Toxicity of biopesticides to green apple aphid in apple-tree

6 downloads 82826 Views 267KB Size Report
100 % fatty acids) and Insecticidal Soap (a. i. 20 % fatty acids) to green apple aphid ... Key words: biopesticides, green apple aphid, toxicity. ... ic to A. pomi.
SCIENTIFIC WORKS OF THE LITHUANIAN INSTITUTE OF HORTICULTURE AND LITHUANIAN UNIVERSITY OF AGRICULTURE. SODININKYSTĖ IR DARŽININKYSTĖ. 2009. 28(3).

Toxicity of biopesticides to green apple aphid in apple-tree Laimutis Raudonis, Alma Valiuškaitė, Laisvūnė Duchovskienė, Elena Survilienė Lithuanian Institute of Horticulture, Kauno 30, LT-54333 Babtai, Kaunas distr., Lithuania, e-mail [email protected]

During two-year trial there was examined the toxicity of biopesticides BioNature R2000 (a. i. azadirachta indica 210 g/l, Pinus resinosa 180 g/l, Ricinus communis), Bioshower (a. i. 100 % fatty acids) and Insecticidal Soap (a. i. 20 % fatty acids) to green apple aphid (Aphis pomi Deg.) in apple-tree at the Lithuanian Institute of Horticulture. BioNature R2000, Bioshower and Insecticidal Soap applied to A. pomi were moderately toxic after 3 days and very toxic after 14 days. It is allowed to use biopesticides BioNature R2000, Bioshower and Insecticidal Soap in organic farming in many countries and according to the trial data they could be effectively applied for control of green apple aphid in apple growing. Key words: biopesticides, green apple aphid, toxicity.

Introduction. European guidelines for fruit production require restrictions in pesticide use (Dickler, Schaefermeyer, 1991). On the other hand, increasing consumer concerns over the use of pesticides has lead growers to adopt more environmentally friendly Integrated Pest Management (IPM) or Organic Farming (OF) approaches. The Integrated Pest Management (IPM), which is based on selective toxicity of pesticides to the invertebrate pests and harmless to predatory mites and insects, became the most relevant strategy of plant protection (Gruys et al., 1980; Tuovinen, 1992; Edland, 1994; Leake, 2000; Cuthbertson, Murchie, 2003). For the development of successful IPM and OF strategies, information is required on the direct effect of chemicals upon the invertebrate pests of a given ecosystem. The toxicity of pesticides on pests has been widely studied in many countries, using a range of different chemical pesticides at different rates on various developmental stages (Duso et al., 1992; Sterk et al., 1994; Kim, Yoo, 2002; Choi et al., 2003; Hardman et al., 2003; Cuthbertson, Murchie, 2003; Raudonis et al., 2004; Martínez-Villar et al., 2005). However, the existing active substances of pesticides are reviewed by European Commission and many old with detrimental effect active substances will be withdrawn from the market.

