Filomat 31:18 (2017), 5727–5742 https://doi.org/10.2298/FIL1718727S
Published by Faculty of Sciences and Mathematics, University of Niˇs, Serbia Available at: http://www.pmf.ni.ac.rs/filomat
Three-Point Fractional h-sum Boundary Value Problems for Sequential Caputo Fractional h-sum-difference Equations Jarunee Soontharanona , Jiraporn Reunsumrita , Thanin Sitthiwiratthamb a Department
of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand b Mathematics Department, Faculty of Science and Technology, Suan Dusit University, Bangkok 10700, Thailand
Abstract. In this article, we study an existence and uniqueness results for a sequential nonlinear Caputo fractional h-sum-difference equation with three-point fractional h-sum boundary conditions, by using the Banach contraction principle and the Schauder’s fixed point theorem. Our problem contains different orders in three fractional difference operators and three fractional sums. Finally, we provide an example to displays the importance of these results.
1. Introduction Fractional difference equations can be used for describing many problems in the real-world phenomena such as physics, mechanics, chemistry, control systems, electrical networks, and flow in porous media. In particular, fractional calculus appears in the studied in biology, ecology and other areas (see [1]-[2]). Mathematicians have used this fractional calculus to model and solve various related problems. Boundary value problems for fractional difference equations, which have helped to build up some of the basic theory of this field can be seen in the textbooks [3] and the papers [4]-[36] and references cited therein. There is a development of boundary value problems for sequential fractional difference equations which shows an operation of the examinative function. The study may also have another function which is related to our interested one. These creations are incorporating with nonlocal conditions which are both extensive and more complex. For example, Goodrich [15] considered a discrete fractional boundary value problem for a sequential fractional difference equations of the forms −∆µ1 ∆µ2 ∆µ3 y(t) = f (t + µ1 + µ2 + µ3 − 1, y(t + µ1 + µ2 + µ3 − 1)), y(0) = 0 = y(b + 2),
(1)
where t ∈ N2−µ1 −µ2 −µ3 ,b+2−µ1 −µ2 −µ3 , 0 < µ1 , µ2 , µ3 < 1, 1 < µ2 + µ3 < 2, 1 < µ1 + µ2 + µ3 < 2 and f : N0 × R → [0, +∞) is a continuous function. 2010 Mathematics Subject Classification. Primary 39A05; Secondary 39A12 Keywords. Fractional h-sum-difference equations, boundary value problem, existence, uniqueness Received: 20 April 2017; Accepted: 27 September 2017 Communicated by Dragan S. Djordjevi´c Research supported by King Mongkut’s University of Technology North Bangkok. Contract no.KMUTNB-GOV-59-34 Email addresses:
[email protected] (Jarunee Soontharanon),
[email protected] (Jiraporn Reunsumrit), thanin
[email protected] (Thanin Sitthiwirattham)
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5728
Weidong [22] examined the sequential Caputo fractional boundary value problem with a p-Laplacian β ∆ [φp (∆αC x)](t) = f (t + α + β − 1, x(t + α + β − 1)), t ∈ N0,b , Cβ β (2) ∆C x(β − 1) + ∆C x(β + b) = 0, x(α + β − 2) + x(α + β + b) = 0, where 0 < α, β ≤ 1, 1 < α + β ≤ 2, f : Nα+β−1,α+β+T−1 × R → R is a continuous function and φp is the p-Laplacian operator. Recently, Sitthiwirattham [29] investigated three-point fractional sum boundary value problems for sequential Caputo fractional difference equations of the forms β α ∆α (∆α+β−1 + λEβ )x(t) = f (t + α + β − 1, x(t + α + β − 1)), (3) x(α + β − 2) = 0, x(α + β + T) = ρ∆−γ x(η + γ), α+β−1 where t ∈ N0,T , 0 < α, β ≤ 1, 1 < α+β ≤ 2, 0 < γ ≤ 1, η ∈ Nα+β−1,α+β+T−1 , ρ is a constant, f : Nα+β−2,α+β+T ×R → R is a continuous function, Eβ x(t) = x(t + β − 1). Presently, we focus on the difference operator with step 1. Our knowledge, there is a gap in the literature about the details of this operation. To make it more general and flexible in the sense that it has the freedom to choose the different step h. However, not much research has involved the development of h-sum and h-difference operators (see [37]-[43]). We find that the boundary value problem for h-difference equations has not been studied. The results mentioned above are the motivation for this research. In this paper, we study a sequential Caputo fractional h-sum-difference equation with three point fractional h-sum boundary value conditions of the form " ω ω β α ω λ ω−1 h, u t + α + β − 1 + h , C ∆h C ∆h ∆C + (e − 1)∆C E u(t) = F t + α + β − 1 + h h # ω γ (Ψh u) t + α + β + γ − 1 + h , t ∈ (hN)0,Th h ω u α+β−2+ h = u(η) = 0, h ω ω ∆−θ 1 T + α + β + θ + h u T + α + β + θ + h = 0, (4) h h h where α, β, ω, γ, θ ∈ (0, 1], 2 < α + β + ω ≤ 3, (hN)0,Th := {0, h, 2h, . . . , Th}, η ∈ (hN)[α+β−1+ ω ]h,[T+α+β−1+ ω ]h , h h Eu(t) = u(t + 1), F ∈ C (hN)[α+β−2+ ω−1 ]h,[T+α+β+ ω ]h × R2 , R , 1 ∈ C (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h , R+ , and for h h h h ϕ ∈ C (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h × (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h , [0, ∞) , h
γ
h
h
−γ
Ψh u)(t) := [∆h ϕ u](t + γ) =
h Γh (γ)
h
t h
X s=α+β−2+ ωh
γ−1
(t − σ(hs))h
ϕ t + γh, s u(hs).
Noting from our problem, there are three sequential of two Caputo fractional h-difference operators of order α, β and a ω-order Caputo fractional difference operator, moreover, there exist two fractional h-sum of order γ, θ and a (1 − ω)-order fractional sum. So, this problem is complicated more than the previous works. The rest of paper is organized as follows. In Section 2 we provide some definitions and basic lemmas. Next, we convert the problem to an equivalent summation equation in order to derive a representation for the solution of (4). In Section 3, we prove existence and uniqueness results of the problem (4) by employing the Banach contraction principle and the Schauder’s theorem. Furthermore, we also show the existence of a positive solution to (4). Finally an illustrative example is given in Section 4.
