Thin-Walled CFST Columns for Enhancing Seismic Collapse ... - MDPI

2 downloads 0 Views 4MB Size Report
Jan 5, 2017 - Abstract: This paper numerically studied the collapse capacity of high-rise steel moment-resisting frames (SMRFs) using various ...
applied sciences Article

Thin-Walled CFST Columns for Enhancing Seismic Collapse Performance of High-Rise Steel Frames Yongtao Bai 1 , Jiantao Wang 1 , Yashuang Liu 2 and Xuchuan Lin 3, * 1 2 3

*

Department of Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China; [email protected] (Y.B.); [email protected] (J.W.) School of Architectural Engineering, Beijing University of Technology, Beijing 100124, China; [email protected] Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China Correspondence: [email protected]; Tel.: +86-182-0123-7617

Academic Editor: Zhong Tao Received: 30 November 2016; Accepted: 24 December 2016; Published: 5 January 2017

Abstract: This paper numerically studied the collapse capacity of high-rise steel moment-resisting frames (SMRFs) using various width-to-thickness members subjected to successive earthquakes. It was found that the long-period component of earthquakes obviously correlates with the first-mode period of high-rises controlled by the total number of stories. A higher building tends to produce more significant component deterioration to enlarge the maximum story drift angle at lower stories. The width-to-thickness ratio of beam and column components overtly affects the collapse capacity when the plastic deformation extensively develops. The ratio of residual to maximum story drift angle is significantly sensitive to the collapse capacity of various building models. A thin-walled concrete filled steel tubular (CFST) column is proposed as one efficient alternative to enhance the overall stiffness and deformation capacity of the high-rise SMRFs with fragile collapse performance. With the equivalent flexural stiffness, CFST-MRF buildings with thin-walled members demonstrate higher capacity to avoid collapse, and the greater collapse margin indicates that CFST-MRFs are a reasonable system for high-rises in seismic prone regions. Keywords: thin-walled structures; concrete filled steel tubes; high-rise buildings; seismic performance; dynamic collapse; local buckling

1. Introduction The 2011 Great East Japan earthquake had devastating losses on human life, buildings and infrastructures near the seismic epicenter, and long-period ground motions excited resonance with high-rise buildings [1]. Extensive high-rise steel buildings were constructed during the period 1965~2000, especially in the period of construction-boom (i.e., 1980~1995) of high-rise buildings. CFST (concrete filled steel tubular) columns have been more adopted in high-rise buildings since 1992. There is a high probability that severe earthquakes with magnitude class over the design expectation might occur in the coming years [2]. Severe damage and collapse potentials exist in existing high-rise buildings. Several studies on the collapse behavior of steel frame were addressed. Symmetry limit theory for steel beam-columns originally revealed the steady-state path of cantilever members [3,4]. A symmetry limit theory has been extended to reveal the phenomenon of deformation concentration at lower stories in the process of dynamic instability for the weak-beam-type frames [5]. Seismic resistance capacity of high-rise buildings subjected to long-period ground motions was studied on the basis of E-Defense shaking table tests [6]. Sidesway collapse of deteriorating structural systems under seismic excitations was analytically and experimentally addressed [7]. However, the strength deterioration such as local Appl. Sci. 2017, 7, 53; doi:10.3390/app7010053

www.mdpi.com/journal/applsci

Appl. Sci. 2017, 7, 53  Appl. Sci. 2017, 7, 53

2 of 13  2 of 13

deterioration  such  as  local  buckling  has  not  been  fully  investigated  in  the  evaluation  of  seismic‐ resistant capacity of high‐rise steel buildings with thin‐walled sectional members.  buckling has not been fully investigated in the evaluation of seismic-resistant capacity of high-rise The  behavior  of  CFST  columns  and  structural  systems  has  been  investigated.  Tao  et  al.  steel buildings with thin-walled sectional members. experimentally investigated the behavior of CFST stub columns, and beam columns under various  The behavior of CFST columns and structural systems has been investigated. Tao et al. experimentally loading protocols have also been investigated [8–15]. They found that CFST demonstrated ductile  investigated the behavior of CFST stub columns, and beam columns under various loading protocols behavior  for  the  applications  in  seismic  resistant  structures.  A  fiber  element  model  that  is  able  to  have also been investigated [8–15]. They found that CFST demonstrated ductile behavior for the predict  the  ultimate  response  of  CFST  members  was  also  presented  and  agreed  well  with  the  applications in seismic resistant structures. A fiber element model that is able to predict the ultimate experimental results. Kawano and Sakino (2003) investigated the seismic resistance of CFST trusses  response of CFST members was also presented and agreed well with the experimental results. Kawano [16,17].  Kawakami  et  al.  (2004)  studied  a  method  to  improve  the  distribution  of  story  drift  angle  and Sakino (2003) investigated the seismic resistance of CFST trusses [16,17]. Kawakami et al. (2004) responses in CFST moment‐resistant frames under severe earthquakes [18]. Nakahara et al. (2008)  studied a method to improve the distribution of story drift angle responses in CFST moment-resistant conducted  a  research  on  the  bond  behavior  of  concrete  filled  steel  tubular  frames  under  cyclic  frames under severe earthquakes [18]. Nakahara et al. (2008) conducted a research on the bond horizontal load [19]. Han et al. (2009) experimentally studied the seismic behavior of concrete‐filled  behavior of concrete filled steel tubular frames under cyclic horizontal load [19]. Han et al. (2009) steel tubular frame to reinforced concrete (RC) shear wall high‐rise mixed structures [20]. Nenavit  experimentally studied the seismic behavior of concrete-filled steel tubular frame to reinforced and  Hajjar  (2012)  conducted  a  nonlinear  seismic  analysis  of  circular  concrete‐filled  steel  tube  concrete (RC) shear wall high-rise mixed structures [20]. Nenavit and Hajjar (2012) conducted a members and frames [21]. Nevertheless, the research on deterioration behavior and collapse‐resistant  nonlinear seismic analysis of circular concrete-filled steel tube members and frames [21]. Nevertheless, capacity of high‐rise CFST buildings, especially considering the effect of member deterioration, is still  the research on deterioration behavior and collapse-resistant capacity of high-rise CFST buildings, limited. Since the existing high‐rise steel moment‐resisting frames (SMRFs) entail collapse potential  especially considering the effect of member deterioration, is still limited. Since the existing high-rise when subjected to long‐period ground motions, CFST columns are proposed to substitute the hollow  steel moment-resisting frames (SMRFs) entail collapse potential when subjected to long-period ground steel section (HSS) columns because the composite action can delay the local buckling and improve  motions, CFST columns are proposed to substitute the hollow steel section (HSS) columns because the the strength of in‐filled concrete.  composite action can delay the local buckling and improve the strength of in-filled concrete. In this paper, the seismic performance of existing high‐rise SMRFs with compact and thin‐walled  In this paper, the seismic performance of existing high-rise SMRFs with compact and thin-walled members subjected to over‐design long‐period ground motions is numerically studied. The effect of  members subjected to over-design long-period ground motions is numerically studied. The effect of component deterioration is taken into account to investigate the collapse capacity. Then, thin‐walled  component deterioration is taken into account to investigate the collapse capacity. Then, thin-walled CFST columns are used to replace the HSS columns in high‐rise SMRFs based on flexural stiffness, in  CFST columns are used to replace the HSS columns in high-rise SMRFs based on flexural stiffness, order  to  enhance  the  collapse  margin  of  the  high‐rise  SMRFs  that  demonstrated  fragile  collapse  in order to enhance the collapse margin of the high-rise SMRFs that demonstrated fragile capacity.  collapse capacity. 2. Modeling and Analysis Methods  2. Modeling and Analysis Methods 2.1. Simplified Fiber Element Models  2.1. Simplified Fiber Element Models A fiber fiber element element  program  developed  is  utilized  to  conduct  the  elasto‐plastic  A program thatthat  has has  beenbeen  developed is utilized to conduct the elasto-plastic analysis analysis  of  structures  under  various  loading  procedures  The  stiffness  of  cross  sections  is  of structures under various loading procedures [16,22]. The[16,22].  stiffness of cross sections is numerically numerically integrated by dividing the section into a number of parallel layers referred to as stress  integrated by dividing the section into a number of parallel layers referred to as stress fibers. Accurate fibers. Accurate nonlinear stress–strain models are applied to these fibers to define the mechanical  nonlinear stress–strain models are applied to these fibers to define the mechanical behavior of each behavior The of  each  member.  The  law  of for fiber  discretization  for hollow H‐shaped  steel  and  hollow  section  member. law of fiber discretization H-shaped steel and section members is shown in members is shown in Figure 1.    Figure 1. t D

tw tf

Discretization of stress fiber Assumed plastic region

H D

B

 

Figure 1. Fiber element discretization and plastic region.  Figure 1. Fiber element discretization and plastic region.

