times Differentiable - Convex functions in the first sense

3 downloads 0 Views 240KB Size Report
Keywords: convex function, - convex function in the first sense, hölder integral inequality and ... differentiable functions on several kinds of convexities.
Turkish Journal of Analysis and Number Theory, 2017, Vol. 5, No. 2, 63-68 Available online at http://pubs.sciepub.com/tjant/5/2/4 ©Science and Education Publishing DOI:10.12691/tjant-5-2-4

Some New Integral Inequalities for 𝒏𝒏-times Differentiable 𝒔𝒔- Convex functions in the first sense Mahir Kadakal1,*, Huriye Kadakal2, İmdat İşcan1

1

Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE 2 Institute of Science, Ordu University-Ordu-TÜRKİYE *Corresponding author: [email protected]

Received January 03, 2017; Revised February 04, 2017; Accepted February 13, 2017

Abstract In this work, by using an integral identity together with both the Hölder and the Power-Mean integral inequality we establish several new inequalities for n-time differentiable 𝑠𝑠-convex functions in the first sense.

Keywords: convex function, 𝑠𝑠- convex function in the first sense, hölder integral inequality and power-mean integral inequality

Cite This Article: Mahir Kadakal, Huriye Kadakal, and İmdat İşcan, “Some New Integral Inequalities for 𝑛𝑛times Differentiable 𝑠𝑠- Convex functions in the first sense.” Turkish Journal of Analysis and Number Theory, vol. 5, no. 2 (2017): 63-68. doi: 10.12691/tjant-5-2-4.

1. Introduction In this paper, by using the some classical integral inequalities, Hölder and Power-Mean integral inequality, we establish some new inequalities for functions whose 𝑛𝑛th derivatives in absolute value are 𝑠𝑠-convex functions in the first sense. For some inequalities, generalizations and applications concerning convexity see [1-11]. Recently, in the literature there are so many papers about 𝑛𝑛 -times differentiable functions on several kinds of convexities and 𝑠𝑠 -convex functions. In references [5,6,7,8], readers can find some results about this issue. Many papers have been written by a number of mathematicians concerning inequalities for different classes of convex and 𝑠𝑠-convex functions in the first sense see for instance the recent papers [12-19] and the references within these papers. There are quite substantial literatures on such problems. Here we mention the results of [1-19] and the corresponding references cited therein. Definition 1.1: A function 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ is said to be convex if the inequality

f ( tx + (1 − t ) y ) ≤ tf ( x ) + (1 − t ) f ( y )

is valid for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐼𝐼 and 𝑡𝑡 ∈ [0,1] . If this inequality reverses, then 𝑓𝑓 is said to be concave on interval 𝐼𝐼 ≠ ∅. This definition is well known in the literature. Definition 1.2: A function 𝑓𝑓: [0, ∞) → ℝ is said to be 𝑠𝑠-convex in the first sense if f (α x + β y ) ≤ α s f ( x ) + β s f ( y ) 𝑠𝑠

𝑠𝑠

holds for all 𝑥𝑥, 𝑦𝑦 ∈ [0, ∞), 𝛼𝛼, 𝛽𝛽 ≥ 0 with 𝛼𝛼 + 𝛽𝛽 = 1 and for some fixed 𝑠𝑠 ∈ (0,1]. It can be easily seen that every 1-convex function is convex.

In [21], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds for 𝑠𝑠-convex mapping in the first sense. Definition 1.3: The following double inequality is wellknown in the literature as Hadamard’s inequality for convex mappings [8,10]: Let 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ be a convex mapping defined on the interval 𝐼𝐼 in ℝ and 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 with 𝑎𝑎 < 𝑏𝑏. Then the following inequality holds: b f ( a ) + sf ( b ) 1  a+b f ≤ f ( x ) dx ≤ .  ∫ − b a s +1 2   a