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5729
2. Preliminaries In the following, there are basic notations, definitions, and lemmas which are used to get the main results. Definition 2.1. For any t, α ∈ R and h > 0, the h-falling function is defined by t Γ + 1 h α , th := hα t Γ h +1−α where
t h
α
+ 1 < Z− ∪ {0}, and we use the convention that division at a pole yields zero. If h = 1, then th = tα .
Definition 2.2. For α, h > 0 and f define on (hN)a := {a, a + h, a + 2h, . . .}, the α-order fractional h-sum of f is defined by t h −α h X α−1 −α (t − σ(hs))h f (hs), ∆h f (t) := Γ(α) a s= h
where t ∈ Na+αh := {a + αh, a + (α + 1)h, a + (α + 2)h, ...} and σ(hs) = (s + 1)h. If h = 1, then ∆−α f (t) = ∆−α f (t). h Definition 2.3. For α > 0 and f define on (hN)a , the α-order Caputo fractional h-difference of f is defined by α C ∆h f (t)
:=
−(N−α) N ∆h ∆h
h f (t) = Γ(N − α)
t h −(N−α)
X
N−α−1
(t − σ(hs))h
∆N h f (sh),
s= ha
where t ∈ Na+(N−α)h and N ∈ N is chosen so that 0 ≤ N − 1 < α < N. f (t), and if h = 1 then C ∆αh f (t) = ∆αC f (t). If α = N then C ∆αh f (t) = ∆N h To present the solution of the boundary value problem (4), we need the following lemma that deals with a linear variant of the boundary value problem (4). Lemma 2.4. Let α, β, ω, θ ∈ (0, 1], 2 < α+β+ω ≤ 3, η ∈ (hN)[α+β−1+ ω ]h,[T+α+β−1+ ω ]h , 1 ∈ C (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h , R+ h h h h and f ∈ C (hN)[α+β−1+ ω ]h,[T+α+β−1+ ω ]h , R be given. Then for t ∈ (hN)0,Th , the problem h
h
ω β α ω λ ω−1 h , t+α+β−1+ C ∆h C ∆h ∆C + (e − 1)∆C E u(t) = f h h i β − 2 + ωh h = u(η) = 0, u α + h i h i −θ ∆ 1 T + α + β + θ + ωh h u T + α + β + θ + ωh h = 0, h
(5) (6)
has the unique solution eλt u(t) =
P[h] ΛΓ(ω − 1)
t−1 X
z−ω+1 X
eλz (z − σ(s))ω−2
z=[α+β−2+ ωh ]h s=α+β−2
hQ[h] − ΛΓ(ω − 1)Γ(β)
t−1 X
z−ω+1 X
s
h −β X
β−1
eλz (z − σ(s))ω−2 (s − σ(hv))h
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 s
v
t−1 z−ω+1 h −β X h −α X X X β−1 h2 α−1 + eλz (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h × Γ(ω − 1)Γ(β)Γ(α) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 ω f x+α+β−1+ h h
(7)
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5730
where the functionals P[ f ] and Q[ f ] are defined as η−1 X
" P[ f ] =
z−ω+1 X
α+β−2+ ωh
z=[
"
r−1 X
X
r=[
ΛΓ(ω − 1)Γ(β)
]h s=α+β−2 v=α−1
T+α+β+ ωh α+β−2+ ωh
s β−1 # h −β X heλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h
h i θ−1 s v h −β X h −α h3 eλ(z−r) X T + α + β + θ + ωh h − σ(hr)
z−ω+1 X
α+β−2+ ωh
]h z=[
×
h
Γ(θ)Γ(ω − 1)Γ(β)Γ(α)
]h s=α+β−2 v=α−1 x=0
×
# ω ω h f x+α+β−1+ h (z − σ(s)) (s − σ(hv))h (v − 1 T+α+β+θ+ h h h i θ−1 ω s " T+α+β+ r−1 z−ω+1 h −β X X X X h T + α + β + θ + ωh h − σ(hr) eλ(z−r) h2 (z − σ(s))ω−2 h − × Γ(θ)Γ(ω − 1) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 h s v β−1 η−1 z−ω+1 # " h −β X h −α X X X (s − σ(hv))h (z − σ(s))ω−2 ω 1 T+α+β+θ+ h · × Γ(β) h Γ(ω − 1) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 β−1 α−1 # h2 eλ(z−η) (s − σ(hv))h (v − σ(hx))h ω h , (8) f x+α+β−1+ Γ(β)Γ(α) h s ω v " η−1 z−ω+1 r−1 z−ω+1 h −β X h −α X X eλ(z−η) (z − σ(s))ω−2 # " T+α+β+ X h X X X Q[ f ] = · h3 eλ(z−r) × Γ(ω − 1) ω r=α+β−2+ h z=[α+β−2+ ω ]h s=α+β−2 v=α−1 x=0 z=[α+β−2+ ωh ]h s=α+β−2 h h i θ−1 β−1 α−1 ω T + α + β + h h − σ(hr) (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h ω h 1 T+α+β+θ+ h× Γ(θ)Γ(ω − 1)Γ(β)Γ(α) h i θ−1 h ω r−1 z−ω+1 # " T+α+β+ X h X X T + α + β + θ + ωh h − σ(hr) ω h f x+α+β−1+ h − × h Γ(θ)Γ(β)Γ(ω − 1) ω r=α+β−2+ h z=[α+β−2+ ω ]h s=α+β−2 h s v # " η−1 z−ω+1 h −β X h −α X X X ω 2 λ(z−r) ω−2 he (z − σ(s)) 1 T+α+β+θ+ h · h2 eλ(z−η) × h z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 β−1 α−1 # (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h ω f x+α+β−1+ h , (9) Γ(ω − 1)Γ(β)Γ(α) h β−1
ω−2
α−1 σ(hx))h
and " Λ =
T+α+β+ ωh
r−1 X
X
z−ω+1 X
h i θ−1 s h −β h2 eλ(z−r) X (z − σ(s))ω−2 T + α + β + θ + ωh h − σ(hr) h
Γ(θ)Γ(ω − 1)Γ(β)
r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 h β−1
(s − σ(hv))h " −
η−1 X
# " ω h · 1 T+α+β+θ+ h z−ω+1 X
η−1 X z=[α+β−2+ ωh ]h
z−ω+1 X
e−λz (z − σ(s))ω−2 Γ(ω − 1) s=α+β−2
