Time Optimization for Non-Linear Systems

3 downloads 1185 Views 166KB Size Report
Keyword: Optimal Control, Time-optimization. I. Introduction ... II. Preliminaries and some Basic Facts ... III. A Numerical Example. Let the non-linear system: ˙X :=.
Time Optimization for Non-Linear Systems A. E. Gil Garc´ıa

1

1

Department of Automatic Control. CINVESTAV Av. Instituto Polit´ecnico Nacional 2508. 07300 M´exico D.F., M´exico

Bang-Bang control:

Abstract— . . .

Keyword: Optimal Control, Time-optimization.

u∗1 = sign(p1 x1 ),

...

We are using this approximation for sign function: p1 x1 u∗1 ≈ p , 2 + (p1 x1 )2 (10) p2 x2 u∗2 ≈ p . 2 + (p2 x2 )2

II. Preliminaries and some Basic Facts ... III. A Numerical Example Let the non-linear system:    2  x˙ 1 −x1 + x2 + x1 u1 ˙ X := = x˙ 2 x21 + x2 u2 with initial and final conditions:         x1 (0) −7 x1 (T ) 1 = ; = x2 (0) 3 x2 (T ) −1

(1)

Our goal it’s to minimize time, our criteria: Z T min J := 1 dt = min T

We define x3 := p1 , x4 = p2 then our augmented system is:

x˙ 1 =

−x21 + x2 + x1

x˙ 2 =

x21 + x2

(2)

The family of control (constrained control): U := {u1 , u2 ∈ R| − 1 ≤ u1 ≤ 1, −1 ≤ u2 ≤ 1}

(3)

(4)

∂H X˙ = ∂P

(6)

∂H ; p1 (T ) = 0 ∂x1 ∂H p˙2 = − ; p2 (T ) = 0 ∂x2

(7)

Co-state equations: p˙1 = −

Our system is linear with respect to u, the control that maximize the Hamiltonian is: u∈U

1 The

corresponding author: [email protected]

(8)

p

!!

x1 x3 p 2 + (x1 x3 )2 !! x2 x4

2 + (x2 x4 )2

x˙ 3 =

2x1 x3 − 2x1 x4 − x3

x˙ 4 =

−x3 − x4

0

The Hamiltonian associated to the system (1) and criteria (4):   p1 H = 1 + p1 (−x21 + x2 + x1 u1 ) + p2 (x21 + x2 u2 ); P = p2 (5) We need to satisfies the optimal nessesary conditions:

u∗ := arg maxH

(9)

u∗2 = sign(p2 x2 ).

I. Introduction

x1 x3 p

2 + (x1 x3 )2 !!

x2 x4 p 2 + (x2 x4 )2

IV. Concluding Remarks ...

!!

(11)

Suggest Documents