173

The organic market has grown exponentially in Europe during the last ten years. However, the organic fruit industry has shown the lowest growth rates (1–5 % market share) in comparison with the other approaches. One major reason is the high production risk due to high pest pressure and lack of control means (Tamm, 2004). Only some biopesticides, like Insecticidal soap, Azadirachtin and etc. are allowed to use for pest control in organic farming (Compendium of UK Organic standards, 2006). Only few studies on toxicity of biopesticides to A. pomi were carried out (Castagnoli et al., 2002). The aim of this study was to investigate the toxicity of some biopesticides on A. pomi. Object, methods and conditions. Field trials were carried out on apple-trees under organic growing conditions at the Lithuanian Institute of Horticulture in 2005– 2006. Biopesticides BioNature R2000 3.0 l ha l-1 (a. i. Azadirachtin 210 g l-1, Pinus resinosa 180 g l-1, Ricinus communis), Bioshower 5.0 l ha l-1 (a. i. 100 % fatty acids) and Insecticidal Soap 20.0 l ha-1 (a. i. 20 % fatty acids) were tested. Apple-trees by naturally occurring green apple aphid (Aphis pomi Deg.) were directly sprayed with spray mixture equivalent to 500 l/ha at 73 growth stage according to BBCH scale (Meier, 1997). 5 trees were sprayed and 3 trees assessed for each replicate. The treatments were repeated four times at random plot distribution. The number of living aphids were counted or estimated on 10 previously marked extension shoots per plot. The first assessment was made immediately before application at 73 growth stage, the second – 3 (73 growth stage) and the last 14 (75 growth stage) days after application. Mortality of aphids was calculated: x = 100 (1 - Ab/Ba) (x – mortality, %, A – number of aphids before spraying in untreated plot, B – before spraying in treated plot, a – after spraying in untreated plot, b – after spraying in treated plot). The mortality of aphids was explained according to the quantitative toxicity categories employed by the International Organization for Biological Control for assessment of pesticide toxicity to predatory and phytophagous mites in field trials: non-toxic (< 25 % mortality), slightly toxic (25–50 %), moderately toxic (51–75 %), very toxic (> 75 %) (Hassan et al., 1985). The number of aphids was compared among treatments in this study with a single factor analysis of variance (ANOVA). Specific differences were identified with Duncan’s multiple range test. Results. Tables 1 and 2 describes the effect and mortality of biopesticides to green apple aphid. In 2005 there was increase in the population of A. pomi in untreated plots. There were observed from 185 to 237 and from 82 to 96 A. pomi per 10 shoots in 2005 and 2006, respectively. All the tested products (BioNature R2000, Bioshower and Insecticidal soap) significantly reduced mean numbers of A. pomi. The mortality of BioNature R2000 3.0 l ha-1 to A. pomi ranged from 67.0 to 78.5 %, Bioshower 5.0 l ha-1 – 68.4–83.1 % and Insecticidal soap 20.0 l ha-1 – 64.9–84.8 %. BioNature R2000, containing 210 g l-1 Azadirachtin was moderately and/or very toxic to A. pomi. Higher toxicity of BioNature R2000 to A. pomi was achieved 14 days after treatment than 3 days after treatment. Insecticidal soap and Bioshower were rated as moderately or very toxic to A. pomi. 174

Table 1. Effects of biopesticides on survival of Green apple aphid (A. pomi) in apple-tree in 2005 1 lentelė. Biopesticidų poveikis žaliųjų obelinių amarų (A. pomi) mirtingumui, 2005 m. Mean number of aphids per 10 shoots Treatment Variantai

Control

Nepurkšta

BioNature R2000 Bioshower Insecticidal Soap

Insekticidinis muilas

Rate

Vidutinis amarų skaičius 10 ūglių

Mortality

Mirtingumas (%)

before 3 days after 14 days after 3 days after 14 days after treatment treatment treatment treatment treatment (l ha ) A

Norma -1

3.0 5.0 20.0

prieš 3 dienos po 14 dienų po 3 dienos po 14 dienų po apdorojimą apdorojimo apdorojimo apdorojimo apdorojimo

185 a

153 b

111 b

-

-

220 ab 237 b 231 b

60 a 62 a 67 a

35 a 24 a 21 a

67.0 a 68.4 a 64.9 a

78.5 a 83.1 a 84.8 a

Means followed by the same letter are not different significantly (P = 0.05) according to Duncan’s multiple range test Tomis pačiomis raidėmis pažymėtos reikšmės pagal Dunkano kriterijų (P = 0,05) iš esmės nesiskiria

Table 2. Effects of biopesticides on survival of Green apple aphid (A. pomi) in apple-tree in 2006 2 lentelė. Biopesticidų poveikis žaliųjų obelinių amarų (A. pomi) mirtingumui, 2006 m. Mean number of aphids per 10 shoots Treatment Variantai

Control

Nepurkšta

BioNature R2000 Bioshower Insecticidal Soap

Insekticidinis muilas

Rate

Vidutinis amarų skaičius 10 ūglių

before treatment (l ha ) A

Norma -1

3.0 5.0 20.0

Mortality

Mirtingumas (%)

3 days after 14 days after 3 days after 14 days after treatment treatment treatment treatment

prieš 3 dienos po 14 dienų po 3 dienos po 14 dienų po apdorojimą apdorojimo apdorojimo apdorojimo apdorojimo

