Threshold Kinetics of a Solar-Simulator-Pumped Iodine Laser

13 downloads 0 Views 2MB Size Report
Figure 1 .- Setup for solar-simulator-pumped laser experiment. The photon flux on ..... R + I + R I. 1 + 1 + 1 2. R + R I + R 2 + 1. R + I* +- R I. I* + I. R I + R I + R2 +.
NASA Technical

. .. .

.

-i

Paper

2241 February 1984

Threshold Kinetics of a Solar-Simulator-Pumped Iodine Laser John W. Wilson, Yeungg-rl Lee, Willard R. Weaver, Donald H. Humes, and Ja H. Lee LO7AN COPY: RETURN TO AFWL TECHNICAL LIBRARY KIRTLAND AFB, N.li4. 87117

NASA Technical Paper 2241 1984

Threshold Kinetics of a Solar-Simulator-Pumped Iodine Laser John W. Wilson Langley Research Center Hampton, Virginia

Yeunggd Lee Hampton Institute Hampton,Virginia

Willard R. Weaver and Donald H. Humes Langley Research Center Hampton, Virginia

Ja H. Lee Vanderbilt University Nashville,Tennessee

National Aeronautics and Space Admtnistration

Scientific and Technical Information Branch

.............................................. ........................................................ ..................................................... .............................................................. ............................................................

ENERGY LEVELS AND REACTION PRODUCTS

Molecular Fragmentation Photodissociation Products P r i m a r yR e a c t i o n s Secondary R e a c t i o n s

Reaction Rate f o r R

+

R + R2

for R

+

I += R I

Reaction R a t e f o r I

+

I + I2

Reaction R a t e f o r R

+

R I + R2

for R

+

I* + R I

R e a c t i o nR a t e

R e a c t i o nR a t e

................................................... ................................................... ................................................... + .............................................. .................................................. I

....................................................... Reaction R a t e f o r R I + R I R2 + ............................................ Reaction R a t e f o r + .................................................. Reaction R a t e f o r R + R I R2 + ............................................. Reaction R a t e f o r + R I R I ; ................................................ ........................................................... O t h e rR e a c t i o nR a t e s ............................... SPECTRUM AND G A I NC O E F F I C I E N TO FM E T A S T A B L EI O D I N E B r o a d e n i n g of S p e c t r a l L i n e s ................................................... Reaction R a t e f o r I* + I

+

I*

I + I2 +

I*

G a i n a n dS t i m u l a t e d

P H O T O L Y S I SO F

I2

I*

+

E m i s s i o nC r o s s

ALKYL I O D I D E S

Section

.....................................

......................................................

iii

7 8 9 10

13

14

15 15 15 16 16 17 17 17 17 18 18 20 22

25

INTRODUCTION The atomic i o d i n e laser based o n t h e p h o t o d i s s o c i a t i o n of a l k y l i o d i d e g a s e s w a s among t h e f i r s t p r o p o s e d f o r d i r e c t solar-to-laser e n e r g y c o n v e r s i o n i n space (ref. 1 ) The f i r s t s o l a r - s i m u l a t o r d e m o n s t r a t i o n b e i n g a c h i e v e d (ref. 2 ) , more a t t e n t i o n i s now g i v e n t o s y s t e m r e q u i r e m e n t s o f c h e m i c a l r e v e r s i b i l i t y a n d l a s a n t r e p r o c e s s i n g i n s c a l i n g t o l a r g e space systems. Such a s c a l i n g r e q u i r e s a n a d e q u a t e processes p r e s e n t i n t h e g a s d u r i n g laser o p e r a t i o n knowledgeofthechemical a p r e l i m i n a r yc h e m i c a lk i n e t i cm o d e l is presented ( r e f .3 ) . The developmentof comparison t o s o l a r s i m u l a t o r e x p e r i m e n t s ( r e f . 4). e l s e w h e r ew i t hl i m i t e d

.

