Theorems on Carlitz's twisted q-Euler polynomials

0 downloads 0 Views 78KB Size Report
In this paper, we consider Carlitz's twisted q-Euler polynomials and present ... When x = 0, we have En(0) := En that are known as Euler numbers (see, e.g., [3], ...
Journal of Contemporary Applied Mathematics V. 7, No 1, 2017, June ISSN 2222-5498

Theorems on Carlitz’s twisted q-Euler polynomials under S5 Ugur Duran, Mehmet Acikgoz

Abstract. In this paper, we consider Carlitz’s twisted q-Euler polynomials and present some new symmetric identities for Carlitz’s twisted q-Euler polynomials using the fermionic p-adic invariant integral on Zp under symmetric group of degree five. Key Words and Phrases: Symmetric identities; Carlitz’s twisted q-Euler polynomials; p-adic invariant integral on Zp ; Invariant under S5 . 2010 Mathematics Subject Classifications: 11B68, 05A19, 11S80, 05A30.

1. Introduction The Euler polynomials En (x) are defined by means of the Taylor expansion about t = 0: ∞ ∑ n=0

En (x)

tn 2 = t ext with (|t| < π). n! e +1

(1)

When x = 0, we have En (0) := En that are known as Euler numbers (see, e.g., [3], [5], [6], [7], [8], [9]). Let Z be the set of the all integers, C be the set of all complex numbers and p be chosen as a fixed odd prime number. Throughout this paper, the symbols Zp , Q, Qp and Cp shall denote topological closure of Z, the field of rational numbers, topological closure of Q and the field of p-adic completion of an algebraic closure of Qp , respectively. For d an odd positive number with (d, p) = 1, let X := Xd = lim Z/dpN Z and X1 = Zp ← − n

and { ( )} t + dpN Zp = x ∈ X | x ≡ t mod dpN where t ∈ Z lies in 0 ≤ t < dpN . See, for more details, [1,2, 4-9].

http://www.jcam.azvs.az

3

c 2011 ⃝

JCAM All rights reserved.

4

Ugur Duran, Mehmet Acikgoz

The normalized absolute value according to the theory of p-adic analysis is given by |p|p = p−1 . The notation q can be considered as an indeterminate, a complex number q ∈ C with |q| < 1, or a p-adic number q ∈ Cp with |q − 1|p < p for |x|p ≤ 1.

1 − p−1

and q x = exp (x log q)

For fixed x, let us introduce the following notation [x]q =

1 − qx 1−q

(2)

which is known as q-number of x (or q-analogue of x), see [1-11]. Notice that as q → 1, the notation [x]q reduce to the x. For f ∈ U D (Zp ) = {f |f : Zp → Cp is uniformly differentiable function } , Kim [5] defined the p-adic invariant integral on Zp as follows: ∫ lim Iq (f ) = I−1 (f ) =

q→−1

Zp

f (x) dµ−1 (x) = lim

N →∞

N −1 p∑

f (x) (−1)x .

(3)

x=0

By Eq. (3), we have n

I−1 (fn ) = (−1) I−1 (f ) + 2

n−1 ∑

(−1)n−k−1 f (k)

k=0

where fn (x) implies f (x + n). For more details, take a look at the references [1], [2], [4], [5], [6], [7], [8], [9]. Let Tp =

∪ N ≥1

CpN = lim CpN , N →∞

{ } N where CpN = w : wp = 1 is the cyclic group of order pN . For w ∈ Tp , we show by ϕw : Zp → Cp the locally constant function x → wx . For q ∈ Cp with |1 − q|p < 1 and w ∈ Tp , the Carlitz’s twisted q-Euler polynomials are defined by the following p-adic invariant integral on Zp in [9], with respect to µ−1 : ∫ (4) wy [x + y]nq dµ−1 (y) (n ≥ 0) . En,q,w (x) = Zp

If we let x = 0 into the Eq. (4), we then get En,q,w (0) := En,q,w called as n-th Carlitz’s twisted q-Euler numbers.

