Turkish Journal of Analysis and Number Theory, 2017, Vol. 5, No. 2, 63-68 Available online at http://pubs.sciepub.com/tjant/5/2/4 ©Science and Education Publishing DOI:10.12691/tjant-5-2-4
Some New Integral Inequalities for 𝒏𝒏-times Differentiable 𝒔𝒔- Convex functions in the first sense Mahir Kadakal1,*, Huriye Kadakal2, İmdat İşcan1
1
Department of Mathematics, Faculty of Sciences and Arts, Giresun University-Giresun-TÜRKİYE 2 Institute of Science, Ordu University-Ordu-TÜRKİYE *Corresponding author:
[email protected]
Received January 03, 2017; Revised February 04, 2017; Accepted February 13, 2017
Abstract In this work, by using an integral identity together with both the Hölder and the Power-Mean integral inequality we establish several new inequalities for n-time differentiable 𝑠𝑠-convex functions in the first sense.
Keywords: convex function, 𝑠𝑠- convex function in the first sense, hölder integral inequality and power-mean integral inequality
Cite This Article: Mahir Kadakal, Huriye Kadakal, and İmdat İşcan, “Some New Integral Inequalities for 𝑛𝑛times Differentiable 𝑠𝑠- Convex functions in the first sense.” Turkish Journal of Analysis and Number Theory, vol. 5, no. 2 (2017): 63-68. doi: 10.12691/tjant-5-2-4.
1. Introduction In this paper, by using the some classical integral inequalities, Hölder and Power-Mean integral inequality, we establish some new inequalities for functions whose 𝑛𝑛th derivatives in absolute value are 𝑠𝑠-convex functions in the first sense. For some inequalities, generalizations and applications concerning convexity see [1-11]. Recently, in the literature there are so many papers about 𝑛𝑛 -times differentiable functions on several kinds of convexities and 𝑠𝑠 -convex functions. In references [5,6,7,8], readers can find some results about this issue. Many papers have been written by a number of mathematicians concerning inequalities for different classes of convex and 𝑠𝑠-convex functions in the first sense see for instance the recent papers [12-19] and the references within these papers. There are quite substantial literatures on such problems. Here we mention the results of [1-19] and the corresponding references cited therein. Definition 1.1: A function 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ is said to be convex if the inequality
f ( tx + (1 − t ) y ) ≤ tf ( x ) + (1 − t ) f ( y )
is valid for all 𝑥𝑥, 𝑦𝑦 ∈ 𝐼𝐼 and 𝑡𝑡 ∈ [0,1] . If this inequality reverses, then 𝑓𝑓 is said to be concave on interval 𝐼𝐼 ≠ ∅. This definition is well known in the literature. Definition 1.2: A function 𝑓𝑓: [0, ∞) → ℝ is said to be 𝑠𝑠-convex in the first sense if f (α x + β y ) ≤ α s f ( x ) + β s f ( y ) 𝑠𝑠
𝑠𝑠
holds for all 𝑥𝑥, 𝑦𝑦 ∈ [0, ∞), 𝛼𝛼, 𝛽𝛽 ≥ 0 with 𝛼𝛼 + 𝛽𝛽 = 1 and for some fixed 𝑠𝑠 ∈ (0,1]. It can be easily seen that every 1-convex function is convex.
