Time variable exposure

6 downloads 0 Views 3MB Size Report
tra tio n. C o n c e n tra tio n. Environment/FOCUS. Prediction of effects from variable exposure scenarios to plankton communities. 2. Mesokosmos. Zeit. K o n z e.
Institut für Umweltforschung

Institute for Environ. Research

Prediction of effects from FOCUS-scenarios to populations of D. magna – Comparison of measured data and modelling results for triphenyltin – T. G. Preuss1, S. Rhiem1, E. Bruns2, D. Schäfer2, G. Görlitz2, H. T. Ratte1 1

Institute for Environmental Research, RWTH Aachen University, Germany 2 Bayer Cropscience, Monheim, Germany

[email protected]

1

PEvEP- project

Institut für Umweltforschung

Prediction of effects from variable exposure scenarios to plankton communities

FOCUS/Freiland Environment/FOCUS Zeit Time

Concentration Konzentration

Concentration

Laboratory

Konzentration Concentration

Mesokosmos Mesocosm

Zeit Time

Time

Konzentration Concentration

Mesokosmos

Zeit

Static Poster Weber et al. WE 245-247

Time

Dynamic 2

Approach - Daphnia

Institut für Umweltforschung

Individual level Concentration

Concentration

Effects models

Time

Time

IDamP (individual based population model)

Concentraton

Concentration

Concentration

Population level

Time

Time

Time

3

Effect models

Institut für Umweltforschung

Immediate Response (IR)

100 Neonates 48 h Adults 48h

Mortality [%]

80

60

40

20

0 1

10

S (t ) = 1 − f _ TWA * ∫ CW (t ) dt 0

Cw [µg/l]

60 50 40 30 20 10 0

Ashauer et al. 2006

0 -10

20

40 Time [h]

60

80

0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0

60 µg/l 100 Hazard

70

f_TWA* Inbtegral CW (t)

Time weighted average (TWA) t

100

Concentration [µg/l]

80 60 40 20 0

20

40 Time [h]

60

80

0

20

40 Time [h]

60

80

Damage Assessment Model (mt-DAM)

Mixed from Lee et al. 2002 & Ashauer et al. 2007 4

IDamP Institut für Umweltforschung

– Prediction of population dynamics from individuals –

Individual based Daphnia magna population model Forcing functions (dynamic): • Food • Density • Temperature • Toxicant

newborn

Feeding Ageing

embryo development brood size



yes

maximal age ? no growth

no juvenile development

no yes

Adult?

born juveniles yes

Birthing?

Calibrated on life-history data for individual daphnids Preuss et al. 2009, Ecol. Model. 220, 310-329

5

Pattern oriented modelling

Institut für Umweltforschung

Population density

Feeding

10000

Algae concentration [cells/ml]

100

Population size

80 60 40 20

8000

6000

4000

2000

0 0

20

40

60

80

100 0

Time [d]

0

20

40

60

80

100

Time [d]

Population structure 50 1.4 mm < 2.2 mm

> 2.2 mm

Population size

40 30 20 10 0 0

20

40

60

80

0

20

40

60

Data: Dülmer (1998), Phd-Thesis, RWTH Aachen University

80

0

20

40

60

80

6

Impact of food conditions Starvation

100

100

80

80

60 40

60 40

20

20

0

0 0

20

40

60

80

100

Semi-static (food level & startpopulation) -1

600

-1

-1

-1

Neonates 0.5 mgC pop d

Neonates 1.3 mgC pop d

Adults & Neonates 0.5 mgC pop-1 d-1

Adults & Neonates 1.3 mgC pop-1 d-1

500 0

10

Time [d]

20

30

40

Time [d]

1000 Food conditions

Population size

Population size

Population size

Flow-through

Institut für Umweltforschung

400 300 200

0

100

600 500 Population size

Abundance Measured

100

10

400 300 200 100 0 0

1 1

10

100

Abundance Predicted

1000

10

20 Time [d]

30

40

0

10

20

30

40

Time [d]