On  the  longitudinal  definition  of  elements,  the  plastic  length  at  both  ends  of  each  element  On the longitudinal definition of elements, the plastic length at both ends of each element depends depends  on  the  thickness  and  outer  size  of  the  steel  tubes.  In  this  study,  the  plastic  length  is  on the thickness and outer size of the steel tubes. In this study, the plastic length is determined as determined as a constant value, but the stress–strain models are consistent with the assumption of  a constant value, but the stress–strain models are consistent with the assumption of the constant the  constant  plastic  length  of  the  member  depth  D,  as  shown  in  Figure  1.  In  the  frame  analysis 

Appl. Sci. 2017, 7, 53

3 of 13

Appl. Sci. 2017, 7, 53 

3 of 13 

plastic length of the member depth D, as shown in Figure 1. In the frame analysis program, the geometric hasnonlinearity  been rigorously by adopting the moving coordinatethe  system for program,  nonlinearity the  geometric  has formulated been  rigorously  formulated  by  adopting  moving  each element. Therefore, the program can trace the nonlinear behavior up to collapse phenomenon. coordinate system for each element. Therefore, the program can trace the nonlinear behavior up to  For dynamic analysis, the time history response of high-rise building models is calculated 3 of 13  by the collapse phenomenon. For dynamic analysis, the time history response of high‐rise building models  Appl. Sci. 2017, 7, 53  average acceleration method (β = 1/4), based on the Newmark’s method. The convergence is is  calculated  by  the  average  acceleration  method  (β  =  1/4),  based  on  the  Newmark’s  method.  The  program,  the  geometric  nonlinearity  has  been  rigorously  formulated  by  adopting  the  moving  guaranteed based on Newton–Raphson method. convergence is guaranteed based on Newton–Raphson method.    coordinate system for each element. Therefore, the program can trace the nonlinear behavior up to  The patterns The  patterns  of of local local buckling buckling  of of HSS HSS and and CFST CFST members members  are are obviously obviously  different different  due due to to the the  collapse phenomenon. For dynamic analysis, the time history response of high‐rise building models  confined byby  in-filled concrete. For unfilled rectangular or squareor  CFSTs under axial compression, confined effect effect  in‐filled  concrete.  For  unfilled  rectangular  square  CFSTs  under  axial  is  calculated  by  the  average  acceleration  method  (β  =  1/4),  based  on  the  Newmark’s  method.  The  the inward buckling is effectively prevented. Thus, the local buckling pattern of steel tubes influences compression, the inward buckling is effectively prevented. Thus, the local buckling pattern of steel  convergence is guaranteed based on Newton–Raphson method.    strength deterioration with internal restraint from the in-filled concrete. tubes influences strength deterioration with internal restraint from the in‐filled concrete.  The  patterns  of  local  buckling  of  HSS  and  CFST  members  are  obviously  different  due  to  the  Figure 2 shows theby  stress–strain relation For  for steel material with and deterioration Figure 2 shows the stress–strain relation for steel material with and without deterioration effects.  confined  effect  in‐filled  concrete.  unfilled  rectangular  or  without square  CFSTs  under  effects. axial  The strength deterioration and and  the corresponding negative slope inslope  compressive direction The post-buckling post‐buckling  strength  deterioration  the  corresponding  negative  in  compressive  compression, the inward buckling is effectively prevented. Thus, the local buckling pattern of steel  tubes influences strength deterioration with internal restraint from the in‐filled concrete.  enlarges the ratio ofthe  residual toresidual  maximum The strain.  stress–strain models for confined concrete in direction  enlarges  ratio  of  to  strain. maximum  The  stress–strain  models  for  confined  Figure 2 shows the stress–strain relation for steel material with and without deterioration effects.  CFST columns are shown in Figure 3. The post-crushing strength degradation reduces the unloading concrete in CFST columns are shown in Figure 3. The post‐crushing strength degradation reduces the  The  post‐buckling  strength  and  the  negative  slope that in  compressive  stiffness if the ratio of residual to deterioration  maximum strain is acorresponding  constant value [23]. Note the splitting unloading stiffness if the ratio of residual to maximum strain is a constant value [23]. Note that the  direction  enlarges  the  ratio  of  residual  to  maximum  strain.  The  stress–strain  models  for  confined  crack of the confined concrete in CFST columns occurs when the associated tubular face is subjected to splitting crack of the confined concrete in CFST columns occurs when the associated tubular face is  concrete in CFST columns are shown in Figure 3. The post‐crushing strength degradation reduces the  tensile force. In this loading condition, the CFST columns enable the support of plastic deformation subjected to tensile force. In this loading condition, the CFST columns enable the support of plastic  unloading stiffness if the ratio of residual to maximum strain is a constant value [23]. Note that the  without the local buckling in steel tubes. In addition, the tensile strength of the confined concrete is deformation without the local buckling in steel tubes. In addition, the tensile strength of the confined  splitting crack of the confined concrete in CFST columns occurs when the associated tubular face is  much less theless  yielding of steel tubes. of  Thus, the splitting crack be neglected in the concrete  is than much  than strength the  yielding  strength  steel  tubes.  Thus,  the can splitting  crack  can  be  subjected to tensile force. In this loading condition, the CFST columns enable the support of plastic  stress–strain relation of the concrete model [24]. neglected in the stress–strain relation of the concrete model [24].  deformation without the local buckling in steel tubes. In addition, the tensile strength of the confined  concrete  is  much  less  than  the  yielding  strength  of  steel  tubes.  Thus,  the  splitting  crack  can  be  neglected in the stress–strain relation of the concrete model [24]. 

  (a) 

(b)

 

(a)  (b) Figure 2.2.  Stress–strain  relation  of  thin‐walled  steel  sections.  (a)  Model  with  post‐buckling  Figure Stress–strain relation of thin-walled steel sections. (a) Model with post-buckling deterioration; Figure  2.  Stress–strain  relation  of  thin‐walled  steel  sections.  (a)  Model  with  post‐buckling  deterioration; (b) Model without post‐buckling deterioration.  (b) Model without post-buckling deterioration. deterioration; (b) Model without post‐buckling deterioration. 

 

(a)

(a)

(b)

 

(b)

Figure  3.  Stress–strain  relation  of  confined  concrete.  (a)  Model  with  post‐crushing  deterioration;   

Figure Stress–strain (a) Model  Model with Figure 3. 3.  Stress–strain  relation relation  of of  confined confined concrete. concrete.  (a)  with  post-crushing post‐crushing  deterioration; deterioration;    (b) Model without post‐crushing deterioration.  (b) Model without post-crushing deterioration. (b) Model without post‐crushing deterioration.  In the numerical simulations of steel and CFST structures using the fiber element method, it is  assumed that the cross section remains plane, and the strain distribution keeps linear along with the  In the numerical simulations of steel and CFST structures using the fiber element method, it is In the numerical simulations of steel and CFST structures using the fiber element method, it is  depth of the cross section. The stress should be located at the centroid of each parallel fiber element,  assumed that the cross section remains plane, and the strain distribution keeps linear along with the assumed that the cross section remains plane, and the strain distribution keeps linear along with the  and vertical discretization is neglected for torsion or bi‐axial bending. Besides, the effects of creep  depth of the cross section. The stress should be located at the centroid of each parallel fiber element,  and shrinkage of concrete were not in the scope of this paper. The confinement effect and slipping of 

and vertical discretization is neglected for torsion or bi‐axial bending. Besides, the effects of creep  and shrinkage of concrete were not in the scope of this paper. The confinement effect and slipping of 

Appl. Sci. 2017, 7, 53

4 of 13

depth of the cross section. The stress should be located at the centroid of each parallel fiber element, and vertical discretization is neglected for torsion or bi-axial bending. Besides, the effects of creep and shrinkage of concrete were not in the scope of this paper. The confinement effect and slipping of concrete on the strength and deterioration are taken into account in the normalized stress–strain relationship of the confined concrete. Post local-buckling strength and stiffness deterioration of steel tubular walls is taken into account in the constitutive relationship of steel plate elements. 2.2. Thin-Walled Steel Columns The width-to-thickness ratio, λ, has been classified to control the occurrence of local buckling of flexural H-shaped steel members [25]. The λ of H-shaped steel beams is classified as a compact cross p section (FA represents a compact cross section) when λ is equal to or less than 9 235/Fy, and the non-compact cross section (FB represents a non-compact cross section) when λ is equal to or less than p 11 235/Fy for flanges, where Fy is the nominal yield strength of steel materials. For square hollow steel sectional columns, the critical values of the compact and non-compact cross sections are given as p p 33 235/Fy and 37 235/Fy. Note that the above λ are classified on the basis of the various types of steel materials. Both of the above advantages contribute to the ductile behavior of the CFST column due to the delay of local-buckling and the confined effect on the in-filled concrete. The compact and thin-walled CFST columns are employed in high-rise CFST building models in order to be analogous to the steel moment-resisting frame (SMRF) building models with various sectional compactness. According to the Recommendations for the Design and Construction of Concrete Filled Steel Tubular Structures [26]—different from the ranks of the width–thickness ratio (FA, FB) on HSS members by the Building Standards Act of Japan [25]—the ranks of the width–thickness ratio (B/t) of CFST members is required differently, such as Ru ≥ 0.02 for the compact FA section; and Ru ≥ 0.02 for the thin-walled FB section. Rectangular CFST members can be Ru calculated as Ru =

γr t · · Rα 0.15 + 3.79 NN0 B

(1)

where B is the width of the rectangular steel tube, t is the thickness of the steel tube, Fc is the nominal design strength of the concrete, N is axial loading, N0 is the yield strength of the CFST columns which is approximately equal to As ·fy + Ac ·fc , γr is a coefficient defined by the buckling length lk of the CFST members, (if lk /D ≤ 10, γr = 1.0, if lk /D > 10, γr = 0.8), and R α is defined as follows: Rα

= 1.0 −

Fc − 40.3 , if R α ≥ 1, R α = 1 566

(2)

3. Seismic Performance of the Thin-Walled SMRFs 3.1. Building Models Extensive high-rise steel buildings have been constructed since 1965, especially during the construction-boom period of high-rises in the 1980s. CFST columns were initially employed in high-rise steel buildings in Japan [2]. Figure 4 shows a tendency of the various structural systems for high-rises based on 300 building cases higher than 100 meters constructed from 1966 to 1998 in Japan. The CFST system shows a stably ascending tendency since 1981. In addition, the HSS columns in the high-rise buildings higher than 80 meters usually filled with concrete but this was not accounted as CFST buildings. Thus, the realistic number of existing high-rise CFST buildings should be higher than what is presented in the statistical database as provided in Figure 4. Generic existing high-rise steel moment-resisting frames with 20, 30 and 40 story levels are selected as the prototypes, as shown in Figure 5. The damping factor of the building models is simply assumed as an identical value of 2% in order to eliminate the influence of the varying damping factors on the seismic responses of structures. The slab composite action for beam components, the P-∆ effect