In [21], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which holds for 𝑠𝑠-convex mapping in the first sense. Definition 1.3: The following double inequality is wellknown in the literature as Hadamard’s inequality for convex mappings [8,10]: Let 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ be a convex mapping defined on the interval 𝐼𝐼 in ℝ and 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 with 𝑎𝑎 < 𝑏𝑏. Then the following inequality holds: b f ( a ) + sf ( b ) 1 a+b f ≤ f ( x ) dx ≤ . ∫ − b a s +1 2 a
Throughout this paper we will use the following notations and conventions. Let 𝐽𝐽 = [0, ∞) ⊂ ℝ = (−∞, +∞) , and 𝑎𝑎, 𝑏𝑏 ∈ 𝐽𝐽 with 0 < 𝑎𝑎 < 𝑏𝑏 and 𝑓𝑓′ ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and 1
b p +1 − a p +1 p a+b A ( a, b ) = = , L p ( a, b ) , ( p + 1)(b − a ) 2 a ≠ b, p ∈ , p ≠ −1, 0
be the arithmetic and generalized logarithmic mean for 𝑎𝑎, 𝑏𝑏 > 0 respectively. We will use the following Lemma [20] for we obtain the main results: Lemma 1.1: Let 𝑓𝑓: 𝐼𝐼 ⊆ ℝ → ℝ be 𝑛𝑛-times differentiable mapping on 𝐼𝐼 ° for 𝑛𝑛 ∈ ℕ and 𝑓𝑓 (𝑛𝑛) ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] , where 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ° with 𝑎𝑎 < 𝑏𝑏, we have the identity n −1
f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b − f ( x )dx ∫a k + 1) ! (
k ∑ ( −1)
k =0
=
( −1)n+1 n!
b n
∫a x
n f ( ) ( x )dx
where an empty sum is understood to be nil.
64
Turkish Journal of Analysis and Number Theory
1
2. Main Results Theorem 2.1. For ∀𝑛𝑛 ∈ ℕ ; let 𝑓𝑓: 𝐼𝐼 ⊂ [0, ∞) → ℝ be 𝑛𝑛 -times differentiable function on 𝐼𝐼 ° and 𝑎𝑎, 𝑏𝑏 ∈ 𝐼𝐼 ° with 𝑞𝑞 𝑎𝑎 < 𝑏𝑏 . If �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠 -convex function in the first sense on [𝑎𝑎, 𝑏𝑏], then the following inequality holds:
( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b k f − f ( x)dx ∑ ( −1) ∫ k + 1 ! ( ) k =0 a n −1
b p 1 x np +1 = n ! np + 1 a
q (n) f ( b ) ( x − a ) s +1 s +1 (b − a ) s
q
n f ( ) (a) ( x − a ) s +1 + (b − a ) s x − s + 1 (b − a ) s
1
q q q (n) (n) 1 f (b ) + s f ( a ) 1 , ≤ ( b − a ) q Lnnp (a, b) n! s +1 where 1/ p + 1/ q = 1. 𝑞𝑞
Proof. If �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠-convex function in the first sense on [𝑎𝑎, 𝑏𝑏] , using Lemma1.1, the Hölder integral inequality and
b−x n x−a f( ) b+ a b − a b −a
q
n = f ( ) ( x)
f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b − f ( x)dx ∫ k + 1)! ( a
k ∑ ( −1)
k =0
1 (b − a ) n!
1 p
1
1
1
1
1
1 1 (b − a ) q n!
n −1
k =0
1
q (n) f (b ) b ( x − a )s dx ∫ s (b − a ) a 1
q n f ( ) (a) b (b − a ) s − ( x − a ) s dx + ∫ (b − a ) s a q
f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b − f ( x)dx ∫ k + 1) ! ( a
1 q q n 1 n ≤ ( b − a ) q Lnnp (a, b) A q f ( ) ( a ) , f ( ) ( b ) n!
x − a q (n) f (b ) b b − a × ∫ dx s q a x − a (n) + 1 − b − a f ( a ) 1
q q q (n) (n) f (b) + s f ( a ) . Lnnp (a, b) s +1
k ∑ ( −1)
1 q
b 1 np p ∫x dx n! a
b np +1 − a np +1 p (np + 1)(b − a )
This completes the proof of theorem. Corollary 2.1. Under the conditions of Theorem 2.1 for 𝑠𝑠 = 1, we obtain the following inequality
q b n q ∫ f ( ) ( x ) dx a
b p 1 ≤ ∫x np dx n! a s
q (n) f ( b ) (b − a ) s +1 s s +1 (b − a)
q q q n n f ( ) (b) + s f ( ) ( a ) × ( b − a ) s +1
a
b p 1 ≤ ∫x np dx n! a
a
1
=
b
1 n ≤ ∫x n f ( ) ( x ) dx n!