7

Impact of temperature

Institut für Umweltforschung

300

4°C

10°C

15°C

20°C

Population size

250 200 150 100 50 0 300

Population size

250

1000

150 100 50

100

0 300

0

25°C

10

10

20

30

40

Time [d]

250 Population size

Abundance Measured

Food conditions Temperature

200

200 150 100 50

1 1

10

100

1000

0 0

Abundance Predicted

10

20 Time [d]

30

40

8

Impact of 3,4-Dichloroaniline

Institut für Umweltforschung

Flow-through 100

Control

Semi-Static

5 µg/l

300

60

Population size

Abundance

250

40 20 0 100

20 µg/l

40 µg/l

80 Abundance

2.5 µg/l

Control

80

200 150 100 50

60

0 300

40

10 µg/l

5 µg/l

20

250 0 20

40

60

80

100

0

20

40

Time [d]

60

80

100

Population size

0

Time [d]

1000

150 100 50 0

100

300

20 µg/l

40 µg/l

250 Population size

Abundance Measured

Food conditions Temperature 3,4-DCA

200

10

200 150 100 50 0 0

1 1

10

100

Abundance Predicted

1000

10

20 Time [d]

30

40

0

10

20

30

40

Time [d]

9

Impact of Nonylphenol

Institut für Umweltforschung

400

Control

Ethanol

39 µg/l

65 µg/l

85 µg/l

113 µg/l

Population size

300

200

100

0 400

Population size

300

Food conditions Temperature 3,4-DCA NP

200

100

100 0 400

300 Population size

Abundance Measured

1000

10

200

100

1 1

10

100

1000

0 0

Abundance Predicted

10

20 Time [d]

30

40

0

10

20 Time [d]

30

40

10

Modelling results for a pesticide Concentration [µg/l]

Conc-Resp Curve

250

Institut für Umweltforschung

DAM

TWA

50

50 140

30

100

20

50

Abundance

150

120

40

100 30 80 60

 Immediate response can be used only for simple exposure scenarios.  The TWA-approach does not reveal a better prediction as the immediate response.  The mt-DAM-Model predicts the population dynamics for complex exposure scenarios quite well. Where it does not, it is protective.

20

40

10

Concentration [µg/l]

40 Concentration [µg/l]

Abundance

200

10

20

0

0

0 250

10

20

30

40

50

0

10

20

30

40

0

50

0

10

20

30

40

50

0

10

20

30

40

0

50

50

50

140

100

20

50

Abundance

30

150

120

40

100

30

80 60

20

40

10

Concentration [µg/l]

40

Concentration [µg/l]

Abundance

200

10

20

0

0

0 200

20

30

40

50

0

10

20

30

40

0

50

0

10

20

30

40

50

0

10

20

30

40

0

50

50

50

140

40

120

30

100 80

20

60

120

Abundance

140

Concentration [µg/l]

160

30

80 60

20

40

10

40

40

100

Concentration [µg/l]

180

Abundance

10

10 20

20 0

0 0

10

20

30

Time [days]

40

50

0

10

20

30

40

50

0

0 0

Time [days]

Preuss et al., SETAC Europe 2008; Poster Hommen & Preuss WE 237

10

20

30

Time [days]

40

50

0

10

20

30

40

50

Time [days]

11

Fentin - Toxicodynamics

Institut für Umweltforschung

Neonates Survival [%]/Conc. [µg/l]

100 80 60 40 20 0 0

48

96

144

192

240

288 0

48

96

Time [h]

144

192

240

288 0

48

96

Time [h]

144

192

240

288 0

48

96

144

192

240

288

192

240

288

Time [h]

Time [h]

Adult Survival [%]/Conc. [µg/l]

100 80 60 40 20 0 0

48

96

144 Time [h]

192

240

288 0

48

96

144

192

240

288 0

Time [h]