82 a

89 b

81 c

-

-

96 b 95 ab 91 ab

30 a 27 a 23 a

26 b 16 a 14 a

71.2 a 73.8 a 74.7 a

76.6 a 82.9 b 84.4 b

Means followed by the same letter are not different significantly (P = 0.05) according to Duncan’s multiple range test

Tomis pačiomis raidėmis pažymėtos reikšmės pagal Dunkano kriterijų (P = 0,05) iš esmės nesiskiria

Discussion. Little is known concerning the toxicity of biopesticides on pests in orchards. The toxicity of biopesticides on aphids has been studied in some experiments, using Insecticidal soap or products based on Azadirachtin (Schuster, Stansly, 2000; Ahmad et al., 2003; Bostanian et al., 2005; Bostanian, Akalach, 2006; Karagounis et al., 2006; Kraiss, Cullen, 2008; Tremblay et al., 2008). However, studies showed controversial toxicity of biopesticides depending on pest or their predators life stage, species, abiotic factors or even different years (Imai et al., 1995; Schuster, 175

Stansly, 2000; Ahmad et al., 2003; Karagounis et al., 2006; Kraiss, Cullen, 2008). BioNature R2000, containing 210 g l-1 Azadirachtin was moderately and/or very toxic to A. pomi. Little is known on toxicity of BioNature R2000 to A. pomi from other studies. Similar toxicity results on Dysaphis plantaginea Passerini have been obtained in Germany. Various preparations based on Azadirachta indica were highly efficient against aphids (Hummel, Kleeberg, 1997; Wyss, 1997). In our study higher toxicity of BioNature was achieved 14 days after treatment than 3 days after treatment. It can be explained that Azadirachtin does not kill directly and insects remain alive, but it stops insects to take up food. Only few days later insects become inactive, move uncoordinatedly and cannot molt successfully and in consequence it dies (Kleeberg et al., 1997). There are not published data on toxicity of Bioshower to A. pomi. However, both formulations of Bioshower and Insecticidal soap are based on fatty acids. Some authors have found that Insecticidal soap provided significant control of populations of D. plantaginea, A. pomi and Myzus persicae Sulzer or other aphid species (Lawson, Weires, 1991; Reuter et al., 1993; Imai et al., 1995; Karagounis et al., 2006; Kraiss, Cullen, 2008). Similar results were obtained in our test, whereas Insecticidal soap and Bioshower were rated as moderately or very toxic to A. pomi. Conclusions. In conclusion, the results of this study show that BioNature R2000, Bioshower and Insecticidal Soap are from moderately toxic to very toxic to A. pomi. The mortality of BioNature R2000 3.0 l ha-1 to A. pomi ranged from 67.0 to 78.5 %, Bioshower 5.0 l ha-1 – 68.4–83.1 % and Insecticidal soap 20.0 l ha-1 – 64.9–84.8 %. All the tested biopesticides are allowed to use in organic farming in many countries and according to the trial data could be effectively applied for control of A. pomi in apple growing. Gauta 2009 06 Parengta spausdinti 2009 08 04

References 1. Ahmad M., Ossiewatsch H. R., Basedow T. 2003. Effects of neem-treated aphids as food/hosts on their predators and parasitoids. Journal of Applied Entomology, 127(8): 458–464. 2. Bostanian N. J., Akalach M. 2006. The effect of indoxacarb and five other insecticides on Phytoseiulus persimilis (Acari : Phytoseiidae), Amblyseius fallacis (Acari : Phytoseiidae) and nymphs of Orius insidiosus (Hemiptera : Anthocoridae). Pest Management Science, 62(4): 334–339. 3. Bostanian N. J., Akalach M., Chiasson H. 2005. Effects of a Chenopodium-based botanical insecticide/acaricide on Orius insidiosus (Hemiptera : Anthocoridae) and Aphidius colemani (Hymenoptera : Braconidae). Pest Management Science, 61(10): 979–984.