Throughout this paper we will use the following notations and conventions. Let 𝐽𝐽 = [0, ∞) ⊂ ℝ = (−∞, +∞) , and 𝑎𝑎, 𝑏𝑏 ∈ 𝐽𝐽 with 0 < 𝑎𝑎 < 𝑏𝑏 and 𝑓𝑓′ ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and 1

 b p +1 − a p +1  p a+b A ( a, b ) = = , L p ( a, b )   ,  ( p + 1)(b − a )  2   a ≠ b, p ∈ , p ≠ −1, 0

be the arithmetic and generalized logarithmic mean for 𝑎𝑎, 𝑏𝑏 > 0 respectively. We will use the following Lemma [20] for we obtain the main results: Lemma 1.1: Let 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ be 𝑛𝑛-times differentiable mapping on 𝐼𝐼 ° for 𝑛𝑛 ∈ ℕ and 𝑓𝑓 (𝑛𝑛) ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] , where 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ° with 𝑎𝑎 < 𝑏𝑏, we have the identity n −1

 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b  − f ( x )dx   ∫a k + 1) ! (  

k ∑ ( −1) 

k =0

=

( −1)n+1 n!

b n

∫a x

n f ( ) ( x )dx

where an empty sum is understood to be nil.

64

Turkish Journal of Analysis and Number Theory

1

2. Main Results Theorem 2.1. For ∀𝑛𝑛 ∈ ℕ ; let 𝑓𝑓: 𝐼𝐼 ⊂ [0, ∞) → ℝ be 𝑛𝑛 -times differentiable function on 𝐼𝐼 ° and 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ° with 𝑞𝑞 𝑎𝑎 < 𝑏𝑏 . If �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠 -convex function in the first sense on [𝑎𝑎, 𝑏𝑏], then the following inequality holds:

 ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b k f  − f ( x)dx ∑ ( −1)   ∫ k + 1 ! ( ) k =0   a n −1

b p  1  x np +1  = n !  np + 1  a 

q  (n)  f ( b ) ( x − a ) s +1  s +1  (b − a ) s  

q

n f ( ) (a)  ( x − a ) s +1  + (b − a ) s x −   s + 1  (b − a ) s 

1

q q q  (n) (n) 1  f (b ) + s f ( a )  1  , ≤ ( b − a ) q Lnnp (a, b)  n! s +1     where 1/ p + 1/ q = 1. 𝑞𝑞

Proof. If �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠-convex function in the first sense on [𝑎𝑎, 𝑏𝑏] , using Lemma1.1, the Hölder integral inequality and

b−x  n  x−a f( ) b+ a b − a b −a  

q

n = f ( ) ( x)

 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b  − f ( x)dx   ∫ k + 1)! (   a

k ∑ ( −1) 

k =0

1 (b − a ) n!

1 p

1

1

1

1

1

1 1 (b − a ) q n!

n −1

k =0

1

q  (n)  f (b ) b  ( x − a )s dx ∫ s  (b − a ) a   1

q n f ( ) (a) b  (b − a ) s − ( x − a ) s  dx  + ∫   (b − a ) s a    q

 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b  − f ( x)dx   ∫ k + 1) ! (   a

1 q q  n 1 n ≤ ( b − a ) q Lnnp (a, b) A q  f ( ) ( a ) , f ( ) ( b )  n!  

  x − a  q  (n)      f (b ) b   b − a    × ∫   dx  s q  a    x − a   (n)     + 1 −  b − a   f ( a )             1

q q q  (n) (n)  f (b) + s f ( a )   . Lnnp (a, b)  s +1    

k ∑ ( −1) 

1 q

b 1  np  p  ∫x dx   n!  a 

 b np +1 − a np +1  p    (np + 1)(b − a ) 

This completes the proof of theorem. Corollary 2.1. Under the conditions of Theorem 2.1 for 𝑠𝑠 = 1, we obtain the following inequality

q b n q  ∫ f ( ) ( x ) dx    a 

b p 1 ≤  ∫x np dx   n!  a  s

q  (n)  f ( b ) (b − a ) s +1  s s +1  (b − a) 

q q q  n n f ( ) (b) + s f ( ) ( a )    × ( b − a ) s +1    

a

b p 1 ≤  ∫x np dx   n!  a 

     a

1

=

b

1 n ≤ ∫x n f ( ) ( x ) dx n!

