Time-of-flight secondary ion mass spectrometry with principal component analysis of titaniablood plasma interfaces. Supporting information Ricardo Tejero,1,2 Peggy Rossbach,4 Beat Keller,4 Eduardo Anitua,5 Ilya Reviakine 2,3,* 1
2
3
BTI ImasD, Leonardo da Vinci 14B, 01510 Vitoria, Spain.
CIC biomaGUNE, Paseo Miramón 182, 20009 San Sebastián, Spain.
Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940 Leioa, Spain. 4
5
EMPA, Ueberlandstr. 129, CH-8600 Dübendorf, Switzerland.
Private practice in implantology and oral rehabilitation, José Mª Cagigal 19, 01007
Vitoria, Spain.
*Corresponding Author: Dr. Ilya Reviakine
[email protected] Phone: 34 943 00 53 12 Fax: 34 943 00 53 15 Running title (max 50 char.): ToF–SIMS/PCA of PRGF-activated implant surfaces
Keywords: platelet rich plasma, plasma rich in growth factors, time-of-flight secondary ion mass spectrometry, principal component analysis, titania, surface, implants, blood, fibrin, calcium.
Figure S1: Representative XPS spectrum of the TiO2 surface used in this study. 40
x 10
4
80
O1s
3 x 10
Ti 2p 3/2 458.77
70
35
60 30
50 CPS
Ti2p 25
40
Ti 2p 1/2 464.55
CPS
30 20
20 10
15
Satellites
0 10
495
5
490
485
480 475 470 Binding Energy (eV)
465
C1s
1000
800
600 400 Binding Energy (eV)
200
0
A survey spectrum (left) indicating main photoelectron peaks (C1s, Ti2p, and O1s). Inset: a detailed scan of the Ti2p region (Shirley background-subtracted). The spectrum is dominated by the 2p 3/2 – 2p 1/2 doublet with a separation Δ = 5.78 eV. For TiIV, the Ti2p 3/2 peak is expected at 458.8 eV with a Δ = 5.54 eV,1 although values as high as 5.7 and 5.8 eV have been reported.2, 3 Most likely, this indicates the presence of lower oxides, such as Ti2O3. Satellites arising from charge-transfer processes are also indicated.4 The peak could be fit with a doublet located at 458.8 eV (FWHM = 1.39 eV) and 464.6 eV (FWHM = 2.31 eV) that accounted for 95% of the area under the main peak, and three individual satellite peaks.
460
455
Table S1: XPS analysis of samples used in this study. Chemical composition of various surfaces analyzed by XPS. Plasma-coated samples: (average range) of two samples are shown. If no error is shown, either the values were identical for both samples, or the element was found only in one of the samples (e.g., Ca). Clean samples: (average std. dev.) of 12 samples from the same coating batch are shown.
Sample
%C
%O
%N
%Ti
Clean surface
12 1
58 3
RA
70 5
18 2
12 3
RN
60 5
23
15 6
31
PA
67 7
19 3
11 3
22
PN
68 1
18
11
21
%Ca
31 3 0.3
Table S2: Positive substrate (titanium ion) and Ca peaks used in PCA. Ti+ (47.945); TiH+ or 49Ti (48.953); TiO+ (63.944); TiOH+ or 49
Titanium (Ti)
TiO (64.950)
Ca2+ (39.962)
Calcium (Ca)
The numbers in parentheses represent the approximate mass to charge ratio (m/z) in the mass spectrum.