s β−1 # h −β X he−λz (z − σ(s))ω−2 (s − σ(hv))h
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1
ΛΓ(ω − 1)Γ(β)
×
#
×
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
"
T+α+β+ ωh
r−1 X
X
r=α+β−2+ ωh
z−ω+1 X
5731
i θ−1 h h2 eλ(z−r) T + α + β + θ + ωh h − σ(hr) (z − σ(s))ω−2 h
Γ(θ)Γ(β)Γ(ω − 1)
z=[α+β−2+ ωh ]h s=α+β−2
×
# ω h . 1 T+α+β+θ+ h
(10)
Proof. We use the fractional h-sum of order α for (5) to obtain β C ∆h
h
t α−1 h −α X i (t − σ(hs))h ω ω λ ω−1 ∆C + (e − 1)∆C E u(t) = C0 + h h , f s+α+β−1+ Γ(α) h s=0
(11)
for t ∈ N(α−1)h,(T+α)h . In addition using the fractional h-sum of order β for (11), we get λ ω−1 ∆ω C u(t) + (e − 1)∆C Eu(t) β−1
t
= C1 + C0 h
h −β X (t − σ(hs))
h
Γ(β)
s=0
t
+h
2
s
h −β X h −α X (t − σ(hs))
β−1 h
α−1
(s − σ(hv))h
Γ(β)Γ(α)
s=0 v=0
f
v+α+β−1+
ω h , h
(12)
for t ∈ N(α+β−2)h,(T+α+β)h . Taking the fractional sum of order ω for (12), we get u(t) + (eλ − 1)∆−1 u(t + 1) β−1
s
t−ω t−ω h −β X X X (t − σ(s))ω−1 (s − σ(vh))h (t − σ(s))ω−1 = C2 + C1 + C0 h Γ(ω) Γ(ω)Γ(β) s=α+β−2 s=α+β−2 v=α−1
s h −β
X X h2 (t − σ(s))ω−1 (s − σ(vh))
t−ω X
+
v h −α
β−1 h
α−1
(v − σ(xh))h
Γ(ω)Γ(β)Γ(α)
s=α+β−2 v=α−1 x=0
f
x+α+β−1+
ω h , h
(13)
for t ∈ N[α+β−2+ ω ]h,[T+α+β+ ω ]h . Next, taking the forward difference ∆ for (13), we have h
h
∆u(t) + (eλ − 1)u(t + 1) β−1
s
t−ω+1 h −β X X h (t − σ(s))ω−2 (s − σ(vh))h (t − σ(s))ω−2 = C1 + C0 Γ(ω − 1) Γ(ω − 1)Γ(β) s=α+β−2 s=α+β−2 t−ω+1 X
v=α−1
+
t−ω+1 X
s h −β
β−1
v h −α
X X h2 (t − σ(s))ω−2 (s − σ(vh)) h
s=α+β−2 v=α−1 x=0
α−1
(v − σ(xh))h
Γ(ω − 1)Γ(β)Γ(α)
f
ω x+α+β−1+ h , h
(14)
multiply the equation (14) by eλt , we obtain h i ∆ eλt u(t) = eλt ∆u(t) + (eλ − 1)eλt u(t + 1) s β−1 ( t−ω+1 t−ω+1 h −β X (t − σ(s))ω−2 X X h (t − σ(s))ω−2 (s − σ(vh))h λt = e C1 + C0 Γ(ω − 1) Γ(ω − 1)Γ(β) s=α+β−2 s=α+β−2 v=α−1
+
t−ω+1 X
s h −β
v h −α
X X h2 (t − σ(s))ω−2 (s − σ(vh))
s=α+β−2 v=α−1 x=0
β−1 h
α−1
(v − σ(xh))h
Γ(ω − 1)Γ(β)Γ(α)
) ω f x+α+β−1+ h , h
(15)
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5732
for t ∈ N[α+β−2+ ω ]h,[T+α+β+ ω ]h . Using the sum ∆−1 for (15), h
h
λt
e u(t) t−1 X
= C2 + C1
z=[α+β−2+ ωh ]h
+C0
eλz (z − σ(s))ω−2 Γ(ω − 1) s=α+β−2 z−ω+1 X
z−ω+1 X
t−1 X
β−1
s
h −β X heλz (z − σ(s))ω−2 (s − σ(vh))h
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 t−1 X
+
z−ω+1 X
(16)
s
Γ(ω − 1)Γ(β) β−1
v
h −β X h −α X h2 eλz (z − σ(s))ω−2 (s − σ(vh))h
Γ(ω − 1)Γ(β)Γ(α)
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0
α−1
(v − σ(xh))h
f
x+α+β−1+
ω h , h
h i for t ∈ N[α+β−2+ ω ]h,[T+α+β+ ω ]h . By substituting t = α + β − 2 + ωh h and t = η into (16), and employing the h h first and second conditions of (6), we find that C2 = 0 and C1
η−1 X
z−ω+1 X
z=[α+β−2+ ωh ]h
+C0
η−1 X
eλ(z−η) (z − σ(s))ω−2 Γ(ω − 1) s=α+β−2 z−ω+1 X
=−
z−ω+1 X
β−1
s
h −β X heλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 η−1 X
(17)
ΛΓ(ω − 1)Γ(β)
s v h −β X h −α X β−1 h2 eλ(z−η) (z − σ(s))ω−2 ω α−1 (s − σ(hv))h (v − σ(hx))h f x + α + β − 1 + h . Γ(ω − 1)Γ(β)Γ(α) h x=0
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1
h i Using the fractional h-sum of order θ for (16), and substituting t = T + α + β + θ + ωh h, and employing the third condition of (6), this implies h i θ−1 T+α+β+ ωh r−1 z−ω+1 X X h2 eλ(z−r) T + α + β + θ + ωh h − σ(hr) X (z − σ(s))ω−2 h C1 × Γ(θ)Γ(β)Γ(ω − 1) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 h ω h (18) 1 T+α+β+θ+ h h i θ−1 s T+α+β+ ωh r−1 z−ω+1 h −β h2 eλ(z−r) X X X X T + α + β + θ + ωh h − σ(hr) (z − σ(s))ω−2 h +C0 × Γ(θ)Γ(ω − 1)Γ(β) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 h β−1 ω (s − σ(hv))h 1 T + α + β + θ + h h i θ−1 h s v T+α+β+ ωh r−1 z−ω+1 h −β X h −α h3 eλ(z−r) X X X X (z − σ(s))ω−2 T + α + β + θ + ωh h − σ(hr) h =− × Γ(θ)Γ(ω − 1)Γ(β)Γ(α) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 x=0 h β−1 ω ω α−1 (s − σ(hv))h (v − σ(hx))h 1 T + α + β + θ + h f x+α+β−1+ h . h h Solving the system of equations (17) and (18), we obtain C1 = P[ f ] and C0 = −Q[ f ] where P[ f ], Q[ f ] are defined by (8), (9), respectively. Substituting the constants C0 , C1 and C2 into (15), we obtain the solution (7).