1 b q

1

=

we have

a

q q n s +1 f ( ) (a)    b − a) ( s s (b − a) b − + − (b − a) a   s +1  (b − a) s   

q

s s q  q  x − a  (n)  x − a   (n) f b ≤ +  1 − ( )     f (a) , b−a   b − a  

n −1

1

1  b np +1 − a np +1  p =    n !  np + 1 

b

which coincide with the Theorem 2.1 in [20]. Proposition 2.1. Under the conditions of Corollary 2.1 for 𝑛𝑛 = 1, we obtain the following:

f ( b ) b − f (a)a b−a 1

≤ (b − a ) q

−1

b



1 f ( x)dx b−a ∫ a

1 q

q q  n n L p ( a, b) A  f ( ) ( a ) , f ( ) ( b )  .  

Proposition 2.2. For 𝑞𝑞 = 1 , we obtain the following inequality:

Turkish Journal of Analysis and Number Theory

f ( b ) b − f (a)a

65

b

1

1 f ( x)dx b−a ∫

q   ( n) q f (b ) b−a     a   b s   (b − a )   s ≤ L p ( a, b ) A f ' ( a ) , f ' ( b ) . 1 x − a ) x n dx  (    1 − ∫ b q  1  n  q  f ( n) ( a )  a  ∫x dx  ×    be Theorem 2.2. For ∀𝑛𝑛 ∈ ℕ ; let f : I ⊂ [ 0, ∞ ) →=   n!  −   a   s   (b − a )   n -times differentiable function on I  and a, b ∈ I  with   (𝑛𝑛) 𝑞𝑞 (𝑛𝑛) 𝑞𝑞 b q a < b . If �𝑓𝑓 � ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and �𝑓𝑓 � for 𝑞𝑞 ≥ 1 is   n) ( n 𝑠𝑠-convex function in the first sense on [𝑎𝑎, 𝑏𝑏], then the  + f ( a ) ∫x  a   following inequality holds:



)

(

1

 ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b k f  − f ( x)dx ∑ ( −1)   ∫ 1 ! k + ( ) k =0   a

q   ( n) q  f (b )      s   (b − a )   1  K ( s , n, x )    1 − q b q   n  1  x n +1   f ( ) ( a )    = ×   −   n!  n + 1   s    a (b − a )        b  1 n + q x   n) (   + f ( a )  n + 1       a  

n −1

q −1

n 1 ≤ (b − a ) Ln q (a, b) n! 1

q q  ( n) q (n)  f (b ) − f ( a )     K ( s , n, x )     (b − a ) s +1 ×    .     q   n + f ( ) ( a ) Lnn (a, b)   

p= 1−

Where

1 q

𝑏𝑏

and

𝑝𝑝 > 1

,

1−

𝐾𝐾(𝑠𝑠, 𝑛𝑛, 𝑥𝑥) =

∫𝑎𝑎 (𝑥𝑥 − 𝑎𝑎) 𝑠𝑠 𝑥𝑥 𝑛𝑛 𝑑𝑑𝑑𝑑. Proof. From Lemma1.1 and Power-mean integral inequality, we obtain

 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b  − f ( x)dx   ∫ k + 1) ! (   a

n −1

k ∑ ( −1) 

k =0

a

1

q  n n f ( ) (b ) f ( ) (a)    K ( s , n, x )  − (b − a ) s (b − a ) s      q  b n +1 − a n +1   n) ( f (a)      1 + n    q

q

1−

1

1

1

q q  ( n) q n f ( ) (a)   f (b )    K ( s , n, x )  − s +1 (b − a ) s +1    (b − a )  ×       q  b n +1 − a n +1    n) (  + f ( a )    (n + 1)(b − a )   

b  q 1 ≤  ∫x n dx   n!  a 

1

 q  x − a  s ( n )  q  f b    ( )   b n  b − a    ×  ∫x   dx  s q  a    x − a   (n)     + 1 −  b − a   f ( a )         

q −1

n 1 (b − a ) Ln q (a, b) = n!

q 1 1−  ( n ) b f (b ) b q    1  =  ∫x n dx  ( x − a )s x n dx  ∫ s   n!  (b − a ) a a  