80 Existing high-rise buildings (h>100m) S RC SRC CFT

Case number

60

Appl. Sci. 2017, 7, 53

40

5 of 13

20

and strong-column weak-beam are considered in the structural design. The high-rise building models are seismically designed according to current Japanese seismic design standards [27]. The design 0 base shear coefficient is obtained based on the standard shear coefficient of the seismic demand of buildings, the seismic intensity of areas, and the types of ground soils. According to the statistical database on high-rises of steel and CFST buildings, steel materials 76 66 71 81 86 91 of96SM490 and SN490 are the most -80 -70 -75 -85 -90 -95 frequently used in existing steel office buildings, therefore the steel -00 material SM490 and SN490 with Construction decades the nominal yield strength of σy = 320 MPa and the ultimate tensile strength  of σu = 490 MPa are used in the modellingFigure 4. Statistical databases of various existent high‐rise buildings.  of high-rise building models in this paper. Besides, the concrete with the compressive strength of 60 MPa is used in the composite slabs and CFST columns. Design procedures include, the allowable stress method and time-history dynamic analyses subjected moderate earthquakes Generic  existing  high‐rise  steel  moment‐resisting  frames  with to20,  30  and rare 40  story  levels  are  controlled by peak ground velocity (PGV). The input ground motions for the dynamic design include selected as the prototypes, as shown in Figure 5. The damping factor of the building models is simply  Art-Hachi as a synthetic wave, El-Centro-NS, Hachinohe-NS and Tafe-EW as observed waves. Besides, assumed as an identical value of 2% in order to eliminate the influence of the varying damping factors  CHB009-NS and C-San-EW waves are long-period ground motions with the intensity of a maximum on the seismic responses of structures. The slab composite action for beam components, the P‐Δ effect  capacity earthquake (Level 2). Appl. Sci. 2017, 7, 53  5 of 13 

Case number

and strong‐column weak‐beam are considered in the structural design. The high‐rise building models  are seismically designed according to current Japanese seismic design standards [27]. The design base  80 Existing high-rise buildings (h>100m) shear  coefficient  is  obtained  based  on  the  standard  shear  coefficient  of  the  seismic  demand  of  S 60 buildings, the seismic intensity of areas, and the types of ground soils. According to the statistical  RC SRC database on high‐rises of steel and CFST buildings, steel materials of SM490 and SN490 are the most  CFT 40 frequently used in existing steel office buildings, therefore the steel material SM490 and SN490 with  the nominal yield strength of σy = 320 MPa and the ultimate tensile strength of σu = 490 MPa are used  20 in  the  modelling  of  high‐rise  building  models  in  this  paper.  Besides,  the  concrete  with  the  compressive strength of 60 MPa is used in the composite slabs and CFST columns. Design procedures  0 include, the allowable stress method and time‐history dynamic analyses subjected to moderate rare  earthquakes controlled by peak ground velocity (PGV). The input ground motions for the dynamic  76 66 71 81 86 91 96 -80 -70 -75 wave,  -85 -90 -95 -00 Hachinohe‐NS  and  Tafe‐EW  as  design  include  Art‐Hachi  as  a  synthetic  El‐Centro‐NS,  Construction decades   observed waves. Besides, CHB009‐NS and C‐San‐EW waves are long‐period ground motions with  Figure 4. Statistical databases of various existent high‐rise buildings.  Figure 4. Statistical databases of various existent high-rise buildings. the intensity of a maximum capacity earthquake (Level 2). 

5.0m+19 @ 4.0m=81m 5.0m+29 @ 4.0m=121m 5.0m+39 @ 4.0m=161m

w

H

Generic  existing  high‐rise  steel  moment‐resisting  frames  with  20,  30  and  40  story  levels  are  selected as the prototypes, as shown in Figure 5. The damping factor of the building models is simply  assumed as an identical value of 2% in order to eliminate the influence of the varying damping factors  t t on the seismic responses of structures. The slab composite action for beam components, the P‐Δ effect  t and strong‐column weak‐beam are considered in the structural design. The high‐rise building models  steel tubular B B are seismically designed according to current Japanese seismic design standards [27]. The design base  column Cross section of members shear  coefficient  is  obtained  based  on  the  standard  shear  coefficient  of  the  seismic  demand  of  H-shaped steel B B beam buildings, the seismic intensity of areas, and the types of ground soils. According to the statistical  assumed database on high‐rises of steel and CFST buildings, steel materials of SM490 and SN490 are the most  plastic hinge zone selected part frequently used in existing steel office buildings, therefore the steel material SM490 and SN490 with  for planar model the nominal yield strength of σy = 320 MPa and the ultimate tensile strength of σ u = 490 MPa are used  4 bays @ 8.0m in  the  modelling  of  high‐rise  building  models  in  this  paper.  Besides,  the  concrete  with  the  Element discretization Plan view Elevation view   compressive strength of 60 MPa is used in the composite slabs and CFST columns. Design procedures  Figure 5. Members, element discretization, plan and elevation view of high‐rise SMRF (steel  include, the allowable stress method and time‐history dynamic analyses subjected to moderate rare  Figure 5. Members, element discretization, plan and elevation view of high-rise SMRF (steel earthquakes controlled by peak ground velocity (PGV). The input ground motions for the dynamic  moment‐resisting frame) models.  moment-resisting frame) models. design  include  Art‐Hachi  as  a  synthetic  wave,  El‐Centro‐NS,  Hachinohe‐NS  and  Tafe‐EW  as  observed waves. Besides, CHB009‐NS and C‐San‐EW waves are long‐period ground motions with  3.2. Model Validation 3.2. Model Validation  the intensity of a maximum capacity earthquake (Level 2).  The numerical model is validated by simulating a static cyclic test on a planar CFST frame The numerical model is validated by simulating a static cyclic test on a planar CFST frame with  with threeunder  storiescyclic  underloading  cyclic loading [23,28]. The frame specimen constructed squareCFST  three  stories  [23,28].  The  frame  specimen  was was constructed  by by square  CFST columns and H-shaped steel beams. The cross section of the CFST columns is uniformly columns and H‐shaped steel beams. The cross section of the CFST columns is uniformly fabricated  fabricated as 150 × 150 × 4.5 using the steel material STKR400 with σy = 409 MPa and σu = 477 MPa. B

4 bays @ 8.0m

f

tf

B

steel tubular column

B B

B

B

assumed plastic hinge zone

bays @ 8.0m

Cross section of members

H-shaped steel beam

5.0m+19 @ 4.0m=81m 5.0m+29 @ 4.0m=121m 5.0m+39 @ 4.0m=161m

w

H

t t as 150 × 150 × 4.5 using the steel material STKR400 with σ y = 409 MPa and σu = 477 MPa. The BH‐200 

Appl. Sci. 2017, 7, 53

6 of 13

Appl. Sci. 2017, 7, 53 

6 of 13 

2 The BH-200 × 100 × 6 × 6 H-shaped steel using the steel material SS4002 with σy = 337 N/mm × 100 × 6 × 6 H‐shaped steel using the steel material SS400 with σ y = 337 N/mm  and σu = 444 N/mm2,  2 6 of 13  and σAppl. Sci. 2017, 7, 53  infilled u = 444 N/mm , is adopted as the beam components. The compressive strength of the is  adopted  as  the  beam  components.  The  compressive  strength  of  the  infilled  concrete  in  CFST  concrete in CFST columns is 31.3 MPa based on four concrete cylinder test results. Horizontal cyclic columns is 31.3 MPa based on four concrete cylinder test results. Horizontal cyclic loading is applied  × 100 × 6 × 6 H‐shaped steel using the steel material SS400 with σy = 337 N/mm2 and σu = 444 N/mm2,  loading is applied on the top of the frame specimen, and constant axial loads with the axial load ratio on the top of the frame specimen, and constant axial loads with the axial load ratio N = 0.2∙ cNu × 2 are  is  adopted  as  the  beam  components.  The  compressive  strength  of  the  infilled  concrete  in  CFST  N = 0.2 · N × 2 are applied on two CFST columns simultaneously. Figure 6 shows the elevation view c u applied on two CFST columns simultaneously. Figure 6 shows the elevation view of the CFST frame  columns is 31.3 MPa based on four concrete cylinder test results. Horizontal cyclic loading is applied  of themodel.  CFST frame model. on the top of the frame specimen, and constant axial loads with the axial load ratio N = 0.2∙cNu × 2 are 

applied on two CFST columns simultaneously. Figure 6 shows the elevation view of the CFST frame  3000 model. 

Height (mm) Height (mm)

3000 2000

2000 1000

0

1000 0 400

800

1200 1600 2000 2400

Span (mm)

 

0 Figure 6. Modelling of the CFST (concrete filled steel tubular) frame specimen. 

400 (concrete 800 1200 filled 1600 2000 Figure 6. Modelling of the0 CFST steel2400 tubular) frame specimen.

