Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Contents lists available at ScienceDirect
Theoretical and Applied Fracture Mechanics journal homepage: www.elsevier.com/locate/tafmec
Three-dimensional flow driven pore-crack networks in porous composites: Boltzmann Lattice method and hybrid hypersingular integrals B.J. Zhu *, Y.L. Shi Key Laboratory of Computational Geodynamics, College of Earth Science, Graduate University of Chinese Academy of Sciences, Beijing 100049, PR China
a r t i c l e
i n f o
Article history: Available online 16 December 2009 Keywords: Hypersingular integral equation method Lattice Boltzmann method Flow driven pore-crack networks Strain energy density function Stress intensity factor Various porous composites
a b s t r a c t This study introduces a hybrid hypersingular integral equation-Lattice Boltzmann method (HHIE-LBM) for analyzing extended 3D flow driven pore-crack networks problem in various porosity composites. First, the extended hybrid electronic–ionic, thermal, magnetic, electric and force coupled fields’ pressure and velocity boundary conditions for HHIE-LBM model are established, and the closed form solutions of extended distribution functions are given. Second, an extended 3D flow driven pore-crack networks problem in various porosity composites is translated into a coupled of HHIE-LBM equations, and the pore-crack networks propagation parameters are analyzed. Third, the extended dynamic stress intensity factors (EDSIFs) are calculated by using the parallel numerical technology and the visualization results are presented. Last, the relationship between the EDSIFs and the differential porosity is discussed, and several rules have been found, which can be utilized to understand the extended fluid flow mechanism in various porosity composites and analyze the extended fluid flow varying mechanism on coseismal slip. Ó 2009 Elsevier Ltd. All rights reserved.
1. Introduction Fluid driven fracture is one of the most important geophysical phenomenon, especially for seismic trigger events at seismogenic zone during inter-seismic period [1,2]. Groundwater has an important role in the whole water resources system, with the increasing demand of the information on groundwater hydrology and hydraulics, the mechanism of fluid and fluid flow driven pore-crack networks in the aquifer need special attention as the main resources of groundwater. As one of the most popular fluid simulation method, Lattice Boltzmann method has been widely applied in studying of fluid problem, and a lot of landmark achievements have been obtained [3–15]. On boundary condition aspect. In [16], a hexagonal Lattice gas model and modeling the 2D Navier–Stokes equation is developed. In [17], a cellular automaton model to simulate the process of seism genesis is presented. A supplementary rule for computing the boundary distribution is proposed, and presented 3D bodycentered-cubic lattices are presented for Poiseuille flow [11]. In [12], a hydrodynamic boundary condition for Lattice Boltzmann simulations is developed. In [10], the pressure and velocity boundary for 2D/3D Lattice Boltzmann BGK model is proposed.
* Corresponding author. Tel.: +86 010 88256475/305 799 9713; fax: +86 010 88256485. E-mail address:
[email protected] (B.J. Zhu). 0167-8442/$ - see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tafmec.2009.12.002
Extended Fluid (electronic–ionic, thermal, magnetic, electric and force) flow pore-crack network problem is an interdisciplinary issues, a lot of research results have been obtained in different fields of study. In [18], two dimensional falling drops under gravity for some range of Eotvos and Ohnesorge numbers is simulated. Based on the work in [19], the problem of stress intensity factors statistics in a randomly cracked solid and found that SIF distribution follows the Gnedenko–Gumber asymptotic rule is addressed [20]. The solute transport in a single fracture with the combination of the Lattice Boltzmann method is analyzed, and this study provide a new path of applying the LBM in solute transport simulation in fractures [21]. But there is little research about the extended 3D flow driven pore-crack networks problem in various porosity composites under multiple coupled electronic–ionic, thermal, magnetic, electric and force fields. In this paper, bases on the multiple scale fracture mechanics/ physics theory [22–27], the hybrid hypersingular integral equation-Lattice Boltzmann method (HHIE-LBM) proposed by the authors is defined by combined with extended hypersingular integral equation method [3,4,7,8,28–32] and 3D Lattice Boltzmann method [3,4,7,8,32], and the typical extended 3D flow driven pore-crack networks model for various porosity composites is analyzed by using this method. First, the extended hybrid multiple coupled D3Q27 lattice cubic is created and the extended hybrid electronic–ionic, thermal, electromagnetic (weak and strong coupled) and force coupled fields
10
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
pressure and velocity boundary conditions for the HHIE-LBM model are established. Then, using the HHIE-LBM method, the extended 3D flow driven pore-crack networks problem in various porosity composites is translated into a set of coupled HHIE-LBM equations, in which the unknown functions are the extended displacement ratio discontinuities, and the extended dynamic stress intensity factors (EDSIFs) and the extended strain energy density function (ESEDF) is derived. Third, the extended dynamic stress intensity factors (EDSIFs) are calculated by using the parallel numerical technology and the visualization results are calculated. The results are presented toward demonstrating the applicability of the proposed method. In addition, the relationship between the EDSIFs and differential porosity are discussed, and several rules have been found, which can be utilized to help understand the extended fluid flow mechanism in various porosity composites and analyze the extended fluid flow varying mechanism on coseismal slip.
1 1 1 where ami n ¼ 7 18. i ¼ 3 di0 þ 18 dim þ 36 din m ¼ 1 6 After we define the similar lattice velocity efi and the distribution function fif (i = 0, 18) at position X(x, y, z) and time t for the fluid flow, the pressure and velocity boundary conditions for fluid flow problem (force field) can be obtained. The thermal flow density, velocity and equilibrium distribution function for incompressible and compressible model can be defined as
2. Basic equation
fieq t ðx; tÞ ¼ ati qtin þ ati qtin
In the present paper, summation from 1 to 3 over repeated lowercase, and of 1 to 7 in uppercase subscripts is assumed, and a subscript comma denotes the partial differentiation with respect to the extended coordinates. The constitutive relationships can be written as
€J ðEIJKL Z_ KL Þ;I þ F_ J ¼ qU
qtin ¼
14 X
@ q d ln q ½ðkc;i Þ;i þ q þ qui q;i ¼ 0 @t dc ðqui Þ;t þ ðqui uj Þ;j ¼ sij;j þ qfib
fieq t ðx; tÞ
ð14Þ
t i
t in
t i
t in ini
¼a q þa q
mw qmw ¼ in ini ua
qmw in ¼
" 2 2 # 3 uta eti uta 9 eti uta þ c2s 2c4s 2c2s
ð15Þ
" # 2 eti uta 9 eti uta 3ðuta Þ2 þ c2s 2c4s 2c2s
ð16Þ
12 X
fimw emw ia
ð17Þ
ð5Þ
Z h i jn jr/a j2 þ naa Wð/a Þ þ f ðnÞ 2 V @na na g ¼ r þ ð1Þa r Krl @t q @g gg g þ gr ¼ r P r @t q q
Fðnaa ; /a Þ ¼
ð6Þ ð7Þ ð8Þ
The electronic–ionic density, velocity and equilibrium distribution functions for incompressible and compressible model can be defined as [33–35]
fimi emi ia
ð9Þ
12 X
fimw
ð18Þ
i¼0
fieq
ð4Þ
The Helmholtz free energy and transport equation can be written as
fieq
mw
mw ðx; tÞ ¼ amw i qin " 2 # mw 2 mw 9 emw 3 umw 3emw a i ua mw mw i ua þ ai qin ini þ c2s 4c4s 2c2s
ð19Þ
mw
mw ðx; tÞ ¼ amw i qin " 2 # mw 2 mw mw 9 emw 3 umw a i ua mw mw ei ua þ ai qin þ c2s 4c4s 2c2s
ð20Þ
where amw ¼ 0di0 þ 18 dim m ¼ 1 12. i After the lattice velocity eei and the distribution function fie (i = 0, 12) at position X(x, y, z) and time t for the electric fluid flow are defined. Obtained are similar pressure and velocity boundary conditions for electric fluid flow field. The extended magnetic density, velocity and equilibrium distribution functions for incompressible and compressible model are defined as
qmin ini uma ¼
i¼0
6 X
fim em ia
ð21Þ
i¼0
fimi
ð10Þ
i¼0
mi mi mi mi fieqincom ðx; tÞ ¼ ami i qin þ ai qin ini
fit
1 where ati ¼ 29 di0 þ 19 dim þ 72 din m ¼ 1 6n ¼ 7 14. The strong couple electromagnetic density, velocity and equilibrium distribution functions for incompressible and compressible model can be defined as
ð3Þ
ðqui Þ;t þ ðqui uj Þ;j ½lðui;j þ uj;i 2eii dij =3Þ pdij ;j qfib ¼ 0
18 X
ð13Þ
i¼0
ð2Þ
The continuity equation, the conservation of momentum and the Navier–Stokes equations can be written as
qmi in ¼
fit etia
i¼0
i¼0
r D ¼ q r E ¼ B_ r B ¼ 0 r H ¼ J þ D_
18 X
14 X
ð1Þ
The Gauss’ law, Faraday’s law and Ampere’s law can be written as
mi qmi in ini ua ¼
qtin ini uta ¼
mi mi 2 mi 2 ! mi ei ua u emi i ua þ a2 c2s 2c4s 2cs
qmin ¼
6 X
fim
m m m fieq m ðx; tÞ ¼ am i qin þ ai qin
ð11Þ 2 !
mi mi 2 mi mi ei ua u emi mi mi mi mi i ua fieqcom ðx; tÞ ¼ ami þ a2 i qin þ ai qin c2s 2c4s 2cs
m m m fieq m ðx; tÞ ¼ am i qin þ ai qin
ð12Þ
ð22Þ
i¼0
" 2 # mi 2 m 9 em 3 um 3em a i ua i ua þ ini c2s 4c4s 2c2s
ð23Þ
" 2 # m 2 m 9 em 3 um 3em a i ua i ua þ c2s 4c4s 2c2s
ð24Þ
1 1 1 where ami i ¼ 6 di0 þ 72 dim þ 36 din m ¼ 1 4n ¼ 5 6.
11
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
3. Boundary conditions for multiple coupled fields The extended hybrid cubic lattice D3Q27 model is defined by combined D3Q19 (electric–ionic field) model, D3Q19 (force field) model, D3Q15 (thermal field) model, D3Q13 (Maxwell equationstrong electromagnetic coupled field) model, D3Q13 (electric field) model and D3Q7 (magnetic field) model for multiple coupled fields, the extended multiple coupled pressure and velocity condition and the extended distribution functions for all possible case were established, see Fig. 1.
The presentations of the extended lattice velocity ei ðX; tÞ (i = 0 26) at position X(x, y, z) and time t, and the distribution functions for hybrid D3Q27 model are given in Table 1, where clkn (l = 1 27,k = 1 6,n = 1 6) is coupled coefficient matrix (27 6 6). The extended electronic–ionic distribution functions fimi (i = 0 18), flow distribution functions fif (i = 0 18), extended thermal distribution functions fit (i = 0 15), the extended strong couple electromagnetic distribution functions fimw (i = 0 12), the extended electric distribution functions fie (i = 0 12) and the extended magnetic distribution functions fim (i = 0 7) are listed in
Fig. 1. Extended boundary for hybrid cubic Lattice D3Q27 multiple coupled fields.
Table 1 The lattice velocity ei (i=0 26) for the multiple coupled fields. ei
fi
ei1
ei2
ei3
e0
P6
0
0
0
1
0
0
E
1
0
0
W
0
1
0
R
0
1
0
F
0
0
1
N
0
0
1
S
1
1
0
RE
1
1
0
FE
1
1
0
RW
1
1
0
FW
1
0
1
NE
e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18 e19 e20 e21 e22 e23 e24 e25 e26
f 1 ei 1 t 1 mw 1 e 1 m 1 n¼1 ðf0 c 1n þ f0 c 2n þ f0 c 3n þ f0 c 4n þ f0 c 5n þ f0 c 6n Þ P6 f 2 ei 2 t 2 m 2 n¼1 ðf1 c 1n þ f1 c 2n þ f1 c 3n þ f1 c 6n Þ P6 f 3 ei 3 t 3 m 3 n¼1 ðf2 c 1n þ f2 c 2n þ f2 c 3n þ f2 c 6n Þ P6 f 4 ei 4 t 4 m 4 ðf c þ f c þ f c þ f n¼1 3 1n 3 3n 3 c 6n Þ 3 2n P6 f 5 ei 5 t 5 m 5 ðf c þ f c þ f c þ f n¼1 4 1n 4 3n 4 c 6n Þ 4 2n P6 f 6 ei 6 t 6 m 6 n¼1 ðf5 c 1n þ f5 c 2n þ f5 c 3n þ f5 c 6n Þ P6 f 7 ei 7 t 7 m 7 n¼1 ðf6 c 1n þ f6 c 2n þ f6 c 3n þ f6 c 6n Þ P6 f 7 ei 8 mw 7 ðf c þ f c þ f c þ f1e c75n Þ n¼1 7 1n 1 4n 7 2n P6 f 9 ei 9 mw 9 e 9 n¼1 ðf8 c 1n þ f8 c 2n þ f3 c 4n þ f3 c 5n Þ P6 f 10 ei 10 mw 10 e 10 n¼1 ðf9 c 1n þ f9 c 2n þ f4 c 4n þ f4 c 5n Þ P6 f 11 ei 11 mw 11 e 11 n¼1 ðf10 c 1n þ f10 c 2n þ f2 c 4n þ f2 c 5n Þ P6 f 12 ei 12 mw 12 e 12 ðf c þ f c þ f c þ f n¼1 11 1n 5 5 c 5n Þ 4n 11 2n P6 f 13 ei 13 mw 13 e 13 n¼1 ðf12 c 1n þ f12 c 2n þ f8 c 4n þ f8 c 5n Þ P6 f 14 ei 14 mw 14 e 14 n¼1 ðf13 c 1n þ f13 c 2n þ f7 c 4n þ f7 c 5n Þ P6 f 15 ei 15 mw 15 e 15 ðf c þ f c þ f c þ f n¼1 14 1n 6 4n 6 c 5n Þ 14 2n P6 f 16 ei 16 mw 16 e 16 ðf c þ f c þ f c þ f n¼1 15 1n 9 4n 9 c 5n Þ 15 2n P6 f 17 ei 17 mw 17 e 17 n¼1 ðf16 c 1n þ f16 c 2n þ f11 c 4n þ f11 c 5n Þ P6 f 18 ei 18 mw 18 e 18 n¼1 ðf17 c 1n þ f17 c 2n þ f12 c 4n þ f12 c 5n Þ P6 t 20 f c n¼1 7 3n P6 t 20 n¼1 f7 c 3n P6 t 21 n¼1 f8 c 3n P6 t 22 f n¼1 9 c 3n P6 t 23 n¼1 f10 c 3n P6 t 24 f n¼1 11 c 3n P6 t 25 f n¼1 12 c 3n P6 t 26 n¼1 f13 c 3n P6 t 27 f n¼1 14 c 3n
C
1
0
1
NW
1
0
1
SE
1
0
1
SW
0
1
1
NR
0
1
1
SR
0
1
1
NF
0
1
1
SF
1
1
1
RNE
1
1
1
FSW
1
1
1
RSE
1
1
1
FNW
1
1
1
FNE
1
1
1
RSW
1
1
1
FSE
1
1
1
RNW
12
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Appendix A. More further information about clkn can be found in Ref. [36].