48

96

144 Time [h]

192

240

288 0

48

96

144 Time [h]

 Strong delayed effects in adults 12

Institut für Umweltforschung

200

50

150

40 30

100

20

50

10

0

0 0

10

20

30

Time [days]

40

50 0

10

20

30

40

Concentration [µg/l]

Abundance

Fentin – Effects on population level

50

Time [days]

 LC50 (Adults) leads to extinction of populations  Delayed effects were observed

 Worst-case test item for predicting the effects on population level 13

Can one of the effect models explain and predict the delayed effects?

Institut für Umweltforschung

Immediate Response (IR)

100 Neonates 48 h Adults 48h

Mortality [%]

80

Exposure concentration

60

40

20

Calibrated on toxicodynamics only

0 1

10

100

Concentration [µg/l]

Cw [µg/l]

S (t ) = 1 − f _ TWA * ∫ CW (t ) dt

60 50 40 30 20

0

10 0

Ashauer et al. 2006

0 -10

20

40

60

80

Time [h]

0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0

60 µg/l 100 Hazard

70

t

f_TWA* Inbtegral CW (t)

Time weighted average (TWA) 80 60 40 20 0 20

40 Time [h]

60

80

0

20

40 Time [h]

60

80

Damage Assessment Model (mt-DAM) Calibrated on toxicodynamics & toxicokinetics data Mixed model from Lee et al. 2002 & Ashauer et al. 2006

Internal concentration

14

Fentin - Toxicokinetic

Institut für Umweltforschung

Elimination Phase

internal concentration [dpm/mg]

Uptake Phase 1600

Neonate Adult

1400 1200 1000 800 600 400 200 0 0

24

48 Time [h]

72

0

24

48

72

Time [h]

 Toxikokinetics differs between life-stages  Nearly no excretion for adults  May explain the delayed effects in adults but not in neonates 15

Fentin - Size dependent toxicokinetic 3,0

ke = -0.0046 x wet wt1/2 x 0.0168

r ² = 0.808

r ² = 0.715 log (Bioconcentration after 48 h)

0,025

0,020

Elimination constant (ke)

Institut für Umweltforschung

0,015

0,010

0,005

2,5

2,0

1,5

1,0

Wurzel Biomasse vs ke Plot 1 Regr Plot 1 Conf1

0,5

log (BC) = -0.321 x log(wet wt) + 2.129 0,000 0,0

0,5

1,0

1,5

2,0

2,5

3,0

Sqrt (wet wt [mg])

First order kinetics:

4,0

0,0 -1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

log (wet wt [mg])

ku

CW

3,5

CB

BC48 h ku = ke 1× 1 − e − ke ×48

ke 16

Effect models - Results

Institut für Umweltforschung

Neonate Survival [%]

200

80

150

60 40

100

20

50 0

0 0

24

48 0

24

Time [h]

48 0

24

Time [h]

48 0

24

Time [h]

48

0

24

Time [h]

48

Time [h]

h vs CW h vs CW

40

h vs S h vs Col 6

80

Col 7 vs Col Survival 7 vs Survival measured measured

60

30

40

20

20

10

Concentration [µg/l]

50

100 Survival [%]

Concentration [µg/l]

250

100

0

0

0

48

96

0

144

48

96

144

0

48

Time [h]

Time [h]

96

144

Time [h]

 The mt-DAM is able to describe effects from constant and variable exposure  This holds true in neonates and adults  The TWA-model failed to predict effects from variable exposure

Adult Survival [%]

200

80 60

150

40

100

20

50

0

Concentration [µg/l]

250

100

0 0

24

48

0

24

Time [h]

48 0

24

48 0

24

24

Time [h]

Time [h]

Time [h]

48 0

48 0

24

Time [h]

48

Time [h]

Survival [%]