Span (mm)

 

Comparisons of hysteretic load (H) versus roof drift ratio (R) curve between experimental and  Figure 6. Modelling of the CFST (concrete filled steel tubular) frame specimen.  Comparisons of hysteretic load (H) versus roof drift ratio (R) curve between experimental and analytical results are presented in Figure 7. The hysteretic curve before R ≤ 2% shows slight plastic  deformation while the strength degradation was not induced by local buckling. Furthermore, local  analytical results are presented in Figure 7. The hysteretic curve before R ≤ 2% shows slight plastic Comparisons of hysteretic load (H) versus roof drift ratio (R) curve between experimental and  buckling was triggered, associated with post‐peak strength deterioration which was incorporated in  deformation while the strength degradation was not induced by local buckling. Furthermore, local analytical results are presented in Figure 7. The hysteretic curve before R ≤ 2% shows slight plastic  the numerical modeling. More than 85% of the maximum strength is maintained; even the roof drift  buckling was triggered, associated with post-peak strength deterioration which was incorporated in the deformation while the strength degradation was not induced by local buckling. Furthermore, local  ratio R reaches 5%. Through simulating this cyclic test of the CFST frame, the numerical modeling  buckling was triggered, associated with post‐peak strength deterioration which was incorporated in  numerical modeling. More than 85% of the maximum strength is maintained; even the roof drift ratio approach  is  promising  to  accurately  predict  the  seismic  behavior  of  CFST  frames,  including  the  the numerical modeling. More than 85% of the maximum strength is maintained; even the roof drift  R reaches 5%. Through simulating this cyclic test of the CFST frame, the numerical modeling approach elasto‐plasticity,  damages  and  strength  deterioration.  The  seismic  performance  of  CFST  frame  ratio R reaches 5%. Through simulating this cyclic test of the CFST frame, the numerical modeling  is promising to accurately predict the seismic behavior of CFST frames, including the elasto-plasticity, structures would be overestimated if the deterioration effects of steel tube and confined concrete were  approach  is  promising  to  accurately  predict  the  seismic  behavior  of  CFST  frames,  including  the  damages and strength deterioration. The seismic performance of CFST frame structures would be neglected. Hence, deterioration effects should be appropriately considered in simulating the seismic  elasto‐plasticity,  damages  and  strength  deterioration.  The  seismic  performance  of  CFST  frame  overestimated if the deterioration effects of steel tube and confined concrete were neglected. Hence, performance of high‐rise steel and CFST buildings.  structures would be overestimated if the deterioration effects of steel tube and confined concrete were 

deterioration effects should be appropriately considered in simulating the seismic performance of neglected. Hence, deterioration effects should be appropriately considered in simulating the seismic  400 400 high-rise steel and CFST buildings. performance of high‐rise steel and CFST buildings.  Deterioration Deterioration Experiment

Experiment

400 200

Deterioration Experiment

H (kN) H (kN)

H (kN) H (kN)

400 200

200 0

-400 -6

200 0

-2000

-2000

-200 -400 -6

Deterioration Experiment

-3

-3

0

R (%)

(a) 

0

3

3

6

-200 -400 -6

6

-400 -6

-3

-3

0

R (%)

(b)

0

3

6

  3

6

R (%) (a)  Hysteretic   curve  R (%)simulation  results  and  experimental  results.  Figure  7.  Comparisons  between  (a)  (b) when R ≤ 2%; (b) Hysteretic curve when R = 5.  Figure  7.  Comparisons  between  simulation  results  and  experimental  results.  (a)  Hysteretic  curve 

3.3. Dynamic Analysis  Figure 7. Comparisons between simulation results and experimental results. (a) Hysteretic curve when when R ≤ 2%; (b) Hysteretic curve when R = 5.  R ≤ 2%; (b) Hysteretic curve when R = 5. Time‐history dynamic analysis on high‐rise SMRFs under the Level 2 earthquakes is conducted  3.3. Dynamic Analysis  to  compare  the  seismic  responses  of  the  building  using  compact  and  thin‐walled  members.  The 

3.3. Dynamic Analysis ground motions C‐San‐EW is a long‐period ground motion synthesized based on the characteristics 

Time‐history dynamic analysis on high‐rise SMRFs under the Level 2 earthquakes is conducted 

to  compare  the  seismic analysis responses  the  building  using  compact  and  thin‐walled  members.  The  to Time-history dynamic onof high-rise SMRFs under the Level 2 earthquakes is conducted ground motions C‐San‐EW is a long‐period ground motion synthesized based on the characteristics  compare the seismic responses of the building using compact and thin-walled members. The ground

Appl. Sci. 2017, 7, 53

7 of 13

motions C-San-EW is a long-period ground motion synthesized based on the characteristics of basin Appl. Sci. 2017, 7, 53  7 of 13  Appl. Sci. 2017, 7, 53  7 of 13  areas near the Pacific Ocean, and CHB009-NS was observed in the Great East Japan earthquake, 2011. of  basin  areas  near  the  Pacific  Ocean,  and  CHB009‐NS  was  observed  in  the  Great  East  Japan  Maximum story drift angle θmax,i of the ith-story can be calculated by the horizontal drift of the of  basin  areas  near  the  Pacific  Ocean,  and  CHB009‐NS  was  observed  in  the  Great  East  Japan  earthquake, 2011. Maximum story drift angle θ max,i of the ith‐story can be calculated by the horizontal  ith-story divided by the story height. Figures 8 and 9 show the distributions of the θmax,i for the SMRFs earthquake, 2011. Maximum story drift angle θ max,i of the ith‐story can be calculated by the horizontal  drift of the ith‐story divided by the story height. Figures 8 and 9 show the distributions of the θ max,i  with various overall story levels. drift of the ith‐story divided by the story height. Figures 8 and 9 show the distributions of the θ max,i  for the SMRFs with various overall story levels.    The seismic demand of Level 2 (θmax ≤ 0.01) was satisfied when subjected to Art-Hachi, for the SMRFs with various overall story levels.    was  satisfied  when  subjected  to  Art‐Hachi,  El‐ The  seismic  demand  of  Level  2  (θmax  ≤  0.01)  El-Centro-NS, Hachinohe-NS and Tafe-EW waves, while the C-San-EW wave excited excessive story The  seismic  demand  of  Level  2  (θ max  ≤  0.01)  was  satisfied  when  subjected  to  Art‐Hachi,  El‐ Centro‐NS, Hachinohe‐NS and Tafe‐EW waves, while the C‐San‐EW wave excited excessive story  drifts on the 20S and 30S models. This means that the high-rise SMRFs fulfill the same seismic demand Centro‐NS, Hachinohe‐NS and Tafe‐EW waves, while the C‐San‐EW wave excited excessive story  drifts  on  the  20S  and  30S  models.  This  means  that  the  high‐rise  SMRFs  fulfill  the  same  seismic  at drifts  designon  level regardless of the width-to-thickness ratios members. The long-period component the design  20S  and  30S  models.  This  means  that  the of high‐rise  SMRFs  fulfill  the  same  seismic  of demand  at  level  regardless  of  the  width‐to‐thickness  ratios  of  members.  The  long‐period  earthquake waves obviously correlates with the first-mode period of high-rises which is controlled demand  at  design  level  regardless  of  the  width‐to‐thickness  ratios  of  members.  The  long‐period by component of earthquake waves obviously correlates with the first‐mode period of high‐rises which  thecomponent of earthquake waves obviously correlates with the first‐mode period of high‐rises which  total number of stories. For instance, the C-San-EW wave shows extremely large excitation on the is controlled by the total number of stories. For instance, the C‐San‐EW wave shows extremely large  structures with ‘first-mode’ natural period T1 between 2 s and 4 s. In contrast, the maximum story is controlled by the total number of stories. For instance, the C‐San‐EW wave shows extremely large  excitation on the structures with ‘first‐mode’ natural period T 1 between 2 s and 4 s. In contrast, the  drift angle subjected to the observed CHB009-NS is relatively small; even the wave is characterized excitation on the structures with ‘first‐mode’ natural period T 1 between 2 s and 4 s. In contrast, the  maximum story drift angle subjected to the observed CHB009‐NS is relatively small; even the wave  maximum story drift angle subjected to the observed CHB009‐NS is relatively small; even the wave  with the long-period component. is characterized with the long‐period component.  is characterized with the long‐period component.  20S-FAc-FAb (with-deterioration)

15

Story level Story level

15 10 10

30

Art-Hachi El-Centro-NS Art-Hachi Hachinohe-NS El-Centro-NS Taft-EW Hachinohe-NS CHB009-NS Taft-EW C-San-EW CHB009-NS C-San-EW

30

30S-FAc-FAb (with-deterioration)

Level 2

20

10 10

5

0.005

max max

0.01 0.01

0 0 0 0

0.015 0.015

   

(a)  (a) 

0.005 0.005

max max

0.01

Art-Hachi El-Centro-NS Art-Hachi Hachinohe-NS El-Centro-NS Taft-EW Hachinohe-NS CHB009-NS Taft-EW C-San-EW CHB009-NS C-San-EW 0.015

0.01

40S-FAc-FAb (with-deterioration) 40S-FAc-FAb (with-deterioration)

35 30

20

5

0.005

40 35

Level 2

Level 2

0 0 0 0

40

30S-FAc-FAb (with-deterioration) Level 2

Story level Story level

20S-FAc-FAb (with-deterioration)

Story level Story level

20 20

Level 2 Level 2

30 25 25 20

Art-Hachi El-Centro-NS Art-Hachi Hachinohe-NS El-Centro-NS Taft-EW Hachinohe-NS CHB009-NS Taft-EW C-San-EW CHB009-NS

20 15 15 10 10 5 5 0 0 0 0

0.015

0.005 0.005

(b) (b)

max max

C-San-EW 0.01

0.015

0.01

0.015

(c)  (c) 

Figure  8.  Maximum  story  drift  angle  of  high‐rise  SMRFs  with  compact  members  under  Level  2  Figure 8. 8. Maximum of high‐rise  high-rise SMRFs  SMRFswith  withcompact  compactmembers  members under Level Figure  Maximum story story  drift drift  angle angle  of  under  Level  2  2 earthquakes. (a) 20S model; (b) 30S model; (c) 40S model.  earthquakes. (a) 20S model; (b) 30S model; (c) 40S model. earthquakes. (a) 20S model; (b) 30S model; (c) 40S model. 