1

1

q n f ( ) (a) b  s (b − a ) s − ( x − a )  x n dx  + ∫  (b − a ) s a    q

     ×     + 

 b n +1 − a n +1  q 1 (b − a )  =  n!  (n + 1)(b − a ) 

b

1 n ≤ ∫x n f ( ) ( x ) dx n! 1−

1

1  b n +1 − a n +1  q =    n !  n +1 

q q  ( n) q (n)  f (b ) − f ( a )     K ( s , n, x )     (b − a ) s +1 ×        q   n) ( n + f ( a ) Ln (a, b)   

66

Turkish Journal of Analysis and Number Theory

This completes the proof of theorem. Corollary 2.2. Under the conditions of Theorem 2.2 for 𝑠𝑠 = 1, we obtain the inequality

 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b   − f ( x)dx 1 − ( ) ∑   ∫ 1 ! + k ( ) k =0   a n −1



k

n 1 ( b − a ) Ln n!

q −1 q

( −1)n+1 b n!

∫x

n

n f ( ) ( x ) dx

a 1

b p 1 ≤  ∫1 p dx   n!  a 

1

( a, b )

1

q q  ( n ) (n)  f ( b ) − f ( a )  b−a  ×    q  (n) n  + f ( a ) Ln ( a, b ) 

   Lnn++11 ( a, b ) − aLnn ( a, b )   

(

1 q

)

    .    

b p 1 ≤  ∫1.dx   n!  a 

1

b p 1 =  ∫1.dx   n!  a 

Proposition 2.3. Under the conditions of Corollary 2.2 for 𝑛𝑛 = 1, we obtain the inequality

f ( b ) b − f (a)a b−a

q q  (n) (n)  f (b ) − f ( a ) b s  x nq ( x − a ) dx ∫ s  (b − a ) a   n + f ( ) (a)

b

1 f ( x)dx − b−a ∫

q nq ∫x dx  a 

qb

1

1 q

q  1 ' 1 (2b + a ) f ( b )   1  q 1− q ≤   A ( a, b)   . 6  +(2a + b) f ' ( a ) q   

Proposition 2.4. For 𝑞𝑞 = 1 , we obtain the following inequality f ( b ) b − f (a)a

 q  x − a  s ( n )  q     f b ( )   b nq  b − a     ∫x   dx  s q a    x − a   (n)    + 1 −  b − a   f ( a )         

1

a

b−a

1

q b q  ∫x nq f ( n ) ( x ) dx    a 

b

1 f ( x)dx − b−a ∫ a

≤ (2b + a ) f ( b ) + (2a + b) f ' ( a ) .

=

1 1 (b − a ) p n!

=

1 1 (b − a ) p n!

q q  (n) q (n)  f (b ) − f ( a )   S ( n, s , q , x )  s   (b − a )   + + nq nq 1 1 q b  −a   n) (   + f ( a )    nq + 1     q q  (n) (n)  f (b ) − f ( a )  S ( n, s , q , x )  (b − a ) s 

'

Theorem 2.3. For ∀𝑛𝑛 ∈ ℕ ; let f : I ⊂ [ 0, ∞ ) →  be

n -times differentiable function on I  and a, b ∈ I  with

1

n + (b − a ) f ( ) ( a )

q

 b nq +1 − a nq +1   q    (nq + 1)(b − a )  