I t w a s shown i n a p r e v i o u s r e p o r t ( r e f . 4 ) t h a t t h e laser o u t p u t c o n s i s t s o f a transientpulseregionfollowed by a c o n t i n u o u s wave ( c w ) r e g i o n i n w h i c h t h e laser power o u t p u t i s p r o p o r t i o n a l t o t h e power absorbed. A t l a t e times, t h e cw r e g i o n i s terminated as a result of quenching by t h e i o d i n e m o l e c u l e w h i c h f o r m e d t h r o u g h three-bodycollisionof t w o ground-stateiodineatomswithanalkyliodidemolecule. The I 2 f o r m a t i o n c r i t i c a l l y d e p e n d s o n t h e r e a c t i o n rates o ft h ea l k y li o d i d e recombination

R

+

I +RI

andthree-bodyformation

of I 2 a s

where R d e n o t e st h ea l k y lr a d i c a l . I t was d e t e r m i n e d( r e f . 4 ) t h a t some of t h e r a t e constants for these reactions in the literature a r e n o tc o m p a t i b l ew i t hL a n g l e y experiments. Inthepresent report, t h e k i n e t i c f a c t o r s i n v o l v e d i n r e a c h i n g laser t h r e s h o l d a r e e x a m i n e d .I np a r t i c u l a r ,t h ee f f e c t so fg a sd i f f u s i o n ,h y p e r f i n es p l i t t i n g ,a n d gain length scaling are t r e a t e d i n d e t a i l .

SOLAR S IMULATOR

The s o l a r - s i m u l a t o r l i g h t s o u r c e i s a n a r c d i s c h a r g e a c r o s s a n 8-mm g a p s t a b i The l i g h t o u t p u t i s r e f l e c t e d by a h i g h l i z e d by a 1030-kPa (10.2-atm) X e f l o w . q u a l i t y e l l i p t i c a l reflector and focused in the chopper plane as shown i n f i g u r e 1 . The r e f l e c t o r h a s a v a p o r - d e p o s i t e d aluminum f r o n t s u r f a c e p r o t e c t e d by a MgF2 coati n g t o p r e v e n ts u r f a c eo x i d a t i o na n da b r a s i o n . !&e s p e c t r a l c o n t e n t of t h e a r c plasma o u t p u t c o r r e s p o n d s t o b l a c k b o d y e m i s s i o n a t 6000 K a t t h e f o c u s of t h e e l l i p tical reflector. The d i v e r g e n t l i g h t beam l e a v i n g t h e f o c u s i s c o l l e c t e d by a 7075 aluminum a l l o y 25O c o n e w i t h a p o l i s h e d i n t e r i o r s u r f a c e a n d MgF2 c o a t i n g . me l i g h t beam i s a g a i n f o c u s e d o n t h e c o n e a x i s , w h i c h is aligned with the optical a x i s of t h es y s t e m . Three d i f f e r e n t c o n e s i z e s were u s e d t o g a i n s c a l i n g i n f o r m a t i o n f o r m o d e lt e s t i n g .

50 k W

Solar Sirnulalor

Exposed Region Laser Tube

I-cl Mirror

Detector

ical Coll ector

Figure 1

.-

Setup for solar-simulator-pumped

The p h o t o nf l u xo n the w a v e l e n g t hi n t e r v a lb e t w e e n b l a c k b o d yr a d i a t o r a t a temperature T is

4 exp(hc/UtT) h

i s t h ev e l o c i t yo fl i g h t , The e x p o n e n t i a la r g u m e n t

where c constant.

A

and

A

+

dh

e m i t t e d by a

dh

2m

=

l a s e r experiment.

1

h i s P l a n c k ' cs o n s t a n t , i s g i v e n as

and

k

i s Boltzmann's

hc 1.44 " khT -

hT

f o r h i nc e n t i m e t e r sa n d T i nk e l v i n . The l i g h t i s r e f l e c t e df r o mt h ec o n i c optical c o l l e c t o r w i t h a r e f l e c t a n c e R h a t e a c hw a v e l e n g t hb e f o r er e a c h i n gt h e axis. The l i g h t i n t e n s i t y a t t h e o p t i c a l a x i s i s r e l a t e d t o t h e g e o m e t r yo ft h e arc p l a s m aa n dt h er e f l e c t o ra n d c o l l e c t o r s u r f a c e s ,d e n o t e d by t h e f u n c t i o n M ( r , R ) , as