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5733
3. Main Results In this section, we wish to prove the existence solution to the problem (4). To accomplish this, let C = C (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h , R be a Banach space of all continuous functions u from (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h h h h h to R, with the norm defined by kukC = max |u(t)|. t∈(hN) α+β−2+ ω h, T+α+β+ ω h [ h] [ h] We consider the operator A : C → C by (Au)(t) =
e−λt P[Fu ] ΛΓ(ω − 1)
z−ω+1 X
t−1 X
eλz (z − σ(s))ω−2
z=[α+β−2+ ωh ]h s=α+β−2
he−λt Q[Fu ] − ΛΓ(ω − 1)Γ(β)
t−1 X
s
h −β X
z−ω+1 X
β−1
eλz (z − σ(s))ω−2 (s − σ(hv))h
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1
h2 e−λt + Γ(ω − 1)Γ(β)Γ(α)
z−ω+1 X
t−1 X
s
v
h −β X h −α X
β−1
eλz (z − σ(s))ω−2 (s − σ(hv))h ×
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0
ω ω h, u x + α + β − 1 + h , F x+ α+β−1+ h h ! ω γ (Ψh u) x + α + β + γ − 1 + h , h α−1
(v − σ(hx))h
(19)
where the functionals P[Fu ] and Q[Fu ] are defined by η−1 X
" P[Fu ] = z=[
"
α+β−2+ ωh
T+α+β+ ωh
X
z−ω+1 X
s β−1 # h −β X heλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h
ΛΓ(ω − 1)Γ(β)
]h s=α+β−2 v=α−1 r−1 X
z−ω+1 X
s
v
h −β X h −α X
×
h i θ−1 T + α + β + θ + ωh h − σ(hr)
h × Γ(θ)Γ(ω − 1)Γ(β)Γ(α) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 x=0 h β−1 ω α−1 h3 eλ(z−r) (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h 1 T + α + β + θ + h × h !# ω ω ω γ F x+ α+β−1+ h, u x + α + β − 1 + h , (Ψh u) x + α + β + γ − 1 + h h h h h i θ−1 ω s " T+α+β+ r−1 z−ω+1 h −β X h X X X T + α + β + θ + ωh h − σ(hr) eλ(z−r) h − × Γ(θ) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 h β−1 # h2 (z − σ(s))ω−2 (s − σ(hv))h ω 1 T+α+β+θ+ h × Γ(ω − 1)Γh (β) h s v β−1 " α−1 η−1 z−ω+1 h −β X h −α X X X h2 eλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h × Γ(ω − 1)Γ(β)Γ(α) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 !# ω ω ω γ F x+ α+β−1+ h, u x + α + β − 1 + h , (Ψh u) x + α + β + γ − 1 + h , h h h
(20)
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
" Q[Fu ] =
η−1 X z=[α+β−2+ ωh ]h
"
T+α+β+ ωh
X
5734
z−ω+1 X
# eλ(z−η) (z − σ(s))ω−2 × Γ(ω − 1) s=α+β−2 r−1 X
z−ω+1 X
s
v
h −β X h −α X
i θ−1 h T + α + β + θ + ωh h − σ(hr)
h × Γ(θ)Γ(ω − 1)Γ(β)Γ(α) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 β−1 ω α−1 3 λ(z−r) ω−2 h e (z − σ(s)) (s − σ(hv))h (v − σ(hx))h 1 T + α + β + θ + h × h !# ω ω ω γ h, u x + α + β − 1 + h , (Ψh u) x + α + β + γ − 1 + h F x+ α+β−1+ h h h i θ−1 h ω " T+α+β+ r−1 z−ω+1 X X h2 T + α + β + θ + ωh h − σ(hr) X h eλ(z−r) h − × Γ(θ)Γ(β) r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 h # ω−2 (z − σ(s)) ω 1 T+α+β+θ+ h × Γ(ω − 1) h s v β−1 " α−1 η−1 z−ω+1 h −β X h −α X X X h2 eλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h × Γ(ω − 1)Γ(β)Γ(α) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 !# ω ω ω γ F x+ α+β−1+ h, u x + α + β − 1 + h , (Ψh u) x + α + β + γ − 1 + h , h h h r=α+β−2+ ωh
(21)
and Λ is defined by (10). We find that the problem (4) has solutions if and only if the operator A has fixed points. Next, we present the existence and uniqueness of a solution to the problem (4), by using the Banach contraction principle. Theorem 3.1. Assume that F : (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h ×R×R → R are continuous, ϕ : (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h × h h h h n (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h → [0, ∞) is continuous with ϕ0 = max ϕ(t+γh, s) : (t, s) ∈ (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h × h h h h o (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h . In addition, suppose that: h
h
(H1 ) There exist constants L1 , L2 > 0 such that for each t ∈ (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h and u, v ∈ R h
h
F(t, u, Ψγh u) − F(t, v, Ψγh v) ≤ L1 |u − v| + L2 |(Ψγ u) − (Ψγ v)|. (H2 ) 0 < 1(t) < G for each t ∈ (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h . h
h
γ ϕ0 (T+2)h (H3 ) L1 + L2 Γ(γ+1) h χ < 1.
Then the problem (4) has a unique solution on (hN)[α+β−2+ ω ]h,[T+α+β+ ω ]h , h
h
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5735
where θ ω−1 β ω −λ T + β + h + (1 − h) ωh e−λ (η − α − β)ω−1 (η − ω + (1 − α)h)h e G h(T + θ + 2) h T + h Ω1 = · Γ(ω)Γ(β + 1) Γ(θ + 1)Γ(ω)Γ(β + 1) h iα η−ω α " 1 T + α + (1 − h) ω + β # h h h −β h h + |Λ|Γ(α + 1) Γ(α + 1) ω−1 θ " −λ # ω ω−1 e−λ G h(T + θ + 2) T + e (η − α − β) h h Ω2 = · × Γ(ω) Γ(θ + 1)Γ(ω) " T + β + h + (1 − h) ω + α β (η − ω + (1 − α)h)β η−ω − β α # h h h h h + Γ(β + 1) Γ(β + 1)Γ(α + 1) β ω−1 α (T + β + 1)h (T + α)h e−λ Th + ω + (h − 1)(α + β) h Ω3 = , Γ(ω)Γ(β + 1)Γ(α + 1) "
+α
β
(22)
(23)
(24)
and χ :=
ω−1 " e−λ Th + ω + (h − 1)(α + β) |Λ|Γ(ω)
Ω1 + Ω2
β (T + β + 1)h # h
Γ(β + 1)
+ Ω3 .
