2 1.0 ± 0.2 4.5 ± 0.2 2.0 ± 0.2 1.2 ± 0.1 0.9 ± 0.1 1.2 ± 0.3 7.6 ± 0.2 ··· 0.5 ± 0.2 4.4 ± 0.2 ··· 0.9 ± 0.1 0.6 ± 0.1

··· ··· ··· 1.6 ± 0.5 1.5 ± 0.4 1.4 ± 0.3 1.0 ± 0.2 ··· 5.3 ± 0.5 ··· ··· 1.5 ± 0.4 0.6 ± 0.3 ··· 1.6 ± 0.4 ··· ··· ··· 1.1 ± 0.3 ··· ··· 0.6 ± 0.2 3.6 ± 0.7 2.1 ± 0.5 1.0 ± 0.3 4.0 ± 0.3 1.6 ± 0.4 ··· 1.5 ± 0.7 ··· 7.2 ± 0.4 ··· ··· 3.6 ± 0.4 ··· ··· 0.5 ± 0.3

−0.4 ± 0.4 −0.4 ± 0.2 −0.9 ± 0.6 −0.3 ± 0.1 −0.2 ± 0.2 −0.7 ± 0.1 −0.3 ± 0.2 −0.1 ± 0.3 −0.2 ± 0.05 −0.5 ± 0.2 0.2 ± 0.2 −0.6 ± 0.1 −0.4 ± 0.2 0.0 ± 0.08 −0.4 ± 0.1 0.1 ± 0.2 −0.5 ± 0.2 −0.6 ± 0.4 −0.1 ± 0.2 −0.2 ± 0.4 −0.4 ± 0.2 0.1 ± 0.4 −0.2 ± 0.08 0.3 ± 0.2 0.1 ± 0.3 0.2 ± 0.08 0.1 ± 0.1 0.1 ± 0.3 −0.0 ± 0.2 −0.2 ± 0.3 0.0 ± 0.04 −0.8 ± 0.4 −0.3 ± 0.4 −0.1 ± 0.07 −0.6 ± 0.8 −0.3 ± 0.3 −0.1 ± 0.3

GB6 J2109+3532 GB6 J2123+0535 GB6 J2123+2504 PMN J2131-1207 PMN J2134-0153 GB6 J2136+0041 GB6 J2139+1423 GB6 J2143+1743 GB6 J2148+0657 PMN J2146-7755 PMN J2151-3028 PMN J2157-6941 PMN J2158-1501 GB6 J2202+4216 GB6 J2203+3145 GB6 J2203+1725 PMN J2206-1835 PMN J2207-5346 GB6 J2212+2355 PMN J2213-2529 PMN J2218-0335 GB6 J2225+2118 PMN J2225-0457 PMN J2229-0832 PMN J2229-2049 GB6 J2232+1143 PMN J2235-4835 GB6 J2236+2828 PMN J2239-5701 PMN J2246-1206 GB6 J2253+1608 GB6 J2255+4202 PMN J2256-2011 PMN J2258-2758 PMN J2303-6807 PMN J2315-5018 GB6 J2322+4445

017 020 025 041 044 037 184 190 018 058 054 045 016 050 030 029 024 047 206 057 201 021 055 019 012 204

Notes a,v v

v

v

v

v

V V

v a v

V V

V V

V V

V a v a

– 28 –

Table 1—Continued RA [hms] 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23

22 27 29 30 30 31 33 34 34 35 46 48 48 49 54 54 56 57 58 58

48 38 04 22 44 22 45 10 58 27 46 14 16 32 22 59 11 51 04 53

Dec [dm] 51 09 −47 33 10 −15 −23 07 −01 −52 09 −49 −16 38 45 81 49 −53 −10 −60

05 37 33 48 56 58 40 34 29 43 29 31 30 46 50 52 53 14 14 50

ID

032

195

039 074 075 189 187

K [Jy]

Ka [Jy]

Q [Jy]

V [Jy]

W [Jy]