p ffr:9 ¼
f f mi qmi in ufr:y þ qin ufr:y
þ
6
p ¼ f8 þ ffr:19
p:t p:t p:t qp:t in ðufr:x þ ufr:y þ ufr:z Þ
ð28Þ
12
mw mw m m m 4f 8 þ 4f 3 f1 þ f2 f11 þ f12 f13 þ f14 þ 3qmw in ðufr:x þ ufr:y Þ þ 3qin ðufr:x þ ufr:y Þ
ð29Þ
4
3.1. Front-rear flow
p ffr:3 ¼
f f mi mw mw m m qmi in ufr:y þ qin ufr:y þ qin ufr:y þ qin ufr:y þ 7f 4 f0 f1 f5 f2 f6
3
As shown in Fig. 1a, when the electronic–ionic flow direction is from front to rear, after streaming, the unknown distribution functions are ffr:i (i = 26, 15, 19, 9, 3, 7, 24, 16, 21), on the contrary, after
p ffr:7 ¼
p ffr:15
f f mi qmi in ufr:y þ qin ufr:y
þ
6
¼
p ¼ ffr:16
p:mw p:e p:e p:e 3qp:mw ðup:mw in fr:x þ ufr:y Þ þ 3qin ðufr:x þ ufr:y Þ 4f 10 4f 2 þ f1 f2 þ f11 f12 þ f13 f14
p:mi p:f p:f qp:mi in ufr:y þ qin ufr:y
6 f f mi qmi in ufr:y þ qin ufr:y
6
ð30Þ
þ
4 p:mw p:m p:m þ 4f 18 þ 4f 10 f5 þ f6 f11 f12 þ f13 þ f14 3qp:mw ðup:mw up:m in fr:y þ ufr:z Þ þ 3qin fr:y þ ufr:z
þ
4
p:mw p:e p:e p:e 3qp:mw ðup:mw in fr:y ufr:z Þ þ 3qin ðufr:y ufr:z Þ þ 4f 17 þ 4f 12 f5 þ f6 f11 f12 þ f13 þ f14
4
ð31Þ
ð32Þ
ð33Þ
streaming, the unknown distribution functions are frf:i (i = 22, 17, 23, 10, 4, 8, 20, 18, 25).
For the rear inlet and front outlet case, frfp :i (i = 22, 17, 23, 10, 4, 8, 20, 18, 25) can be defined as
3.1.1. PC (pressure condition) p (i = 26, 15, 19, 9, 3, For the front inlet and rear outlet case, the ffr:i 7, 24, 16, 21) can be defined as
frfp :22 ¼ f9
p ffr:26 ¼ f13
p ffr:21 ¼ f10 þ
p ffr:24 ¼ f11 þ
frfp :17 ¼ frfp :4 ¼
frfp :8 ¼
q
p:t p:t in ðufr:x
up:t fr:y
up:t fr:z Þ
q
p:t t in ðufr:x
þ
up:t fr:y
up:t fr:z Þ
12
q
t t in ðufr:x
þ
utfr:y
utfr:z Þ
6
þ
p:t p:t p:t qp:t in ðurf :x þ urf :y urf :z Þ
12 p:t p:t p:t qp:t in ðurf :x þ urf :y urf :z Þ
12
frfp :20
ð27Þ
12
p:mi p:f p:f qp:mi in urf :y qin urf :y
frfp :23 ¼ f12
ð26Þ
ð34Þ
12
frfp :25 ¼ f14
ð25Þ
12
p:t p:t qtin ðup:t rf :x þ urf :y urf :z Þ
¼ f7
p:t p:t p:t qp:t in urf :x þ urf :y þ urf :z
12
p:mw p:e p:e p:e 3qp:mw ðup:mw in rf :y urf :z Þ þ 3qin urf :y urf :z 3f 11 þ 4f 16 þ f5 f6 þ f12 f13 f14 4
p:mw p:e p:e 4f 9 þ 4f 4 þ f1 f2 þ f11 f12 þ f13 f14 3qp:mw up:mw 3qp:e in in urf :x þ urf :y rf :x þ urf :y 4
4
ð37Þ
ð38Þ
ð39Þ
3
p:mw p:e p:e p:e 4f 15 þ 4f 9 f5 þ f6 f11 f12 þ f13 þ f14 þ 3qp:mw ðup:mw in rf :y þ urf :z Þ 3qin ðurf :y þ urf :z Þ
ð36Þ
p;mi p:f p;f p:t p;t p:m p:m 7f 3 f0 f1 f5 f2 f6 þ qmi in urf :y þ qin urf :y þ qin urf :y þ qin uu:y
frfp :18 ¼
ð35Þ
p:mi p:f p:f qp:mi in urf :y þ qin urf :y
6
p:mi p:f p:f qp:mi in urf :y qin urf :y
6
ð40Þ
ð41Þ
13
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
3.1.2. VC (velocity condition) v (i = 26, 15, 19, 9, 3, 7, For the front inlet and rear outlet case, ffr:i 24, 16, 21), can be defined as
fv
fr:26
fv
fr:24
¼ f13 þ
¼ f11 þ
v ¼f þ ffr:21 10
fv
fr:19
¼ f8 þ
v ¼ ffr:15
v ¼ ffr:9
v ¼ ffr:3
qvin:t ðutfr:x þ utfr:y þ utfr:z Þ
ð42Þ
12
qvin:t ðutfr:y utfr:x utfr:z Þ
frfv :25 ¼ f14 fv
rf :17
ð43Þ
12 v :t þ uv :t uv :t Þ qvin:t ðufr:x fr:y fr:z
qvin:t ðuvfr:x:t þ uvfr:y:t þ uvfr:z:t Þ
ð45Þ
12
f6 4f 18 4f 10 f5 f11 f12 þ f13 þ f14 2 v :mw v :mw v :mw :e :e :e 3qfr:in ufr:y þ ufr:z uvfr:y þ uvfr:z þ 3qvfr:in þ 4
6
:f :mi v :mi qvfr:in uy þ qvfr:in uvy :f
qv :mi
v :f
qfr:in fr:in þ :f :mi qvfr:in 3 qvfr:in 3
v :mi qfr:in
:f qvfr:in
frfv :4 ¼
!
þ :f :mi 6 qvfr:in 3 qvfr:in 3 4f 8 þ 4f 3 þ f2 f1 f11 þ f12 f13 þ f14 2 v :mw v :mw v :mw :e :e :e 3qfr:in ufr:x þ ufr:y uvfr:x þ uvfr:y þ 3qvfr:in þ 4 þ
ð46Þ
:mi v :mi qvfr:in uy þ qfr:in uy
v :mi qfr:in
qfr:in
ffr:16 ¼
v :f v :f :mi v :mi qvfr:in uy þ qfr:in uy
6
þ
þ
fv
rf :8
¼
ð47Þ
þ :f :mi qvfr:in 3 qvfr:in 3
:mi qvfr:in
:f qvfr:in
qvin:t ðurfv :t:x þ uvrf:t:y uvrf:t:z Þ
ð49Þ
frfv :20 ¼ f7
qvin:t ðuvrf:t:x þ uvrf:t:y þ uvrf:t:z Þ
rf :23
¼ f12
qvin:t uvrf:t:x þ uvrf:t:y uvrf:t:z 12
6 v :mw þ 3qv :e uv :e þ uv :e 3qvrf:mw uvrf:mw :in :x þ urf :y rf :in rf :x rf :y 4
ð56Þ
qvrf:f:in
!
v :f v :f mi qvrf:mi :in uy þ qrf :in uy
6
v :mw 3qvrf:mw uvrf:mw :in :x þ urf :y
þ 3qvrf:e:in urfv :e:x þ urfv :e:y
4
qvrf:mi :in
¼
þ
qvrf:f:in
ð58Þ
!
qvrf:mi qvrf:f:in 3 :in 3
2f 15 þ 2f 9 þ f6 f5 f11 f12 þ f13 þ f14 2 v :mi þ qv :f uv :f qvrf:mi :in uy rf :in y
6 v :mw þ 3qv :e uv :e þ uv :e 3qvrf:mw uvrf:mw :in :y þ urf :z rf :in rf :y rf :z 4
ð59Þ
3.2. South-north flow
ð50Þ
ð52Þ
12
v :e v :e qvin:mi uvrf:mi :y þ qin urf :y
þ v :e qrf :in 3 2f 9 f2 þ 2f 4 þ f1 þ f11 f12 þ f13 f14 2
ð51Þ
12
!
qvrf:mi :in 3
For the rear inlet and front outlet case, frfv :i (i = 22, 17, 23, 10, 4, 8, 20, 18, 25) can be defined as
frfv :22 ¼ f9v
ð55Þ
2f 7 þ f1 þ f2 f11 þ f12 f13 þ f14 2
qvrf:mi :in
rf :18
þ :f :mi qvfr:in 3 qvfr:in 3
4
4
3
fv
!
4f 17 þ 4f 12 þ f6 f5 f11 f12 þ f13 þ f14 2 :mw :mw :mw :e :e :e þ 3qvfr:in 3qvfr:in uvfr:y uvfr:z uvfr:y uvfr:z
qvrf:mi qvrf:f:in 3 :in 3
2f 16 þ f11 þ f6 f5 f12 þ f13 þ f14 2 v :mw v :mw v þ 3qvrf:e:in uvrf:e:y uvrf:e:z 3qrf :in urf :y urf:mw :z
!
6 f2 4f 10 4f 2 f1 f11 þ f12 f13 þ f14 2 v :mw v :mw v :mw :e :e :e 3qfr:in ufr:x þ ufr:y ðuvfr:x þ uvfr:y Þ þ 3qvfr:in þ 4
þ
!
v :mi qv :e uv :e qv :t uv :t qv :m uv :m 11f 3 f0 f1 f5 f2 f6 qvrf:mi in rf :y in :in urf rf :in rf rf :y
3
v :f
qvrf:f:in
ð57Þ
:mi v :mi :e v :e :t :m qvfr:in uy þ qvfr:in uy þ qvin:t uvfr:y þ qvin:m uvfr:y þ 11f 4 þ f1 þ f5 þ f2 þ f6
v :f
qvrf:mi :in
qvrf:mi qvrf:e:in :in þ v :mi 2ðqrf :in 3Þ 2ðqvrf:e:in 3Þ
frfv :10 ¼
!
v :f v :f :mi v :mi qvfr:in uy þ qfr:in uy
v :f
fv
6
ð44Þ
12
ð54Þ
12
v :mi þ qv :f uv :f qvrf:mi :in uy rf :in y
ð48Þ v ¼ ffr:7
¼
qvin:t uvrf:t:x þ uvrf:t:y uvrf:t:z
As shown in Fig. 1b, when the extended fluid flow direction is from south to north, after streaming, the unknown distribution functions are fsn:i (i = 26, 12, 22, 15, 5, 17, 19, 11, 23), on the contrary, the unknown distribution functions are fns:i (i = 20, 14, 24, 18, 6, 16, 25, 13, 21). 3.2.1. PC p (i = 26, 12, 22, 15, 5, For the south inlet and north outlet case, fsn:i 17, 19, 11, 23) can be defined as p t fsn:26 ¼ f13
ð53Þ
p ¼ f8 fsn:19
p:t p:t qtin up:t sn:x þ usn:y þ usn:z
12
p:t p:t p:t qp:t in usn:x usn:y þ usn:z
12
ð60Þ
ð61Þ
14
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
p fsn:26 ¼ f12
p ¼ f9 fsn:22
p fsn:12 ¼
p ¼ fsn:15
p ¼ fsn:5
p:t
p:t p:t qin up:t sn:x usn:y þ usn:z
ð62Þ
12
p:t p:t p:t qp:t in ðuns:x uns:y þ uns:z Þ
ð63Þ
12
p:mi p:f p:f qp:mi in usn:z þ qin usn:z
6
þ
3
ð66Þ
p:mi p:f p:f qp:mi in usn:z þ qin usn:z
6 p:mi p:f p:f qp:mi in usn:z þ qin usn:z
6
þ
p fns:20 ¼ f7 þ
þ
p ¼ f11 þ fns:24
p ¼ f14 þ fns:25
p ¼ fns:6
p:t
p:t p:t qin up:t ns:x uns:y þ uns:z
ð69Þ
v fsn:22 ¼ f9
p ¼ fns:13
ð79Þ
12 :t :t :t qvin:t ðuvsn:x uvsn:y þ uvsn:z Þ
ð80Þ
12
ð67Þ
p:t p:t p:t qp:t in uns:x uns:y þ uns:z
fv
sn:12
ð70Þ ð71Þ
12 p:t p:t qin up:t ns:x þ uns:y þ uns:z
¼
ð68Þ
:t :t :t qinv :t ðuvsn:x uvsn:y þ uvsn:z Þ
ð81Þ
12
v :f v :f :mi mi qvsn:in uz þ qsn:in uz
:mi qvsn:in
:f qvsn:in
!