15

Story level Story level

15 10

20S-FBc-FBb (with-deterioration) Art-Hachi El-Centro-NS Art-Hachi Hachinohe-NS El-Centro-NS Taft-EW Hachinohe-NS CHB009-NS Taft-EW C-San-EW CHB009-NS C-San-EW

5

10 10

0 0

0.005

max max

(a)  (a) 

0.01 0.01

0.015 0.015

   

40S-FBc-FBb (with-deterioration) 40S-FBc-FBb (with-deterioration)

35 30

20

Level 2

0.005

40 35

20

Level 2

0 0 0 0

40

Level 2

10 5

30S-FBc-FBb (with-deterioration) Level 2

30

0

0

0.005 0.005

max max

    (b)

(b)

0.01 0.01

Art-Hachi El-Centro-NS Art-Hachi Hachinohe-NS El-Centro-NS Taft-EW Hachinohe-NS CHB009-NS Taft-EW C-San-EW CHB009-NS C-San-EW 0.015 0.015

Story level Story level

20

30S-FBc-FBb (with-deterioration)

30

20S-FBc-FBb (with-deterioration)

Story level Story level

20

Level 2 Level 2

30 25 25 20 20 15 15 10 10 5 5 0 0 0 0

0.005 0.005

max max

Art-Hachi El-Centro-NS Art-Hachi Hachinohe-NS El-Centro-NS Taft-EW Hachinohe-NS CHB009-NS Taft-EW C-San-EW CHB009-NS C-San-EW 0.01 0.015 0.01

0.015

(c)  (c) 

Figure 9. Maximum story drift angle of high‐rise SMRFs with thin‐walled members under Level 2  Figure 9. Maximum story drift angle of high‐rise SMRFs with thin‐walled members under Level 2  earthquakes. (a) 20S model; (b) 30S model; (c) 40S model.  Figure 9. Maximum story drift angle of high-rise SMRFs with thin-walled members under Level 2 earthquakes. (a) 20S model; (b) 30S model; (c) 40S model.  earthquakes. (a) 20S model; (b) 30S model; (c) 40S model.

The collapse capacity of high‐rise SMRFs with thin‐walled FB members (20S‐FBc‐FBb, where the  The collapse capacity of high‐rise SMRFs with thin‐walled FB members (20S‐FB ‐FBbincremental  , where the  subscripts  c  and  b  indicate  column  and  beam  components)  is  assessed  based  on cthe  The collapse capacity of high-rise SMRFs with thin-walled FB members (20S-FB subscripts  c  and  b  indicate  column  and  beam  components)  is  assessed  based  on  the  incremental  c -FBb , where dynamic analysis (IDA) method by excessively scaling the intensity of input ground motions. The  the subscripts c and b indicate column and beam components) is assessed based on the incremental dynamic analysis (IDA) method by excessively scaling the intensity of input ground motions. The  IDA approach was proposed on the basis of the analogy with the incremental static push‐over (SPO)  IDA approach was proposed on the basis of the analogy with the incremental static push‐over (SPO)  dynamic analysis (IDA) method by excessively scaling the intensity of input ground motions. The IDA analysis. IDA was developed by [29], and is widely used in collapse studies [30,31]. The IDA method  analysis. IDA was developed by [29], and is widely used in collapse studies [30,31]. The IDA method  approach was proposed on the basis of the analogy with the incremental static push-over (SPO) is capable of estimating the seismic performance of building structures covering the whole process  is capable of estimating the seismic performance of building structures covering the whole process  analysis. IDA was developed by [29], and is widely used in collapse studies [30,31]. The IDA method from elastic to ultimate global collapse eventually. Usually, the IDA approach requires a sufficient  from elastic to ultimate global collapse eventually. Usually, the IDA approach requires a sufficient  is capable of estimating the seismic performance of building structures covering the whole process amount of input ground motions to run time‐history analysis to eliminate the uncertainty from the  amount of input ground motions to run time‐history analysis to eliminate the uncertainty from the  variety  of  ground  motions.  In  this  study,  since  the  high‐rise  building  systems  highly  relate  to  the  variety  of  ground  motions.  In  this  study,  since  the  high‐rise  building  systems  highly  relate  to  the 

Appl. Sci. 2017, 7, 53

8 of 13

from elastic to ultimate global collapse eventually. Usually, the IDA approach requires a sufficient amount of input ground motions to run time-history analysis to eliminate the uncertainty from the Appl. Sci. 2017, 7, 53  8 of 13  Appl. Sci. 2017, 7, 53  8 of 13  variety of ground motions. In this study, since the high-rise building systems highly relate to the characteristics of long-period ground motions, the Art-Hachi with flat velocity spectral shape is used characteristics of long‐period ground motions, the Art‐Hachi with flat velocity spectral shape is used  characteristics of long‐period ground motions, the Art‐Hachi with flat velocity spectral shape is used  toto provide stable excitations in the wide range of the long‐period domain.  provide stable excitations in the wide range of the long-period domain. to provide stable excitations in the wide range of the long‐period domain.  Figure 10 shows the vertical distribution of the maximum story drift angle of thin-walled FB Figure 10 shows the vertical distribution of the maximum story drift angle of thin‐walled FB  Figure 10 shows the vertical distribution of the maximum story drift angle of thin‐walled FB  buildings with 20, 30 and 40 story levels. φ is the incremental factor of the Art-Hachi wave. Note buildings with 20, 30 and 40 story levels. φ is the incremental factor of the Art‐Hachi wave. Note that  buildings with 20, 30 and 40 story levels. φ is the incremental factor of the Art‐Hachi wave. Note that  that higher buildings produce more significant component deterioration to enlarge the maximum higher buildings produce more significant component deterioration to enlarge the maximum story  higher buildings produce more significant component deterioration to enlarge the maximum story  story drift angle. The deterioration effects triggered by the local buckling amplify the θmax at lower drift angle. The deterioration effects triggered by the local buckling amplify the θ max at lower stories  drift angle. The deterioration effects triggered by the local buckling amplify the θ max at lower stories  stories and reduce the θ at higher stories because the inflexion point changes the deflection pattern. max and reduce the θmax max at higher stories because the inflexion point changes the deflection pattern. For  and reduce the θ  at higher stories because the inflexion point changes the deflection pattern. For  For instance, the inflexion point is located at the fifth floor for the 20S-FB c -FB b building when the φ instance, the inflexion point is located at the fifth floor for the 20S‐FB c‐FB b building when the φ is  instance, the inflexion point is located at the fifth floor for the 20S‐FB c‐FBb building when the φ is  isscaled to 3. Thus, the width‐to‐thickness ratio (FB rank) of beam and column components overtly has  scaled to 3. Thus, the width-to-thickness ratio (FB rank) of beam and column components overtly scaled to 3. Thus, the width‐to‐thickness ratio (FB rank) of beam and column components overtly has  has effects on the seismic responses when the plastic deformation extensively develops. In particular, effects on the seismic responses when the plastic deformation extensively develops. In particular, the  effects on the seismic responses when the plastic deformation extensively develops. In particular, the  the collapse capacity of the 40S-FB c -FB collapse capacity of the 40S‐FB c‐FB b model is captured at the Art‐Hachi (φ = 2, 3).  b model is captured at the Art-Hachi (φ = 2, 3). collapse capacity of the 40S‐FBc‐FBb model is captured at the Art‐Hachi (φ = 2, 3). 

10 10

30S-FA -FB , Art-Hachi c-FBb, Art-Hachi 30S-FAwith deterioration c b with deterioration non deterioration non deterioration        

20 20

Story level Story level

15 15

Story level Story level

30 30

20S-FB -FB , Art-Hachi c 20S-FBwith -FB ,b Art-Hachi c bdeterioration with deterioration non deterioration non deterioration        

10 10

5

0.01 0.01

0.02

0.03 0.03

max 0.02 max

   

(a)  (a) 

0 0 0 0

40S-FB -FB , 40S-FBc -FBb , c b Art-Hachi Art-Hachi

30 30

with deterioration withdeterioration deterioration non non deterioration        

20 20 10 10

5 0 0 0 0

40 40

Story level Story level

20 20

0.01 0.01

0.02

max 0.02 max

0 0 0 0

0.03 0.03

0.01 0.01

(b) (b)

max max

0.02 0.02

0.03 0.03

(c)  (c) 

Figure  10.  Distribution  of  maximum  story  drift  angle  of  high‐rise  SMRF  models  with  thin‐walled  Figure 10. Distribution of  of maximum  maximum story  story drift  drift angle  angle of Figure  10.  Distribution  of  high-rise high‐rise  SMRF SMRF  models models  with with  thin-walled thin‐walled  c‐FBb; (b) 30S‐FBc‐FBb; (c) 40S‐FBc‐FBb.  members. (a) 20S‐FB members. (a) 20S-FB -FB ; (b) 30S-FB -FB ; (c) 40S-FB -FB . c c c b b b members. (a) 20S‐FBc‐FBb; (b) 30S‐FBc‐FBb; (c) 40S‐FBc‐FBb. 