α

5 GHz ID

0.9 ± 0.05 0.8 ± 0.07 1.3 ± 0.04 0.8 ± 0.06 1.0 ± 0.05 1.1 ± 0.07 0.9 ± 0.06 1.1 ± 0.07 0.6 ± 0.06 1.2 ± 0.04 1.2 ± 0.06 0.7 ± 0.06 1.8 ± 0.06 0.8 ± 0.06 1.6 ± 0.05 0.8 ± 0.04 0.9 ± 0.03 1.3 ± 0.04 1.1 ± 0.06 1.9 ± 0.05

0.8 ± 0.09 1.2 ± 0.1 1.0 ± 0.08 0.8 ± 0.09 1.0 ± 0.08 0.9 ± 0.1 0.9 ± 0.08 1.0 ± 0.08 1.1 ± 0.1 0.8 ± 0.05 1.1 ± 0.07 0.7 ± 0.07 1.8 ± 0.1 0.7 ± 0.1 1.2 ± 0.07 0.8 ± 0.1 0.8 ± 0.05 1.1 ± 0.08 1.3 ± 0.07 1.4 ± 0.07

0.7 ± 0.08 1.1 ± 0.1 1.2 ± 0.1 0.7 ± 0.09 0.9 ± 0.08 0.8 ± 0.2 1.0 ± 0.09 1.0 ± 0.09 1.0 ± 0.1 0.7 ± 0.09 0.8 ± 0.1 0.7 ± 0.07 1.9 ± 0.1 ··· 1.2 ± 0.1 0.7 ± 0.09 0.6 ± 0.07 1.1 ± 0.1 1.2 ± 0.08 1.2 ± 0.06

0.5 ± 0.1 0.7 ± 0.2 0.8 ± 0.1 0.8 ± 0.2 1.0 ± 0.2 0.8 ± 0.2 1.1 ± 0.3 1.3 ± 0.2 0.7 ± 0.2 0.6 ± 0.1 0.6 ± 0.2 ··· 1.5 ± 0.2 ··· 1.1 ± 0.2 1.3 ± 0.2 0.4 ± 0.1 1.1 ± 0.1 1.2 ± 0.2 1.1 ± 0.1

··· ··· 0.9 ± 0.2 ··· ··· 0.8 ± 0.4 0.7 ± 0.3 ··· ··· ··· ··· ··· 1.0 ± 0.3 ··· 0.9 ± 0.2 ··· ··· 0.8 ± 0.3 0.9 ± 0.4 ···

−0.4 ± 0.3 0.3 ± 0.4 −0.3 ± 0.2 0.0 ± 0.4 −0.1 ± 0.3 −0.4 ± 0.4 0.1 ± 0.3 −0.0 ± 0.3 0.7 ± 0.5 −1.0 ± 0.3 −0.4 ± 0.4 0.1 ± 0.5 −0.1 ± 0.2 −0.3 ± 1 −0.4 ± 0.2 0.1 ± 0.3 −0.4 ± 0.3 −0.2 ± 0.2 0.1 ± 0.3 −0.7 ± 0.2

GB6 J2322+5057 GB6 J2327+0940 PMN J2329-4730 GB6 J2330+3348 GB6 J2330+1100 PMN J2331-1556 PMN J2333-2343 GB6 J2334+0736 PMN J2335-0131 PMN J2336-5236 GB6 J2346+0930 ··· PMN J2348-1631 GB6 J2349+3849 GB6 J2354+4553 ··· GB6 J2355+4950 PMN J2357-5311 PMN J2358-1020 PMN J2358-6054

a

Indicates the source has multiple possible identifications.

b

Source J0322-3711 (Fornax A) is extended, and the fluxes listed were obtained by aperture photometry.

c

Notes a a v a

a

a,v a

a

Source J0519-0539 is a blend of the Lynds Bright Nebulae LBN 207.65-23.11 and LBN 207.29-22.66.

d

Source J1356+7647 is outside of the declination range of the GB6 and PMN catalogs. Identified as QSO NVSSJ135755+764320 by Trushkin (2006, private communication). e

Source J1633+8226 is outside of the declination range of the GB6 and PMN catalogs. It was identified as NGC 6251 by Trushkin (2003). f

Source J1657+4754 is identified as QSO GB6J1658+4737 by Trushkin (2006, private communication). Offset from the WMAP position is 18.1 arcminutes. v

Probable variable: χ2 > 37.6.