þ v :f qsn:in 3 f1 f2 f7 þ f8 f9 f10 2f 13 2 :mw v :mw þ uv :mw þ 3qv :e uv :e þ uv :e 3qvsn:in usn:y sn:z sn:y sn:z sn:in þ 4 6
:mi qvsn:in 3
ð82Þ
ð72Þ
12
p:mw p:e p:e p:f p:f 3qp:mw uns:y þ up:mw þ 3qp:e qp:mi up:mi ns:z ns:z þ qin uns:z in in uns:y þ uns:z f1 þ f2 f7 f8 þ f9 þ f10 þ 2f 11 þ 2f 5 in 4 6
ð73Þ
e:mw p:mw p:f p:f e:mw 2f 15 þ 2f 10 f3 þ f4 f7 þ f8 f9 þ f10 þ 3qp:mw ðup:mw uns:x þ ue:mw qp:mi up:mi ns:x þ uns:z Þ þ 3qin ns:z þ qin uns:z ns:z in in 6 4
ð74Þ
p:t p:m p:m p:mi p:mi p:f p:f qp:t in uns:z þ qin uns:z qin uns:z qin uns:z 11f 5 f0 f4 f3 f1 f2
p ¼ fns:16
ð65Þ
:t :t :t qvin ðuvsn:x uvsn:y þ uvsn:z Þ
v fsn:23 ¼ f12
12
p:t
v ¼ f8 fsn:19
12 p:t
ð64Þ
p:mw p:e p:e mi þ 3qp:e 4f 14 þ 4f 6 f1mi þ f2mi f7mi f8mi þ f9mi þ f10 þ 3qp:mw usn:y þ up:mw sn:z in in usn:y þ usn:z 4
p:t p:t qin up:t ns:x uns:y þ uns:z
p ¼ f10 þ fns:21
p ¼ fns:18
ð78Þ
12
p:mw p:e p:e p:e 4f 16 þ 4f 11 f3 þ f4 f7 þ f8 f9 þ f10 þ 3qp:mw ðup:mw sn:x þ usn:z Þ þ 3qin ðusn:x þ usn:z Þ in 4
p For the north inlet and south outlet case, fns:i (i = 20, 14, 24, 18, 6, 16, 25, 13, 21) can be defined as
p fns:14 ¼
:t :t :t qinv :t ðuvsn:x þ uvsn:y þ uvsn:z Þ
p:mw p:mw p:e p:e p:e mi 4f 18 þ 4f 10 þ f3mi f4mi þ f7mi f8mi þ f9mi f10 þ 3qmw in ðusn:x þ usn:z Þ þ 3qin ðusn:x þ usn:z Þ 4
p:e 3qp:e up:e sn:y þ usn:z þ in 4
p fsn:11 ¼
v fsn:26 ¼ f13
p:mw p:e p:e p:e p:f p:f 3qp:mw ðup:mw qp:mi up:mi sn:y þ usn:z Þ þ 3qin ðusn:y þ usn:z Þ f8 þ 4f 13 þ 3f 7 f1 þ f2 þ f9 þ f10 sn:z þ qin usn:z in þ in 4 6
p:mi p:e p:e p:m p:m qp:mi in usn:z þ qin usn:z þ qin usn:z þ 7f 6 f0 f4 f3 f2 f1
p fsn:17 ¼
3.2.2. VC v (i = 26, 12, 22, 15, 5, For the south inlet and north outlet case, fsn:i 17, 19, 11, 23) are defined as
3 p:mw p:e p:e p:e p:f p:f 2f 17 þ 2f 12 þ f3 f4 þ f7 f8 þ f9 f10 3qp:mw ðup:mw qp:mi up:mi ns:x þ uns:z Þ 3qin ðuns:x þ uns:z Þ sn:z þ qin usn:z in in 4 6
p:mw p:e p:e p:f p:f 3qp:e 4f 12 þ 5f 8 þ f1 f2 þ f7 f9 f10 3qp:mw uns:y þ up:mw qp:mi up:mi ns:z ns:z þ qin uns:z in in uns:y þ uns:z in 4 6
ð75Þ
ð76Þ
ð77Þ
15
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
v fsn:15 ¼
v ¼ fsn:5
:f :mi mi qvsn:in uz þ qvsn:in ufz
:f :mi qvsn:in qvsn:in þ :mi :f 2ðqvsn:in 3Þ 2ðqvsn:in 3Þ
þ
!
6 f3 f4 þ f7 f8 þ f9 þ f10 þ 2f 18 2 v :mw v :e :mw :mw :e :e 3qvsn:in usn:x þ uvsn:z usn:x þ uvsn:z þ 3qvsn:in þ 4
v ¼ fns:18
:f :mi v :mi qvns:in uz þ qvns:in uvz :f
! f7 2f 15 2f 10 f3 f4 þ f8 þ f9 f10 2 ns:in ns:in v :e v :mw v :mw v :mw v :e v :e 3q ðu þ uns:x Þ þ 3qns:in uns:z þ uns:x þ ns:in ns:z ð92Þ 4
ð83Þ
:f :mi v :mi :t :m qvsn:in uz þ qvsn:in uvz :f qvin:t uvsn:z þ qvin:m uvsn:z þ 11f 6 þ f0 þ f4 þ f3 þ f2 þ f1
6
v ¼ fns:6
3
qv :f
:mi qvns:in
ns:in þ qv :mi 3 qv :f 3
:f :mi v :mi :t m:t f0 þ f4 þ f3 þ f1 þ f2 7f 5 qvns:in uz qvns:in uvz :f qvin:t uvns:z qm:t in uns:z 3
ð93Þ
ð84Þ :f :mi v :mi qvsn:in uz þ qvsn:in uvz :f
:mi qvsn:in
:f qvsn:in
!
fv
¼
v fsn:11
f3 f4 þ f7 f8 þ f9 f10 2f 16 2f 11 2 v :mw v :e v :mw v :mw :e v :e 3qsn:in usn:x þ usn:z þ 3qvsn:in usn:x þ usn:z þ 4 ! :f :f :mi v :mi :mi qvsn:in uz þ qvsn:in uvz :f qvsn:in qvsn:in :f ¼ :mi 6 qvsn:in 3 qvsn:in 3 f1 f2 þ f7 þ f8 f9 f10 2f 14 2f 6 2 :mw :mw :mw :e :e :e 3qvsn;in uvsn:y þ uvsn:z uvsn:y þ uvsn:z þ 3qvsn;in þ 4
sn:17
6
þ
v fns:16 ¼
:mi :f qvsn:in 3 qvsn:in 3
ð85Þ
ns:20
¼ f7 þ
v :t uv :t þ uv :t qvin:t uns:x ns:y ns:z
ns:21
¼ f10 þ
:t :t :t qvin:t uvns:x uvns:y þ uvns:z
ns:24
¼ f11 þ
qvin:t utns:x utns:y þ utns:z
v fns:14 ¼
ð88Þ ð89Þ
12
v fns:25 ¼ f14 þ
ð87Þ
12
fv
qvin:t utns:x þ utns:y þ utns:z
¼ fwe:11
p:mi p;f p:f qp:mi in uwe:x þ qin uwe:x
p ¼ fwe:8
p ¼ fwe:1
6
þ
6 :mw :mw :mw :e v :e uv :e 3qvns:in uvns:z uvns:y uns:z þ 3qvns:in ns:y 4
þ
ð95Þ
As shown in Fig. 1c, when the extended fluid flow direction is from west to east, after streaming, the unknown distribution functions are fwe:i (i = 23, 11, 19, 8, 1, 7, 25, 13, 21), on the contrary, the unknown distribution functions are few:i (i = 22, 12, 26, 10, 2, 9, 20, 14, 24). 3.3.1. PC p (i = 23, 11, 19, 8, 1, 7, For the west inlet and east outlet case, fwe:i 25, 13, 21) as defined as
qv :f
:mi qvns:in
!
p ¼ f10 þ fwe:21
p ¼ f14 þ fwe:25
ð91Þ
p ¼ f8 þ fwe:19
p:t p:t p:t qp:t in uwe:x þ uwe:y uwe:z
p:t p:t p:t qp:t in uwe:x uwe:y uwe:z
3
ð96Þ ð97Þ
12
p:t p:t p:t qp:t in uwe:x uwe:y þ uwe:z
12
p:t p:t p:t qp:t in uwe:x uwe:y uwe:z
ð98Þ
12
p:mw p:e p:e p:e 4f 9 þ 5f 4 f3 f15 f16 þ f17 þ f18 þ 3qp:mw ðup:mw we:x þ uwe:z Þ þ 3qin ðuwe:x þ uwe:z Þ in 4
p:mi p:f p:f p:t p:t p:m p:m qp:mi in uwe:x þ qin uwe:x þ qin uwe:x þ qin uwe:x f0 f4 f3 f5 f6 þ 7f 2
12
p:mw p:e p:e þ 3qp:e 4f 14 þ 3f 6 þ f5 þ f15 f16 þ f17 f18 þ 3qp:mw uwe:x þ up:mw we:y in in uwe:x þ uwe:y þ 4
p:mi p:f p:f qp:mi in uwe:x þ qin uwe:x
6
v :f v :f :mi v :mi qvns:in uz þ qns:in uz
ð90Þ
þ v :f ns:in :mi 6 qvns:in 3 qns:in 3 f7 2f 11 2f 5 þ f1 f2 þ f8 f9 f10 2 v :mw v :mw v :mw :e :e :e 3qns:in uns:y þ uns:z þ 3qvns:in uvns:y þ uvns:z þ 4
f1 f2 þ f7 þ f8 f9 f10 þ 2f 12 þ 2f 8 2
p fwe:23 ¼ f12 þ
12
:f :mi v :mi qvns:in uz þ qvns:in uvz :f
:f qvns:in
:mi qvns:in
3.3. West-east flow
12
fv
ð94Þ
þ :f :mi qvns:in 3 qvns:in 3
v (i = 20, 14, 24, 18, 6, 16, For the north inlet and south outlet case, fns:i 25, 13, 21) are defined as
fv
þ :f ns:in :mi qvns:in 3 qvns:in 3 2f 17 þ 2f 12 þ f3 f4 þ f7 f8 þ f9 f10 2 v :f v :f :mi v :mi qvns:in uz þ qns:in uz 6 v :e :mw :e :e 3qv :mw uv :mw þ uvns:z uns:x þ uvns:z þ 3qvns:in þ ns:in ns:x 4 !
v ¼ fns:13
ð86Þ
qv :f
:mi qvns:in
!
ð99Þ
ð100Þ
ð101Þ
ð102Þ
16
p fwe:7
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
¼
p fwe:13
p:mi p:f p:f qp:mi in uwe:x þ qin uwe:x
6
¼
p:mw p:e p:e þ 3qp:e 4f 10 þ 4f 8 þ f3 f4 þ f15 þ f16 f17 f18 þ 3qp:mw uwe:x up:mw we:y in in uwe:x uwe:y þ 4
ð103Þ
p:mw p:e 4f 12 þ 4f 8 þ f5 f6 þ f15 f16 þ f17 f18 þ 3qmw uwe:x up:mw þ 3qein up:e we:y we:x uwe:y in : 4
ð104Þ
p:mi p:f p:f qp:mi in uwe:x þ qin uwe:x
6
p For the east inlet and west outlet case, few:i (i = 22, 12, 26, 10, 2, 9, 20, 14, 24) are defined as,
p few:22
¼
f9p:t
p ¼ f11 þ few:24
p few:20
p few:26
p:t in
q
p:t
qin
up:t ew:x
up:t ew:x
up:t ew:y
12
up:t ew:y
þ 12
up:t ew:z up:t ew:z
¼ f7 þ
p:t p:t p:t qp:t in uew:x þ uew:y uew:z
¼ f13
p few:12 ¼
p ¼ few:2
þ
p:mi p:f p:f qp:mi in uew:x þ qin uew:x
6
ð106Þ
ð119Þ ð107Þ
v fwe:23 ¼ f12 þ
þ
3
ð120Þ ð108Þ
ð109Þ
p:mw p:e p:e p:e 4f 7 þ 4f 1 f3 þ f4 f15 f16 þ f17 þ f18 3qp:mw ðup:mw ew:x uew:z Þ 3qin ðuew:x uew:z Þ in 4
6
p:mi p:f p:f qp:mi in uew:x þ qin uew:x
6
ð110Þ
¼ f14 þ
v ¼ f10 þ fwe:21
:t :t v :t þ uv :t qvwe:in uvwe:x uwe:y we:z 12
v fwe:19 ¼ f8 þ
:t :t v :t uv :t qvwe:in uvwe:x uwe:y we:z
we:in
þ þ
ð115Þ
ð116Þ
ew:in þ 3 qv :f 3
ew:in f15 f10 f2 þ f3 f4 þ f16 f17 f18 2 :f :f :mi v :mi qvew:in uew:x þ qvew:in uvew:x
6 v :mw :mw :mw v :e uv :e uv :e þ 3qwe:in 3qvwe:in uwe:x uvwe:z we:x we:z þ 4 !