1 (r,R) d h = M ( r , R )

h

where

E

me

h

R E

h h

@ ( A ) dh

i s t hpe h o t o enn e r g y .

l i g h t i n t e n s i t y i s measured by a calorimeter a n d r e p r e s e n t e d

[ (:: $1

C ( r , R ) = CA exp -2.77

2

(31

-+-

by

where CA i s t h ep e a ki n t e n s i t yo ft h e arc image, L i s t h ef u l ll e n g t h a t half maximum l i g h t i n t e n s i t y a l o n g t h e t u b e a x i s , R is t h ef u l lw i d t h a t h a l f maximum t o t h et u b ea x i s , R i s t h ed i s t a n c ea l o n gt h et u b ea x i s , l i g h ti n t e n s i t yt r a n s v e r s e The s i z e of t h e a r c imagedependsonthe and r i s t h ed i s t a n c e from t h et u b ea x i s . s i z e of t h ec o n e c o l l e c t o r a n d i t s d i s t a n c ef r o mt h ef o c u s . It i s c l e a r t h a t

calorimeter d a t a .S i n c em o s to ft h e t o be d e t e r m i n e df r o mt h e which a l l m s M ( r , R ) energy i s i n t h e v i s i b l e r e g i o nw h e r e R h i s n e a r l yc o n s t a n t ,e q u a t i o n ( 5 ) may be w r i t t e n w i t h t h e h e l p of e q u a t i o n ( 4 ) a s

where R h i s r e p l a c e d by t h ec o n s t a n t R V i S , s i n c em a i n l yv i s i b l er a d i a t i o nc o n t r i b u t e st ot h ec a l o r i m e t e rm e a s u r e m e n t s .E x p r e s s i n gt h en u m e r a t o ra n dd e n o m i n a t o ri n u n i t s of t h e s o l a r c o n s t a n t y i e l d s

C 0 e x p [-2.77(I2/L2

M(r,R) =

~

_"

"___

R

+

r2/R2)]

v is

where i t i s f o u n d f r o m t h e c a l o r i m e t e r d a t a t h a t

co -

L =

R =

2.72

+

(1

(4

+

X

lo4

0.375m)

1.5m)(m 8

2

+

5)

2.192 + 0.824111 5 + m

and m i s a p a r a m e t e ra s s o c i a t e dw i t ht h e d i f f e r e n ta p e r t u r e s . (See t a b l e I. 1

s c a l e of t h e t h r e e

c o l l e c t o r c o n e sw i t h

3

TABLE I.- SCALE PARWTERS FOR COLLECTOR

Aperture diameter,

cm

D i s t a n c ef r o m

focus, c m

m

CONES

L, cm

CO

solar constants

R,

mm ~~

9.6 16.6 23.6

7.0 15.2 24.5

0.5 2.0 2.5

3.2719288 6.1 3 7.27

8 881 7 245 ~~

4.73 5.49 5.67

. . .

A comparisonbetweenmeasurementsofintensityalongthe optical axis and the i s shown i n f i g u r e 2. m o d e lf u n c t i o n of e q u a t i o n ( 4 ) i n u n i t s o f t h e s o l a r c o n s t a n t Measurements i n t h e r a d i a l d i r e c t i o n f o r t h e c o n e w i t h a n a p e r t u r e d i a m e t e r o f 16.6 c m a t a l o c a t i o n 3 c m a l o n g t h e o p t i c a l a x i s f r o m t h e p e a k i n t e n s i t y a r e shown i n f i g u r e 3 i n c o m p a r i s o nw i t h a t h e o r e t i c a l c u r v e b a s e d o n e q u a t i o n ( 4 ) .

Distance, cm

F i g u r e 2.- I l l u m i n a t i o n o n a x i s o f l a s e r t u b e as a f u n c t i o n o f d i s t a n c e i s b a s e do ne q u a t i o n( 4 )a n d t a b l e I. Dots b e h i n dc o n ef a c e .C u r v e a r e experimentalmeasurements of A p r i l 13,1981 ( a p e r t u r e w i t h 9.6-cm a r e e x p e r i m e n t a lm e a s u r e m e n t so fJ u l y 30, 1981 d i a m e t e r ) .T r i a n g l e s ( a p e r t u r ew i t h 16.6-cm d i a m e t e r ) .S q u a r e s a r e experimentalmeasurements o f March 25,1981 ( a p e r t u r ew i t h 23.6-cm d i a m e t e r ) .