5

Theorems on Carlitz’s twisted q-Euler polynomials under S5

Notice that when w = 1 and q → 1 in the Eq. (4), we observe that ∫ En,q,w (x) → En (x) := (x + y)n dµ−1 (y) . Zp

Recently, symmetric identities of some special polynomials, such as q-Genocchi polynomials of higher order under third Dihedral group D3 in [1], q-Frobenious-Euler polynomials under symmetric group of degree five in [2], weighted q-Genocchi polynomials under the symmetric group of degree four in [4], Carlitz’s q-Euler polynomials invariant under the symmetric group of degree five in [6], have been studied extensively. In the next section, we give some new symmetric identities for Carlitz’s twisted q-Euler polynomials associated with the fermionic p-adic invariant integral on Zp symmetric group of degree five denoted by S5 .

2. Results on En,q,w (x) under S5 Let w ∈ Tp and wi are odd natural numbers where i ∈ {1, 2, 3, 4, 5}. By the Eqs. (3) and (4), we acquire ∫ ww1 w2 w3 w4 y (5) Zp

×e

[w1 w2 w3 w4 y+w1 w2 w3 w4 w5 x+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s]q t

dµ−1 (y)

(6)

pN −1



= lim

N →∞

(−1)y ww1 w2 w3 w4 y

(7)

y=0

×e[w1 w2 w3 w4 y+w1 w2 w3 w4 w5 x+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s]q t = lim

N →∞

N −1 w∑ 5 −1 p∑

(−1)l+y ww1 w2 w3 w4 (l+w5 y)

l=0

y=0

×e

[w1 w2 w3 w4 (l+w5 y)+w1 w2 w3 w4 w5 x+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s]q t

.

Taking w∑ 1 −1 w 2 −1 w 3 −1 w 4 −1 ∑ ∑ ∑

(−1)i+j+k+s ww5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s

i=0

j=0 k=0 s=0

on the both sides of Eq. (6) gives w∑ 1 −1 w 2 −1 w 3 −1 w 4 −1 ∑ ∑ ∑

(−1)i+j+k+s ww5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s

i=0

j=0 k=0 s=0

∫ ×

ww1 w2 w3 w4 y Zp

(8)

6

Ugur Duran, Mehmet Acikgoz

×e[w1 w2 w3 w4 y+w1 w2 w3 w4 w5 x+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s]q t dµ−1 (y) = lim

N →∞

×w

N −1 w∑ 1 −1 w 2 −1 w 3 −1 w 4 −1 w 5 −1 p∑ ∑ ∑ ∑ ∑

(−1)i+j+k+s+y+l

i=0

j=0 k=0 s=0

l=0

y=0

w1 w2 w3 w4 (l+w5 y)+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s

×e[w1 w2 w3 w4 (l+w5 y)+w1 w2 w3 w4 w5 x+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s]q t . Observe that the equation (8) is invariant for any permutation σ ∈ S5 . Therefore, we obtain the following theorem. Theorem 2.1. Let w ∈ Tp and wi are odd natural numbers where i ∈ {1, 2, 3, 4, 5}. Then the following wσ(1) −1 wσ(2) −1 wσ(3) −1 wσ(4) −1









(−1)i+j+k+s

s=0 j=0 k=0 wσ(5) wσ(4) wσ(2) wσ(3) i+wσ(5) wσ(4) wσ(1) wσ(3) j+wσ(5) wσ(4) wσ(1) wσ(2) k+wσ(5) wσ(3) wσ(1) wσ(2) s

i=0

×w ∫ ×

wwσ(1) wσ(2) wσ(3) wσ(4) (l+wσ(5) y)

Zp

( × exp [wσ(1) wσ(2) wσ(3) wσ(4) y + wσ(1) wσ(2) wσ(3) wσ(4) wσ(5) x + wσ(5) wσ(4) wσ(2) wσ(3) i ) +wσ(5) wσ(4) wσ(1) wσ(3) j + wσ(5) wσ(4) wσ(1) wσ(2) k + wσ(5) wσ(3) wσ(1) wσ(2) s]q t dµ−1 (y) holds true for any σ ∈ S5 . By using Eq. (2), we obtain the following equality: [w1 w2 w3 w4 y + w1 w2 w3 w4 w5 x + w5 w4 w2 w3 i + w5 w4 w1 w3 j + w5 w4 w1 w2 k + w5 w3 w1 w2 s]q (9)

] [ w5 w5 w5 w5 . i+ j+ k+ s = [w1 w2 w3 w4 ]q y + w5 x + w1 w2 w3 w4 qw1 w2 w3 w4 By virtue of Eqs. (6) and (9), we derive ∫ ww1 w2 w3 w4 y Zp

e

[w1 w2 w3 w4 y+w1 w2 w3 w4 w5 x+w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s]q t