(25)
Proof. We show that A is a contraction. For any u, v ∈ C, we have P[Fu ] − P[Fv ] s β−1 # " η−1 z−ω+1 h −β X X X heλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h × = ΛΓ(ω − 1)Γ(β) ω s=α+β−2 v=α−1 z=[α+β−2+ h ]h h i θ−1 s v ω " T+α+β+ r−1 z−ω+1 h −β X h −α h3 eλ(z−r) X h X X X T + α + β + ωh h − σ(hr) (z − σ(s))ω−2 h
Γ(θ)Γ(ω − 1)Γ(β)Γ(α)
r=α+β−2+ ωh z=[α+β+θ−2+ ω ]h s=α+β−2 v=α−1 x=0 h β−1
(s − σ(hv))h (v − " −
T+α+β+ ωh
r−1 X
X
# ω γ γ 1 T+α+β+θ+ h F x, u, (Ψh u) − F x, v, (Ψh v) h i θ−1 h s z−ω+1 h −β h2 eλ(z−r) X X T + α + β + θ + ωh h − σ(hr) (z − σ(s))ω−2
α−1 σ(hx))h
h
Γ(θ)Γ(ω − 1)Γ(β)
r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 h β−1
(s − σ(hv))h
β−1
×
#" ω 1 T+α+β+θ+ h h α−1
(s − σ(hv))h (v − σ(hx))h
η−1 X
z−ω+1 X
s
×
v
h −β X h −α X h2 eλ(z−η) (z − σ(s))ω−2 × Γ(ω − 1) x=0
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1
# F x, u, (Ψγ u) − F x, v, (Ψγ v) h h
Γ(β)Γ(α) γ β# " −λ ϕ t − ω − (α + β − 2)h e (η − α − β)ω−1 (η − ω + (1 − α)h)h 0 h ≤ L1 + L2 × ku − vkC Γ(γ + 1) |Λ|Γ(ω)Γ(β + 1) ω−1 β h iα # " 1 ω T + β + h + (1 − h) ωh + α T + α + (1 − h) + β θ T + ωh h h h h e−λ G h(T + θ + 2) h Γ(θ + 1)Γ(ω)Γ(β + 1)Γ(α + 1)
# h
×
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5736
γ ϕ0 t − ω − (α + β − 2 h)h ku − vkC × + L1 + L2 Γ(γ + 1) " e−λ G h(T + θ + 2) θ T + ω ω−1 T + β + h + (1 − h) ω + α β # h h h h × Γ(θ + 1)Γ(ω)Γ(β + 1) " e−λ (η − α − β)ω−1 (η − ω + (1 − α)h)β η−ω − β α # h h h
Γ(ω)Γ(β + 1)Γ(α + 1) γ ϕ t − ω − (α + β − 2 h)h 0 , = ku − vkC Ω1 L1 + L2 Γ(γ + 1) and Q[Fu ] − Q[Fv ] " η−1 z−ω+1 X eλ(z−η) (z − σ(s))ω−2 # X × = Γ(ω − 1) ω s=α+β−2 z=[α+β−2+ h ]h h i θ−1 s v ω " T+α+β+ z−ω+1 r−1 h −β X h −α h3 eλ(z−r) X h X X X T + α + β + θ + ωh h − σ(hr) (z − σ(s))ω−2 h
Γ(θ)Γ(ω − 1)Γ(β)Γ(α)
r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 x=0 h β−1
(s − σ(hv))h (v − "
T+α+β+ ωh
X
−
# ω γ γ 1 T+α+β+θ+ h F x, u, (Ψh u) − F x, v, (Ψh v) h h i θ−1 z−ω+1 X h2 eλ(z−r) T + α + β + θ + ωh h − σ(hr) (z − σ(s))ω−2 h × Γ(θ)Γ(β)Γ(ω − 1) s=α+β−2
α−1 σ(hx))h
r−1 X
r=α+β−2+ ωh z=[α+β−2+ ω ]h h
# " ω 1 T+α+β+θ+ h · h
η−1 X
z−ω+1 X
s
β−1
v
h −β X h −α X h2 eλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0
Γ(ω − 1)Γ(β)Γ(α)
# γ γ (v − F x, u, (Ψh u) − F x, v, (Ψh v) γ ϕ t − ω − (α + β − 2)h 0 h ≤ L1 + L2 ku − vkC × Γ(γ + 1) α−1 σ(hx))h
θ ω−1 β #" −λ ω T + β + h + (1 − h) ωh + α # e−λ (η − α − β)ω−1 e G h(T + θ + 2) h T + h h Γ(ω) Γ(θ + 1)Γ(ω)Γ(β + 1) γ " e−λ G h(T + θ + 2) θ T + ω ω−1 # ϕ0 t − ω − (α + β − 2 h)h h h ku − vkC + L1 + L2 × Γ(γ + 1) Γ(θ + 1)Γ(ω) " e−λ (η − α − β)ω−1 (η − ω + (1 − α)h)β η−ω − β α # h h "
h
Γ(ω)Γ(β + 1)Γ(α + 1) γ ϕ0 t − ω − (α + β − 2 h)h . = ku − vkC Ω2 L1 + L2 Γ(γ + 1)
×
×
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5737
For each t ∈ (hN)[α+β−2+ ω−1 ]h,[T+α+β+ ω ]h , we have h
h
(Au)(t) − (Av)(t) −λt z−ω+1 t−1 e P[F ] − P[F ] X X u v eλz (z − σ(s))ω−2 = ΛΓ(ω − 1) ω z=[α+β−2+ h ]h s=α+β−2 s t−1 z−ω+1 h −β he−λt Q[Fu ] − Q[Fv ] X X X β−1 − eλz (z − σ(s))ω−2 (s − σ(hv))h ΛΓ(ω − 1)Γ(β) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 h2 e−λt + Γ(ω − 1)Γ(β)Γ(α)
t−1 X
z−ω+1 X
s
v
h −β X h −α X
β−1
α−1
eλz (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h ×
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0
