without polar components. ⢠sCPA â SRK 72 for ... 2 critical conditions. 10. CO2. CO N2. O2. Ar H2. NO CH4. C2H6. C3H8. NO2. SO2. H2S N2O. CO2. CO. N2.
THERMOPHYSICAL PROPERTIES AND PHASE BEHAVIOR OF A CO2-RICH NATURAL GAS Antonin Chapoy, Mahmoud Nazeri, Mahdi Kapateh, Rod Burgass, Bahman Tohidi Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, UK
Christophe Coquelet
MINES ParisTech, Fontainebleau, France
1
2014 GPA Convention April 13 -16
Outline • • • • • •
2
Introduction / Background VLE / Phase Envelope Hydrate / dehydration Viscosity / density Frost Points Conclusions
2014 GPA Convention April 13 -16
Introduction / Background • Significant gas deposits with relatively high CO2 concentrations (US, East Asia...) – From 40 to 70 mole% CO2
• Models / correlations developed for methane rich fluids are not necessary applicable • Experimental data for such systems are scarce • Knowledge gained is transferrable between CCS and acid gas production/processing/injection
3
2014 GPA Convention April 13 -16
Introduction / Background • 3 years project in collaboration with MinesParisTech (Armines) started in 2011 • Main objective: developing a reliable thermodynamic package for CCS fluids • CO2 originating from capture processes is generally not pure and can contain impurities such as: – H2O, CH4, C2H6,C3H8, N2, H2, O2, Ar, CO, NyOx, H2S, SO2… • The main aim of the proposed project was to investigate the phase behavior and properties of CO2-rich stream containing impurities • For testing model, some CO2 rich NGs were studied 4
2014 GPA Convention April 13 -16
Research Topics • Phase Equilibria (VLE, Phase Envelope) • Hydrates
– Saturated or low water content (dehydration)
• Solubility, water content, pH in brines • Phase behavior with glycols • Transport properties – Density, viscosity, speed of sound
• Frost/ dry ice • Interfacial Properties • Mercury content 5
2014 GPA Convention April 13 -16
Type of Fluids investigated • From binary to multicomponent systems Comp. CO2 Methane Ethane Propane n-Butane i-Butane n-Pentane Nitrogen Hydrogen Oxygen Argon CO Total
6
MIX 1 95.64 0.6261 0 0 0 0 0 1.41 0.8175 0.08 1.21 0.2127 100
MIX 2 89.83 0 0 0 0 0 0 5.05 0 3.07 2.05 0 100
MIX 3 69.99 20.02 6.612 2.58 0.3998 0.3997 0 0 0 0 0 0 100
MIX 4 49.93 39.99 3.510 1.530 0.501 0.499 0.513 3.524 0 0 0 0 100
MIX 5 95.97 0 0 0 0 0 0 2.028 0.605 0.783 0.611 0 100
MIX 6 69.99 7.901 7.015 4.968 2.067 2.049 0 6.009 0 0 0 0 100
2014 GPA Convention April 13 -16
Fluids investigated in this work Comp. CO2 Methane Ethane Propane n-Butane i-Butane Nitrogen Oxygen Argon Total
7
MIX 2 89.83 0 0 0 0 0 5.05 3.07 2.05 100
MIX 3 69.99 20.02 6.612 2.58 0.3998 0.3997 0 0 0 100
2014 GPA Convention April 13 -16
Models • Classical SRK 72 equation of state for systems without polar components • sCPA – SRK 72 for systems with water/glycols/alcohol RT a(T ) 1 RT P= − − Vm − b Vm (Vm + b ) 2 Vm
SRK part
(
∂ ln( g ) ∑ x i ∑ 1 − X Ai 1 + ρ ∂ρ i Ai
)
Association part
• For Hydrate: Solid solution theory of van der Waals and Platteeuw H w
f
8
∆µw = fw exp − RT β
β −H
β −H
where ∆µw
= µw − µ = RT ∑ v m ln1 + ∑ Cmj f j m j β
H w
2014 GPA Convention April 13 -16
Phase Equilibria – Vapour Liquid Equilibria • Between CO2 and components of the stream and between components • Data needed for EoS model ----> Engineering calculations • Saturation pressure/ phase envelope of multicomponent systems for validation
9
2014 GPA Convention April 13 -16
Why Measure VLE? • Lack of data -- > especially for toxic gases or close to CO2 critical conditions CO2
CO
N2
O2
Ar
H2
NO
CH4
C2H6
C3H8
NO2
SO2
H2S
N2O
CO2 CO N2 O2 Ar H2 NO CH4 C2H6 C3H8
NO2
SO2 H2S
10
2014 GPA Convention April 13 -16
What we have covered so far CO2 CO2 CO N2 O2 Ar H2 NO CH4 C2H6 C3H8 NO2 SO2 H2S
CO
N2
O2
Ar
H2
NO
NEW
NEW
NEW
NEW
NEW
NEW
[6570]+CD
CR
[67]
[9093]
[90] [90]
[8283] [9497]
NEW
CH4
C2H6
C3H8
NO2
SO2
H2S
N2O
[1936] [7982]
[37 49] [8485]
[47,5061]
CD
[6264]+CD
NEW
[141]
[84-88]
ND
NEW
[89]
NEW
[99109] [106109]
[100102]
NEW
ND
[104105]
ND
DWA
NEW
ND
ND
CRYO
CD
[107108]
ND
CRYO
NEW
CRYO
[140]
NEW
ND
NEW
ND
NEW
ND
[110119]
[111112, 120]
[121123]
ND
NEW
ND
ND
[124]
ND
ND
[29]
NEW
ND
ND
ND
[99]
ND
NEW
ND
[125]
DWA DWA
CR
[126131] [132134] [136139]
NEW NEW NEW
ND
ND
ND
ND ND
N2O
11
2014 GPA Convention April 13 -16