ð117Þ
þ :mi qvew:in 3 qv :f
ew:in
! f14 þ f5 þ f6 þ f15 f16 þ f17 f18 2 3
:mi qvew:in ew:in :f :mi v :mi qvew:in ux þ qvew:in uvx :f
3
f3 þ 2f 12 þ 2f 8 f4 þ f15 þ f16 f17 f18 2 þ
6
:mw :mw :mw :e v :e uv :e qvwe:in uvwe:x uvwe:z uwe:x þ qvwe:in we:z
4
For the east inlet and west outlet case, f v
ew:i
6 :mw :mw :mw v :e uv :e þ uv :e 3qvwe:in uvwe:x þ uvwe:y þ 3qwe:in we:x we:y 4
14, 24) are defined as,
ð118Þ
:f :mi v :mi qvew:in ux þ qvew:in uvx :f
þ
ð121Þ
:f qvew:in
:mi qvew:in
v ¼ few:13
v :f qew:in
þ 3 qv :f
:mi qvew:in
ð113Þ
!
qv :f
:mi qvew:in
v ¼ few:7
þ
12
:mi qvew:in
¼
:t :t v :t uvwe:x uvwe:y uwe:z
ð114Þ
12
qv :t
ð112Þ
p:mw p:e p:e f3 þ f4 f15 f16 þ f17 þ f18 3qp:mw uew:x þ up:mw 3qp:e ew:y in in uew:x þ uew:y 4
12
ð111Þ
p:mw p:e p:e p:e f3 þ f4 f15 f16 þ f17 þ f18 þ 3qp:mw ðup:mw ew:x þ uew:z Þ þ 3qin ðuew:x þ uew:z Þ in 4
:t :t v :t uv :t qvwe:in uvwe:x þ uwe:y we:z
ew:11
:f :mi v :mi :t :m :m :m qvew:in ux þ qvew:in uvx :f þ qvwe:in uvwe:x þ qvwe:in uvwe:x þ 11f 2 þ f0 þ f4 þ f3 þ f5 þ f6
3.3.2. VC v (i = 23, 11, 19, 8, 1, 7, For the west inlet and east outlet case, fwe:i 25, 13, 21), are defined as
fv
v ¼ few:1
p:mw p:e þ 3qein up:e 4f 13 þ 4f 7 þ f5 f6 þ f15 f16 þ f17 f18 þ 3qmw uew:x up:mw ew:y ew:x uew:y in 4
p:mi p:f p:f qp:mi in uew:x þ qin uew:x
p ¼ f11 þ f5 few:14
we:25
6 v :mw v :e :mw :mw :e :e 3qvse:in uwe:x þ uvwe:z uwe:x þ uvwe:z þ 3qvse:in þ 4
p:mi p:f p:f p:t p:t p:m 9f 1 þ f0 þ f4 þ f3 þ f5 þ f6 qp:mi in uew:x qin uew:x qin uew:x qin 3
p ¼ f8 þ f3 few:9
fv
ew:in
! 2f 9 f3 f4 f15 f16 þ f17 þ f18 2
:f :mi v :mi qvew:in ux þ qvew:in uvx :f
þ
12
6
p: ¼ few:10
ð105Þ
ew:in þ 3 qv :f 3
p:t p:t p:t qp:t in uew:x uew:y þ uew:z
p:mi p:f p:f qp:mi in uew:x þ qin uew:x
:mi qvew:in
12
qv :f
:mi qvew:in
v :mi ¼ few:8
v few:26 ¼ f13
:t v :t uv :t þ uv :t qvew:in uew:x ew:y ew:z
12
ð122Þ
(i = 22, 12, 26, 10, 2, 9, 20,
ð123Þ
17
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
v few:22 ¼ f9
:t :t :t v :t qvew:in uvew:x uvew:y uew:z
v ¼ f11 þ few:24
:t :t :t :t qvew:in uvew:x þ uvew:y uvew:z
fv
ew:12
:t :t :t :t qvew:in uvew:x þ uvew:y uvew:z
v ¼ few:2
Fig. 2. Flow driven pore-crack network model.
q
v :e v :e ew:in uew:x uew:y
ew:14
ð127Þ
1
6
:mw :mw :e :e þ 3qvin:e uvew:x 3qvin:mw uvew:x uvew:z uvew:z
4
v :f
qwe:in we:in v :mi 3 þ v :f qwe:in qwe:in 3
Z
þ1
1
Z
> > :
ð128Þ
!
2f 8 þ f3 þ f4 f15 f16 þ f17 þ f18 2
:f :mi v :mi qvwe:in ux þ qvwe:in uvx :f
> :
þ1
1
4
As shown in Fig. 2, one typical extended 3D flow driven porecrack networks model for various porosity composites is constructed through digitized technology by using the slices which were scan from the high resolution X-ray CT facility, which domain size is 50 50 100 mm3(1434 1434 840lu3). 4.1. HIE-LBM equations for the flow driven pore-crack network problem Using the boundary conditions in Eqs. (25)–(130), and the main-part method given in the Refs. [30,36], the flow driven pore-crack network problem in various composites can be translate in to a series HHIE-LBM equations, which the unknown functions is extended discontinue displacement ratio functions. After the complicated mathematical derivation, the closed form formulation of the HHIE-LBM can be expressed as
1 3 9 6 6 P P > 3 2 2 2 2 ~ ~_ 7 ðf > _ b ðfi!0:26 Þ þ 3r 4 r ;a k33 s2i t 1i u r ðc D s ðd q t Þ u Þ Þ þ ðdab 3r ;a r ;b Þ 3r ;a r ;b 0 i!0:26 a b i 44 0 i B C 7 = 0 i¼1 i¼1 B CdS7ds ds ¼ p_ a @ A 5 > Sþ > ~ ; ~_ b ðfi!0:26 Þ _ b ðfi!0:26 Þ þ K ab u þ r 7 K ab1 þ r 5 K ab2 þ r 3 K ab3 u
2 Z 6 6 4
0
2 0 1 3 9 6 6 P 6 6 P P P > Þ Þ ! 2 1 Z 2 3 m t~ 4 2 # m~ = _ _ ~ u u r r A t q ðf þ r q t ðf þ 3r k r v k q ðf Þ u ;a 3 a ;a 6 i!0:26 C i i i a i!0:26 i i n i!0:26 i i i 6 B 7 n¼3 i¼1 i¼1 i¼1 4 @ AdS5ds ds0 ¼ p_ m þ > ~ R S ; ~_ J ðfi!0:26 Þ _ J ðfi!0:26 Þ þ Sþ K mJ u þ r 7 K mJ1 þ r 5 K mJ2 þ r 3 K mJ3 u
0 1 3 9 6 6 P P > ! ! 2 # 2~ 2 4 6~ > _ u u r ðd 3r r Þ A k t ðf Þ þ 3r k r A v k k q ðf Þ Z ab ;a ;b 3 a ;a i 3b i b i!0:26 i i i 33 i 7 i!0:26 C = 7 > B þ1 6 i¼1 i¼1 6 B C 7 dS7ds ds0 ¼ p_ 7 6 B 6 C 6 > 1 4 Sþ @ P 7 A 5 > ~ Þ P > > ~_ J ðfi!0:26 Þ > > _ J ðfi!0:26 þ K 6J u r K 6J1 þ r 5 K 6J2 þ r 3 K 6J3 u þ ; :
8 > > > þ1 > > > < f ðj2 Þ f ðji Þ ¼ > f > ðj3 Þ > : f ðj4 Þ
ji ¼
for nano case
0 6 j1 6 0:001
for micro case
0:001 6 j2 6 0:01
for meso case
0:01 6 j2 6 0:1
for macro case 0:1 6 j2 6 1
ui /i qc2s ðs 0:5ÞDtL2 pðWin Wout Þr2
½K17 ¼ ½ K 1
K2
ð140Þ
K3
K4
Fig. 5a. Velocity in x direction as function of time steps.
ð141Þ K5
K6
K7
ð142Þ
More information about the coefficient matrix [A]7 can be found in reference [43]. The relationship between the SED criterion that can be applied to fatigue and the Richter magnitude scale in earthquake can be further extended by using the extended volume energy density theory [40–42,44,45]. Note that the SED criterion can simultaneously account for the onset of stable fracture initiation and unstable crack propagation, in addition to fatigue. Moreover, Eq. (139) will always be positive definite while other criteria such as energy release rate and the path independent integral may yield negative results. 5. Numerical solution and discussion Fig. 5b. Velocity in y direction as function of time steps.
The detailed description about pressure and velocity condition on the flow driven pore-crack networks model is shown in Fig. 3, the initial pressure is added to the top (inlet) and bottom (outlet), the initial velocity in z direction is 0.0005785. The pressure and velocity parameters, which are added on the simulate model at the initial time, are shown in the Table 2. 5.1. Compliance of boundary condition and convergence of numerical solution From Fig. 4, we can see that the velocity in x, y and z direction at 30,000 time steps possess a stable value in the domain size, which present the numerical method for multiple 3D flow driven porecrack networks is stable and convincing. Fig. 5 shows the velocity and density (pressure) as function of time step in the core domain, it is shown that the value of velocity and density increase with time step increasing, and increasing gradient is decrease with time step increasing, when time step is
Fig. 5c. Velocity in z direction as function of time steps.
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
21
Fig. 6c. U3 radiation distributions as function of x in oyz plane.
Fig. 5d. Density as function of time steps.
Table 3 Memory calculation and CPU time. Lx (pix)
Ly (pix)
Lz (pix)
Number frame
Frame rate
CPU
CPU time (s)
Memory used (GB)
CPU load
1434 1434
1434 1434
840 840
10 15
3000 3000
84 84
3181 8470
102.26 102.26
0.9 0.9
fluid velocity in x, y and z direction are 0, 0 and 0.0025 cm/s, respectively. The time steps is 80,000, the inlet is minus z direction, the fluid velocities is Ui(x,y,z,t), and the radiation distribution for pressure condition in the core area as a function of x, y and z are shown in Figs. 6–8. Figs. 9, 10 and 11 show that the variation of flow in x, y and z direction with the position on the core area, the numerical solution agrees well with the analytic solution. From the results of Figs. 6–11, we can obtain that the changing rule of velocity and flow as function of pressure, initial velocity conditions.
Fig. 7a. U2 radiation distributions as function of z in oxy plane.
Fig. 7b. U2 radiation distributions as function of y in oxz plane.
Fig. 6a. U3 radiation distributions as function of z in oxy plane.
Fig. 7c. U2 radiation distributions as function of x in oyz plane.
5.3. Compare with nuclear magnetic resonance method
Fig. 6b. U3 radiation distributions as function of y in oxz plane.
In order to further verify the correctness of our numerical method, we compare our numerical results with nuclear magnetic resonance results. A relationship between HHIE-LBM units and SI units is developed by using non-dimensional Reynolds number as a conversion parameters. Nuclear magnetic resonance method is based
22
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 8a. U1 radiation distributions as function of z in oxy plane.
Fig. 9c. q3 radiation distributions as function of y in oxz plane.
Fig. 10a. q2 radiation distributions as function of z in oxy plane. Fig. 8b. U1 radiation distributions as function of x in oyz plane.
Fig. 10b. q2 radiation distributions as function of x in oyz plane. Fig. 8c. U1 radiation distributions as function of y in oxz plane.
Fig. 9a. q3 radiation distributions as function of z in oxy plane. Fig. 10c. q2 radiation distributions as function of y in oxz plane.
Fig. 9b. q3 radiation distributions as function of x in oyz plane.
Fig. 11a. q1 radiation distributions as function of z in xoy plane.
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 11b. q1 radiation distributions as function of x in oyz plane.
23
Fig. 11c. q1 radiation distributions as function of y in oxz plane.
Fig. 12. Lattice Boltzmann model (Lx = 100, Ly = 100, Lz = 300).
Fig. 13. Nuclear magnetic model (Lx = 100, Ly = 100, Lz = 107).
on real measurements, this relationship allow us to compare velocity magnitude and direction results with those that can occur under real fields conditions for two cases (low case and high case) under compressible and incompressible assumption, respectively.
Figs. 12 and 13 give the detailed domain size and geometric shapes of LBM model and NMR model, respectively. In order to ensure that the domain size and geometric shapes parameter are identical, we subtracted a new domain 100 100 107 (from 69
24
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 14. The contour of U3 as the function of z in xoy plane.
Fig. 15a. The vector of U3 as the function of z in oxy plane.
to 176 in z direction on oxy section) from the LBM model, the more detail information about the NMR model is listed in Appendix A. Fig. 14 presents the contour of velocity between the LBM and NMR model. Figs. 15, 16 and 17 present the vector of velocity between the LBM and NMR mode. From above results, we can obtain
that the vector of velocity in x, y and z direction through different numerical model (LBM and NMR) has the same result. Fig. 18 presents the direction of velocity in x, y and z direction between the LBM and NMR model for incompressible and compressible condition under differential initial pressure and velocity
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 15b. The contour of U3 as the function of x in oyz plane.
Fig. 15c. The contour of U3 as the function of y in oxz plane.
Fig. 16a. The vector of U2 as the function of z in oxy plane.
25
26
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 16b. The vector of U2 as the function of x in oyz plane.
Fig. 16c. The vector of U2 as the function of y in oxz plane.
Fig. 17a. The vector of U1 as the function of z in oxy plane.
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
27
Fig. 17b. The vector of U1 as the function of x in oyz plane.
Fig. 17c. The vector of U1 as the function of y in oxz plane.
value (case I refers to high initial condition and case II refers to low initial condition). Fig. 19 presents the magnitude of velocity in x, y and z direction between the LBM and NMR model for incompressible and compressible condition under differential initial pressure and velocity value. Fig. 20 presents the error analysis between incompressible and compressible condition under different initial pressure and velocity value (case I means high initial condition and case II means low initial condition). From Figs. 18 and 19, we can see that the vector of velocity in x, y and z direction through different numerical model (LBM and NMR) has the same result. It is shown in Fig. 20, when we use incompressible distribution function to simulate the fluid flow driven pore-crack problem for porosity composites, the error is less than ±1.0E-3, the HHIE-LBM numerical method is proved correctness and reliability. 5.3.1. Intrinsic permeability and reynolds Based on the Darcy’s law, the intrinsic permeability in LBM model and physical model can be defined as following
qi qc2s ðs 0:5ÞDtL ui /i qc2s ðs 0:5ÞDtL ¼ DW pðWin Wout Þr2 2 ui /i qc2s ðs 0:5ÞDtL Lphysical physical ¼ pðWin Wout Þr2 LLBM
ji ¼ ji
ð143Þ
The more detailed description is listed in the Appendix A. Take the parameters in Table 4 into Eq. (143), we can obtain the value intrinsic permeability in the core model. Figs. 21 and 22 show the LBM and physical and intrinsic permeability as function of x, y and z coordinate, respectively.
5.4. Extended stress intensity and special area The numerical results in Fig. 23 shows that extended dimensionless extended stress intensity factors varying with x, y and z in the core area, which provided the most dangers position in the whole core area. When the extended stress intensity factor reach the criterion value the area will reach the destroy limit, the porecrack networks propagation begins. The relatively specific danger areas are shown in the Fig. 24.
28
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 18a. The vector of U1 as the function of x in oyz plane for case I.
Fig. 18b. The vector of Ui as the function of x in oyz plane for case II.
The relationship between the DSIFs and various porosity in Figs. 23 and 24 can be obtained. The danger area located at the lowest various porosity areas, when the porosity is fixed, with the extended initial pressure and velocity increasing, the extended pore-crack stresses increase and reach the maximum; when the ex-
tended initial pressure and velocity are fixed, with the porosity decreasing, the extended pore-crack stresses increase and reach the maximum when porosity is 0.45. The results can help explain the experience results of fluid flow varying mechanism on coseismal slip in references [1,2].