V

Variable: χ2 > 100.

– 29 –

Table 2. WMAP Point Source Catalog –Five Years VW Bands RA hms 00 00 01 01 02 02 03 03 03 03 04 04 04 04 04 04 04 04 04 04 04 05 05 05 05 05 05 05 05 05 05 05 05 06 06 06 07 07 07 07 07 07 07 08 08

06 18 08 36 10 37 19 21 34 58 02 03 23 25 33 40 49 52 55 57 57 17 19 22 23 34 35 38 38 38 40 40 41 07 09 35 21 22 31 34 36 44 49 02 14

19 49 43 55 57 50 48 52 19 57 37 54 17 02 21 28 14 54 43 03 08 52 47 19 09 57 17 28 42 53 10 30 43 58 38 36 54 40 22 58 27 33 03 32 06

DEC dms

WMAP ID

Type

Dist. [arcmin]

fV a [Jy]

TV −W [mK]

5GHz ID

-06 27 31 73 24 34 01 39 53 47 50 27 -51 01 28 28 47 49 41 30 13 -37 08 24 -40 12 10 36 40 06 36 17 10 -36 04 48 -01 20 00 -37 56 42 05 22 36 -43 34 55 11 22 22 -69 18 56 -46 17 00 -66 25 20 -23 24 28 -69 19 02 -45 48 21 -68 00 24 -36 26 48 -67 33 47 -05 23 26 -69 07 20 -44 05 49 -03 01 16 -03 08 51 -02 39 03 -01 53 49 -06 26 25 -15 41 35 -75 15 15 -37 30 36 71 20 53 -48 09 24 -48 49 11 -49 50 52 -50 33 49 -50 39 05 -50 41 25 -52 52 02

WMAP J0006-0623 ··· WMAP J0108+0135 WMAP J0137+4753 WMAP J0210-5100 WMAP 0237+2848 WMAP J0319+4131 WMAP J0322-3711 WMAP J0334-4007 ··· ··· WMAP J0403-3604 WMAP J0423-0120 WMAP J0424-3757 WMAP J0433+0521 WMAP J0440-4332 ··· ··· WMAP 0455-4617 ··· WMAP J0456-2322 ··· WMAP J0519-4546 ··· WMAP J0523-3627 ··· ··· ··· WMAP J0538-4405 ··· ··· ··· ··· ··· WMAP J0609-1541 WMAP J0635-7517 ··· WMAP J0721+7122 ··· ··· ··· ··· ··· ··· ···

G QSO QSO QSO QSO QSO G G QSO ··· ··· QSO QSO QSO G QSO G HII QSO HII QSO HII G HII G HII HII HII QSO ··· ··· ··· HII HII QSO QSO ··· QSO ··· ··· ··· ··· ··· ··· ···

4.1 5.0 5.0 1.2 1.8 0.6 0.5 10.6 3.9 ··· ··· 0.2 0.6 3.9 2.8 2.6 1.8 5.9 1.7 1.5 1.2 6.8 1.7 3.5 2.3 3.0 0.1 3.1 1.6 ··· ··· ··· 0.2 4.5 1.3 1.2 ··· 3.7 ··· ··· ··· ··· ··· ··· ···

1.7±0.3 0.9±0.3 1.8±0.3 3.1±0.3 2.7±0.3 2.8±0.3 5.6±0.3 2.1±0.3 1.6±0.3 5.0 6.2 3.7±0.3 7.1±0.4 1.5±0.3 2.2±0.3 1.9±0.3 1.9±0.3 1.6±0.3 3.4±0.3 3.2±0.3 1.7±0.3 1.0±0.3 3.5±0.3 1.7±0.3 3.4±0.3 1.8±0.3 290.9±6.7 26.3±0.8 5.6±0.3 1.9 2.0 2.6 45.8±1.2 7.0±0.4 2.2±0.3 2.5±0.3 1.6 1.9±0.3 1.7 2.1 1.5 1.6 1.6 1.6 1.6