Ultimate  sidesway  collapse  is  regarded  when  the  induced  story  drift  angle  does  not  recover,  Ultimate sidesway collapse  collapse is  is regarded  regarded when  when the  the induced  induced story  story drift  drift angle  angle does  does not  not recover,  recover, Ultimate  sidesway  meaning the residual story drift angle is equal to the maximum story drift angle. The relation between  meaning the residual story drift angle is equal to the maximum story drift angle. The relation between meaning the residual story drift angle is equal to the maximum story drift angle. The relation between  the maximum and residual story drift angle with respect to the incremental factor is plotted to present  the maximum and residual story drift angle with respect to the incremental factor is plotted to present the maximum and residual story drift angle with respect to the incremental factor is plotted to present  the incipient collapse, as shown in Figure 11. Residual story drift angle stays at a low deformation  the incipient collapse, as shown in Figure 11. Residual drift of  angle staysmotions.  at a lowThe  deformation the incipient collapse, as shown in Figure 11. Residual story drift angle stays at a low deformation  level  (i.e.,  0.01  rad),  and  becomes  very  sensitive  to  the story intensity  ground  collapse  level (i.e., 0.01 rad), and becomes very sensitive to the intensity of ground motions. The level  (i.e.,  0.01  rad),  and  becomes  very  sensitive  to  the  intensity  of  ground  motions.  The  collapse collapse  potential of the 40S‐FB c‐FB b building exists when the incremental factor of Art‐Hachi is scaled to 2.  potential of the 40S-FB -FB building exists when the incremental factor of Art-Hachi is scaled to 2. potential of the 40S‐FB ‐FB b  building exists when the incremental factor of Art‐Hachi is scaled to 2.  c b The ratio of residual to maximum story drift angle is an important indicator to judge the criteria of  The ratio of residual to maximum story drift angle is an important indicator to judge the criteria of The ratio of residual to maximum story drift angle is an important indicator to judge the criteria of  incipient collapse.  incipient collapse. incipient collapse. 

Art-Hachi 20S-FBc-FBb Art-Hachi 20S-FBcmax,with -FBb

2

2 1

1 0 0

0.01

0.01

max (rad)

0.02

0.02

max,non max,with res,with max,non res,non res,with

res,non 0.03

  0.03  

Art-Hachi

3

3 2

30S-FBc-FBb max,with 30S-FB -FBb c

2 1

1 0 0

0 0

0.01

0.01

max (rad)

0.02

0.02

max,non max,with res,with max,non res,non res,with

res,non

4

Incremental Incremental factorfactor ( ) ( )

3

Incremental factorfactor ( ) ( ) Incremental

Incremental factor ( ) Incremental factor ( )

Art-Hachi

4

3

0 0

4

4

4

4

3

3 2

2

Art-Hachi 40S-FBc-FBb Art-Hachi 40S-FBc-FBb

Incipient deterioration of frame

Incipient deterioration of frame

max,with

1

1

0.03

0 0

0.03

0 0

0.01

0.01

max (rad)

0.02

max,non max,with res,with max,non res,non res,with

res,non0.03

0.02

max (rad) (c)  (a)  (b) (c)  Figure 11. Incremental maximum and residual story drift angles of 20S building models. (a) 20S‐FBc‐ max (rad) (a) 

(b) (rad) max

0.03

FBb; (b) 30S‐FBc‐FBb; (c) 40S‐FBc‐FBb.  Figure 11. Incremental maximum and residual story drift angles of 20S building models. (a) 20S‐FB c‐ Figure 11. Incremental maximum and residual story drift angles of 20S building models. FBb; (b) 30S‐FBc‐FBb; (c) 40S‐FBc‐FBb.  (a) 20S-FBc -FBb ; (b) 30S-FBc -FBb ; (c) 40S-FBc -FBb .

4. Collapse Mitigation Using CFST Columns 

4. Collapse Mitigation Using CFST Columns  4.1. CFST Columns with Equivalent Capacity  4.1. CFST Columns with Equivalent Capacity  As discussed in the previous section, the collapse potential of high‐rise SMRFs with thin‐walled  sectional  columns  exists  when  subjected  to  strong  earthquakes  that  exceed  the  design  criterion.  As discussed in the previous section, the collapse potential of high‐rise SMRFs with thin‐walled 

Appl. Sci. 2017, 7, 53

9 of 13

4. Collapse Mitigation Using CFST Columns 4.1. CFST Columns with Equivalent Capacity Appl. Sci. 2017, 7, 53 

9 of 13 

As discussed in the previous section, the collapse potential of high-rise SMRFs with thin-walled sectional exists subjected strongcapacity  earthquakes thatbe  exceed the design criterion. Effective columns alternatives  for when enhancing  the  to collapse  should  proposed  based  on  either  3 Effective alternatives for enhancing the collapse capacity should be proposed based on either equivalent equivalent  flexural  stiffness  K  (12EI/h )  or  ultimate  strength  Mu.  In  seismic  design,  the  flexural  flexural stiffness K (12EI/h3 ) or ultimate strength Mu . In seismic design, the flexural stiffness dominates stiffness dominates the deformation capacity to resist moderate earthquakes. The CFST columns with  the deformation capacity to resist moderate earthquakes. The CFST columns with equivalent flexural equivalent flexural stiffness efficiently reduce the size of cross sections or the thickness in terms of  stiffness efficiently reduce the size of cross sections or the thickness in terms of the same cross section, the same cross section, as shown in Figure 12. Besides, the composite effects delay the local buckling  as shown in Figure 12. Besides, the composite effects delay the local buckling of restrained tubes of restrained tubes and improve the crushing strength of confined concrete. Given this consideration,  and improve the crushing strength of confined concrete. Given this consideration, equivalent CFST equivalent CFST members substitute the thin‐walled HSS columns to build the comparative high‐ members substitute the thin-walled HSS columns to build the comparative high-rise CFST-MRFs, rise CFST‐MRFs, as summarized in Table 1. The same analysis procedures performed in the previous  as summarized in Tableto  1.quantify  The same analysis procedures performed in the section were section  were  repeated  the  enhancement  of  collapse  capacity  by previous using  the  thin‐walled  repeated to quantify the enhancement of collapse capacity by using the thin-walled CFST columns. CFST columns.  Rectangular steel tube Confined concrete Rectangular CFT

equilibrium CFT with smaller section

equilibrium CFT with smaller thickness  

Figure 12. CFST columns equivalent to the HSS (hollow steel section) columns  Figure 12. CFST columns equivalent to the HSS (hollow steel section) columns. Table 1. Details of various high‐rise building models.  Table 1. Details of various high-rise building models. Component (Column,  Height Width‐to‐Thickness Ranks  ‘First Mode’ Natural  B/t Ratio Component Height Width-to-Thickness ‘First Mode’ Beam)  (Story)  (Column, Beam)  Period  B/t Ratio (Column, Beam) 81 m (20) (Story) RanksFA, FA  (Column, Beam) Natural Period 2.32~2.38 s  HSS 1 columns,  SMRF 1  121 m (30) FA, FB  3.54~3.61 s  17~30  81 m (20) FA, FA 2.32~2.38 s 1 H‐shaped beams  HSS columns, 121 m (30) FA, FB 3.54~3.61 s 17~30 161 m (40) FB, FB  4.53~4.66 s  SMRF 1 H-shaped beams 161 m (40) FB, FB 4.53~4.66 s 81 m (20) FA, FA  2.26~2.32 s  CFST columns,  81 m (20) FA, FA 2.26~2.32 s CFST‐MRF 1  121 m (30) FA, FB  3.32~3.47 s  14~40  CFST columns, H‐shaped beams  121 m (30) FA, FB 3.32~3.47 s 14~40 CFST-MRF 1 161 m (40) FA, FB  4.12~4.38 s  H-shaped beams 161 m (40) FA, FB 4.12~4.38 s 1  SMRF:  steel  moment‐resisting  frames;  HSS:  hollow  steel  section;  CFST:  concrete  filled  steel  tubular;    1 SMRF: steel moment-resisting frames; HSS: hollow steel section; CFST: concrete filled steel tubular; MRF: MRF: moment‐resisting frames.  moment-resisting frames. Case  Case

4.3. Collapse Capacity Enhancement  4.2. Collapse Capacity Enhancement As  discussed  in  the  previous  section,  the  40S‐FBc‐FBb  building  showed  the  most  significant  As discussed in the previous section, the 40S-FBc -FBb building showed the most significant sensitivity  to  global  collapse  in  the  range  of  the  intensity  of  ground  motion  (e.g.,  Art‐Hachi:    sensitivity to global collapse in the range of the intensity of ground motion (e.g., Art-Hachi: PGV = 210 m/s, φ = 2). The thin‐walled CFST columns with equivalent flexural stiffness are used to  PGV = 210 m/s, φ = 2). The thin-walled CFST columns with equivalent flexural stiffness are used to substitute the HSS columns in the 40S‐FBc‐FBb building, aiming to improve the intensity of ground  substitute the HSS columns in the 40S-FBc -FBb building, aiming to improve the intensity of ground motions associated with the incipient collapse. Figure 13 shows the distribution of maximum story  motions associated with the incipient collapse. Figure 13 shows the distribution of maximum story drift drift  angle  of  the  40S‐FBc‐FBb  and  the  comparative  40CFT‐high‐det.  (FBc‐FBb)  buildings  when  angle of the 40S-FBc -FBb and the comparative 40CFT-high-det. (FBc -FBb ) buildings when subjected subjected to the Art‐Hachi with φ = 2. It is noted that sidesway collapse at the bottom two stories of  to the Art-Hachi with φ = 2. It is noted that sidesway collapse at the bottom two stories of the the 40S‐FBc‐FBb building is efficiently prevented by using a thin‐walled CFST column. This implies  40S-FBc -FBb building is efficiently prevented by using a thin-walled CFST column. This implies that that  high‐deterioration  significantly  influences  the  collapse  resistant  capacity  of  high‐rise  SMRF  high-deterioration significantly influences the collapse resistant capacity of high-rise SMRF buildings buildings  under  high‐level  ground  motions  that  have  a  larger  probability  of  occurrence  than  the  under high-level ground motions that have a larger probability of occurrence than the building model building model with a low level of deterioration effect. with a low level of deterioration effect.

Appl. Sci. 2017, 7, 53 Appl. Sci. 2017, 7, 53  Appl. Sci. 2017, 7, 53 

10 of 13 10 of 13  10 of 13  40

Story level Story level

30

20

10

40

30 40CFT-high-det. 40CFT-high-det. 40S-FB -FB c b 40S-FB -FB

20

c

b

Art-Hachi, (=2.0) Art-Hachi, (=2.0) 10

0 00 0

0.01 0.02 0.01IDR (rad)0.02 Peak

Peak IDR (rad)

0.03 0.03

Figure 13. Distribution of maximum story drift angle of high‐rise SMRF and CFST‐MRF (moment  Figure 13. Distribution of maximum story drift angle of high-rise SMRF and CFST-MRF (moment Figure 13. Distribution of maximum story drift angle of high‐rise SMRF and CFST‐MRF (moment  resisting frame) models.  resisting frame) models. resisting frame) models. 