1

q q  (n) q (n) a < b . If �𝑓𝑓 � ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and �𝑓𝑓 � for 𝑞𝑞 > 1 is  f (b ) − f ( a )   S ( n, s, q, x )  𝑠𝑠-convex function in the first sense on [𝑎𝑎, 𝑏𝑏], then the 1 + s 1 =  (b − a ) (b − a )  following inequality holds: n!   q  + f ( n ) a Ln  n −1  f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b ( ) nq k     − ∫ f ( x)dx ∑ ( −1)   + k 1 ! ( ) k =0 Corollary 2.3. Under the conditions of Theorem 2.3 for   a 𝑠𝑠 = 1 we obtain the inequality 1 q q q  (n)  (n)  f (b ) − f ( a )  n −1  ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b k f  − f ( x)dx   S n s q x , , , ) ( 1 ∑ ( −1)  ≤ (b − a )   ∫  1 ! k + (b − a ) s +1 ( ) k =0   a n!   q  + f ( n ) a Ln  1 ( ) nq q q q  (n)    (n)  f (b ) − f ( a )  𝑏𝑏 𝑛𝑛𝑛𝑛 𝑠𝑠  (b − a )  Where 𝑆𝑆(𝑛𝑛, 𝑠𝑠, 𝑞𝑞, 𝑥𝑥) = ∫𝑎𝑎 𝑥𝑥 (𝑥𝑥 − 𝑎𝑎) 𝑑𝑑𝑑𝑑 . ≤ b−a   . (𝑛𝑛) 𝑞𝑞 n!  Proof: If �𝑓𝑓 � for 𝑞𝑞 > 1 is 𝑠𝑠-convex function the first  q n +1 ×  Lnq  (a, b) − aLnq (a, b)  + f ( ) ( a ) Lnq sense on [𝑎𝑎, 𝑏𝑏], using Lemma1.1 and the Hölder integral nq nq 1 + nq     inequality, we have the following inequality: (𝑛𝑛) 𝑞𝑞

(𝑛𝑛) 𝑞𝑞

Turkish Journal of Analysis and Number Theory

Proposition 2.5. Under the conditions of Corollary 2.3 for 𝑛𝑛 = 1 we obtain the inequality

f ( b ) b − f (a)a b−a

1 q

1 f ( x)dx b−a ∫

 f' b q− f' a q ( ) ( ) ≤  b−a 

1

q  Lq +1 (a, b)   q +1  + f ' ( a ) q Lq  . q  −aLq (a, b)  q   

Proposition 2.6. For 𝑞𝑞 = 1 , we obtain the following inequality

f ( b ) b − f (a)a b−a

a+b 1 ( b − a ) Lnnp ( a, b ) f ( n )  . n!  2 

=

a

Corollary 2.4. Under the conditions of Theorem 2.4 for 𝑛𝑛 = 1, we obtain the inequality

f ( b ) b − f (a)a b−a

1 f ( x)dx b−a ∫

Theorem 2.4. For ∀𝑛𝑛 ∈ ℕ ; let f : I ⊂ [ 0, ∞ ) →  be

[2]

n -times differentiable function on I  and a, b ∈ I  with 𝑞𝑞

𝑞𝑞

a < b . If �𝑓𝑓 (𝑛𝑛) � ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠-concave function in the first sense on [𝑎𝑎, 𝑏𝑏], then the following inequality holds:

 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b  − f ( x)dx 1 − ∑ ( )   ∫ k + 1) ! ( k =0   a

[3] [4]

k

1 n  a+b ≤ ( b − a ) Lnnp ( a, b ) f ( )  , n!  2  where 1/ p + 1/ q = 1.

[5] [6]

𝑞𝑞

Proof: If �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠-concave function the first sense on [𝑎𝑎, 𝑏𝑏], using Lemma1.1, the Hermite-Hadamard inequality and the Hölder integral inequality, we have the following inequality:

 ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1  b k f  − f ( x)dx ∑ ( −1)   ∫ + k 1 ! ( ) k =0   a

[7] [8] [9]

n −1

[10]

b



1 n (n) x f ( x ) dx n! ∫

[11]

a

1

b p 1 ≤  ∫x np dx   n!  a  1 p

1  np  x dx   n!  ∫ a  b



1

q b n q  ∫ f ( ) ( x ) dx    a 

[12] [13] 1 q q

 a+b  (b − a ) f ( n )     2      1

 np +1 b  p x 1  f (n)  a + b  = (b − a )     n!  2   np + 1 a    1 q

1

1 = (b − a ) q n!