0.35 0.23 0.36 0.56 0.42 0.51 1.01 0.48 0.24 0.79 0.99 0.47 1.03 0.26 0.39 0.33 0.34 0.20 0.60 0.38 0.27 0.19 0.63 0.18 0.44 0.21 35.81 3.83 0.74 0.31 0.32 0.41 5.78 0.37 0.37 0.42 0.25 0.25 0.26 0.33 0.24 0.25 0.26 0.26 0.25

PMN J0006-0623 GB6 J0019+7327 PMN J0108+0134 GB6 J0136+4751 PMN J0210-5101 GB6 J0237+2848 GB6 J0319+4130 1Jy 0320-37 PMN J0334-4008 ··· ··· PMN J0403-3605 PMN J0423-0120 PMN J0424-3756 GB6 J0433+0521 PMN J0440-4332 GB6 J0449+1121 PMN J0452-6922 PMN J0455-4616 PMN J0456-6624 PMN J0457-2324 PMN J0518-6914 1Jy 0518-45 PMN J0522-6757 PMN J0522-3628 PMN J0535-6734 ··· PMN J0538-6905 PMN J0538-4405 ··· ··· ··· PMN J0541-0154 PMN J0607-0623 PMN J0609-1542 PMN J0635-7516 ··· GB6 J0721+7120 ··· ··· ··· ··· ··· ··· ···

Identified /Maskedb Y Y Y Y Y Y Y Y Y N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y Y N Y N N N N N N N

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N Y Y Y N Y N Y N Y Y Y N N N Y Y Y Y N Y N N N N N N N

Notec

‡ ‡ ‡ ‡ ‡, ⋄ ‡ ‡, Per A ‡, For A ‡, ⋄ In NGC 1499 In NGC 1499 ‡, ⋄ ‡ ‡, ⋄ ‡ ‡, ⋄ ∗, †, ‡ †, ‡, in LMC ‡, ⋄ †, in LMC ‡, ⋄ †, ‡, in LMC ‡, ⋄, Pic A †, ‡, in LMC ⋄ †, ‡, in LMC Ori A †, ‡, in LMC ‡, ⋄ in Ori in Ori in Ori ‡, Ori B †, ∗, ‡ ‡, ⋄ ‡, ⋄ in Gum ‡ in Gum in Gum in Gum in Gum in Gum in Gum in Gum

– 30 –

Table 2—Continued RA hms 08 08 08 09 09 09 10 10 11 11 12 12 12 12 13 13 13 13 13 14 15 15 16 16 16 16 16 16 16 16 16 17 17 17 17 17 18 18 19 19 19 20 20 21 21

36 41 54 09 21 27 58 59 53 59 29 30 47 56 10 15 22 25 37 27 18 49 13 18 20 20 28 35 38 42 42 20 33 43 51 53 06 29 24 27 57 11 56 34 48

38 21 58 12 28 05 31 09 04 41 08 49 02 12 47 59 35 33 41 53 04 33 42 32 18 51 38 05 26 26 56 32 01 56 38 44 49 37 52 42 55 12 01 15 07

DEC dms

WMAP ID

Type

Dist. [arcmin]

fV a [Jy]

TV −W [mK]

5GHz ID

-20 15 52 70 55 29 20 06 06 01 23 37 07 24 22 39 03 46 01 33 44 -80 04 12 49 29 55 29 19 49 02 03 06 12 22 56 -25 46 32 -05 47 28 32 24 25 -33 45 18 -44 38 25 -42 59 25 -12 56 37 -42 06 36 -24 21 26 02 33 46 34 12 03 -77 12 31 -25 34 47 -25 21 11 -09 03 59 38 08 11 57 18 39 68 55 54 39 48 44 -00 59 59 -13 06 25 -03 48 42 09 40 23 28 47 37 69 50 36 48 46 45 -29 14 15 73 56 34 -38 45 03 -15 47 51 -47 15 56 -01 59 35 06 56 29