For the collapse safety of various high‐rise buildings, the SMRFs with thin‐walled members face  For the collapse safety of various high‐rise buildings, the SMRFs with thin‐walled members face  For the collapse safety of various high-rise buildings, the SMRFs with thin-walled members face larger challenges of collapse than the equivalent CFST‐MRFs. From the demonstration in Figure 14,  larger challenges of collapse than the equivalent CFST‐MRFs. From the demonstration in Figure 14,  larger challenges of collapse than the equivalent CFST-MRFs. From the demonstration in Figure 14, the incipient collapse has been induced with different intensity levels, indicating that the collapse  the incipient collapse has been induced with different intensity levels, indicating that the collapse  the incipient collapse has been induced with different intensity levels, indicating that the collapse capacity of the SMRFs with thin‐walled members is enhanced by the CFST‐MRF buildings with the  capacity of the SMRFs with thin‐walled members is enhanced by the CFST‐MRF buildings with the  capacity of the SMRFs with thin-walled members is enhanced by the CFST-MRF buildings with the equivalent flexural stiffness. The 40S‐FB c‐FBb building could collapse until the φ is up to around 1.5,  equivalent flexural stiffness. The 40S‐FB equivalent flexural stiffness. The 40S-FBcc‐FB -FBbb building could collapse until the φ is up to around 1.5,  building could collapse until the φ is up to around 1.5, while the incipient collapse of the 40CFT‐S c‐FBb building model did not occur until the φ achieves  while the incipient collapse of the 40CFT‐S while the incipient collapse of the 40CFT-Scc‐FB -FBbb building model did not occur until the φ achieves  building model did not occur until the φ achieves around 4.0.  around 4.0.  around 4.0. 6

6 PGV / PGV =2.67

CFT PGV col S / PGV col =2.67 CFT col S col

4 Incipient collapse of CFT building Incipient collapse of CFT building

 

4

2

2 Incipient collapse of Incipient collapse of steel model steel model

0 00 0

0.05 0.05

Art-Hachi Art-Hachi 40CFT-Sc-FBb model 40CFT-Sc-FBb model 40S-FBc-FBb model 40S-FBc-FBb model

0.1 0.1 (rad) (rad)

max max

0.15 0.15

   

Figure 14. Incremental maximum story drift angle of high‐rise SMRF and CFST‐MRF models.  Figure 14. Incremental maximum story drift angle of high‐rise SMRF and CFST‐MRF models.  Figure 14. Incremental maximum story drift angle of high-rise SMRF and CFST-MRF models.

The high‐rise CFST‐MRFs demonstrate greater collapse capacity than the equivalent SMRFs, but  The high‐rise CFST‐MRFs demonstrate greater collapse capacity than the equivalent SMRFs, but  The high-rise CFST-MRFs demonstrate greater collapse capacity than the equivalent SMRFs, this finding is only supported when the input ground motion is Art‐Hachi. As mentioned before, the  this finding is only supported when the input ground motion is Art‐Hachi. As mentioned before, the  but this finding is only supported when the input ground motion is Art-Hachi. As mentioned before, Art‐Hachi wave is characterized by a flat velocity spectral shape in the domain of the long‐period  Art‐Hachi wave is characterized by a flat velocity spectral shape in the domain of the long‐period  the Art-Hachi wave is characterized by a flat velocity spectral shape in the domain of the long-period branch. Similar waves such as the BCJ‐L2, Yokohama and JSCA‐Kobe are selected to perform the IDA  branch. Similar waves such as the BCJ‐L2, Yokohama and JSCA‐Kobe are selected to perform the IDA  branch. Similar waves such as the BCJ-L2, Yokohama and JSCA-Kobe to compare the collapse capacity of these two types of high‐rises.      are selected to perform the IDA to compare the collapse capacity of these two types of high‐rises.  to compare the collapse capacity of these two types of high-rises. Seismic response tends to become sensitive and collapse may occur suddenly after going beyond  Seismic response tends to become sensitive and collapse may occur suddenly after going beyond  Seismic response tends to become sensitive and collapse may occur suddenly after going beyond the limit‐state of their collapse capacities. Thus, a collapse safety coefficient is proposed to quantify  the limit‐state of their collapse capacities. Thus, a collapse safety coefficient is proposed to quantify  the limit-state of their collapse capacities. Thus, a collapse safety coefficient is proposed to quantify the seismic safety of buildings to prevent deterioration and collapse. A process that progresses from  the seismic safety of buildings to prevent deterioration and collapse. A process that progresses from  the seismic safety of buildings to prevent deterioration and collapse. A process that progresses from elasticity to elasto‐plasticity until ultimate strength to component‐deterioration and global‐collapse.  elasticity to elasto‐plasticity until ultimate strength to component‐deterioration and global‐collapse.  elasticity to elasto-plasticity until ultimate strength to component-deterioration and global-collapse. The PGV of earthquakes is considered to be associated with the corresponding performance demand  The PGV of earthquakes is considered to be associated with the corresponding performance demand  The PGV of earthquakes is considered to be associated with the corresponding performance demand in performance‐based seismic design, e.g., the so called ‘Level 2’ is treated as the maximum capacity  in performance‐based seismic design, e.g., the so called ‘Level 2’ is treated as the maximum capacity  in performance-based seismic design, e.g., the so called ‘Level 2’ is treated as the maximum capacity earthquake. The PGV at the Level 2 can be used as the reference to quantify the collapse margin. The  earthquake. The PGV at the Level 2 can be used as the reference to quantify the collapse margin. The  earthquake. The PGV at the Level 2 can be used as the reference to quantify the max collapse margin. relation between the intensity measure of the PGV and the performance indicator θ  of high‐rise  relation between the intensity measure of the PGV and the performance indicator θ max of high‐rise  SMRF  and  CFST‐MRF  buildings  under  Art‐Hachi,  BCJ‐L2,  Yokohama  and  JSCA‐Kobe  waves  are  SMRF  and  CFST‐MRF  buildings  under  Art‐Hachi,  BCJ‐L2,  Yokohama  and  JSCA‐Kobe  waves  are 

Appl. Sci. 2017, 7, 53

11 of 13

The relation between the intensity measure of the PGV and the performance indicator θmax of high-rise Appl. Sci. 2017, 7, 53  11 of 13  SMRF and CFST-MRF buildings under Art-Hachi, BCJ-L2, Yokohama and JSCA-Kobe waves are respectively demonstrated in Figure 15. The average collapse margin λcol of the 40CFT-Scc-FB building respectively demonstrated in Figure 15. The average collapse margin λ col of the 40CFT‐S ‐FBbb building  is larger than 2.10, which improves 60% compared to 1.34 of the 40S-FB -FB building. c is larger than 2.10, which improves 60% compared to 1.34 of the 40S‐FBc‐FBbb building.  4

4

2

PGVcol=1.25m/s Collapse margin

40CFT-(FA)c-FBb

3

PGV (m/s)

PGV (m/s)

3

40S-FBc-FBb Individual Mean. Incipient collapse (individual) Incipient collapse (mean.)

Incipient collapse

2 Collapse margin 1

1

Individual Average (with deterioration) Average (non deterioration)

MIDRcol=1.25m/s 0 0

0.02

MIDRdet

0.04

0.06

0 0

0.025

0.05

MIDRdet

0.075

0.1

Figure 15. Average collapse margin of high‐rise SMRF and CFST‐MRF models.  Figure 15. Average collapse margin of high-rise SMRF and CFST-MRF models.