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
29
Fig. 19a. The contour of Ui as the function of x in oyz plane for case I.
Fig. 19b. The contour of Ui as the function of x in oyz plane for case II.
6. Concluding remarks and future work In the present article, a 3D fluid flow driven pore-crack network propagation mechanism in various porosity composites under fully coupled hybrid electronic–ionic, thermal, magnetic, electric and force fields is investigated by the hybrid hypersingular integral equation-Lattice Boltzmann method (HHIE-LBM). This method has been proposed here for the first time, and the following conclusions can be drawn from our results.
The extended hybrid multiple coupled D3Q27 lattice cubic is created and the extended hybrid electronic–ionic, thermal, electromagnetic (weak and strong coupled cases) and force couple fields pressure and velocity boundary conditions for the HHIE-LBM are established. The HHIE-LBM is proposed by the authors, and based on the method; the extended 3D flow driven pore-crack networks problem in various porosity composites is translated into a set of coupled HHIE-LBM equations, in which the unknown functions are the extended displacement ratio discontinuities.
30
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 20. The error analysis of the LBM model for cases I and II.
Table 4 Parameters for intrinsic permeability. cs
s
Dt
L
q
win
wout
r
Lphysical
LLBM
pffiffiffi 1= 3
1
1s
300lu
1mu/lu3
0.2570 mulu1 s2
0.4097 mulu1 s2
90.5 lu
230 mm
280lu
Fig. 21a. Intrinsic permeability in x direction.
Fig. 21b. Intrinsic permeability in y direction.
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 21c. Intrinsic permeability in z direction.
Fig. 22b. Intrinsic physical permeability in y direction.
Fig. 22a. Intrinsic physical permeability in x direction.
Fig. 22c. Intrinsic physical permeability in z direction.
Fig. 23a. Dimensionless model III SIFs radiation distributions.
31
32
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 23b. Dimensionless model I SIFs radiation distributions.
Fig. 23c. Dimensionless model II SIFs radiation distributions.
Fig. 23d. Dimensionless electric SIFs radiation distributions.
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 23e. Dimensionless magnetic SIFs radiation distributions.
Fig. 23f. Dimensionless thermal SIFs radiation distributions.
Fig. 24a. Critical areas according to model III SIFs.
Fig. 24b. Critical area according to model II SIFs.
33
34
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
Fig. 24c. Critical area according to magnetic SIFs.
Fig. 24f. Critical areas according to thermal SIFs.
Fig. 24d. Critical area according to electric SIFs.
Last, the extended volume energy density function for determining the combine effect of the EDSIFs is derived, and it can be used to describe the pore-crack network propagation mechanism in various porosity composites (different crack scale) under multiple coupled fields (strong and weak case); it establish the relationship between the fatigue criterion in facture theory and the Richter magnitude scale in geophysics theory, which can be utilized to help understand the extended fluid flow mechanism in various porosity composites and analyze the extended fluid flow varying mechanism on coseismal slip. The future work will focus on using the extended volume energy density function to analyze the facture mechanism of the 3D flow driven pore-crack network problem in various porous composites. This can provide a combined evaluation of the different effects that can influence potential fracture of the system. In particular, the SED criterion can be used to analyze the Three Gorges Dam problem. It can be further explored to compare the results with other fracture criteria connected with piezoelectric materials that have led to negative results [46–48].
Acknowledgements The authors would like to thank the editors for their help and thank the anonymous reviewer’s constructive comments, and this work was supported by a grant from the National Natural Science Foundation of China (No. D0408/409740594) and by a grant from China Postdoctoral Science Foundation (No. 20080430073).
Appendix A A.1. BC for the electronic and ionic field A.1.1. Front-rear flow mi (i = 15,9,16,3,7) PC: For the front inlet and rear outlet case, ffr:i can be defined as,
Fig. 24e. Critical areas according to magnetic SIFs.
The EDSIFs are calculated by using parallel numerical method and the visualization results are calculated. The results are presented toward demonstrating the applicability of the proposed method. The relationship between the EDSIFs and differential porosity is discussed, and several rules have been found.
p:mi p:mi ffr:3 ¼ f4mi þ qp:mi fr:in ufr:y =3;
p:mi p:mi mi mi ffr:7 ¼ f10 þ qmi fr:in ufr:y =6 c fr:1 =4
p:mi p:mi p:mi ffr:9 ¼ f8mi þ qp:mi fr:in ufr:y =6 þ c fr:1 =4;
p:mi p:mi p:mi mi ffr:16 ¼ f17 þ qp:mi fr:in ufr:y =6 þ c fr:2 =4
p:mi p:mi p:mi mi ffr:15 ¼ f18 þ qfr:in ufr:y =6 cmi fr:2 =4
35
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
For the rear inlet and front outlet case, frfp:mi :i (i = 17,10,18,4,8) can be defined as p:mi p;mi mi frfp:mi :4 ¼ f3 qrf :in urf :y =3;
p:mi mi mi mi frfp:mi :10 ¼ f7 qrf :in urf :y =6 þ cfr:1 =4
p:mi p:mi mi mi frfp:mi :8 ¼ f9 qrf :in urf :y =6 cfr:1 =4;
p:mi p:mi mi mi frfp:mi :18 ¼ f15 qrf :in urf :y =6 þ c fr:2 =4
A.1.2. South-north flow PC: For the south inlet and (i = 5,11,12,15,17) can be defined as p:mi p:mi fsn:5 ¼ f6mi þ qp:mi sn:in usn:z =3;
north
outlet
case,
p:mi fsn:i
p:mi mi p:mi mi fsn:11 ¼ f14 þ qp:mi sn:in usn:z =6 c sn:1 =4
p:mi p:mi mi p:mi fsn:12 ¼ f13 þ qp:mi sn:in usn:z =6 c sn:1 =4; p:mi p:mi mi p:mi fsn:15 ¼ f18 þ qp:mi sn:in usn:z =6 þ c sn:2 =4
p:mi p:mi p:mi mi frfp:mi :17 ¼ f16 qrf :in urf :y =6 c fr:2 =4
p:mi p:mi mi p:mi fsn:17 ¼ f16 þ qp:mi sn:in usn:z =6 c sn:2 =4
where
p:mi For the north inlet and south outlet case, fns:i (i = 6,13,14,16,18) can be defined as
mi mi mi mi mi mi cmi fr:a ¼ ðf14 f1 þ f2 f11 þ f12 f13 Þd1a mi mi mi mi mi d2a þ f6 f5mi f11 f12 þ f13 þ f14
up:mi fr:y
p:mi p:mi fns:6 ¼ f5mi qp:mi ns:in uns:z =3;
mi mi mi mi ¼ 1 2ðf4mi þ f8mi þ f10 þ f17 þ f18 Þ þ f0mi þ f1mi þ f11 þ f5mi
p:m mi mi mi mi mi þ f12 þ f2 þ f14 þ f6 þ f13 =qfr:in
mi mi mi mi mi mi mi mi up:mi rf :z ¼ 1 þ 2ðf3 þ f7 þ f9 þ f15 þ f16 Þ þ f0 þ f1 þ f11
p:mi mi mi mi mi mi mi þ f5 þ f12 þ f2 þ f14 þ f6 þ f13 =qrf :in v :mi (i = 15,9,16,3,7), can VC: For the front inlet and rear outlet case, ffr:i
be defined as v :mi ¼ f mi þ ffr:3 4
:mi v :mi qvfr:in ufr:y
3
v :mi ¼ f mi þ ffr:7 10
:mi v :mi qvfr:in ufr:y
6
v :mi cmi qfr:in fr:1 :mi 2ðqvfr:in 3Þ
v :mi cmi qfr:in sn:1 v :mi 3Þ ; 6 2ðqfr:in v :mi v :mi v :mi mi v :mi ¼ f mi þ qfr:in ufr:y qfr:in cfr:2 ffr:15 18 v :mi 3Þ 6 2ðqfr:in v :mi ¼ f mi þ ffr:9 8
v :mi ¼ f mi þ ffr:16 17
:mi v :mi qvfr:in ufr:y
;
:mi v :mi qvfr:in ufr:y
6
v :mi qvrf:mi :in urf :y
3
6
p:mi p:mi mi p:mi ¼ f17 qmi fns:16 in usn:z =6 þ c sn:2 =4
where mi mi mi mi mi mi þ cp:mi sn a ¼ ðf1 f2 þ f7 þ f8 f9 f10 Þd1a mi ðf3mi f4mi þ f7mi f8mi þ f9mi f10 Þd2a
mi mi mi mi mi mi mi mi up:mi sn:z ¼ 1 2ðf6 þ f13 þ f14 þ f16 þ f18 Þ þ f0 þ f4 þ f3
mi þ f2mi þ f9mi þ f8mi þ f1mi þ f7mi =qp:mi þf10 sn:in mi mi mi mi mi mi mi mi mi up:mi ns:z ¼ 1 2ðf5 þ f11 þ f12 þ f15 þ f17 Þ þ f0 þ f4 þ f3 þ f8
p:mi mi mi mi mi mi þ f1 þ f7 þ f10 þ f2 þ f9 =qns:in
þ
v :mi ¼ f mi þ fsn:5 6
v :mi cmi qfr:in fr:2 v :mi 3Þ 2ðqfr:in
;
:mi ¼ f7mi frfv :10
qvin:mi uvrf:mi :y 6
þ
mi qvrf:mi :in c fr 1 2ðqvrf:mi :in 3Þ
v :mi qvrf:mi :in cfr:2 2ðqrfv :mi :in 3Þ
v :mi ¼ f mi þ fsn:17 16
v :mi ¼ f mi fns:6 5 v :mi ¼ f mi fns:13 12
v :mi ¼ f mi fns:18 15
v :mi ¼ uv :mi þ 2ðf mi þ f mi þ f mi þ f mi þ f mi Þ þ f mi þ f mi þ f mi þ f mi qfr:in fr:y 4 8 10 17 18 0 1 11 5
v :mi ¼ f mi fns:16 17
v :mi mi mi mi mi mi mi mi mi mi qrfv :mi :in ¼ ufr:y þ 2ðf3 þ f7 þ f9 þ f15 þ f16 Þ þ f0 þ f1 þ f11 þ f5
þ
mi f12
þ
f2mi
þ
mi f14
þ
f6mi
þ
mi f13
3 :mi mi qvsn:in uz
;
v :mi ¼ f mi þ fsn:11 14
v :mi umi qsn:in z
6
:mi mi qvsn:in csn 1 v :mi 2ðqsn:in 3Þ
:mi mi qvsn:in uz
6
:mi v :mi qvsn:in csn 2 v :mi 2ðqsn:in 3Þ
v :mi (i = 6,13,14,16,18) can For the north inlet and south outlet case, fns:i be defined as
where
mi mi mi þ f12 þ f2mi þ f14 þ f6mi þ f13
:mi mi qvsn:in uz
:mi v :mi qvsn:in csn 1 ; v :mi 6 2ðqsn:in 3Þ v :mi mi v :mi v :mi v :mi ¼ f mi þ qsn:in uz þ qsn:in csn 2 fsn:15 18 :mi 6 2ðqvsn:in 3Þ
v :mi ¼ f mi þ fsn:12 13
mi qrfv :mi :in cfr:1 :mi frfv :8 ¼ f9mi ; 6 2ðqrfv :mi :in 3Þ v :mi mi qvrf:mi qrfv :mi :in urf :y :in cfr:2 :mi mi ¼ f15 þ frfv :18 6 2ðqrfv :mi :in 3Þ
:mi mi ¼ f16 frfv :17
p:mi mi p:mi mi fns:18 ¼ f15 qp:mi ns:in uns:z =6 c sn:2 =4
v :mi (i = 5,11,12,15,17) VC: For the south inlet and north outlet case, fsn:i can be defined as
v :mi qvrf:mi :in urf :y
v :mi qvrf:mi :in urf :y
p:mi p:mi mi p:mi ¼ f12 qp:mi fns:13 ns:in uns:z =6 þ c sn:1 =4;
þ
For the rear inlet and front outlet case, frfv :i:mi (i = 17,10,18,4,8) can be defined as :mi frfv :4 ¼ f3mi
p:mi p:mi mi p:mi fns:14 ¼ f11 qp:mi ns:in uns:z =6 c sn:1 =4
:mi mi qvns:in uz
3 :mi mi qvns:in uz
6 :mi m qvns:in uz
6 :mi mi qvns:in uz
6
v :mi ¼ f mi ; fns:14 11
:mi mi qvns:in uz
þ