WMAP J0836-2015 WMAP J0841+7053 WMAP J0854+2006 WMAP J0909+0119 ··· WMAP J0927+3901 WMAP J1058+0134 WMAP J1059-8003 WMAP J1153+4932 WMAP J1159+2915 WMAP J1229+0203 WMAP J1230+1223 WMAP J1246-2547 WMAP J1256-0547 WMAP J1310+3222 WMAP J1316-3337 ··· ··· WMAP J1337-1257 WMAP J1427-4206 WMAP J1517-2421 WMAP J1549+0236 WMAP J1613+3412 WMAP J1618-7716 ··· ··· ··· WMAP J1635+3807 WMAP J1638+5722 WMAP J1642+6854 WMAP J1642+3948 ··· ··· ··· ··· WMAP J1753+2848 WMAP J1806+6949 WMAP J1829+4845 ··· WMAP J1927+7357 WMAP J1958-3845 WMAP J2011-1547 WMAP J2056-4716 WMAP J2134-0154 WMAP J2148+0657

QSO QSO QSO QSO ··· QSO QSO QSO G QSO QSO G QSO QSO QSO QSO ··· G QSO QSO G QSO QSO QSO ··· ··· ··· QSO QSO QSO QSO G QSO QSO QSO QSO G QSO QSO QSO QSO QSO QSO QSO QSO

1.2 1.8 2.2 2.1 ··· 1.5 0.4 1.1 3.5 5.5 0.3 0.5 3.7 0.2 5.3 6.6 ··· 2.0 0.8 0.7 5.1 3.4 0.8 5.3 ··· ··· ··· 2.1 2.4 1.8 0.6 1.5 1.6 1.6 1.9 0.6 1.1 2.2 0.3 1.5 0.9 1.5 2.8 6.4 1.2

1.9±0.3 1.7±0.3 4.2±0.3 1.6±0.3 2.3 4.6±0.3 4.2±0.3 2.3±0.3 2.1±0.3 1.8±0.3 14.6±0.5 9.6±0.4 1.7±0.3 16.9±0.6 1.7±0.3 1.9±0.3 2.2 25.6±0.8 6.0±0.3 2.7±0.3 1.8±0.3 2.1±0.3 2.9±0.3 1.7±0.3 2.7 3.0 2.1 4.1±0.3 1.6±0.3 1.3±0.3 5.1±0.3 2.6±0.3 3.3±0.3 4.5±0.3 3.6±0.3 2.0±0.3 1.3±0.3 2.3±0.3 10.1±0.4 3.0±0.3 2.9±0.3 1.1±0.3 2.6±0.3 1.3±0.3 6.5±0.3

0.39 0.31 0.61 0.44 0.36 0.72 0.80 0.30 0.30 0.33 2.32 1.49 0.33 2.45 0.28 0.33 0.34 4.02 0.86 0.39 0.34 0.36 0.51 0.25 0.43 0.47 0.34 0.56 0.26 0.31 0.78 0.43 0.51 0.76 0.57 0.27 0.23 0.28 1.60 0.45 0.35 0.32 0.39 0.38 1.02

PMN J0836-2017 GB6 J0841+7053 GB6 J0854+2006 GB6 J0909+0121 ··· GB6 J0927+3902 GB6 J1058+0133 PMN J1058-8003 GB6 J1153+4931 GB6 J1159+2914 PMN J1229+0203 GB6 J1230+1223 PMN J1246-2547 PMN J1256-0547 GB6 J1310+3220 PMN J1316-3339 ··· PMN J1325-4257d PMN J1337-1257 PMN J1427-4206 PMN J1517-2422 GB6 J1549+0237 GB6 J1613+3412 PMN J1617-7717 ··· ··· ··· GB6 J1635+3808 GB6 J1638+5720 GB6 J1642+6856 GB6 J1642+3948 PMN J1720-0058 PMN J1733-1304 PMN J1743-0350 GB6 J1751+0938 GB6 J1753+2847 GB6 J1806+6949 GB6 J1829+4844 PMN J1924-2914 GB6 J1927+7357 PMN J1957-3845 PMN J2011-1546 PMN J2056-4714 PMN J2134-0153 GB6 J2148+0657