5. Conclusions  5. Conclusions In this this paper, paper,  collapse  capacity  of  high‐rise  using  width-to-thickness various  width‐to‐thickness  In thethe  collapse capacity of high-rise SMRFsSMRFs  using various members members  subjected  to  successive  earthquakes  is  numerically  studied.  It  was  found  that  the  long‐ subjected to successive earthquakes is numerically studied. It was found that the long-period period  component  of  earthquakes  obviously  correlates  with  the  first‐mode  period  of  high‐rises  component of earthquakes obviously correlates with the first-mode period of high-rises controlled by controlled  by  the  total  number  of  stories.  Higher  buildings  to  produce  more  significant  the total number of stories. Higher buildings tend to produce more tend  significant component deterioration component deterioration to enlarge the maximum story drift angle at lower stories. The width‐to‐ to enlarge the maximum story drift angle at lower stories. The width-to-thickness ratio (FB rank) of thickness ratio (FB rank) of beam and column components overtly has effects on the collapse capacity  beam and column components overtly has effects on the collapse capacity when the plastic deformation when  the  plastic  deformation  The  story ratio  of  residual  to significantly maximum  story  drift  extensively develops. The ratioextensively  of residualdevelops.  to maximum drift angle is sensitive angle is significantly sensitive to the collapse capacity of various building models. The thin‐walled  to the collapse capacity of various building models. The thin-walled CFST column is proposed as CFST column is proposed as one efficient alternative to enhance the overall stiffness and deformation  one efficient alternative to enhance the overall stiffness and deformation capacity of the high-rise capacity  of  the  high‐rise  SMRFs  with  fragile  performance.  With  the  equivalent  flexural  SMRFs with fragile collapse performance. Withcollapse  the equivalent flexural stiffness, thin-walled CFST stiffness, thin‐walled CFST columns are capable of improving the collapse margin for more than 60%  columns are capable of improving the collapse margin for more than 60% of the high-rise SMRFs of  the the high‐rise  SMRFs  under  the  identical  Based on on  the  comparative  study  on  the  under identical earthquakes. Based on the earthquakes.  comparative study the collapse capacity of high-rise collapse  capacity  of  high‐rise  SMRF  and  CFST‐MRF  buildings,  CFST‐MRF  buildings  demonstrate  SMRF and CFST-MRF buildings, CFST-MRF buildings demonstrate significantly higher capacity to significantly higher capacity to avoid collapse, and the greater collapse margin indicates that CFST‐ avoid collapse, and the greater collapse margin indicates that CFST-MRFs are a reasonable system for MRFs  are in a  seismic reasonable  system  for Moreover, high‐rises constructional in  seismic  prone  regions.  Moreover,  high-rises prone regions. difficulties exist when theconstructional  HSS columns difficulties exist when the HSS columns are substituted by CFST columns in engineering practice,  are substituted by CFST columns in engineering practice, which needs further investigation. which needs further investigation.  Acknowledgments: The authors gratefully acknowledge the support for this research from the National Natural Science Foundation of China (NSFC) under Grant No. 51508459, Natural Science Foundation of Shaanxi Province Acknowledgments: The authors gratefully acknowledge the support for this research from the National Natural  (2016JQ5086), and China Postdoctoral Science Foundation Grant (2016M592792). Science Foundation of China (NSFC) under Grant No. 51508459, Natural Science Foundation of Shaanxi Province  (2016JQ5086), and China Postdoctoral Science Foundation Grant (2016M592792).  Author Contributions: Yongtao Bai contributed to the conception of this paper; Jiantao Wang and Yashuang Liu contributed to numerical modeling and dynamic analysis; Xuchuan Lin contributed to provide the earthquake Author Contributions: Yongtao Bai contributed to the conception of this paper; Jiantao Wang and Yashuang  database and discuss the results. Liu  contributed  to  numerical  modeling  and  dynamic  analysis;  Xuchuan  Lin  contributed  to  provide  the  Conflicts of Interest: The authors declare no conflict of interest. earthquake database and discuss the results. 

Conflicts of Interest: The authors declare no conflict of interest.  References 1.

Architectural Institute of Japan. Preliminary Reconnaissance Report on the 2011 Off the Pacificcoast of Tohoku Earthquake; Architectural Institute of Japan: Tokyo, Japan, 2011. Architectural Institute of Japan. Preliminary Reconnaissance Report on the 2011 Off the Pacificcoast of Tohoku  Architectural Institute of Japan. Structural Response and Performance for Long Period Seismic Ground Motions; Earthquake; Architectural Institute of Japan: Tokyo, Japan, 2011.  Architectural Institute of Japan: Tokyo, Japan, 2007. Architectural Institute of Japan. Structural Response and Performance for Long Period Seismic Ground Motions;  Nakamura, T.; Uetani, K. Symmetry Limit Theory for Steel Beam-Columns (Part 1: A General Formulation). Architectural Institute of Japan: Tokyo, Japan, 2007.  J. Struct. Constr. Eng. 1989, 398, 109–119. Nakamura, T.; Uetani, K. Symmetry Limit Theory for Steel Beam‐Columns (Part 1: A General Formulation).  J. Struct. Constr. Eng. 1989, 398, 109–119.  Nakamura, T.; Uetani, K. Symmetry Limit Theory for Steel Beam‐Columns (Part 2: Finite Element Analysis.  J. Struct. Constr. Eng. 1990, 408, 43–54. 

References 

1. 2. 2. 3. 3. 4.

Appl. Sci. 2017, 7, 53

4. 5. 6.

7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.

12 of 13

Nakamura, T.; Uetani, K. Symmetry Limit Theory for Steel Beam-Columns (Part 2: Finite Element Analysis. J. Struct. Constr. Eng. 1990, 408, 43–54. Uetani, K.; Tagawa, H. Deformation Concentration Phenomena in the Process of Dynamic Collapse of Weak-Beam-Type Frames. J. Struct. Constr. Eng. 1996, 483, 51–60. Chung, Y.; Nagae, T.; Hitaka, T.; Nakashima, M. Seismic Resistance, Capacity of High-Rise Buildings Subjected to Long-Period Ground Motions: E-Defense Shaking Table Test. J. Struct. Eng. 2010, 136, 637–644. [CrossRef] Lignos, D.G.; Krawinkler, H.; Whittaker, A.S. Prediction and validation of sidesway collapse of two scale models of a 4-story steel moment frame. Earthq. Eng. Struct. Dyn. 2011, 40, 807–825. [CrossRef] Tao, Z.; Han, L.H.; Zhao, X.L. Behaviour of concrete-filled double skin (CHS inner and CHS outer) steel tubular stub columns and beam-columns. J. Constr. Steel Res. 2004, 60, 1129–1158. [CrossRef] Tao, Z.; Han, L.H.; Zhao, X.L. Experimental behaviour of stiffened concrete-filled thin-walled hollow steel structural (HSS) stub columns. J. Constr. Steel Res. 2005, 61, 962–983. [CrossRef] Patel, V.I.; Uy, B.; Prajwal, K.A.; Aslani, F. Confined concrete model of circular, elliptical and octagonal CFST short columns. Steel Compos. Struct. Int. J. 2016, 22, 497–520. [CrossRef] Patel, V.I.; Liang, Q.Q.; Hadi, M.N.S. Numerical analysis of high-strength concrete-filled steel tubular slender beam-columns under cyclic loading. J. Const. Steel Res. 2014, 92, 183–194. [CrossRef] Montuori, R.; Piluso, V. Analysis and modelling of CFT members: Moment curvature analysis. Thin-Walled Struct. 2015, 86, 157–166. [CrossRef] Elremaily, A.; Azizinamini, A. Behavior and strength of circular concrete-filled tube columns. J. Constr. Steel Res. 2002, 58, 1567–1591. [CrossRef] Shams, M.; Saadeghvaziri, M.A. Nonlinear response of concrete-filled steel tubular columns under axial loading. ACI Struct. J. 1999, 96, 1009–1017. Susantha, K.A.S.; Ge, H.; Usami, T. Cyclic analysis and capacity prediction of concrete-filled steel box columns. Earthq. Eng. Struct. Dyn. 2002, 31, 195–216. [CrossRef] Kawano, A.; Sakino, K. Seismic Resistance of CFT trusses. Eng. Struct. 2003, 25, 607–619. [CrossRef] Kawano, A.; Nejime, H.; Tokuda, M. Seismic-Resistant Capacity of Steel Multi-Story Frames with CFT Truss Beams. J. Struct. Constr. Eng. 2005, 589, 181–185. Kawakami, S.; Kawano, A.; Okamoto, Y. A method to Improve Distribution of Story Drift Angle Responses in CFT Moment-Resistant Frames under Severe Earthquake. J. Struct. Constr. Eng. 2004, 585, 223–229. Nakahara, H.; Sakino, K.; Kawano, A. Bond Behavior of Concrete Filled Steel Tubular Frames under Cyclic Horizontal Load. J. Struct. Constr. Eng. 2008, 73, 465–472. [CrossRef] Han, L.; Li, W.; Yang, Y. Seismic behaviour of concrete-filled steel tubular frame to RC shear wall high-rise mixed structures. J. Constr. Steel Res. 2009, 65, 1249–1260. [CrossRef] Denavit, M.D.; Hajjar, J.F. Nonlinear Seismic Analysis of Circular Concrete-Filled Steel Tube Members and Frames. J. Struct. Eng. 2012, 138, 1089–1098. [CrossRef] Bai, Y.; Kawano, A.; Odawara, K.; Matsuo, S. Constitutive models for hollow steel tubes and concrete filled steel tubes considering the strength deterioration. J. Constr. Steel Res. 2012, 77, 1141–1150. [CrossRef] Bai, Y.; Lin, X.; Mou, B. Numerical modeling on post-local buckling behavior of circular and square concrete filled steel tubular beam columns. Int. J. Steel Struct. 2016, 16, 1–16. [CrossRef] Bai, Y.; Lin, X. Numerical simulation of collapse behavior of steel resistant frame considering post local buckling behavior. Thin Walled Struct. 2015, 94, 424–434. Ministry of Land, Infrastructure, Transport and Tourism. Building Standards Act of Japan; MLIT: Tokyo, Japan, 2007. Architectural Institute Japan. Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures; Architectural Institute of Japan: Tokyo, Japan, 2008. Bai, Y.; Shi, Y.; Deng, K. Collapse analysis of high-rise steel moment frames incorporating deterioration effects of column axial force-bending moment interaction. Eng. Struct. 2016, 127, 402–415. [CrossRef] Sakai, J.; Matsui, C.; Yanagida, Y.; Hitaka, T.; Inumaru, K. A Study on Elastic-Plastic Behavior of 3-Story Frames with CFT Columns (Part 1); Summaries of Technical Papers of Annual Meeting Architectural Institute of Japan; C-1, Structures III, Timber Structures Steel Structures Steel Reinforced Concrete Structures; Architectural Institute of Japan: Tokyo, Japan, 2001; pp. 1163–1164.

Appl. Sci. 2017, 7, 53

29. 30. 31.

13 of 13

Vamvatsikos, D.; Cornell, C.A. Incremental Dynamic Analysis. Earthq. Eng. Struct. Dyn. 2002, 31, 491–514. [CrossRef] Zareian, F.; Krawinkler, H. Assessment of probability of collapse and designfor collapse safety. Earthq. Eng. Struct. Dyn. 2007, 36, 1901–1914. [CrossRef] Liel, A.B.; Deierlein, G.G. Assessing the Collapse Risk of California’s Existing Reinforced Concrete Frame Structures: Metrics for Seismic Safety Decisions; Report No. 166; The John A. Blume Earthquake Engineering Center, Stanford University: Stanford, CA, USA, 2008. © 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

Suggest Documents