=

∞ ∑ n=0

(∫ ×

dµ−1 (y)

(10)

[w1 w2 w3 w4 ]nq

) [ ]n w tn w w w 5 5 5 5 ww1 w2 w3 w4 y y + w5 x + dµ−1 (y) i+ j+ k+ s w1 w2 w3 w4 qw1 w2 w3 ww4 n! Zp

7

Theorems on Carlitz’s twisted q-Euler polynomials under S5

=

∞ ∑

[w1 w2 w3 w4 ]nq En,qw1 w2 w3 w4 ,ww1 w2 w3 w4

n=0

( ) n w5 w5 w5 w5 t w5 x + i+ j+ k+ s . w1 w2 w3 w4 n!

On account of Eq. (10), we have ∫ ww1 w2 w3 w4 y

(11)

Zp

× [w1 w2 w3 w4 y + w1 w2 w3 w4 w5 x + w5 w4 w2 w3 i + w5 w4 w1 w3 j+ +w5 w4 w1 w2 k + w5 w3 w1 w2 s]nq dµ−1 (y) ) ( w5 w5 w5 w5 n w w w w w w w w i+ j+ k+ s , (n ≥ 0) . = [w1 w2 w3 w4 ]q En,q 1 2 3 4 ,w 1 2 3 4 w5 x + w1 w2 w3 w4 Herewith, from Theorem 2.1 and Eq. (11), we have the following theorem. Theorem 2.2. Let w ∈ Tp and wi are odd natural numbers where i ∈ {1, 2, 3, 4, 5}. The following expression [

w

wσ(1) wσ(2) wσ(3) wσ(4)

−1 wσ(2) −1 wσ(3) −1 wσ(4) −1

∑ ]n σ(1)





j=0

k=0

s=0

q i=0

×w



(−1)i+j+k+s

wσ(5) wσ(4) wσ(2) wσ(3) i+wσ(5) wσ(4) wσ(1) wσ(3) j+wσ(5) wσ(4) wσ(1) wσ(2) k+wσ(5) wσ(3) wσ(1) wσ(2) s

(

×En,qwσ(1) wσ(2) wσ(3) wσ(4) ,wwσ(1) wσ(2) wσ(3) wσ(4)

wσ(5) x +

) wσ(5) wσ(5) wσ(5) wσ(5) i+ j+ k+ s wσ(1) wσ(2) wσ(3) wσ(4)

holds true for any σ ∈ S5 . We observe that ] [ ∫ w5 w5 w5 w5 n dµ−1 (y) i+ j+ k+ s (12) ww1 w2 w3 w4 y y + w5 x + w1 w2 w3 w4 qw1 w2 w3 w4 Zp ( )n−m n ( ) ∑ [w5 ]q n = [w2 w3 w4 i + w1 w3 w4 j + w1 w2 w4 k + w1 w2 w3 s]n−m q w5 m [w1 w2 w3 w4 ]q m=0 m(w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s)

×q ∫ Zp

=

ww1 w2 w3 w4 y [y + w5 x]m q w1 w2 w3 w4 dµ−1 (y)

n ( ) ∑ n

(

[w5 ]q

)n−m [w2 w3 w4 i + w1 w3 w4 j + w1 w2 w4 k + w1 w2 w3 s]n−m q w5

m [w1 w2 w3 w4 ]q m=0 m(w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s)

×q

Em,qw1 w2 w3 w4 ,ww1 w2 w3 w4 (w5 x) .

8

Ugur Duran, Mehmet Acikgoz

In view of the Eq. (12), we acquire [w1 w2 w3 w4 ]nq

w∑ 4 −1 1 −1 w 2 −1 w 3 −1 w ∑ ∑ ∑

(−1)i+j+k+s ww5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s

i=0

[

∫ × =

j=0 k=0 s=0

ww1 w2 w3 w4 y Zp

n ( ) ∑ n m=0

m

] w5 w5 w5 w5 n y + w5 x + i+ j+ k+ s dµ−1 (y) w1 w2 w3 w4 qw1 w2 w3 w4

n−m [w1 w2 w3 w4 ]m Em,qw1 w2 w3 w4 ,ww1 w2 w3 w4 (w5 x) q [w5 ]q

(13)

w∑ 1 −1 w 2 −1 ∑ i=0

j=0

w∑ 3 −1 w 4 −1 ∑

(−1)i+j+k+s ww5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s

k=0 s=0 m(w5 w4 w2 w3 i+w5 w4 w1 w3 j+w5 w4 w1 w2 k+w5 w3 w1 w2 s)