4

-1

0

r, c m Figure 3.- Illumination as a functionofdistancefromconeaxis ( 1 6 . 6 - c m - d i a m e t e ra p e r t u r e ) .C u r v e i s b a s e do ne q u a t i o n (4) a n d t a b l e I. Dots a r e e x p e r i m e n t a lm e a s u r e m e n t so fJ u l y 30, 1981.

A l t h o u g h t h e lamp i n t e n s i t y i s p r e s e n t e d a s a s t a t i c q u a n t i t y , t h e r e a r e , i n f a c t , a number o f p o o r l y u n d e r s t o o d f a c t o r s t h a t a f f e c t t h e i l l u m i n a t i o n o f t h e c e n t r a l r e g i o no ft h e c o l l e c t o r cone.Becausethe lamp e l e c t r o d e s a r e m e c h a n i c a l l yh e l d i n p l a c e , s l o w e r o s i o n w i l l w i d e nt h eg a pa n dc a u s e a less l o c a l i z e d arc. The installation of new lamps w i l l n o t restore t h e m a c h i n e t o i t s i n i t i a l o p e r a t i o n becauseof lamp d i f f e r e n c e s .I na d d i t i o n ,t h e r e a r e unknown f a c t o r sc a u s i n gd a y - t o d a yv a r i a t i o n si nt h em e a s u r e di l l u m i n a t i o n .A s i d ef r o mt h e s el o n g - t e r mv a r i a t i o n s , t h e r e are small t e m p o r a l f l u c t u a t i o n s i n t h e a r c plasma w h i c h c a u s e l a r g e s p a t i a l movements i n t h e a r c i m a g eb e c a u s eo ft h el a r g em a g n i f i c a t i o nf a c t o r s .T h i sp r o d u c e s l a s e r e x p e r i m e n t s ,s i n c et h ei n s t a n t a n e o u s some d i f f i c u l t y i n i n t e r p r e t a t i o n o f t h e pump power i s g e n e r a l l y less t h a n i t s maximum. Onlyby c o n s i d e r i n g many e x p e r i m e n t a l runscantheidealexperimentalresult(that i s , r e s u l t c o r r e s p o n d i n g t o maximumpump power) be i d e n t i f i e d .

The l i g h t i s r e f l e c t e d by t h e c o n i c c o l l e c t o r a n d c o n c e n t r a t e d o n t h e c o n e a x i s w i t hi n t e n s i t yg i v e n by e q u a t i o n ( 3 ) . The l a s e r t u b e i s c e n t e r e d o n t h e c o n e a x i s f o r which the peak light intensity crosses t h e t u b e w a l l a t a n a n q l e o f 46O b e f o r e r e a c h i n gt h el a s a n tg a s .( S e ef i g . 4.) The r e f l e c t i o n loss a t t h et u b ei n t e r f a c e s i s R 3 0.08, a n dt h et r a n s m i s s i o nt h r o u g ht h e I-mm q u a r t zt u b e i s n e a ru n i t y . The t a t t e n u a t i o n of t h e l i g h t i n p a s s i n g t h r o u g h t h e f i l l i n g g a s t o t h e laser tube centerl i n e is

G2 ( x ) = exp[-n o ( h ) x ] R t M ( O , R ) h

Rh @ ( h )d h

(1 1 )

5

I~

laser tub-e

F i g u r e 4.-

Typical light ray reflected into

l a s e r tube.