:mi v :mi qvns:in csn 1 v :mi 2ðqns:in 3Þ
:mi mi qvns:in csn 2 ; :mi 2ðqvns:in 3Þ
þ
:mi mi qvns:in cns 2 v :mi 2ðqns:in 3Þ
6
:mi v :mi qvns:in csn 1 ; v :mi 2ðqns:in 3Þ
where :mi mi mi mi mi mi mi mi mi mi qvsn:in ¼ umi z þ 2ðf6 þ f13 þ f14 þ f16 þ f18 Þ þ f0 þ f4 þ f3 þ f10
þ f2mi þ f9mi þ f8mi þ f1mi þ f7mi
36
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
:mi mi mi mi mi mi mi mi mi mi qvns:in ¼ umi z þ 2ðf5 þ f11 þ f12 þ f15 þ f17 Þ þ f0 þ f4 þ f3 þ f8
þ
f1mi
þ
f7mi
mi f10
þ
þ
f2mi
þ
where
f9mi
:mi mi mi mi mi mi mi mi mi qvew:in ¼ umi x þ 2ðf2 þ f9 þ f10 þ f12 þ f14 Þ þ f0 þ f4 þ f3
A.1.3. West-east flow p:mi (i = 1,7,8,11,13) PC: For the west inlet and east outlet case, fwe:i can be defined as p:mi fwe:1 ¼ f2mi þ
p:mi ¼ f9mi þ fwe:8 p:mi fwe:13
q
mi p:mi in uwe:x
3
q
p:mi mi ¼ f10 þ fwe:7
;
mi p:mi in uwe:x
q
mi p:mi in uwe:x
6
cmi we 1
mi þ þ f p:mi ¼ f14 6 4 we:11 qmi up:mi cmi we:x mi ¼ f12 þ in we 2 6 4
4
mi p:mi in uwe:x
q
6
þ
p:mi qmi in uew:x
p:mi few:9 ¼ f8mi
3
p:mi ¼ f7mi few:10
p:mi qmi in uew:x
þ
6
cmi we 4
p:mi qmi in uew:x
6
cmi we 4
4
a
1
p:mi qmi in uew:x
6
cmi we 4
2
v :mi (i = 1,7,8,11,13) can VC: For the west inlet and east outlet case, fwe:i be defined as
v :mi ¼ f mi þ few:8 9
3
v :mi ¼ f mi þ ; few:7 10
:mi mi qvew:in ux
6
v :mi ¼ f mi þ few:11 14
:mi mi qvew:in ux
6
:mi mi qvew:in ux
6
:mi mi qvew:in cwe 1 ; :mi 2ðqvew:in 3Þ
qv :mi cmwe 1 ; þ ew:in 2ðqv :mi 3Þ ew:in
6
:mi mi qvew:in cwe 1 :mi 2ðqvew:in 3Þ
:mi mi qvwe:in ux
6
:mi mi qvwe:in cwe 1 ; :mi 6 2ðqvwe:in 3Þ v :mi mi v :mi mi v :mi ¼ f mi qwe:in ux qwe:in cwe 2 fwe:14 11 :mi 6 2ðqvwe:in 3Þ
v :mi ¼ f mi fwe:12 13
:mi mi qvwe:in ux
6
þ
:mi mi qvwe:in cwe 2 :mi 2ðqvwe:in 3Þ
¼
þ
3
p:t ; ffr:7
¼
f8t
þ
p:t p:t p:t qp:t fr:in ufr:x þ ufr:y þ ufr:z
p:t p:t p:t qp:t fr:in ufr:x þ ufr:y ufr:z
:mi mi qvwe:in cwe 1 :mi 2ðqvwe:in 3Þ
f3t
12
;
12 v :mw 3qvrf:mw uvrf:mw :in :y þ urf :z 4
p:t p:t p:t qp:t fr:in ufr:x þ ufr:y þ ufr:z
;
12
p;t qp:t rf :in urf :y
3
frfp:t:10 ¼ f9t
;
frfp:t:8
¼
f7t
p:t p:t p:t qp:t rf :in urf :x þ urf :y þ urf :z
p:t p:t p:t qp:t rf :in urf :x þ urf :y urf :z
frfp:t:13
¼
t f14
;
12 p:t p:t p:t qp:t rf :in urf :x þ urf :y urf :z
t frfp:t:11 ¼ f12
12
12
p:t p:t p:t qp:t rf :in urf :x þ urf :y urf :z
;
12
where
3qp:t fr:in 2
p:mw ¼ f7mw þ ðf1t f2t Þ fsn:8
p:mw p:mw 3qp:mw sn;in usn:z usn:y 4
t t t þ f2t þ f6t þ f1t þ f0t þ f5t =qp:t ¼ 1 2 f4t þ f8t þ f10 þ f11 þ f13 fr:in
up:t rf :x ¼
v :mi mi v :mi mi v :mi ¼ f mi qwe:in ux ; f v :mi ¼ f mi qwe:in ux þ fwe:2 1 we:10 7
3
frfp:t:4
up:t fr:y
v :mi (i = 2, 9, 10, 12, 14) can For the east inlet and west outlet case, few:i be defined as,
v :mi ¼ f mi fwe:9 8
p:t qp:t fr:in ufr:y
p:t t ¼ f13 þ ffr:14
up:t fr:x ¼
qv :mi cmwe 2 þ ew:in :mi 2ðqvew:in 3Þ
v :mi mi v :mi ¼ f mi þ qew:in ux few:13 12
For the rear inlet and front outlet case, frfp:t:i (i = 4, 8, 10, 11, 13) can be defined as
mi mi ¼ 1 2 f1mi þ f7mi þ f8mi þ f11 þ f13 þ f0mi þ f4mi þ f3mi
mi mi mi mi mi mi mi þ f5 þ f17 þ f15 þ f18 þ f6 þ f16 =qin
:mi mi qvew:in ux
¼
f4t
:mw ¼ f9mw frfv :10
þ mi mi mi mi d1a ¼ f3mi þ f4mi f15 f16 þ f17 þ f18 mi mi mi mi mi mi f5 f6 þ f15 f16 þ f17 f18 d2a
v :mi ¼ f mi þ few:1 2
p:t ffr:3
p:t t ¼ f10 þ ffr:9
mi mi mi mi mi mi mi mi mi up:mi we:x ¼ 1 2 f2 þ f9 þ f10 þ f12 þ f14 þ f0 þ f4 þ f3 þ f5
mi mi mi mi mi m þ f17 þ f15 þ f18 þ f6 þ f16 =qin up:mi ew:x
mi mi mi mi þ f15 þ f18 þ f6mi þ f16 þ f5mi þ f17
A.2.1. Front-rear flow p:t (i = 3,7,9,12,14) PC: For the front inlet and rear outlet case, ffr:i can be defined as
;
where
cmi we
A.2. BC for the thermal field
cmi we 2
1
p:mw mw p:mi mi f6mw f7mw þ f8mw Þfew:14 ¼ f11 up:mw rf :z ¼ 2qrf :in ðf5
:mi mi mi mi mi mi mi mi mi qvwe:in ¼ umi x þ 2ðf1 þ f7 þ f8 þ f11 þ f13 Þ þ f0 þ f4 þ f3
cmi we 1
p:mi For the east inlet and west outlet case, few:i (i = 2,9,10,12,14) can be defined as,
p:mi few:2 ¼ f1mi
mi mi mi mi þ f15 þ f18 þ f6mi þ f16 þ f5mi þ f17
3qp:t rf :in 2
ðf2t f1t Þ; up:t rf :z ¼
6 t p:t p:t p:t f6 f5t qp:t rf :in urf :x þ qrf :in urf :y 5
t
p:t t t t t t t t t t up:t rf :y ¼ 1 2 f7 þ f9 þ f12 þ f14 þ f3 þ f2 þ f6 þ f1 þ f0 þ f5 =rf :in v :t (i = 3, 7, 9, 12, 14) can VC: For the front inlet and rear outlet case, ffr:i be defined as p:mw fns:6 ¼ f5mw þ
p:mw p:mw 3qp:mw ns;in uns:y þ uns:z
; 4 mw mw ¼ 2q þ f4 f1 þ f2mw ; qvin:t utfr:x þ utfr:y utfr:z v :t ¼ f t þ ffr:9 10 12 qvin:t utfr:x þ utfr:y utfr:z v :t ¼ f t þ ffr:12 11 12 up:mw sn:z
p:mw sn;in
f3mw
37
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
v :t ¼ f t þ ffr:14 13
qvin:t utfr:x þ utfr:y þ utfr:z
up:t sn:z
12
v :t (i = 17, 10, 18, 4, 8) can be For the rear inlet and front outlet case, ffr:i defined as :t frfv :4 ¼ f3t
qvin:t utrf :y 3
:t ¼ f9t frfv :10
:t ¼ f7t ; frfv :8
qinv :t utrf :x þ utrf :y þ utrf :z
qvin:t utrf :x þ utrf :y utrf :z
:t t frfv :11 ¼ f12
where
12
up:t ns:x ¼
6 t p:t p:t p:t ðf f4t þ qp:t ns:in usn:y qns:in usn:z Þ 5 3
t
p:t t t t t t t t t t up:t ns:z ¼ 1 2 f14 þ f7 þ f5 þ f10 þ f11 þ f1 þ f0 þ f2 þ f3 þ f4 =qns:in
; v :t (i = 5, 7, 10, 11, 14) VC: For the south inlet and north outlet case, fsn:i can be defined as
12
:t t frfv :13 ¼ f14
t
¼ 1 2 f12 þ f9t þ f6t þ f8t þ f3t þ f1t þ f6t þ f2t þ f3t þ f4t =qp:t sn:in
qvin:t utrf :x þ utrf :y utrf :z 12
qvin:t utrf :x þ utrf :y utrf :z
p:t fsn:5 ¼ f6t
p:t qp:t sn:in usn:z
3
;
p:t ¼ f8t fsn:7
q
p:t sn:in
t
6 f5t f6 qvrf:t:in utrf :y þ qvrf:t:in utrf :x
qvrf:t:in 6 t t :t v :t ut 6 f6 f5 qvfr:in utfr:x þ qfr:in fr:y utfr:z ¼ v :t qfr:in 6
p:t fsn:5 ¼ f6t
q
p:t p:t sn:in usn:z
3
p:t ¼ f9t ; fsn:10
p:t sn:in
q
ns:13
up:t sn:x
up:t sn:y
12
þ
up:t sn:z
:t qvns:in utns:x utns:y þ utns:z
t 3qp:t sn:in f2 f1t ; 2 t 3qp:t ns:in ¼ f1 f2t 2
þ
12
:t qvns:in utns:x utns:y þ utns:z
ns:12
¼
t f11
up:t ns:y
;
12 :t qvns:in utns:x utns:y þ utns:z
þ
12
where
t 3 f ft utsn:y ¼ v :t qsn:in 3 1 2
12
:t :t 6 f3t f4t qvns:in utns:y þ qvns:in utns:z v :t qns:in 6 :t :t 6 f3t f4t qvsn:in utsn:z þ qvsn:in utsn:y ¼ v :t 6 qsn:in
utns:x ¼ utsn:x
6 t p:t p:t p:t ðf f5t qp:t sn:in us:y þ qsn:in usn:z Þ; 5 6
;
A.2.3. West–east flow p:t (i = 1, 7, 9, 11, 13) PC: For the west inlet and east outlet case, fwe:i can be defined as
12
up:t sn:x ¼
12
f v :t
:t qvns:in utns:x þ utns:y þ utns:z
p:t fwe:1 ¼ f2t þ
p:t qp:t we:in uwe:x
3
where
up:t sn:y ¼
;
p:t p:t p:t qp:t ns:in uns:x uns:y þ uns:z
p:t p:t p:t qp:t ns:in uns:x uns:y þ uns:z
3
:t t qvsn:in ¼ utz þ 2 f12 þ f9t þ f6t þ f8t þ f3t þ f1t þ f6t þ f2t þ f3t þ f4t ;
p:t p:t qp:t up:t ns:x þ uns:y þ uns:z p:t t fns:13 ¼ f14 þ ns:in ; 12 p:t p:t qp:t up:t ns:x uns:y þ uns:z p:t fns:8 ¼ f7t þ ns:in 12 p:t t fns:12 ¼ f11 þ
:t qvns:in utns:z
t 3 utns:y ¼ v :t f ft qns:in 3 2 1
12
p:t t ¼ f10 þ ; fns:9
12
p:t p:t p:t qp:t sn:in ðusn:x usn:y þ usn:z Þ
3
:t t t t þ f1t þ f0t þ f2t þ f3t þ f4t ; qvns:in ¼ utz þ 2 f14 þ f7t þ f5t þ f10 þ f11
p:t For the north inlet and south outlet case, fns:i (i = 6, 8, 9, 12, 13) can be defined as
p:t fns:6 ¼ f5t þ
¼
t f14
v :t ¼ f t þ fns:8 7
p:t p:t q usn:x þ up:t sn:y þ usn:z p:t t ¼ f13 fsn:14 ; p:t 12p:t p:t p:t q usn:x usn:y þ usn:z p:t ¼ f8t sn:in fsn:7 12
p:t qp:t ns:in uns:z
v :t ¼ f t þ fns:6 5
f v :t
;
v :t (i = 6, 8, 9, 12, 13) can For the north inlet and south outlet case, fns:i be defined as
v :t ¼ f t þ fns:9 10
p:t sn:in
p:t t ¼ f12 fsn:11
;
A.2.2. South-north flow p:t (i = 5, 7, 10, 11, PC: For the south inlet and north outlet case, fsn:i 14) can be defined as
12 p:t up:t sn:y þ usn:z 12
p:t p:t p:t qp:t sn:in usn:x usn:y þ usn:z
p:t t ¼ f12 fsn:11
t t qrfv :t:in ¼ uty þ 2 f7t þ f9t þ f12 þ f14 þ f3t þ f2t þ f6t þ f1t þ f0t þ f5t ; t 3 utfr:x ¼ v :t f ft qfr:in 3 2 1 utrf :z ¼
up:t sn:x
t 3 ¼ v :t f ft qfr:in 3 1 2
12
p:t p:t p:t qp:t sn:in usn:x þ usn:y þ usn:z
v :t ¼ ut þ 2 f t þ f t þ f t þ f t þ f t þ f t þ f t þ f t þ f t þ f t ; qfr:in y 4 8 10 11 13 2 6 1 0 5
utrf :x
p:t p:t p:t qp:t sn:in usn:x usn:y þ usn:z
p:t t ¼ f13 fsn:14
12
p:t ¼ f9t ; fsn:10
p:t p:t p:t qp:t we:in uwe:x uwe:y þ uwe:z p:t we:in
q
up:t we:x
p:t p:t p:t qp:t we:in uwe:x uwe:y uwe:z
p:t t ¼ f14 þ fwe:13 p:t ¼ f8t þ fwe:7
p:t t ¼ f10 þ ; fwe:9
12 p:t up:t we:y uwe:z 12
12 ;
38
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
p:t fwe:11
¼
t f12
þ
p:t p:t p:t qp:t we:in uwe:x þ uwe:y uwe:z
12
p:t For the east inlet and west outlet case, few:i (i = 2, 8, 10, 12, 14) can be defined as,
p:t few:2 ¼ f1t
q
p:t few:10 ¼ f9t p:t few:14 p:t few:8
¼
¼
p:t few:12
t f13
f7t
¼
3
12
p:t p:t p:t qp:t ew:in uew:x uew:y þ uew:z
12
p:t p:t p:t qp:t ew:in uew:x þ uew:y uew:z
;
A.3.1. Front-rear flow (i = 2,3,10,12) PC: For the rear inlet and front outlet case, frfp:mw :i can be defined as
12
þ
p:t p:t p:t qp:t ew:in uew:x þ uew:y uew:z
:t uvew:y
A.3. BC for the strong coupled electromagnetic field
f4 f3 2 6 t v :t ut f f6t qvew:tv n:in utew:z qew:in ¼ ew:x ; 5 5 6 :t :t ¼ f6t f5t þ qvwe:in utwe:x qvwe:in utwe:z 5
uew:z ¼
:t uvwe:y
;
p:t p:t p:t qp:t ew:in uew:x uew:y uew:z
þ
t f11
p:t p:t ew:in uew:x
mw frfp:mw :12 ¼ f11
12
where
up:t we:x
t t ¼ 1 2 f7t þ f11 þ f1t þ f9t þ f13 þ f3t þ f0t þ f4t þ f5t þ f6t =qp:t we:in ;
up:t ew:z
t 3qp:t ew:in ¼ f4 f3t 2
up:t ew:x
t 2ðf14
¼1
up:t we:z
t 3qp:t we:in ¼ f3 f4t 2
þ
t f10
þ
f2t
þ
t f12
þ
f8t Þ
þ
f3t
þ
f0t
þ
f4t
þ
f5t
þ
f6t