Table S3 Positive amino acid ion peaks used in PCA 5, 6 Glycine (Gly, G)
CH2N+ (28.020)**; CH4N+ (30.036)*
Alanine (Ala, A)
C2H4N+ (42.036); C2H6N+ (44.052)*
Arginine (Arg, R)
CH3N2+ (43.055); C2H7N3+ (73.068); C4H10N3+ (100.0926); C4H11N3+ (101.094); C5H10N3+ (112.095) C5H11N4+ (127.107)
Serine (Ser, S)
C2H4NO+ (58.033)**; C2H6NO+ (60.047)*; C3H3O2+(71.015)
Methionine (Met, M)
C2H5S+ (61.013)
Proline (Pro, P)
C4H6N+ (68.054)**; C4H8N+ (70.072)*
Threonine (Thr, T)
C4H5O+ (69.038); C3H8NO+ (74.067)
Aspargine (Asn, N)
C3H4NO+ (70.032); C3H7N2O+ (87.063); C3H6NO2+ (88.047); C4H4NO2+ (98.030)
Valine (Val, V)
C4H10N+ (72.087)*; C5H7O+ (83.054)
Cysteine (Cys, C)
C2H6NS+ (76.028)
Histidine (His, H)
C4H5N2+ (81.048); C4H6N2+ (82.058); C5H8N3+ (110.084)
Glutamine (Gln, Q)
C4H6NO+ (84.051)
Glutamic Acid (Glu, E) Leucine (Leu, L)
C4H6NO+ (84.051); C4H8NO2+ (102.064)
C5H10N+ (84.090)**; C5H12N+ (86.107)
Lysine (Lys, K)
C5H10N+ (84.090)
Isoleucine (Ile, I)
C5H12N+ (86.107)
Aspartic Acid (Asp, D) Tyrosine (Tyr, Y) Phenylalanine (Phe, F) Tryptophan (Trp, W)
C3H6NO2+ (88.047)
C7H7O+ (107.056); C8H10NO+ (136.090)*
C8H10N+ (120.090)*; C9H8O+ (132.056)
C9H8N+ (130.071)
* Immonium ion. ** Dehydrogenated immonium ion.
Table S4 Positive ion peaks related to phospholipids used in PCA analysis.7, 8 Phosphocholine chain fragment
CH4N+ (30.036)
Phosphocholine headgroup fragment
C4H10N+ (72.087)
Phosphocholine fragment residue
C5H12N+ (86.107) C5H15PNO4+
Phosphocholine headgroup
(184.112)
Only m/z 184 was not shared with fragments of hydrocarbon chains present in amino acids.
Table S5 Negative ion peaks used in PCA5. Peptide backbone
CN- (26.003); CNO- (41.999)
Cysteine
S- (31.972); HS- (32.981) PO- (46.968); PO2- (62.964); PO3-
Phosphorylated residues
(78.958) O- (15.995);
Others
OH- (17.003);
(63.961); SO3- (79.957)
SO2-
1. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; DBomben, K. D., Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics Inc.: Chigasaki, 1995. 2. Gonbeau, D.; Guimon, C.; Pfisterguillouzo, G.; Levasseur, A.; Meunier, G.; Dormoy, R., Xps Study of Thin-Films of Titanium Oxysulfides. Surface Science 1991, 254, (13), 81-89. 3. Rossetti, F. F.; Reviakine, I.; Textor, M., Characterization of titanium oxide films prepared by the template-stripping method. Langmuir 2003, 19, (24), 10116-10123. 4. Kim, K. S.; Winograd, N., Charge-Transfer Shake-up Satellites in X-Ray Photoelectron-Spectra of Cations and Anions of Srtio3, Tio2 and Sc2o3. Chemical Physics Letters 1975, 31, (2), 312-317. 5. Wagner, M. S.; Castner, D. G., Characterization of adsorbed protein films by time-offlight secondary ion mass spectrometry with principal component analysis. Langmuir 2001, 17, (15), 4649-4660. 6. Mantus, D. S.; Ratner, B. D.; Carlson, B. A.; Moulder, J. F., Static Secondary-Ion Mass-Spectrometry of Adsorbed Proteins. Analytical Chemistry 1993, 65, (10), 14311438. 7. Nygren, H.; Borner, K.; Hagenhoff, B.; Malmberg, P.; Mansson, J. E., Localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex with imaging TOF-SIMS equipped with a bismuth cluster ion source. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 2005, 1737, (2-3), 102-110. 8. Vaezian, B.; Anderton, C. R.; Kraft, M. L., Discriminating and Imaging Different Phosphatidylcholine Species within Phase-Separated Model Membranes by Principal
Component Analysis of TOF-Secondary Ion Mass Spectrometry Images. Analytical Chemistry 2010, 82, (24), 10006-10014.