! ω ω ω γ h, u x + α + β − 1 + h , (Ψh u) x + α + β + γ − 1 + h F x+ α+β−1+ h h h γ ϕ0 t − ω − (α + β − 2 h)h e−λ (t − α − β)ω−1 ≤ ku − vkC Ω1 L1 + L2 |Λ|Γ(ω) Γ(γ + 1) γ β ϕ0 t − ω − (α + β − 2 h)h e−λ (t − α − β)ω−1 (t − ω + (1 − α)h)h +ku − vkC Ω2 L1 + L2 |Λ|Γ(ω)Γ(β + 1) Γ(γ + 1) γ " e−λ (t − α − β)ω−1 (t − ω + (1 − α)h)β t−ω − β α # ϕ t − ω − (α + β − 2 h) 0 h h h h + L1 + L2 ku − vkC Γ(γ + 1) Γ(ω)Γ(β + 1)Γ(α + 1) γ β ω−1 −λ ϕ (T + 2)h (T + β + 1)h e Th + ω + (h − 1)(α + β) 0 h h Ω + Ω ≤ ku − vkC L1 + L2 + Ω 1 2 3 Γ(γ + 1) |Λ|Γ(ω) Γ(β + 1)
= ku − vkC χ. From (H4 ), we have
(Au)(t) − (Av)(t)
< ku − vkC . C
Consequently, A is a contraction. By the Banach contraction principle, we hence get that A has a fixed point which is a unique solution of the problem (4) on t ∈ (hN)[α+β−2+ ω−1 ]h,[T+α+β+ ω ]h . h
h
The second result, we deduce the existence of at least of solution to (4) by using the following the Schauder’s fixed point theorem. Lemma 3.2. [44] (Arzel´a-Ascoli theorem) A set of functions in C[a, b] with the sup norm, is relatively compact if and only it is uniformly bounded and equicontinuous on [a, b]. Lemma 3.3. [44] If a set is closed and relatively compact then it is compact. Lemma 3.4. [45] (Schauder fixed point theorem) Let (D, d) be a complete metric space, U be a closed convex subset of D, and T : D → D be the map such that the set Tu : u ∈ U is relatively compact in D. Then the operator T has at least one fixed point u∗ ∈ U: Tu∗ = u∗ . Theorem 3.5. Suppose that (H1 ) − (H3 ) hold. Hence, problem (4) has at least one solution on Nα−n,T+α .
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5738
Proof. We divide the proof into three steps. Step I. Verify A map bounded sets into bounded sets in BR = {u ∈ C : kukC ≤ R}. We consider n o BR = u ∈ C (hN)[α+β−2+ ω−1 ]h,[T+α+β+ ω ]h : kukC ≤ R . h
Set
h
max |F(t, 0, 0)| = M and choose a constant h, T+α+β+ ω ]h [α+β−2+ ω−1 h ] [ h
t∈(hN)
χM γ , ϕ0 (T+2)h 1 − χ L1 + L2 Γ(γ+1) h
R≥
(26)
where χ satisfies (H3). Denote that ! ω ω ω γ S(t, u, 0) = F t + α + β − 1 + h, u t + α + β − 1 + h , (Ψh u) t + α + β − 1 + h h h h ! ! ω ω −F t+ α+β−1+ h, 0, 0 + F t + α + β − 1 + h, 0, 0 , h h for each u ∈ BR . We obtain
P[Fu ] =
" "
η−1 X
z−ω+1 X
s β−1 # h −β X heλ(z−η) (z − σ(s))ω−2 (s − σ(hv))h × ΛΓ(ω − 1)Γ(β)
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 T+α+β+ ωh
X
r=α+β−2+ ωh
r−1 X
z−ω+1 X
h i θ−1 s v h −β X h −α h3 eλ(z−r) X T + α + β + ωh h − σ(hr) h
z=[α+β+θ−2+ ωh ]h s=α+β−2 v=α−1 x=0 β−1
Γ(θ)Γ(ω − 1)Γ(β)Γ(α)
×
# ω 1 T+α+β+θ+ h S(x, u, 0) h h i θ−1 s h −β X T + α + β + θ + ωh h − σ(hr) eλ(z−r) h × Γ(θ) α−1
(z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h "
T+α+β+ ωh
X
−
r−1 X
z−ω+1 X
r=α+β−2+ ωh z=[α+β−2+ ω ]h s=α+β−2 v=α−1 h β−1
h2 (z − σ(s))ω−2 (s − σ(hv))h Γ(ω − 1)Γ(β) η−1 X
"
z−ω+1 X
s
# ω 1 T+α+β+θ+ h × h
v
β−1
h −β X h −α X h2 eλ(z−η) (z − σ(s))ω−2 (s − σ(hv))
z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0
h
Γ(ω − 1)Γ(β)Γ(α)
γ " # ϕ0 (T + 2)h h ≤ L1 + L2 kukC + M Ω1 . Γ(γ + 1) Similarly, we have
α−1
(v − σ(hx))h
γ " # ϕ0 (T + 2)h h Q[Fu ] ≤ L1 + L2 kukC + M Ω2 , Γ(γ + 1)
S(x, u, 0)
#
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
and
Au
C
5739
γ " # ϕ0 (T + 2)h h ≤ L1 + L2 kukC + M χ. Γ(γ + 1)
Using (26), we get that kAukC ≤ R. This implies that A is uniformly bounded. Step II. Show that A is continuous on BR . From the continuity of F and 1, imply that the operator A is continuous on BR . Step III. Examine A is equicontinuous with BR . For any > 0, there exist a positive constant δ∗ = max{δ1 , δ2 , δ3 } such that for t1 , t2 ∈ (hN)[α+β−2+ ω−1 ]h,[T+α+β+ ω ]h , h
h
