Thermoelectric Technology and Manufacturing

1 downloads 0 Views 13MB Size Report
Business Model o 6-‐9 months R&D prior to commercializa\on o Rela\onships currently established with module manufacturer ...
Thermoelectric  Technology  and   Manufacturing   Clemson  University   Arash  Mehdizadeh   Daniel  Thompson   Jennifer  Graff  

Thermoelectric  Technology   o 2  modes  of  opera@on   o Refrigera@on  (Pel@er)    I  ΔT o Power  Genera@on  (Seebeck)  ΔT  I  

Thermoelectric  Technology   Physical  proper@es  involved  in  TE  are  correlated!   2

ασ ZT = T κ α = Seebeck Coefficient σ = Electrical Conductivity κ = Thermal Conductivity

•   Requires  accurate  and   precise  measurements   •   Hard  to  op@mize   •   ZT        =

 η    

Research  vs.  Commercializa@on   Novel  Bi2Te3  –  based  TE  

o   Bi2Te3  –  based  TE  for   close  to  room   temperature  climate   control   o   Gap  between  lab  scale   research  and  current   commercialized  products   o   Manufacturing   infrastructure  

AMat  Product  in  Ac@on  

AMat  Corporate  Structure  

COO  

Research     Adviser     Dr.  Terry  Tri+   Expert  in  measurement  and   characteriza@on  techniques   accuracy  and  prescision  of   novel  materials  

CEO  

CTO  

Industrial  Adviser   Dr.  J.  S.   Guided  concep@on,   development  and  scale-­‐to-­‐ produc@on  of  high  efficiency   materials  

Business  Model  

o   6-­‐9  months  R&D  prior  to  commercializa@on   o   Rela@onships  currently  established  with  module  manufacturer    

Compe@@ve  Landscape   •  Future  Market  Mover/Shakers:  TE  material  developers     (through  R&D  Investment)   •  AMat’s  compe@@ve  advantages:   •  Higher  Efficiency  (>  20%)   •  Cost-­‐efficiency     •  Scalable  Process    

Intellectual  Property  Landscape   Process,  Methods     and  Techniques    for  Materials  Syntheis  

•  Majority  of  the  issued  patents  on   system,  device  and  module   fabrica@on   •  Self-­‐destruc@ve  IP  bagles   avoided  by  market  compe@tors   •  Cross-­‐licensing  agreements   for  start-­‐ups   •  AMat’s  freedom  to  operate  

New  Materials,     Structures  or     Composi;ons  

9.2%  

18.3%  

72.4%  

System,  Device,    Module  or    Assembly  Fabrica;on  

Market  Opportunity  

o   AMat  will  capture  ≈1.0%-­‐2.5%  of  the  target  market   o   AMat’s  annual  produc@on  will  cover  the  needs  of  ≈200K  modules  

AMat’s  Tools  for  Success  -­‐  Synthesis      SPEX  8000M  –  High  energy  Ball  Mill  

   Thermal  Technologies  Hot  Isosta;c  Press      Fuji  Dr.  Sinter  Spark  Plasma  Sintering  System      Labconco  Protector  Glovebox  

Tools  for  Success  –  Low  Temp  Characteriza@on      Hitachi  3400-­‐SEM        Miniflex  XRD        Custom  Resi;vity  &  Seebeck      Custom  Thermal  Conduc;vity      Quantum  Design  PPMS  

Overall  Es@ma@on  of  Funding  for     Phase  1  and  2   Typical  Cost  for  Start-­‐up  

Powder   Prep  

AMat  Cost  for  Start-­‐up   SPS/Hot  Press  

SPS/Hot  Press   $40,000  

Structural   Characteriza@on   $10,000  

$50,000  

Powder   Prep   $50,000  

$30,000  

$10,000  

$95,000   Proper@es   Measurements  

Metalliza@on  and   Assembly  

Structural   Characteriza@on  

Total  

Total   $335,000   Module   Characteriza@on   $15,000  

$40,000  

$200,000  

Module   Characteriza@on   $15,000  

Proper@es   Measurements   Metalliza@on  and   Assembly   $30,000  

$200,000  

Revenue  Model   Phase  1  &  2   High  Performance   material  &  Scalable   process  for  cooling   app.  (ZT>1)  