i s t h es p e c i f i cp h o t o a b s o r p t i o nc r o s ss e c t i o nw i t hp e a k cross s e c t i o n ao, l i n e c e n t e r A,, a n dl i n ew i d t h 6, g i v e ni n t a b l e I1 a c c o r d i n g t o r e f e r e n c e s 5 t o 7. of the photons absorbed in the spectral region of equation (1 2), the absorbing molecules a r e fragmented t oy i e l da t o m i ci o d i n e . The t w o a l k y li o d i d e sa n dp h o t o d i s s o c i a t e @I* o fm e t a s t a b l ei o d i n ew i t hv a l u e so f1 0 0p e r c e n ta n d 51 p e r c e n t , i n t of r a c t i o n s r e s p e c t i v e l y .( S e et a b l e

11. )

TABLE 11.- PHOTOABSORPTION PARAMETERS USED FOR ONE SOLAR CONSTANT EXPOSURE,

n-C3F71 ( r e f .5 )

Parameter

.

........ h . ......... ......... al* ............ ....... ....... f .............. a

0

cm2

I2 ( r e f .7 )

"

7.9

10-19

X

6.2

10-19

X

9.14

10-19

X

nm

272

275

nm

12.7

14.5

23.0

1.0

1.0

0.51

S , sec-1

Rho/Rvis

6

i-C3F71 (ref. 6)

~~~

0

?j0,

THE EQUIVALENT POWER OF 1.4 kW/rn2

3.04

X

10-3

3.37

X

10-3

499

3.38

X

0.8

0.8

1 .o

0.652

0.653

0.673

The r a t e a t which

I*

i s formed i n t h e laser t u b e i s

(1 3)

w i t hG a u s s - H e r m i t eq u a d r a t u r e

which i s e v a l u a t e dt h r o u g ha p p r o x i m a t i o n yie Ids

c(r,R)

= 26 @

I*

0

+

no R R M(r,R) 0 t ho

2.95[@(h

0

E q u a t i o n ( 1 4 ) maynow

+

2.456

0

)

(1.18

(ref. 8 ) a n d

@ ( A o ) exp(-noox)

+ @(A 0 -

2.456

0

)]

exp(-0.223no x ) }

(1 4)

0

be s i m p l i f i e d as

R R

S(r,R)

=

ho R

~

v is

S n [ fe x p ( - n ox )

0

+

(1

- f ) exp(-0.223no 0 x ) ]

C(r,R)

(1 5)

where S (maximum p h o t o d i s s o c i a t i o n r a t e ) and f ( f r a c t i o n a al b s o r p t i o nn e a rl i n e c e n t e r ) are g i v e ni nt a b l e 11. The u s e f u l n e s so ft h e Hermite q u a d r a t u r e i s demons t r a t e d i n f i g u r e 5 w h e r e e q u a t i o n ( 1 5 ) i s compared w i t h a n a c c u r a t e n u m e r i c a l e v a l u (1 3) and the usual exponential approximation. ation of equation

ENERGY LEVELS AND REACTION PRODUCTS

There a r e s e v e r a l c h e m i c a , l / p h y s i c a l p r o c e s s e s i m p o r t a n t t o t h e f o r m a t i o n a n d loss o fe x c i t e di o d i n e . Several r e q u i r e m e n t sm u s t be m e t i n o r d e r t h a t s p e c i f i c r e a c t i o n s may o c c u r . The f i r s t s u c h r e q u i r e m e n t is t h a tt h ec h a n g ei ni n t e r n a l energy. e n e r g y be less t h a n o r o n t h e o r d e r o f t h e a v e r a g e t h e r m a l

7

no x 0

F i g u r e 5.-

R e l a t i v e a t t e n u a t i o n of l i g h t a s a f u n c t i o n of p e n e t r a t i o n i n t ol a s a n tg a s (n-C3F71)-

MolecularFragmentation The approximate b o n d e n e r g i e s of t h e a l k y l i o d i d e c o n s t i t u e n t s a r e g i v e n i n t a b l e 111. These e n e r g i e s a r e mean molecular v a l u e s compiled by Huheey ( r e f . 9 ) .

TABLE 111.- SINGLE- AND DOUBLE-BOND ENERGIES AND DISTANCES OF ALKYL I O D I D E CONSTITUENTS [From r e f . 91

. .

Bond .. -

8

~-

Bond e n e r g y I eV DO I

Bond d i s t a n c e rl pm

c-c

3.58

154

C