100 200

80

150

60 40

100

20

50

0

Concentration [µg/l]

250

0 0

48

96 144 192 240 288 0 Time [h]

48

96 144 192 240 288 0 Time [h]

48

96 144 192 240 288 0 Time [h]

48

96 144 192 240 288 0 Time [h]

48

96 144 192 240 288 Time [h]

17

Prediction on population level - Single peak exposure DAM

measured

TWA

50

250

50

200

40

200

40

150

30

150

30

100

20

100

20

50

10

50

10

0

0

0 0

10

20 Time [days]

30

40

Abundance

250

Concentration [µg/l]

IR

Concentration [µg/l]

Abundance

Concentration [µg/l]

Institut für Umweltforschung

0 0

10

20

30

40

Time [days]

 The mt-DAM coupled to IDamP is able to describe the effects and the recovery after single peak exposure  Extinction of the populations is shown by the mt-DAM coupled to the IDamP  The TWA and IR model failed to predict the extinction of the populations 18

Prediction on population level - Multi peak exposure DAM

measured

TWA

250

25

200

20

150

15

100

10

50

5

0 250

0 25

200

20

150

15

100

10

50

5

0

Concentration [µg/l]

IR

Concentration [µg/l]

Abundance

Abundance

Concentration [µg/l]

Institut für Umweltforschung

0 0

10

20

30

40

Time [days]

50

60

70 0

10

20

30

40

50

60

70

Time [days]

 The mt-DAM coupled to IDamP is able to describe the effects and the recovery after multi peak exposure The TWA and IR model failed to predict the effects of the populations 19

Prediction on population level - Upscaled FOCUS-Scenarios DAM

FOCUS scenario scaled up by a factor of 250

250

pond 1

Abundance

measured

TWA

25

pond 2

pond 3

200

20

150

15

100

10

50

5

0 20

40

60

80 0

20

Time [days]

Abundance

250

40

60

80

100 0

20

40

60

80

0 100

Time [days]

Time [days] 25

stream1

stream 2

200

20

150

15

100

10

50

5

0

Concentration [µg/l]

0

Concentration [µg/l]

IR

Concentration [µg/l]

Institut für Umweltforschung

FOCUS scenario scaled up by factor of 10 and 15

0 0

20

40 Time [days]

60

80 0

20

40

60

80

Time [days]

 The mt-DAM coupled to IDamP is able to describe the effects and the recovery after FOCUS stream and pond scenarios The TWA and IR model failed to predict the effects and extinction of the populations

20

Conclusion

Institut für Umweltforschung

 Delayed effects in D. magna were induced by fentin on individual and population level  fentin is one worst-case test substance for the prediction of effects from time-variable exposure  The delayed effects can be explained by the toxicokinetics of fentin in daphnids  Due to the delayed effects the IR and TWA model failed to desribe and predict the effects from time-variable exposure on individual level and population level respectively.  Only the mt-DAM, taking the toxicokinetics into account, was able to describe and predict the effects from time-variable exposure on individual and population level respectively For assessing the risk of time-variable exposure, like the FOCUSscenarios, toxicodynamics and toxicokinetics have to be taken into account for some substance/species combinations The DAM coupled with individual based population models seems to be a valuable tool to predict the effects from timevariable exposure on population level 21

Damage assessment models DAM

t-DAM

Lee et al. 2002

Ashauer et al. 2007

Institut für Umweltforschung

mt-DAM

Calculate internal concentration

dC B = kin × CW − kout × C B dt

dC B = kin × CW − kout × C B dt

dC B = kin × CW − kout × C B dt

Calculate damage

dD = kk × CB − kr × D dt

dD = kk × CB − kr × D dt

dD = kk × CB − kr × D dt

Calculate hazard H = k3 × D

dH = max[D − tresh,0] dt

H = max[D − tresh,0]

Calculate survival S = e− H

S = e− H

S = e− H 22

Suggest Documents