Research  &   Development  

Phase  3   Package  I  

Package  II  

$1.1  million  Investment   15%  Equity  to  investor   $50,000  suggested  annual  profit  in  1st  year  

$2.5  million  Investment    30%  Equity  to  investor   $104,080  suggested  annual  profit  in  1st  year  

Investment  breakdown  

  Material  Cost     Equipment  Cost     1  Hot  Press  (custom)     2  industrial  ball  mills     1  large  furnace     Labor  (3  technical  employees)     Property/U@li@es  

  Investment  breakdown  

  Material  Cost       Equipment  Cost     2  Industrial  Hot  Presses     4  Industrial  ball  mills     2  large  furnace     Labor  (6  technical  employees)     Property/U@li@es  

Winning  Summary   •  Future  Market  Movers/Shakers:   •  Technology  based  TE  material  developers  (through  R&D   Investment)   •  AMat’s  compe@@ve  advantage  (wafers)   •  Higher  Efficiency   •  Novel  Materials   •  Cost  Efficiency   •  AMat’s  commercializa@on  plan   •  Successful  Business  Model   •  Staged  and  planned  short-­‐term  R&D  start-­‐up   •  Access  to  state-­‐of-­‐the-­‐art  equipment  through  CAML  at   Clemson  University   •  Investment  packages  designed  for  specific  investors  

Acknowledgements   •  Technical  Advisers:     –  Dr.  Terry  Trig     –  Dr.  J.S.  

•  College  of  Engineering  and  Science  –  Clemson   University   •  ACC  DOE  Clean  Energy  Challenge   •  DOE-­‐EERE   •  Lockheed  Mar@n   •  Fish  &  Richardson  P.C.   •  Nixon  Peabody  L.L.P.   •  SAIC  

Thank  you  for  your   @me!   Ques@ons?  

Extra  Slides  for  ques@ons   beyond  this  point  

Low  Temperature  Thermal  Conduc@vity   •   Use  a  CAML  custom  designed  steady-­‐state  thermal  conduc@vity  measurement  system.29   Two  samples  can  be  simultaneously  mounted  on  a  removable  puck.  Measurements  are   conducted  in  a  vacuum  of  10-­‐3  torr  and  from  10-­‐300K.  

Low  Temperature  Thermal  Conduc@vity   Steady State Method P vs. ΔT Sweeps @ Constant T

High  Temperature  Thermal  Conduc@vity  

Netsch  DSC  404C  Pegasus  

AccuPyc  1330  Pycnometer    

Netsch  LFA  457  MicroFlash  

• The  high  temperature  thermal  conduc@vity  is  calculated  using  the  density  of  the  sample  ρ,   its  heat  capacity  at  constant  pressure  Cp,  and  its  diffusivity  D.   •   A  Differen@al  Scanning  Calorimeter  (DSC)  is  used  to  measure  the  heat  capacity  of  the   sample  at  a  constant  pressure.  A  gas  pycnometer  is  used  to  measure  its  density,  and  a  Laser   Flash  is  used  to  measure  its  thermal  diffusivity.

Low  Temperature  Electrical  Transport  Proper@es   •   Use  a  CAML  custom  designed  Resis@vity  and  Seebeck  coefficient  system  with  a  

temperature  range  of  10K  to  300K.30    

•   Samples  are  mounted  on  a  24-­‐pin  chip,  and  the  system  can  run  two  samples   simultaneously.

Low  Temperature  Electrical  Transport  Proper@es  

31  

Tools  for  Success  –  High  Temp  Characteriza@on      ULVAC  ZEM  II  

   Netzsch  DSC  404C      Netzsch  LFA  457C      AccuPyc  1330  Pycnometer