×q

× [w2 w3 w4 i + w1 w3 w4 j + w1 w2 w4 k + w1 w2 w3 s]n−m q w5 ( ) n ∑ n n−m = [w1 w2 w3 w4 ]m Em,qw1 w2 w3 w4 ,ww1 w2 w3 w4 (w5 x) Un,qw5 ,ww5 (w1 , w2 , w3 , w4 | m), q [w5 ]q m m=0

where Un,q,w (w1 , w2 , w3 , w4 | m) =

(14)

w∑ 1 −1 w 2 −1 w 3 −1 w 4 −1 ∑ ∑ ∑

(−1)i+j+k+s ww2 w3 w4 i+w1 w3 w4 j+w1 w2 w4 k+w1 w2 w3 s

i=0

×q

j=0 k=0 s=0

m(w2 w3 w4 i+w1 w3 w4 j+w1 w2 w4 k+w1 w2 w3 s)

[w2 w3 w4 i + w1 w3 w4 j + w1 w2 w4 k + w1 w2 w3 s]n−m . q

As a result of the Eq. (13), we conclude the following theorem.

Theorem 2.3. Let w ∈ Tp and wi are odd natural numbers where i ∈ {1, 2, 3, 4, 5}. For n ≥ 0, the following n ( ) ∑ n [ m=0

m

wσ(1) wσ(2) wσ(3) wσ(4)

]m [ q

wσ(5)

]n−m q

( ) ×Em,qwσ(1) wσ(2) wσ(3) wσ(4) ,wwσ(1) wσ(2) wσ(3) wσ(4) wσ(5) x Un,qwσ(5) ,wwσ(5) (wσ(1) , wσ(2) , wσ(3) , wσ(4) | m) holds true for some σ ∈ S5 .

Theorems on Carlitz’s twisted q-Euler polynomials under S5

9

References [1] E. A˘gy¨ uz, M. Acikgoz, S. Araci, A symmetric identity on the q-Genocchi polynomials of higher order under third Dihedral group D3 , Proceedings of the Jangjeon Mathematical Society, 18 (2015), No. 2, pp. 177-187. [2] S. Araci, U. Duran, M. Acikgoz, Symmetric identities involving q-Frobenius-Euler polynomials under Sym (5), Turkish Journal of Analysis and Number Theory, Vol. 3, No. 3, pp. 90-93 (2015). [3] J. Choi, P. J. Anderson, H. M. Srivastava, Carlitz’s q-Bernoulli and q-Euler numbers and polynomials and a class of generalized q-Hurwitz zeta functions, Applied Mathematics and Computation, Volume 215, Issue 3 (2009), Pages 1185–1208. [4] U. Duran, M. Acikgoz, S. Araci, Symmetric identities involving weighted q-Genocchi polynomials under S4 , Proceedings of the Jangjeon Mathematical Society,18 (2015), No. 4, pp 455-465. [5] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on Zp , Russian Journal of Mathematical Physics, 484-491 (2009). [6] T. Kim and J. J. Seo, Some identities of symmetry for Carlitz-type q-Euler polynomials invariant under symmetric group of degree five, International Journal of Mathematical Analysis, Vol. 9 (2015), no. 37, 1815-1822. [7] H. Ozden, Y. Simsek, I. N. Cangul, Euler polynomials associated with p-adic q-Euler measure, General Mathematics Vol. 15, Nr. 2-3 (2007), 24-37. [8] C. S. Ryoo, Symmetric properties for Carlitz’s twisted (h,q)-Euler polynomials associated with p-adic q-integral on Zp , International Journal of Mathematical Analysis, Vol. 9 (2015), no. 40, 1947 - 1953. [9] C. S. Ryoo, Symmetric properties for Carlitz’s twisted q-Euler numbers and polynomials associated with p-adic integral on Zp , International Journal of Mathematical Analysis, Vol. 9 (2015), no. 83, 4129 - 4134. Ugur Duran Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey E-mail:[email protected] Mehmet Acikgoz Department of Mathematics, Faculty of Arts and Science, University of Gaziantep, TR-27310 Gaziantep, Turkey E-mail:[email protected]

Received 25 December 2016 Accepted 15 February 2017

Suggest Documents