176

4. Castagnoli M., Angeli G., Liguori M., Forti D., Simoni S. 2002. Side effects of botanical insecticides on predatory mite Amblyseius andersoni (Chant). Journal of Pest Science, 75(5): 122–127. 5. Choi W., Lee S. G., Park H. M., Ahn Y. J. 2003. Toxicity of Plant Essential Oils to Tetranychus urticae (Acari: Tetranychidae) and Phytoseiulus persimilis (Acari: Phytoseiidae). Journal of Economic Entomology, 97(2): 553–558. 6. Compendium of UK Organic standards. 2006. http://www.defra.gov.uk/farm/ organic/standards/ 7. Cuthbertson A. G. S., Murchie A. K. 2003. The impact of fungicides to control apple scab (Venturia inaequalis) on the predatory mite Anystis baccarum and its prey Aculus schlechtendali (apple rust mite) in Northern Ireland Bramley orchards. Crop protection, 22: 1125–1130. 8. Dickler E., Schafermeyer S. 1991. General principles, guidelines and standards for integrated production of pome fruits in Europe and procedures for endorsement of national or regional guidelines and standards. IOBC/WPRS Bulletin, 14(3): 1–67. 9. Duso C., Camporese P., Geest L. P. S. 1992. Toxicity of a number of pesticides to strains of Typhlodromus pyri and Amblyseius andersoni (Acari: Phytoseiidae). Entomophaga, 37: 363–372. 10. Edland T. 1994. Side-effects of fungicide and insecticide sprays on phytoseiid mites in apple orchards. Norwegian Journal of Agricultural sciences, 17: 195–204. 11. Gruys P., Jong D. J., Mandersloot H. J. 1980. Implementation of integrated control in orchards. In: A. K. Minks, P. Gruys (eds.). Integrated control of insects pests in the Netherlands. Wageningen: Pudoc, 11–17. 12. Hardman J. M., Franklin J. L., Moreau D. L., Bostanian N. J. 2003. An index for selective toxicity of miticides to phytophagous mites and their predators based on orchard trials. Pest Management Science, 59: 1324–1332. 13. Hassan E., Oomen P. A., Overmeer W. P., Plevoets J. P., Reboulet J. N., Rieckmann W., Samsoe-Petersen L., Shires S. W., Staubli A., Stevensen J., Tuset J. J., Vanwetswinkel G., Zon A. Q. 1985. Standard methods to the test of side-effects of pesticides on natural enemies of insects and mites developed by the IOBC/WPRS Working Group “Pesticides and Beneficial Organisms”, OEPP/ EPPO Bulletin, 15: 214–255. 14. Hummel E., Kleeberg H. 1997. New results on the practical application of NeemAzal-formulations. In: K. H. Hoffmann, W. Volkl (eds). Mitteilungen der deutschen gesellschaft fuer allgemeine und angewandte entomologie. Bremen, 331–336. 15. Imai T., Tsuchiya S., Fujimori T. 1995. Humidity effects on activity of insecticidal soap for the Green Peach Aphid, Myzus-Persicae (Sulzer) (Hemiptera, Aphididae). Applied Entomology And Zoology, 30(1): 185–188. 16. Karagounis C., Kourdoumbalos A. K., Margaritopoulos J. T., Nanos G. D., Tsitsipis J. A. 2006. Organic farming-compatible insecticides against the aphid Myzus persicae (Sulzer) in peach orchards. Journal Of Applied Entomology, 130(3): 150–154. 177