|Λ|Γ(ω) ω−1 ω−1 − (t1 − α − β) < , whenever |t2 − t1 | < δ1 , (t2 − α − β) Ω1 e−λ kFk |Λ|Γ(ω)Γ(β + 1) β β ω−1 ω−1 , (t2 − α − β) (t2 − ω + (1 − α)h)h − (t1 − α − β) (t1 − ω + (1 − α)h)h < Ω2 e−λ kFk whenever |t2 − t1 | < δ2 , and α α Γ(ω)Γ(β + 1)Γ(α + 1) β t −ω β t −ω ω−1 ω−1 2 1 , (t2 −α−β) (t2 −ω+(1−α)h)h h − β h −(t1 −α−β) (t1 −ω+(1−α)h)h h − β h < e−λ kFk whenever |t2 − t1 | < δ3 . Then we obtain (Au)(t2 ) − (Au)(t1 ) t1 −1 t2 −1 z−ω+1 z−ω+1 X X X X P[Fu ] λ(z−t2 ) ω−2 λ(z−t1 ) ω−2 − e (z − σ(s)) e (z − σ(s)) ≤ |Λ|Γ(ω − 1) z=[α+β−2+ ωh ]h s=α+β−2 z=[α+β−2+ ωh ]h s=α+β−2 s t2 −1 z−ω+1 h −β X X X β−1 hQ[Fu ] eλ(z−t2 ) (z − σ(s))ω−2 (s − σ(hv))h + |Λ|Γ(ω − 1)Γ(β) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 s t1 −1 z−ω+1 h −β X X X β−1 λ(z−t1 ) ω−2 − e (z − σ(s)) (s − σ(hv))h ω z=[α+β−2+ h ]h s=α+β−2 v=α−1 s v t2 −1 z−ω+1 h −β X h −α X X X β−1 h2 kFk α−1 eλ(z−t2 ) (z − σ(s))ω−2 (s − σ(hv))h (v − σ(hx))h + Γ(ω − 1)Γ(β)Γ(α) z=[α+β−2+ ωh ]h s=α+β−2 v=α−1 x=0 s v t1 −1 z−ω+1 h −β X h −α X X X β−1 α−1 λ(z−t1 ) ω−2 − e (z − σ(s)) (s − σ(hv))h (v − σ(hx))h ω x=0 s=α+β−2 v=α−1 z=[α+β−2+ h ]h Ω2 e−λ kFk Ω1 e−λ kFk ω−1 ω−1 − (t1 − α − β) + ≤ × (t2 − α − β) |Λ|Γ(ω)Γ(β + 1) |Λ|Γ(ω) β β e−λ kFk ω−1 ω−1 × (t2 − α − β) (t2 − ω + (1 − α)h)h − (t1 − α − β) (t1 − ω + (1 − α)h)h + Γ(ω)Γ(β + 1)Γ(α + 1) α α β t2 − ω β t1 − ω ω−1 ω−1 − β − (t1 − α − β) (t1 − ω + (1 − α)h)h − β (t2 − α − β) (t2 − ω + (1 − α)h)h h h h h < + + = . 3 3 3
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5740
Therefore, A(BR ) is an equicontinuous set. As a consequence of Steps I to III together with the Arzel´a-Ascoli theorem, we get that A : C → C is completely continuous. Using the Schauder’s fixed point theorem, we can conclude that problem (4) has at least one solution. Our proof is ended. 4. An example In this section, an example to illustrate our result is provided as follow. Consider the following fractional h-difference boundary value problem 1 − cos2 (2πt+ 16 !# " 15 ) u t + 16 + Ψ 2 u t + 16 e 1 15 15 2 4 5 − 16 2 2 3 5 6 , C D 1 C D 1 DC + (e − 1)DC E u(t) = 4 2 2 16 t + 61 1 + u t + 15 15 3 293 17 77 293 − u =u = 0, D 1 4 esin(2π 120 ) u = 0, (27) 30 30 120 2
where t ∈ 12 N
0,6
− 1 2t− 12 1 X t − σ 2s 2 e− 2s + 14 ) s and Ψ 21 u (t) = u . 2 (t + 2)2 2 2Γ 21 s= 17 15
Letting h = and F =
e− cos
2 (2πt)
1 2 5 1 5 3 77 −s , α = , β = , γ = , ω = , θ = , T = 6, λ = 2, η = , 1(t) = esin(2πt) , ϕ(t+γh, s) = e 9 2 2 3 6 2 6 4 30 (t+ 2 ) 1
|u(t)|+|Ψ 21 u(t)|
,
2
(t+3)4 [1+|u(t)|]
we can show that |Λ| = 0.0601, Ω1 = 15.0543, Ω2 = 1.9134, Ω3 = 0.8616 (H1 ) − (H2 ) hold, for each t ∈ 21 N 17 293 , because we obtain
and χ = 130.312.
30 , 120
1 1 F[t, u, Ψ 2 u] − F[t, v, Ψ 2 v] ≤ 1 1 2
Finally, we can show that
1 e
2
e 570 |u
1
− v| +
1 2 570 |Ψ 1 u
1
− Ψ 21 v|,
2
< 1(t) < e and ϕ0 ≤ 6e .
2
γ ϕ (T + 2)h 0 h L1 + L2 χ = 0.859 < 1. Γ(γ + 1)
Hence, by Theorem 3.1, the problem 27 has a unique solution on
1 2N
17 293 30 , 120
.
Acknowledgements: The authors express their gratitude to the referees for constructive and useful remarks. This research was funded by King Mongkut’s University of Technology North Bangkok. Contract no.KMUTNB-GOV-59-34 References [1] [2] [3] [4]
G. C. Wu, D. Baleanu, Discrete fractional logistic map and its chaos, Nonlinear Dynamics 75 (2014) 283–287. G. C. Wu, D. Baleanu, Chaos synchronization of the discrete fractional logistic map, Signal Processing 102 (2014) 96–99. C. S. Goodrich, A.C. Peterson, Discrete fractional calculus, Springer, New York, 2015. F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, International Journal of Difference Equations 2 (2) (2007) 165–176.