mw frfp:mw :10 ¼ f9 p:t ew:in ;
=q
3
v :t ¼ f t þ fwe:13 14 v :t ¼ f t þ fwe:7 8
f v :t
we:11
¼
t f12
v :t ¼ f t þ ; fwe:9 10
:t qvwe:in utwe:x utwe:y utwe:z
12
;
12 :t qvwe:in utwe:x þ utwe:y utwe:z
3
v :t ¼ f t ; few:10 9
v :t ¼ f t few:14 13 v :t ¼ f t þ few:8 7
ew:12
¼
t f11
þ
v :mw ¼ f mw þ ffr:4 3
;
v :mw ¼ f mw þ ffr:11 12
12
4 p:mw 3qp:mw up:mw rf :in rf :y urf :x
4
:mw :mw :mw 3qvfr:in uvfr:x þ uvfr:y 4 :mw :mw :mw 3qvfr:in uvfr:y þ uvfr:z
;
4 :mw :mw :mw 3qvfr:in uvfr:x þ uvfr:y 4 v :mw v :mw :mw 3qfr:in ufr:y uvfr:z
f3 f4
;
4
12
:t t t qvwe:in ¼ utwe:x þ 2ðf7t þ f11 þ f1t þ f9t þ f13 Þ þ f3t þ f0t þ f4t þ f5t þ f6t ; :t 3qvwe:in v :t t t
2
For the rear inlet and front outlet case, frfv :i:mw (i = 2, 3, 10, 12) can be defined as
where
uwe:z ¼
v :mw ¼ f mw þ ffr:1 2
:t qvew:in utew:x þ utew:y utew:z
:t qvew:in utew:x þ utew:y utew:z
p:mw 3qp:mw up:mw rf :in rf :y þ urf :z
mw mw mw þ f3mw þ f10 þ f12 Þ þ f8mw þ f5mw þ f0mw up:mw fr:y ¼ 1 2ðf2
p:mw mw mw þ f6 þ f7 =qfr:in
v :mw ¼ f mw þ ffr:9 10
12
12
f v :t
4
v :mw (i = 1, 4, 9, 11) can VC: For the front inlet and rear outlet case, ffr:i be defined as
:t qvew:in utew:x utew:y utew:z
:t qvew:in utew:x utew:y þ utew:z
;
mw up:mw ¼ 2qp:mw þ f6mw f7mw þ f8mw Þ; fr:x fr:in ðf5 mw ¼ 2qp:mw þ f6mw þ f7mw f8mw up:mw fr:z fr:in f5
12
:t qvew:in utew:x
þ
up:mw rf :y
mw mw þ f4mw þ f9mw þ f11 Þ þ f8mw þ f5mw þ f0mw up:mw rf :y ¼ 1 2ðf1
þ f6mw þ f7mw =qp:mw rf :in
v :t (i = 2, 8, 10, 12, 14) can be For the east inlet and west outlet case, few:i defined as,
v :t ¼ f t few:2 1
4 up:mw rf :x
p:mw mw up:mw f6mw þ f7mw f8mw ; rf :x ¼ 2qrf :in f5 p:mw mw f6mw f7mw þ f8mw up:mw rf :z ¼ 2qrf :in f5
12
:t qvwe:in utwe:x utwe:y þ utwe:z
:t qvwe:in ðutwe:x utwe:y utwe:z Þ
þ
where
v :t (i = 1, 7, 9, 11, 13) can VC: For the west inlet and east outlet case, fwe:i be defined as :t qvwe:in utwe:x
3q
p:mw rf :in
¼ f4mw frfp:mw :3
6 t p:t p:t p:t f f6t qp:t ew:in uew:z qew:in uew:x ; 5 5 6 p:t p:t p:t ¼ f6t f5t þ qp:t we:in uwe:x qwe:in uwe:z 5
v :t ¼ f t þ fwe:1 2
frfp:mw ¼ f1mw 2
p:mw 3qp:mw up:mw rf :in rf :y urf :z
up:t ew:y ¼ up:t we:y
:t t t t qvew:in ¼ utew:x þ 2ðf14 þ f10 þ f2t þ f12 þ f8t Þ þ f3t þ f0t þ f4t þ f5t þ f6t ; v :t 3qew:in t v :t t
frfv 2:mw ¼ f1mw :mw ¼ f4mw frfv :3
v :mw v :mw 3qvrf:mw :in ðurf :x þ urf :y Þ
; 4 v :mw 3qvrf:mw uvrf:mw :in :x þ urf :y 4
39
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
:mw frfv :10 ¼ f9mw
:mw mw ¼ f11 frfv :12
v :mw 3qvrf:mw uvrf:mw :in :y þ urf :z 4 v :mw 3qvrf:mw uvrf:mw :in :y urf :z
v :mw (i = 5, 8, 9, 12) can VC: For the south inlet and north outlet case, fsn:i be defined as
;
v :mw ¼ f mw þ fsn:5 6
4
v :mw ¼ f mw þ fsn:8 7
where :mw uvfr:x ¼ :mw uvfr:z ¼
2 v :mw 2 3qfr:in
f5mw þ f6mw f7mw þ f8mw ;
v :mw fsn:12
v :mw ¼ uv :mw þ 2ðf mw þ f mw þ f mw þ f mw Þ þ f mw þ f mw qfr:in fr:y 2 3 10 12 8 5
uvrf:mw :x ¼ uvrf:mw ¼ :z
2 3qrfv :mw :in 2
f5mw
þ
f7mw
f8mw
2
f5mw f6mw f7mw þ f8mw 3qrfv :mw :in 2
v :mw ¼ f mw fns:11 12
A.3.2. South–north flow p:mw (i = 5, 8, 9, 12) PC: For the south inlet and north outlet case, fsn:i can be defined as p:mw fsn:8
¼
f7mw
þ
p:mw mw ¼ f11 þ fsn:12
p:mw fsn:9
mw ¼ f10 þ
p:mw ¼ f6mw þ fsn:5
p:mw p:mw 3qp:mw sn;in usn:z usn:y 4 p:mw p:mw 3qp:mw sn;in ðusn:x þ usn:z Þ
p:mw fns:11
¼
mw f12
p:mw mw ¼ f10 þ fns:10 p:mw fns:6
¼
f5mw
þ
v :mw ¼ f mw þ fns:6 5
4 p:mw p:mw 3qp:mw sn;in usn:y þ usn:z
4 p:mw p:mw 3qp:mw ns;in ðuns:x þ uns:z Þ
3q
:mw uvns:x
¼ 2q
þ
mw 2 f f4mw þ f1mw f2mw ; :mw 3qvns:in 2 3 mw 2 ¼ f f4mw f1mw þ f2mw :mw 3qvns:in 2 3
;
f2mw
f4mw f1mw þ f2mw
p:mw p:mw 3qp:mw we:in ðuwe:x uwe:z Þ ; 4 p:mw p:mw p:mw 3q ðuwe:x þ uwe:z Þ ¼ f4mw þ we:in 4 p:mw 3qp:mw up:mw we:x uwe:y ¼ f8mw þ we:in ; 4 p:mw p:mw p:mw 3q uwe:x þ uwe:y ¼ f6mw þ we:in 4
p:mw fwe:1 ¼ f2mw þ
mw mw mw þ f6mw þ f10 þ f11 Þ þ f2mw þ f3mw þ f0mw up:mw sn:x ¼ 1 2ðf7
p:mw mw mw þ f4 þ f1 =qsn;in
up:mw ns:x ¼ 2q
mw 2 f3 þ f4mw f1mw þ f2mw ; :mw 3qvsn:in 2 mw 2 ¼ f3 þ f4mw þ f1mw f2mw :mw 3qvsn:in 2
A.3.3. West–east flow p:mw (i = 1,3,5,7) can PC: For the west inlet and east outlet case, fwe:i be defined as
p:mw fwe:7
f1mw
4
mw p:mw up:mw þ f4mw f1mw þ f2mw ; sn:z ¼ 2qsn;in f3 mw p:mw up:mw þ f4mw þ f1mw f2mw sn:x ¼ 2qsn;in f3
f4mw
:mw :mw :mw 3qvns:in uvns:y þ uvns:z
:mw :mw mw qvns:in ¼ uvns:x þ 2ðf8mw þ f12 þ f9mw þ f5mw Þ þ f2mw þ f3mw þ f0mw þ f4mw þ f1mw
;
p:mw fwe:3
:mw :mw 3qns:in uvns:x þ uvns:z ; 4
:mw uvns:z ¼
4
p:mw mw ns;in f3 p:mw mw ns;in f3
4 v :mw
;
where
up:mw ns:z
;
p:mw p:mw 3qp:mw ns;in ðuns:x þ uns:z Þ
4 p:mw uns:y þ up:mw ns:z
4
:mw :mw mw mw qvsn:in ¼ uvsn:x þ 2 f7mw þ f6mw þ f10 þ f11 þ f2mw þ f3mw þ f0mw þ f4mw þ f1mw
4
p:mw ns;in
:mw :mw :mw 3qvns:in uvns:x þ uvns:z
where
up:mw sn:x
4
p:mw p:mw 3qp:mw ns;in uns:z uns:y
:mw :mw :mw 3qvns:in uvns:y þ uvns:z
:mw uvsn:z ¼
;
p:mw For the north inlet and south outlet case, fns:i (i = 6, 7, 10, 11) can be defined as
p:mw fns:7 ¼ f8mw
v :mw ¼ f mw þ fns:10 10
4 p:mw p:mw 3qp:mw sn;in ðusn:z usn:x Þ
:mw :mw 3qsn:in uvsn:x þ uvsn:z ; 4 v :mw v :mw v :mw 3q u þ usn:z mw ¼ f11 þ sn:in sn:x 4
v :mw ¼ f mw fns:7 8
;
v :mw mw mw qvrf:mw þ f4mw þ f9mw þ f11 Þ þ f8mw þ f5mw þ f0mw þ f6mw þ f7mw :in ¼ urf :y þ 2ðf1
4 v :mw
v :mw (i = 6, 7, 10, 11) can For the north inlet and south outlet case, fns:i be defined as
f6mw
; 4 :mw :mw :mw 3qvsn:in uvsn:y þ uvsn:z
v :mw ¼ f mw þ fsn:9 10
mw 2 mw mw mw v :mw 2 f5 þ f6 þ f7 f8 3qfr:in
þ f0mw þ f6mw þ f7mw
:mw :mw :mw 3qvsn;in uvsn:y þ uvsn:z
;
mw mw þ f12 þ f9mw þ f5mw Þ þ f2mw þ f3mw up:mw ns:x ¼ 1 2ðf8
mw mw mw þ f0 þ f4 þ f1 =qp:mw ns;in
p:mw fwe:5
p:mw For the east inlet and west outlet case, few:i (i = 2, 4, 6, 8) can be defined as,
p:mw p:mw 3qp:mw ew:in ðuew:x uew:z Þ ; 4 p:mw p:mw p:mw ðuew:x þ uew:z Þ 3q ¼ f3mw þ ew:in 4
p:mw few:2 ¼ f1mw p:mw fwe:4
40
p:mw few:6 p:mw few:8
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
p:mw 3qp:mw up:mw ew:x þ uew:y ¼ f5mw ew:in ; 4 p:mw p:mw p:mw 3q uew:x uew:y ¼ f7mw þ ew:in 4
:mw :mw mw mw mw qvwe:in ¼ uvwe:x þ 2ðf2mw þ f4mw þ f6mw þ f8mw Þ þ f9mw þ f12 þ f0mw þ f11 þ f10
p:mw mw we:in f12 mw p:mw we:in f12
¼ 2q ¼ 2q
þ þ
mw f11 mw f11
þ
mw f10 mw f10
þ
f9mw ; f9mw
mw mw up:mw þ f4mw þ f6mw þ f8mw Þ þ f9mw þ f12 we:x ¼ 1 2ðf2
p:mw mw mw mw þ f0 þ f11 þ f10 =qwe:in p:mw mw mw mw mw ; up:mw ew:y ¼ 2qew:in f12 f11 f10 f9 p:mw mw mw mw mw up:mw ¼ 2 q f þ f þ f f ew:z 3 4 1 2 ew:in mw up:mw þ f1mw þ f5mw þ f7mw þ f2mw þ f3mw ew:x ¼ 1 2 f3
þ f0mw þ f4mw þ f1mw =qp:mw ew:in v :mw (i = 1,3,5,7) can be VC: For the west inlet and east outlet case, fwe:i defined as
v :mw fwe:1 v :mw fwe:3
v :mw fwe:5 v :mw fwe:7
v :mw 3qv :mw uv :mw uwe:z ¼ f2mw þ we:in we:x ; 4 v :mw v :mw v :mw 3q u þ uwe:z ¼ f4mw þ se:in we:x 4 v :mw uv :mw þ uv :mw 3qwe:in we:x we:y ¼ f6mw þ ; 4 v :mw uv :mw uv :mw 3qwe:in we:x we:y ¼ f8mw þ 4
v :mi (i = 2, 4, 6, 8) can be deFor the east inlet and west outlet case, few:i fined as,
v :mw few:2
f v :mw ew:4
v :mw few:6 v :mw few:8
v :mw 3qv :mw uv :mw uew:z ¼ f1mw ew:in ew:x ; 4 v :mw 3qv :mw uv :mw þ uew:z ¼ f3mw þ ew:in ew:x 4 v :mw uv :mw þ uv :mw 3qew:in ew:x ew:y mw ; ¼ f5 4 v :mw uv :mw uv :mw 3qew:in ew:x ew:y ¼ f7mw þ 4
where
mw 2 mw mw þ f10 f9mw ; f12 þ f11 :mw 3qvwe:in 2 mw 2 mw mw ¼ f10 þ f9mw f12 þ f11 v :mw 3qwe:in 2
:mw uvwe:y ¼
uv :mw we:z
mw 2 mw mw f10 f9mw ; f f11 :mw 3qvew:in 2 12 mw 2 ¼ f3 þ f4mw þ f1mw f2mw :mw 3qvew:in 2
up:mw ew:y ¼
where
up:mw we:y up:mw we:z
up:mw ew:z
:mw p:mw qvew:in ¼ uew:x þ 2ðf3mw þ f1mw þ f5mw þ f7mw Þ þ f2mw þ f3mw þ f0mw þ f4mw þ f1mw
A.4. BC for magnetic field A.4.1. Front-rear flow p:m can be defined as PC: For the front inlet and rear outlet case, ffr:3
p:m m m m m m m ffr:3 ¼ f4m þ qp:m fr:in 2f4 f0 f1 f5 f2 f6 =3
For the rear inlet and front outlet case, frfp:m :4 can be defined as
p:m m m m m m m m frfp:m :4 ¼ f3 qrf :in þ 2f3 þ f0 þ f1 þ f5 þ f2 þ f6 =3
v :m can be defined as VC: For the front inlet and rear outlet case, ffr:3
v :m ¼ f m þ uv :m um þ 2f m þ f m þ f m þ f m þ f m þ f m =3 ffr:3 4 fr:y y 4 0 1 5 2 6
:m For the rear inlet and front outlet case, frfv :4 can be defined as
:m m m m m m m m frfv :4 ¼ f3m uvrf:m :y uy þ 2f3 þ f0 þ f1 þ f5 þ f2 þ f6 =3
A.4.2. South–north flow p:m can be defined PC: For the south inlet and north outlet case, fsn:5 as
p:m m m m m m m fsn:5 ¼ f6m þ qp:m sn:in 2f6 f0 f4 f3 f2 f1 =3
p:m For the north inlet and south outlet case, fns:6 can be defined as
p:m m m m m m m fns:6 ¼ f5m qp:m ns:in 2f5 f0 f4 f3 f1 f2 =3 v :m can be defined as VC: For the south inlet and north outlet case, fsn:5
v :m ¼ f m þ uv :m um þ 2f m þ f m þ f m þ f m þ f m þ f m =3 fsn:5 6 sn:z z 6 0 4 3 2 1 v :m can be defined as For the north inlet and south outlet case, fns:6
v :m ¼ f m uv :m um þ 2f m þ f m þ f m þ f m þ f m þ f m =3 fns:6 5 ns:z z 5 0 4 3 1 2
A.4.3. West–east flow p:m can be defined as PC: For the west inlet and east outlet case, fwe:1
p:m m m m m m m fwe:1 ¼ f2m þ qp:m we;in 2f2 f0 f4 f3 f5 f6 =3
p:m For the east inlet and west outlet case, few:2 can be defined as
p:m m m m m m m few:2 ¼ f1m qp:m ew;in 2f1 f0 f4 f3 f5 f6 =3
v :m can be defined as VC: For the west inlet and east outlet case, fwe:1
Fig. A.1. The more detail description about the NMR model, equipment and experience illustrative diagram.