17. Kim S. S., Yoo S. S. 2002. Comparative toxicity of some acaricides to the predatory mite, Phytoseiulus persimilis and the two spotted spider mite, Tetranychus urticae. BioControl, 47(5): 563–573. 18. Kleeberg H., Hummel E., Tross R. 1997. Different strategies to control the rosy apple aphid Dysaphis plantaginea in organic apple growing. In K. H. Hoffmann, W. Volkl (eds.). Mitteilungen der deutschen gesellschaft fuer allgemeine und angewandte entomologie. Bremen, 223–226. 19. Kraiss H., Cullen E. M. 2008. Efficacy and nontarget effects of reduced-risk insecticides on Aphis glycines (Hemiptera : Aphididae) and its biological control agent Harmonia axyridis (Coleoptera: Coccinellidae). Journal Of Economic Entomology, 101(2): 391–398. 20. Lawson D. S., Weires R. W. 1991. Management of European red mite (Acari, Tetranychidae) and several aphid species on apple with petroleum oils and an insecticidal soap. Journal of Economic Entomology, 84(5): 1 550–1 557. 21. Leake A. 2000. The development of integrated crop management in agricultural crops: comparisons with conventional methods. Pest Management Science, 56(11): 950–953. 22. Martínez-Villar E., Sáenz-De-Cabezón F. J., Moreno-Grijalba F., Marco V., Pérez-Moreno I. 2005. Effects of azadirachtin on the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Experimental and Applied Acarology, 35(3): 215–222. 23. Meier U. 1997. Growth stages of Mono- and Dicotyledonous plants. BBCH Monograph. Berlin: Blackwell Wissenschafts-Verlag. 24. Raudonis L., Survilienė E., Valiuškaitė A. 2004. Toxicity of Pesticides to Predatory Mites and Insects in Apple-tree site under field conditions. Environmental Toxicology, 19 (4): 291–295. 25. Reuter L. L., Toscano N. C., Perring T. M. 1993. Modification of feeding-behavior of Myzus-Persicae (Homoptera, Aphididae) by selected compounds. Environmental Entomology, 22(5): 915–919. 26. Schuster D. J., Stansly P. A. 2000. Response of two lacewing species to biorational and broad-spectrum insecticides. Phytoparasitica, 28(4): 297–304. 27. Sterk G., Creemers P., Merckx K. 1994. Testing the side effects of pesticides on the predatory mite Typhlodromus pyri (Acari, Phytoseiidae) in the field trials. IOBC/WPRS Bull, 17(10): 27–40. 28. Tamm L., Haseli A., Fuchs J. G., Weibel F. P., Wyss E. 2004. Organic fruit production in humid climates of Europe: Bottlenecks and new approaches in disease and pest control. Acta Horticulturae, 638: 333–339. 29. Tremblay B., Belanger A., Brosseau M., Boivin G. 2008. Toxicity and sublethal effects of an insecticidal soap on Aphidius colemani (Hymenoptera : Braconidae). Pest Management Science, 64(3): 249–254. 30. Tuovinen T. 1992. Predatory mites in Finish apple orchards. Acta Phyt. Ent. Hungarica, 27(2): 609–613. 31. Wyss E. 1997. Different strategies to control the rosy apple aphid Dysaphis plantaginea in organic apple growing. In: K. H. Hoffmann, W. Volkl (eds.). Mitteilungen der deutschen gesellschaft fuer allgemeine und angewandte entomologie. Bremen, 233–236. 178

SODININKYSTĖ IR DARŽININKYSTĖ. MOKSLO DARBAI. 2009. 28(3).

Biopesticidų toksiškumas žaliesiems obeliniams amarams L. Raudonis, A. Valiuškaitė, L. Duchovskienė, E. Survilienė Santrauka Lietuvos sodininkystės ir daržininkystės institute dvejus metus tirtas biopesticidų BioNature R2000 (a.i. azadirachta indica 210 g/l, Pinus resinosa 180 g/l, Ricinus communis), Bioshower (v. m. 100 % riebiosios rūgštys) ir insekticidinio muilo (v. m. 20 % riebiosios rūgštys) toksiškumas žaliesiems obeliniams amarams (Aphis pomi Deg.). BioNature R2000, Bioshower ir insekticidinis muilas praėjus 3 dienoms po purškimo buvo vidutiniškai toksiški žaliesiems obeliniams amarams, o praėjus 14 dienų – labai toksiški. Biopesticidai BioNature R2000, Bioshower ir insekticidinis muilas yra leidžiami naudoti ekologi­niuose ūkiuose kenkėjams naikinti daugelyje šalių. Mūsų tyrimai rodo, kad šie produktai yra efektyvūs nuo žaliųjų obelinių amarų ir gali būti naudojami ekologiškai auginant obelis. Reikšminiai žodžiai: biopesticidai, toksiškumas, žalieji obeliniai amarai.

179