1 b q
1
=
we have
a
q q n s +1 f ( ) (a) b − a) ( s s (b − a) b − + − (b − a) a s +1 (b − a) s
q
s s q q x − a (n) x − a (n) f b ≤ + 1 − ( ) f (a) , b−a b − a
n −1
1
1 b np +1 − a np +1 p = n ! np + 1
b
which coincide with the Theorem 2.1 in [20]. Proposition 2.1. Under the conditions of Corollary 2.1 for 𝑛𝑛 = 1, we obtain the following:
f ( b ) b − f (a)a b−a 1
≤ (b − a ) q
−1
b
−
1 f ( x)dx b−a ∫ a
1 q
q q n n L p ( a, b) A f ( ) ( a ) , f ( ) ( b ) .
Proposition 2.2. For 𝑞𝑞 = 1 , we obtain the following inequality:
Turkish Journal of Analysis and Number Theory
f ( b ) b − f (a)a
65
b
1
1 f ( x)dx b−a ∫
q ( n) q f (b ) b−a a b s (b − a ) s ≤ L p ( a, b ) A f ' ( a ) , f ' ( b ) . 1 x − a ) x n dx ( 1 − ∫ b q 1 n q f ( n) ( a ) a ∫x dx × be Theorem 2.2. For ∀𝑛𝑛 ∈ ℕ ; let f : I ⊂ [ 0, ∞ ) →= n! − a s (b − a ) n -times differentiable function on I and a, b ∈ I with (𝑛𝑛) 𝑞𝑞 (𝑛𝑛) 𝑞𝑞 b q a < b . If �𝑓𝑓 � ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and �𝑓𝑓 � for 𝑞𝑞 ≥ 1 is n) ( n 𝑠𝑠-convex function in the first sense on [𝑎𝑎, 𝑏𝑏], then the + f ( a ) ∫x a following inequality holds:
−
)
(
1
( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b k f − f ( x)dx ∑ ( −1) ∫ 1 ! k + ( ) k =0 a
q ( n) q f (b ) s (b − a ) 1 K ( s , n, x ) 1 − q b q n 1 x n +1 f ( ) ( a ) = × − n! n + 1 s a (b − a ) b 1 n + q x n) ( + f ( a ) n + 1 a
n −1
q −1
n 1 ≤ (b − a ) Ln q (a, b) n! 1
q q ( n) q (n) f (b ) − f ( a ) K ( s , n, x ) (b − a ) s +1 × . q n + f ( ) ( a ) Lnn (a, b)
p= 1−
Where
1 q
𝑏𝑏
and
𝑝𝑝 > 1
,
1−
𝐾𝐾(𝑠𝑠, 𝑛𝑛, 𝑥𝑥) =
∫𝑎𝑎 (𝑥𝑥 − 𝑎𝑎) 𝑠𝑠 𝑥𝑥 𝑛𝑛 𝑑𝑑𝑑𝑑. Proof. From Lemma1.1 and Power-mean integral inequality, we obtain
f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b − f ( x)dx ∫ k + 1) ! ( a
n −1
k ∑ ( −1)
k =0
a
1
q n n f ( ) (b ) f ( ) (a) K ( s , n, x ) − (b − a ) s (b − a ) s q b n +1 − a n +1 n) ( f (a) 1 + n q
q
1−
1
1
1
q q ( n) q n f ( ) (a) f (b ) K ( s , n, x ) − s +1 (b − a ) s +1 (b − a ) × q b n +1 − a n +1 n) ( + f ( a ) (n + 1)(b − a )
b q 1 ≤ ∫x n dx n! a
1
q x − a s ( n ) q f b ( ) b n b − a × ∫x dx s q a x − a (n) + 1 − b − a f ( a )
q −1
n 1 (b − a ) Ln q (a, b) = n!