VLE Apparatus Schematic illustration of the cell used for VLE studies Capillary Sampler Cooling Fluid in/out Equilibrium Cell Cooling Jacket Temperature Probe Window
Specifications – Ti Rig – 200 ml – Maximum working P : 3,000 psia / 200 bar – -30 °C < T < 120 °C – -22 °F < T < 250°F Phase sampling: ROLSI™
Pressure Transducer 2-way valve Magnetic Motor
12
2014 GPA Convention April 13 -16
Typical Experimental / Modelling Results 1400
Tuned kij
9 8
1200
7
1000
P / MPa
6
800
5 4
600
3
400
2
200
1 0
P / psia
10
kij =0
0
0
0.2
0.4
x1,y1
0.6
0.8
1
Vapour – Liquid Equilibria in the H2S + CO2 Binary System 13
2014 GPA Convention April 13 -16
Phase Envelope • Experimental setup Main Characteristics: Titanium piston vessel Pmax: 10,000 psia /700 bar Tmin: -110°F /-80 oC Tmax: 350°F / 180oC
14
2014 GPA Convention April 13 -16
Phase Envelope – Procedures (BP) 1600
T = 20.2°C / 68.4°F System: MIX 2
1500
P /psia
1400
2 Phases Region
1300 1200 1100 1000
Single Phase Region 0
15
5
10
15
V / cm3
20
25
30
2014 GPA Convention April 13 -16
Phase Envelope – Procedures (BP) 1250 1200
Cooling
1150
Eq. Pts 2 phases
1100
Eq. Pts 1 phases
Eq. Pts 1 phases
1100
1050 1000
1000 950
900
900
10
15
T/ °C
16
1050
950 5
Eq. Pts 2 phases
1150
P / psia
P / psia
1200
Heating
20
5
10
15
20
T/ °C
2014 GPA Convention April 13 -16
Phase Envelope – Procedures (DP) 810
Cooling 790
Heating Dew Point
P / psia
770
780 770
750
760 750
730
740 730
710 690
720
8
10
12
14
10
11
16
12
13
18
14
20
T/ °C 17
2014 GPA Convention April 13 -16
Validation: Phase Envelope -76
-40
-4
32
68
104 1200
80 70
1000
P /bar
60
800
50
600
40 30
P / psia
90
T/ °F
400
20 200
10 0
0 -60
-40
-20
T/ °C
0
20
40
Exp. and predicted Phase Envelope (Blue and Red Lines: SRK-EoS with tuned kij; Dotted lines: PR-EoS with kij=0). 18
2014 GPA Convention April 13 -16
Validation: Phase Envelope -76
-40
T/ °F
32
68
104
80
1100
70
900
60
P /bar
1300
50
700
40
500
30
P /psia
90
-4
300
20
100
10 0
-100 -60
-40
-20
0
T/ °C
20
40
Exp. and predicted Phase Envelope (Blue and Red Lines: SRK-EoS with tuned kij; Dotted lines: PR-EoS with kij=0). 19
2014 GPA Convention April 13 -16
Dehydration Requirement • Knowledge of the maximum allowable water content in CO2rich fluids is critical for a safe transport of CO2 to storage sites – Hydrates, corrosion
• Limited data are available on the phase behavior of CO2 in presence of hydrates – GPA RR80 and RR99 (also published in SPE) – Unfortunately the reliability of these studies has been recently questioned in a few papers (ex BRE: Hendrick et al., GPA Convention 2010) – Gap in data at low temperature (T35% reduction in density
ρ / kg.m-3
-100 -150 -200
>60% reduction in density
-250
MIX 3
-300 CH4 -350 0
2500
5000
7500
10000
12500
15000
17500
20000
P / psia
Density difference between pure CO2 and mixtures at 122°F / 50°C 36
2014 GPA Convention April 13 -16
Frost Point/ Dry ice • VSE of CO2-mixtures important issue
– safety assessment of CO2 pipelines – possibility of solid or ‘dry ice’ discharge during an accidental release or rapid decompression
• Removal of CO2
– A technique has been suggested based on frosting CO2 at low temperature and separating the CO2 solid from natural gas
• No data for multicomponent systems
37
2014 GPA Convention April 13 -16
Frost Point/ Dry ice - Equipment
BT 2.15 Calorimeter 38
Cross-sectional view of the SETARAM BT 2.15
Internal Block
2014 GPA Convention April 13 -16
Experimental Procedure
Operation line online monitoring
39
Onset point (melting point) calculation procedure
2014 GPA Convention April 13 -16
Frost Point/ Dry ice - Equipment
45
P /psia
40
Specifications: • Working pressure: 30,000 psia / 2000 bar • Constitutive metal: Stainless steel • Internal volume: ±1% error in Viscosity) Q: Flow rate, cm3/Sec (no effect on the accuracy of the viscosity) L: Length of Capillary tube, cm L = 1477.8 cm D: Calculated Internal Diameter, cm D = 0.029478 cm (calculated by knowing the length and volume of the tube)
η: Viscosity, cP C: Unit Conversion Factor
54
C = 6894757
Viscosity – CS approach CS Theory: Viscosity at Critical Point: Pure Fluids: Reference Fluid
Mixtures: Critical Parameters Mixture Parameter 55
Viscosity – Modelling - Pedersen
Mixture Parameter:
MBWR EOS
56
Viscosity – Modelling - Pedersen Fenghour et al. (1998)
Reference Fluid, CO2, Viscosity: Viscosity at Zero-density: Reduced effective cross section: Reduced Temperature: Energy Scaling Parameter: Excess Viscosity:
57