B.J. Zhu, Y.L. Shi / Theoretical and Applied Fracture Mechanics 53 (2010) 9–41
v :m fwe:1
m :m ¼ f2m þ uvwe:x ux þ 2f2m þ f0m þ f4m þ f3m þ f5m þ f6m =3
v :m can be defined as For the east inlet and west outlet case, few:2
v :m ¼ f m uv :m um þ 2f m þ f m þ f m þ f m þ f m þ f m =3 few:2 1 ew:x x 1 0 4 3 5 6
q¼
k¼ ¼
k
DW
qc2s ðs 0:5ÞDt L
qqc2s ðs 0:5ÞDtL DW
qqc2s ðs 0:5ÞDtL DW 2:75 104 lus
1
3
1ms=lu ð1=6Þ Dts 243lu 1
0:0034mulu s2 3
4
¼
;k ¼
2:75 10 lu 1ms=lu ð1=6Þ Dts 243lu
Rehigh ¼ Relow ¼
1 0:0034mulu s2
U real Lreal
v real U real Lreal
v real
¼ ¼
2:5 104 m=s 5:0 102 m 1:0 106 m2 =s 1:3 104 m=s 5:0 102 m 1:0 106 m2 =s
2
¼ 3:276lu Dt
ms mu
¼ 12:5; ¼ 6:5
Rev LBM 12:5 ð1=6Þ : ¼ ¼ 0:01157; 180 LLBM Rev LBM 12:5 ð1=6Þ ¼ ¼ ¼ 0:0060164 180 LLBM
U LBM jhigh ¼ U LBM jlow
References [1] T.A. Taira, P.G. Silver, F. Niu, R.M. Nadeau, Remote triggering of faultstrength changes on the San Andreas fault at, Parkfield. Nat. Geo. (461) (2009) 636–639. [2] C.Y. Wang, M. Manga, D. Dreger, A. Wong, Streamflow increase due to rupturing of hydrothermal reservoirs: Evidence from the 2003 San Simeon, California, Earthquake, Geo. Res. Lett. (31) (2004) L10502. [3] Y.H. Qian, D. D’Humières, P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett. 17 (6) (1992) 479–484. [4] Q. Zou, S. Hou, S. Chen, G.D. Doolen, A improved incompressible Lattice Boltzmann model for time-independent flows, J. Stat. Phys. 81 (1-2) (1995) 35– 48. [5] Z. Guo, B. Shi, N. Wang, Lattice BGK model for incompressible Navier–Stokes equation, J. Comput. Phys. 165 (1) (2000) 288–306. [6] D.R. Noble, S. Chen, J.G. Georgiadis, A consistent hydrodynamic boundary condition for the Lattice Boltzmann method, Phys. Fluid 7 (1) (1995) 203–209. [7] S. Chen, D. Martı´nez, R. Mei, On boundary conditions in Lattice Boltzmann methods, Phys. Fluid 8 (9) (1996) 2527–2535. [8] S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid. Mech. 30 (1998) 329–364. [9] J. Bear, The transition zone between fresh and salt waters in coastal aquifers, Ph.D. Thesis, University of California, Berkeley, 1960. [10] Q.S. Zou, X.Y. He, On pressure and velocity boundary conditions for the Lattice Boltzmann BGK model, Phys. Fluid 9 (1) (1997) 1591–1598. [11] R.S. Maier, R.S. Bernard, D.W. Grunau, Boundary conditions for the Lattice Boltzmann method, Phys. Fluid 8 (7) (1996) 1788–1801. [12] D.R. Noble, S.Y. Chen, J.G. Georgiadis, R.O. Buckius, A consistent hydrodynamic Boundary-condition for the Lattice Boltzmann method, Phys. Fluid 7 (1) (1995) 203–209. [13] D. Gary, Doolen, Lattice Gas Methods: Theory, Applications, and Hardware, MIT Press, Cambridge Mass, 1991. [14] X.Y. He, G.D. Doolen, Thermodynamic foundations of kinetic theory and Lattice Boltzmann models for multiphase flows, J. Stat. Phys. 107 (1-2) (2002) 309– 328. [15] D. Gary, Doolen, M. Frisch, B. Hasslacher, S. Orszag, S. Wolfram, Lattice Gas Methods for Partial Differential Equations, vol. 4, Wokingham Addison-Wesley, Redwood City, California, 1990. [16] U. Frisch, B. Hasslacher, Y. pomeau, Lattice-gas automata for the Navier–Stokes equation, Phys. Rev. Lett. 56 (1986) 1505–1508. [17] J.R. Henderson, I.G. Main, M. Calum, M.G. Norman, A fracture-mechanical cellular automaton model of seismicity, Pure. Appl. Geophys. 142 (3-4) (1994) 545–565.
41
[18] A. Fakhari, M.H. Rahimian, Simulation of falling droplet by the Lattice Boltzmann method, Comm. Nonlinear. Sci. Numer. Simul. 14 (7) (2009) 3046–3055. [19] V.I. Kushch, I. Sevostianov, L. Mishnaevsky Jr., Stress concentration and effective stiffness of aligned fiber reinforced composite with anisotropic constituents, Int. J. Solids. Struct. 45 (18–19) (2008) 5103–5117. [20] V.I. Kushch, S.V. Shmegera, I. Sevostianov, SIF statistics in micro cracked solid: effect of crack density, orientation and clustering, Int. J. Eng. Sci. 47 (2) (2009) 192–208. [21] Y.F. Tan, Z.F. Zhou, Simulation of solute transport in a parallel single fracture with LBM/MMP mixed method, J. Hydrodyna: B 20 (3) (2008) 365– 372. [22] G.C. Sih, Multiscale evaluation of microstructural worthiness based on the physical-analytical matching (PAM) approach, Theor. Appl. Fract. Mech. 46 (3) (2006) 243–261. [23] G.C. Sih, R. Jones, Crack size and speed interaction characteristics at micro-, meso- and macro-scale, Theor. Appl. Fract. Mech. 39 (2) (2003) 127–136. [24] G.C. Sih, X.S. Tang, Dual scaling damage model associated with weak singularity for macroscopic crack possessing a micro/mesoscopic notch tip, Theor. Appl. Fract.Mech. 42 (1) (2004) 1–24. [25] G.C. Sih, X.S. Tang, Simultaneous occurrence of double micro/macro stress singularities for multiscale crack model, Theor. Appl. Fract. Mech. 46 (2) (2006) 87–104. [26] G.C. Sih, X.S. Tang, Micro/macro-crack growth due to creep-fatigue dependency on time-temperature material behavior, Theor. Appl. Fract. Mech. 50 (1) (2008) 9–22. [27] G.C. Sih, J.Z. Zuo, Multiscale behavior of crack initiation and growth in piezoelectric ceramics, Theor. Appl. Fract. Mech. 34 (2) (2000) 123–141. [28] F. Erdogan, Mixed Boundary Value Problem in Mechanics, Mechanics Today, V4, 1978, pp. 44–84 (Nemat-Nasser, S. (Ed.)). [29] N.I. Ioakimidis, Application of finite-part integrals to the singular integral equations of crack problems in plane and 3-D elasticity, Acta Mech. 45 (1-2) (1982) 31–47. [30] T.Y. Qin, R.J. Tang, Finite-part integral and boundary-element method to solve embedded planar crack problems, Int. J. Fract. 60 (4) (1993) 373–381. [31] B.J. Zhu, T.Y. Qin, Application of hypersingular integral equation method to three-dimensional crack in electromagnetothermoelastic multiphase composites, Int. J. Solids Struct. 44 (18-19) (2007) 5994–6012. [32] M.C. Sukop, D.T. Thorne, Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers, 2005, p. 7. [33] X.Y. He, L.S. Luo, Theory of the Lattice Boltzmann method: from the Boltzmann equation to the Lattice Boltzmann equation, Phys. Rev. E 56 (6) (1997) 6811– 6819. [34] X.Y. He, L.S. Luo, Lattice Boltzmann model for the incompressible Navier– Stokes equation, J. Stat. Phys. 88 (3-4) (1997) 927–944. [35] Z.L. Guo, B.C. Shi, N.C. Wang, Lattice BGK model for incompressible Navier– Stokes equation, J. Comput. Phys. 165 (1) (2000) 288–306. [36] B.J. Zhu, T.Y. Qin, Hypersingular integral equation method for a threedimensional crack in anisotropic electro-magneto-elastic bimaterials, Theor. Appl. Fract. Mech. 47 (3) (2007) 219–232. [37] T.Y. Qin, N.A. Noda, Analysis of a three-dimensional crack terminating at an interface using a hypersingular integral equation method, J. Appl. Mech. – ASME 69 (5) (2002) 626–631. [38] T.Y. Qin, N.A. Noda, Application of hypersingular integral equation method to a three-dimensional crack in piezoelectric materials, Solid Mech. Mater. Eng – ASME 47 (2) (2004) 173–180. [39] T.Y. Qin, Y.S. Yu, N.A. Noda, Finite-part integral and boundary element method to solve three-dimensional crack problems in piezoelectric materials, Int. J. Solids Struct. 44 (14-15) (2007) 4770–4783. [40] G.C. Sih, Mechanics of Fracture Initiation and Propagation, Kluwer Academic Publisher, 1991. [41] G.C. Sih, J.Z. Zuo, Multiscale behavior of crack initiation and growth in piezoelectric ceramics, Theor. Appl. Fract. Mech. 34 (2) (2000) 123–141. [42] J.Z. Zuo, G.C. Sih, Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics, Theor. Appl. Fract. Mech. 34 (1) (2000) 17–33. [43] B.J. Zhu, Hypersingular Integral Equation Method to 3D Crack in Fully Coupled Electromagnetothermoelastic Multiple Composites, Ph.D. Thesis, Agricultural University, Beijing,China, 2007. [44] G.C. Sih, A special theory of crack propagation: methods of analysis and solutions of crack problems, in: G.C. Sih (Ed.), Mechanics of Fracture, Noordhoff International Publishing, Leyden, 1973, I:xxv. [45] G.C. Sih, A three-dimensional strain energy density theory of crack propagation: three-dimensional of crack problems, in: G.C. Sih (Ed.), Mechanics of Fracture, vol. II, Noordhoff International Publishing, Leyden, 1975, p. xxv. [46] C.P. Spyropoulos, Energy release rate and path independent integral study for piezoelectric material with crack, Int. J. Solids Struct. 41 (2004) 907– 921. [47] Y.E. Pak, Crack extension force in a piezoelectric material, J. Appl. Mech. – T ASME 57 (1990) 647–653. [48] Z. Suo, C.-M. Kuo, D.M. Barnett, J.R. Willis, Fracture mechanics for piezoelectric ceramics, J. Mech. Phys. Solids 40 (1992) 739–765.