q 1 1− ( n ) b f (b ) b q 1 = ∫x n dx ( x − a )s x n dx ∫ s n! (b − a ) a a
1
1
q n f ( ) (a) b s (b − a ) s − ( x − a ) x n dx + ∫ (b − a ) s a q
× +
b n +1 − a n +1 q 1 (b − a ) = n! (n + 1)(b − a )
b
1 n ≤ ∫x n f ( ) ( x ) dx n! 1−
1
1 b n +1 − a n +1 q = n ! n +1
q q ( n) q (n) f (b ) − f ( a ) K ( s , n, x ) (b − a ) s +1 × q n) ( n + f ( a ) Ln (a, b)
66
Turkish Journal of Analysis and Number Theory
This completes the proof of theorem. Corollary 2.2. Under the conditions of Theorem 2.2 for 𝑠𝑠 = 1, we obtain the inequality
f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b − f ( x)dx 1 − ( ) ∑ ∫ 1 ! + k ( ) k =0 a n −1
≤
k
n 1 ( b − a ) Ln n!
q −1 q
( −1)n+1 b n!
∫x
n
n f ( ) ( x ) dx
a 1
b p 1 ≤ ∫1 p dx n! a
1
( a, b )
1
q q ( n ) (n) f ( b ) − f ( a ) b−a × q (n) n + f ( a ) Ln ( a, b )
Lnn++11 ( a, b ) − aLnn ( a, b )
(
1 q
)
.
b p 1 ≤ ∫1.dx n! a
1
b p 1 = ∫1.dx n! a
Proposition 2.3. Under the conditions of Corollary 2.2 for 𝑛𝑛 = 1, we obtain the inequality
f ( b ) b − f (a)a b−a
q q (n) (n) f (b ) − f ( a ) b s x nq ( x − a ) dx ∫ s (b − a ) a n + f ( ) (a)
b
1 f ( x)dx − b−a ∫
q nq ∫x dx a
qb
1
1 q
q 1 ' 1 (2b + a ) f ( b ) 1 q 1− q ≤ A ( a, b) . 6 +(2a + b) f ' ( a ) q
Proposition 2.4. For 𝑞𝑞 = 1 , we obtain the following inequality f ( b ) b − f (a)a
q x − a s ( n ) q f b ( ) b nq b − a ∫x dx s q a x − a (n) + 1 − b − a f ( a )
1
a
b−a
1
q b q ∫x nq f ( n ) ( x ) dx a
b
1 f ( x)dx − b−a ∫ a
≤ (2b + a ) f ( b ) + (2a + b) f ' ( a ) .
=
1 1 (b − a ) p n!
=
1 1 (b − a ) p n!
q q (n) q (n) f (b ) − f ( a ) S ( n, s , q , x ) s (b − a ) + + nq nq 1 1 q b −a n) ( + f ( a ) nq + 1 q q (n) (n) f (b ) − f ( a ) S ( n, s , q , x ) (b − a ) s
'
Theorem 2.3. For ∀𝑛𝑛 ∈ ℕ ; let f : I ⊂ [ 0, ∞ ) → be
n -times differentiable function on I and a, b ∈ I with
1
n + (b − a ) f ( ) ( a )
q
b nq +1 − a nq +1 q (nq + 1)(b − a )
1
q q (n) q (n) a < b . If �𝑓𝑓 � ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and �𝑓𝑓 � for 𝑞𝑞 > 1 is f (b ) − f ( a ) S ( n, s, q, x ) 𝑠𝑠-convex function in the first sense on [𝑎𝑎, 𝑏𝑏], then the 1 + s 1 = (b − a ) (b − a ) following inequality holds: n! q + f ( n ) a Ln n −1 f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b ( ) nq k − ∫ f ( x)dx ∑ ( −1) + k 1 ! ( ) k =0 Corollary 2.3. Under the conditions of Theorem 2.3 for a 𝑠𝑠 = 1 we obtain the inequality 1 q q q (n) (n) f (b ) − f ( a ) n −1 ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b k f − f ( x)dx S n s q x , , , ) ( 1 ∑ ( −1) ≤ (b − a ) ∫ 1 ! k + (b − a ) s +1 ( ) k =0 a n! q + f ( n ) a Ln 1 ( ) nq q q q (n) (n) f (b ) − f ( a ) 𝑏𝑏 𝑛𝑛𝑛𝑛 𝑠𝑠 (b − a ) Where 𝑆𝑆(𝑛𝑛, 𝑠𝑠, 𝑞𝑞, 𝑥𝑥) = ∫𝑎𝑎 𝑥𝑥 (𝑥𝑥 − 𝑎𝑎) 𝑑𝑑𝑑𝑑 . ≤ b−a . (𝑛𝑛) 𝑞𝑞 n! Proof: If �𝑓𝑓 � for 𝑞𝑞 > 1 is 𝑠𝑠-convex function the first q n +1 × Lnq (a, b) − aLnq (a, b) + f ( ) ( a ) Lnq sense on [𝑎𝑎, 𝑏𝑏], using Lemma1.1 and the Hölder integral nq nq 1 + nq inequality, we have the following inequality: (𝑛𝑛) 𝑞𝑞
(𝑛𝑛) 𝑞𝑞
Turkish Journal of Analysis and Number Theory
Proposition 2.5. Under the conditions of Corollary 2.3 for 𝑛𝑛 = 1 we obtain the inequality
f ( b ) b − f (a)a b−a
1 q
1 f ( x)dx b−a ∫
f' b q− f' a q ( ) ( ) ≤ b−a
1
q Lq +1 (a, b) q +1 + f ' ( a ) q Lq . q −aLq (a, b) q
Proposition 2.6. For 𝑞𝑞 = 1 , we obtain the following inequality
f ( b ) b − f (a)a b−a
a+b 1 ( b − a ) Lnnp ( a, b ) f ( n ) . n! 2
=
a
Corollary 2.4. Under the conditions of Theorem 2.4 for 𝑛𝑛 = 1, we obtain the inequality
f ( b ) b − f (a)a b−a
1 f ( x)dx b−a ∫
Theorem 2.4. For ∀𝑛𝑛 ∈ ℕ ; let f : I ⊂ [ 0, ∞ ) → be
[2]
n -times differentiable function on I and a, b ∈ I with 𝑞𝑞
𝑞𝑞
a < b . If �𝑓𝑓 (𝑛𝑛) � ∈ 𝐿𝐿[𝑎𝑎, 𝑏𝑏] and �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠-concave function in the first sense on [𝑎𝑎, 𝑏𝑏], then the following inequality holds:
f ( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b − f ( x)dx 1 − ∑ ( ) ∫ k + 1) ! ( k =0 a
[3] [4]
k
1 n a+b ≤ ( b − a ) Lnnp ( a, b ) f ( ) , n! 2 where 1/ p + 1/ q = 1.
[5] [6]
𝑞𝑞
Proof: If �𝑓𝑓 (𝑛𝑛) � for 𝑞𝑞 > 1 is 𝑠𝑠-concave function the first sense on [𝑎𝑎, 𝑏𝑏], using Lemma1.1, the Hermite-Hadamard inequality and the Hölder integral inequality, we have the following inequality:
( k ) ( b ) b k +1 − f ( k ) ( a ) a k +1 b k f − f ( x)dx ∑ ( −1) ∫ + k 1 ! ( ) k =0 a
[7] [8] [9]
n −1
[10]
b
≤
1 n (n) x f ( x ) dx n! ∫
[11]
a
1
b p 1 ≤ ∫x np dx n! a 1 p
1 np x dx n! ∫ a b
≤
1
q b n q ∫ f ( ) ( x ) dx a
[12] [13] 1 q q
a+b (b − a ) f ( n ) 2 1
np +1 b p x 1 f (n) a + b = (b − a ) n! 2 np + 1 a 1 q
1
1 = (b − a ) q n!