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5741
[5] F. M. Atici, P. W. Eloe, Initial value problems in discrete fractional calculus, Proceedings of the American Mathematical Society 137 (3) (2009), 981–989. [6] F. M. Atici, P. W. Eloe, Two-point boundary value problems for finite fractional difference equations, Journal of Difference Equations and Applications 17 (2011) 445–456. [7] T. Abdeljawad, On Riemann and Caputo fractional differences, Computers and Mathematics with Applications 62 (3) (2011) 1602–1611. [8] T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Advance in Difference Equations 2013 2013:36 16 pages. [9] T. Abdeljawad, On delta and nabla Caputo fractional differences and dual identities, Discrete Dynamics in Nature and Society 2013 (2013) Article ID 406910 12 pages. [10] G. Anastassiou, Foundations of nabla fractional calculus on time scales and inequalities, Computers and Mathematics with Applications 59 (2010) 3750–3762. [11] M. Holm, Sum and difference compositions in discrete fractional calculus, CUBO A Mathematical Journal 13 (3) (2011) 153–184. [12] R. A. C. Ferreira, Existence and uniqueness of solution to some discrete fractional boundary value problems of order less than one, Journal of Difference Equations and Applications 19 (2013) 712–718. [13] B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Archiv der Mathematik 104 (2015) 589–597. [14] B. Jia, L. Erbe, A. Peterson, Convexity for nabla and delta fractional differences, Journal of Difference Equations and Applications 21 (2015) 360–373. [15] C. S. Goodrich, Existence and uniqueness of solutions to a fractional difference equation with nonlocal conditions, Computers and Mathematics with Applications 61 (2011) 191–202. [16] C. S. Goodrich, A convexity result for fractional differences, Applied Mathematics Letters 35 (2014) 58–62. [17] C. S. Goodrich, The relationship between sequential fractional difference and convexity, Applicable Analysis and Discrete Mathematics 10 (2) (2016) 345–365. [18] R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Archiv der Mathematik 102 (3) (2014) 293–299. [19] L. Erbe, C. S. Goodrich, B. Jia, A. Peterson, Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions, Advance in Difference Equations 2016 2016:43 31 pages. [20] F. Chen, X. Luo, Y. Zhou, Existence results for nonlinear fractional difference equation, Advance in Difference Equations, 2011 (2011) Article ID 713201 12 pages. [21] Y. Chen, X. Tang, The difference between a class of discrete fractional and integer order boundary value problems, Communications in Nonlinear Science and Numerical Simulation 19 (12) (2014) 4057–4067. [22] Lv. Weidong, Existence of solutions for discrete fractional boundary value problems witha p-Laplacian operator, Advance in Difference Equations, 2012 2012:163 10 pages. [23] Lv. Weidong, J. Feng, Nonlinear discrete fractional mixed type sum-difference equation boundary value problems in Banach spaces, Advance in Difference Equations 2014 2014:184 12 pages. [24] H. Q. Chen, Z. Jin, S. G. Kang, Existence of positive solutions for Caputo fractional difference equation, Advance in Difference Equations 2015, 2015:44 12 pages. [25] W. Dong, J. Xu, D. O’Regan, Solutions for a fractional difference boundary value problem, Advance in Difference Equations 2013 2013:319 12 pages. [26] R. P. Agarwal, D. Baleanu, S. Rezapour, S. Salehi, The existence of solutions for some fractional finite difference equations via sum boundary conditions, Advance in Difference Equations 2014 2014:282 16 pages. [27] T. Sitthiwirattham, J. Tariboon, S. K. Ntouyas, Existence Results for fractional difference equations with three-point fractional sum boundary conditions, Discrete Dynamics in Nature and Society 2013 2013:Article ID 104276 9 pages. [28] T. Sitthiwirattham, J. Tariboon, S. K. Ntouyas, Boundary value problems for fractional difference equations with three-point fractional sum boundary conditions, Advance in Difference Equations 2013 2013:296 13 pages. [29] T. Sitthiwirattham, Existence and uniqueness of solutions of sequential nonlinear fractional difference equations with three-point fractional sum boundary conditions, Mathematical Methods in the Applied Sciences 38 (2015) 2809–2815. [30] T. Sitthiwirattham, Boundary value problem for p−Laplacian Caputo fractional difference equations with fractional sum boundary conditions, Mathematical Methods in the Applied Sciences 39 (6) (2016) 1522–1534. [31] S. Chasreechai, C. Kiataramkul, T. Sitthiwirattham, On nonlinear fractional sum-difference equations via fractional sum boundary conditions involving different orders, Mathematical Problems in Engineering 2015 2015:Article ID 519072 9 pages. [32] J. Reunsumrit, T. Sitthiwirattham, Positive solutions of three-point fractional sum boundary value problem for Caputo fractional difference equations via an argument with a shift, Positivity 20 (4) (2016) 861–876. [33] J. Reunsumrit, T. Sitthiwirattham, On positive solutions to fractional sum boundary value problems for nonlinear fractional difference equations, Mathematical Methods in the Applied Sciences 39 (10) (2016) 2737–2751. [34] J. Soontharanon, N. Jasthitikulchai, T. Sitthiwirattham, Nonlocal fractional sum boundary value problems for mixed types of Riemann-Liouville and Caputo fractional difference equations. Dynamic Systems and Applications 25 (2016) 409–414. [35] S. Laoprasittichok, T. Sitthiwirattham, On a fractional difference-sum boundary value problems for fractional difference equations involving sequential fractional differences via different orders, Journal of Computational Analysis and Applications, 23 (6) (2017) 1097–1111. [36] B. Kaewwisetkul, T. Sitthiwirattham, On Nonlocal Fractional Sum-Difference Boundary Value Problems for Caputo Fractional Functional Difference Equations with Delay, Advance in Difference Equations 2017 2017:219 14 pages. [37] G. S. F. Frederico, D. F. M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense, Applied Mathematics and Computation 217 (2010) 1023–1033.
J. Soontharanon et al. / Filomat 31:18 (2017), 5727–5742
5742
[38] N. R. O. Bastos, R. A. C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete and Continuous Dynamical Systems 29 (2) (2011) 417–437. [39] R. A. C. Ferreira, D. F. M. Torres, Fractional h-difference equations arising from the calculus of variations, Applicable Analysis and Discrete Mathematics 5 (1) (2011) 110–121. [40] D. Mozyrska, E. Girejko, M. Wyrwas, Comparison of h-difference fractional operators, in Advances in the Theory and Applications of Non-Integer Order Systems, 257 of Lecture Notes in Electrical Engineering, pp. 191–197, Springer, New York, NY, USA, 2013. [41] D. Mozyrska, E. Girejko, Overview of the fractional h-difference operators, in Advances in Harmonic Analysis and Operator Theory, 229 of Operator Theory: Advances and Applications, 253–268, Springer, New York, NY, USA, 2013. [42] M. Wyrwas, D. Mozyrska, E. Girejko, On solutions to fractional discrete systems with sequential h-differences, Abstract and Applied Analysis, 2013, 2013:Article ID 475350, 11 pages. [43] D. Mozyrska, M. Wyrwas, Explicit criteria for stability of fractional h-difference two-dimensional systems, International Journal of Dynamics and Control 5 (2017) 4–9. [44] D. H. Griffel, Applied functional analysis, Ellis Horwood Publishers, Chichester, 1981. [45] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone. Academic Press, Orlando, 1988.