Identified /Maskedb Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y N Y Y Y Y Y Y Y N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

Y Y Y Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N N N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Notec

‡, ⋄ ‡ ‡ ‡ ··· ‡ ‡ ‡, ⋄ ··· ‡ ‡ Vir A ‡, ⋄ ‡ ‡ ‡, ⋄ In Cen A vicinity †, ∗, ⋄, Cen A ‡ ‡, ⋄ ‡, ⋄ ‡ ‡ ‡, ⋄ in Oph in Oph in Oph ‡ ‡ ‡ ‡ †, ∗ ∗, ‡ ∗, ‡ †, ∗, ‡ ‡ ‡ ··· †, ∗, ‡, ⋄ ‡ ‡, ⋄ ‡, ⋄ ‡, ⋄ ‡ ‡

– 31 –

Table 2—Continued DEC dms

WMAP ID

Type

Dist. [arcmin]

fV a [Jy]

TV −W [mK]

5GHz ID

-69 41 42 42 17 37 -03 30 48 -04 57 56 -08 31 23 11 42 50 -48 35 13 16 10 11 -27 59 31

WMAP J2157-6942 WMAP J2202+4217 WMAP J2218-0335 WMAP J2225-0455 WMAP J2229-0833 WMAP J2232+1144 WMAP J2235-4834 WMAP J2254+1608 WMAP J2258-2757

G QSO QSO QSO QSO QSO QSO QSO QSO

1.2 1.2 4.9 1.6 2.1 1.1 1.5 1.3 1.5

2.1±0.3 3.6±0.3 1.5±0.3 3.6±0.3 2.8±0.3 4.2±0.3 2.1±0.3 8.0±0.4 4.7±0.3

0.41 0.39 0.35 0.68 0.41 0.53 0.36 1.06 0.75

PMN J2157-6941 GB6 J2202+4216 PMN J2218-0335 PMN J2225-0457 PMN J2229-0832 GB6 J2232+1143 PMN J2235-4835 GB6 J2253+1608 PMN J2258-2758

RA hms 21 22 22 22 22 22 22 22 22

57 02 18 25 29 32 35 53 58

19 47 55 42 46 35 21 57 10

Identified /Maskedb Y Y Y Y Y Y Y Y Y

/ / / / / / / / /

Y Y Y Y Y Y Y Y Y

Notec

⋄ ··· ‡ ‡ ‡ ··· ‡, ⋄ ‡ ‡, ⋄

a The V-band fluxes of the identified sources are calculated as in Chen & Wright (2008); The fluxes of the unidentified sources are estimated by multiplying the V-W temperature in the filtered map with the median conversion factor from V-W temperatures to V-band fluxes of the identified sources and are given without an uncertainty. b Three-year

WMAP point source mask is considered here.

c†

and ∗ indicate the new sources cross-detected in Nie & Zhang (2007) and L´ opez-Caniego et al. (2007). ‡ and ⋄ indicate the source is included in the CRATES catalog (Healey et al. 2007) and the AT20G BSS catalog (Massardi et al. 2008), respectively. d Indicates

the source has multiple possible 5 GHz identifications. The brightest one is given here.

– 32 –

Table 3. Significant Polarization Percentages WMAP ID

K

Ka

Q

J0322−3711 J0519−4546 J1229+0203 J1230+1223 J1256−0547

8.5 ± 0.4 5.7 ± 0.9 4.9 ± 0.3 3.8 ± 04 3.6 ± 0.4

9.3 ± 1.2 8.6 ± 2.0 4.4 ± 0.6 4.8 ± 0.7 3.1 ± 0.7

8.1 ± 2.2 ··· 4.8 ± 0.8 4.4 ± 1.0 3.8 ± 0.8