1 a+b f ( x)dx ≤ L p ( a, b ) f ' . b−a ∫ 2 a
References
a
[1]
n −1
b
−
b
−
1 (2b + a ) f ' ( b ) + (2a + b) f ' ( a ) . 6
≤
1
1 p
b np +1 − a np +1 p ( n ) a + b 1 = (b − a ) (b − a ) f n! 2 (np + 1)(b − a )
b
−
67
1
b np +1 − a np +1 p ( n ) a + b f np + 1 2
[14] [15] [16] [17]
M. Alomari, M. Darus and S. S. Dragomir, “New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex”, Tamkang Journal of Mathematics, 41 (4), 2010, 353-359. S.-P. Bai, S.-H. Wang And F. Qi, “Some Hermite-Hadamard type inequalities for n-time differentiable (a,m) -convex functions”, Jour. of Ineq. and Appl., 2012, 2012: 267. P. Cerone, S. S. Dragomir and J. Roumeliotis, “Some Ostrowski type inequalities for n-time differentiable mappings and applications”, Demonstratio Math., 32 (4) (1999), 697-712. P. Cerone, S. S. Dragomir and J. Roumeliotis and J. ˇsunde, “A new generalization of the trapezoid formula for n-time differentiable mappings and applications”, Demonstratio Math., 33 (4) (2000), 719-736. S. S. Dragomir and C. E. M. Pearce, “Selected Topics on HermiteHadamard Inequalities and Applications”, RGMIA Monographs, Victoria University, 2000. D.-Y. Hwang, “Some Inequalities for n-time Differentiable Mappings and Applications”, Kyung. Math. Jour., 43 (2003), 335-343. D. A. Ion, “Some estimates on the Hermite-Hadamard inequalities through quasi-convex functions”, Annals of University of Craiova, Math. Comp. Sci. Ser., 34 (2007), 82-87. J. L. W. V. Jensen, “On konvexe funktioner og uligheder mellem middlvaerdier”, Nyt. Tidsskr. Math. B., 16, 49-69, 1905. W.-D. Jiang, D.-W. Niu, Y. Hua and F. Qi, “Generalizations of Hermite-Hadamard inequality to n-time differentiable function which are s -convex in the second sense”, Analysis (Munich), 32 (2012), 209-220. U. S. Kirmacı, M. K. Bakula, M. E. Özdemir and J. Pe´Cari´C, “Hadamard-type inequalities for s -convex functions”, Appl. Math. and Comp., 193 (2007), 26-35. M. E. Özdemir and U. S. Kırmacı, “Two new theorem on mappings uniformly continuous and convex with applications to quadrature rules and means”, Appl. Math. and Comp., 143 (2003), 269-274. M. E. Özdemir, Ç. Yildiz, “New Inequalities for n-time differentiable functions”, Arxiv: 1402. 4959v1. M. E. Özdemir, Ç. Yıldız, “New Inequalities for HermiteHadamard and Simpson Type with Applications”, Tamkang J. of Math., 44, 2, 209-216, 2013. M. E. Özdemir, Ç. Yıldız, A. O. Akdemir And E. Set, “New Inequalities of Hadamard Type for Quasi-Convex Functions”, AIP Conference Proceedings, 1470, 99-101 (2012). J. E. Peˇcari´c, F. Porschan and Y. L. Tong, “Convex Functions, Partial Orderings, and Statistical Applications”, Academic Press Inc., 1992. A. Saglam, M. Z. Sarıkaya and H. Yıldırım, “Some new inequalities of Hermite-Hadamard’s type”, Kyung. Math. Jour., 50 (2010), 399-410. E. Set, M. E. Özdemir and S. S. Dragomir, “On Hadamard-Type Inequalities Involving Several Kinds of Convexity”, Jour. of Ineq. and Appl., 2010, 286845.
68
Turkish Journal of Analysis and Number Theory
[18] S. H. Wang, B.-Y. Xi and F. Qi, “Some new inequalities of
[20] S. Maden, H. Kadakal, M. Kadakal and İ. İşcan, “Some new
Hermite-Hadamard type for n-time differentiable functions which are m-convex”, Analysis (Munich), 32 (2012), 247-262. [19] B.-Y. Xi and F. Qi, “Some integral inequalities of HermiteHadamard type for convex functions with applications to means”, J. Funct. Spaces Appl., (2012).
integral inequalities for n-times differentiable convex and concave functions”. https://www.researchgate.net/publication/312529563, (Submitted) [21] S. S. Dragomir, S. Fitzpatrick, “The Hadamard’s inequality for s-convex functions in the second sense”, Demonstratio Math., 32, No. 4 (1999), 687-696.