1  a+b f ( x)dx ≤ L p ( a, b ) f '  . b−a ∫ 2   a

References

a

[1]

n −1

b



b



1 (2b + a ) f ' ( b ) + (2a + b) f ' ( a )  .  6 



1

1 p

 b np +1 − a np +1  p ( n )  a + b  1 = (b − a ) (b − a )   f   n!  2   (np + 1)(b − a ) 

b



67

1

 b np +1 − a np +1  p ( n )  a + b    f     np + 1  2   

[14] [15] [16] [17]

M. Alomari, M. Darus and S. S. Dragomir, “New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex”, Tamkang Journal of Mathematics, 41 (4), 2010, 353-359. S.-P. Bai, S.-H. Wang And F. Qi, “Some Hermite-Hadamard type inequalities for n-time differentiable (a,m) -convex functions”, Jour. of Ineq. and Appl., 2012, 2012: 267. P. Cerone, S. S. Dragomir and J. Roumeliotis, “Some Ostrowski type inequalities for n-time differentiable mappings and applications”, Demonstratio Math., 32 (4) (1999), 697-712. P. Cerone, S. S. Dragomir and J. Roumeliotis and J. ˇsunde, “A new generalization of the trapezoid formula for n-time differentiable mappings and applications”, Demonstratio Math., 33 (4) (2000), 719-736. S. S. Dragomir and C. E. M. Pearce, “Selected Topics on HermiteHadamard Inequalities and Applications”, RGMIA Monographs, Victoria University, 2000. D.-Y. Hwang, “Some Inequalities for n-time Differentiable Mappings and Applications”, Kyung. Math. Jour., 43 (2003), 335-343. D. A. Ion, “Some estimates on the Hermite-Hadamard inequalities through quasi-convex functions”, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87. J. L. W. V. Jensen, “On konvexe funktioner og uligheder mellem middlvaerdier”, Nyt. Tidsskr. Math. B., 16, 49-69, 1905. W.-D. Jiang, D.-W. Niu, Y. Hua and F. Qi, “Generalizations of Hermite-Hadamard inequality to n-time differentiable function which are s -convex in the second sense”, Analysis (Munich), 32 (2012), 209-220. U. S. Kirmacı, M. K. Bakula, M. E. Özdemir and J. Pe´Cari´C, “Hadamard-type inequalities for s -convex functions”, Appl. Math. and Comp., 193 (2007), 26-35. M. E. Özdemir and U. S. Kırmacı, “Two new theorem on mappings uniformly continuous and convex with applications to quadrature rules and means”, Appl. Math. and Comp., 143 (2003), 269-274. M. E. Özdemir, Ç. Yildiz, “New Inequalities for n-time differentiable functions”, Arxiv: 1402. 4959v1. M. E. Özdemir, Ç. Yıldız, “New Inequalities for HermiteHadamard and Simpson Type with Applications”, Tamkang J. of Math., 44, 2, 209-216, 2013. M. E. Özdemir, Ç. Yıldız, A. O. Akdemir And E. Set, “New Inequalities of Hadamard Type for Quasi-Convex Functions”, AIP Conference Proceedings, 1470, 99-101 (2012). J. E. Peˇcari´c, F. Porschan and Y. L. Tong, “Convex Functions, Partial Orderings, and Statistical Applications”, Academic Press Inc., 1992. A. Saglam, M. Z. Sarıkaya and H. Yıldırım, “Some new inequalities of Hermite-Hadamard’s type”, Kyung. Math. Jour., 50 (2010), 399-410. E. Set, M. E. Özdemir and S. S. Dragomir, “On Hadamard-Type Inequalities Involving Several Kinds of Convexity”, Jour. of Ineq. and Appl., 2010, 286845.

68

Turkish Journal of Analysis and Number Theory

[18] S. H. Wang, B.-Y. Xi and F. Qi, “Some new inequalities of

[20] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, “Some new

Hermite-Hadamard type for n-time differentiable functions which are m-convex”, Analysis (Munich), 32 (2012), 247-262. [19] B.-Y. Xi and F. Qi, “Some integral inequalities of HermiteHadamard type for convex functions with applications to means”, J. Funct. Spaces Appl., (2012).

integral inequalities for n-times differentiable convex and concave functions”. https://www.researchgate.net/publication/312529563, (Submitted) [21] S. S. Dragomir, S. Fitzpatrick, “The Hadamard’s inequality for s-convex functions in the second sense”, Demonstratio Math., 32, No. 4 (1999), 687-696.