Traveling Wavefronts of Competing Pioneer and Climax Model with ...

1 downloads 0 Views 2MB Size Report
Mar 21, 2013 - We study a competing pioneer-climax species model with nonlocal diffusion. By constructing a pair of .... traveling wave solutions for (2) ([4Ҁ“6]).
Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2013, Article ID 725495, 12 pages http://dx.doi.org/10.1155/2013/725495

Research Article Traveling Wavefronts of Competing Pioneer and Climax Model with Nonlocal Diffusion Xiaojing Yu, Peixuan Weng, and Yehui Huang School of Mathematics, South China Normal University, Guangzhou 510631, China Correspondence should be addressed to Peixuan Weng; [email protected] Received 17 November 2012; Revised 11 March 2013; Accepted 21 March 2013 Academic Editor: Dumitru Baleanu Copyright Β© 2013 Xiaojing Yu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We study a competing pioneer-climax species model with nonlocal diffusion. By constructing a pair of upper-lower solutions and using the iterative technique, we establish the existence of traveling wavefronts connecting the pioneer-existence equilibrium and the coexistence equilibrium. We also discuss the asymptotic behavior of the wave tail for the traveling wavefronts as 𝑠 = π‘₯ + 𝑐𝑑 β†’ βˆ’βˆž.

1. Introduction As we know, the interactions among species are important in determining the process of evolution for the ecosystem, and the modeling accompanied with the mathematical analysis of the models can help people to understand and control the propagation of species. In general, the per capital growth rate (i.e., fitness) for a species in the model is assumed to be a function of a weighted total density of all interacting species. A well-known example is the standard Lotka-Volterra model; its fitness of a species is a linear function. It is natural to consider other kinds of fitness functions other than the linear one, because of the various species and interaction rules. In this paper, we will analyze a reaction-diffusion model describing pioneer and climax species. This model describes interaction among species with peculiar fitness functions. A species is called a pioneer species if it thrives best at lower density but its fitness decreases monotonically with total population density for overcrowded. Thus, the fitness function of a pioneer species is assumed to be a decreasing function. Pine and yellow poplar are the species of this type. A species is called a climax species if its fitness increases up to a maximum value and then decreases of its total density. Hence, a climax population is assumed to have a nonmonotone, β€œonehumped” smooth fitness function. Oak and maple are the climax species.

A typical reaction-diffusion model for a pioneer-climax species is given by the following system: πœ•2 𝑒 πœ•π‘’ = 𝑑1 2 + 𝑒𝑓 (𝑐11 𝑒 + 𝑐12 V) , πœ•π‘‘ πœ•π‘₯ πœ•V πœ•2 V = 𝑑2 2 + V𝑔 (𝑐21 𝑒 + 𝑐22 V) , πœ•π‘‘ πœ•π‘₯

(1)

where 𝑒 and V represent densities of the pioneer and climax species, respectively. 𝑓 and 𝑔 denote the pioneer fitness function and climax fitness function, respectively, 𝑐𝑖𝑗 > 0 (𝑖, 𝑗 = 1, 2). By making changes of variables 𝑒̃ = 𝑐21 𝑒, ΜƒV = 𝑐12 V, system (1) changes into the form (the tildes of 𝑒̃ and ΜƒV are dropped out) πœ•2 𝑒 πœ•π‘’ = 𝑑1 2 + 𝑒𝑓 (𝑐11 𝑒 + V) , πœ•π‘‘ πœ•π‘₯ πœ•V πœ•2 V = 𝑑2 2 + V𝑔 (𝑒 + 𝑐22 V) , πœ•π‘‘ πœ•π‘₯

(2)

where we still use 𝑐11 and 𝑐22 as the new coefficients without confusing. From the previous introduction, we assume that the pioneer fitness function 𝑓 satisfies 𝑓󸀠 (𝑧) < 0,

𝑓 (𝑧0 ) = 0

(3)

2

Abstract and Applied Analysis

𝑔()

𝑓(𝑒)

𝑧0 π‘œ

𝑒

π‘œ

(a)

𝑀1

𝑀2



(b)

Figure 1: Typical fitness functions for pioneer species and climax species.

for some 𝑧0 > 0, and the climax fitness function 𝑔 satisfies 𝑔 (𝑀1 ) = 𝑔 (𝑀2 ) = 0,

0 < 𝑀1 < 𝑀2 ,

(π‘€βˆ— βˆ’ 𝑀) 𝑔󸀠 (𝑀) > 0 for 𝑀 =ΜΈ π‘€βˆ— ∈ (𝑀1 , 𝑀2 ) .

(4)

βˆ’ π‘Ž, Hassell Ricker [1] used the fitness function 𝑓(𝑒) = 𝑒 and Comins [2] used the fitness function 𝑓(𝑒) = (π‘Ÿ/(1 + 𝑏𝑒)𝑝 ) βˆ’ π‘Ž, and Cushing [3] used the fitness function 𝑔(𝑒) = π‘’π‘’π‘Ÿ(1βˆ’π‘’) βˆ’ π‘Ž. It is obvious that these 𝑓 and 𝑔 have the curves in Figure 1. There are some existing results about the stability and traveling wave solutions for (2) ([4–6]). About traveling wave solutions, Brown et al. [4] studied the traveling wave of (1) connecting two boundary equilibria by singular perturbation technique, and Yuan and Zou [6] obtained the existence of traveling wave solutions connecting a monoculture state and a coexistence state by upper-lower solution method combined with the Schauder fixed point theorem. Also see van Vuuren [7] for the existence of traveling plane waves in a general class of competition-diffusion systems and Murray [8] for more biological description of traveling wave solutions. For system without spatial diffusion, the model will be 𝑑V = V𝑔 (𝑒 + 𝑐22 V) . 𝑑𝑑

+∞ πœ•π‘’ (𝑑, π‘₯) = 𝑑1 ∫ 𝐽 (𝑦 βˆ’ π‘₯) [𝑒 (𝑑, 𝑦) βˆ’ 𝑒 (𝑑, π‘₯)] 𝑑𝑦 πœ•π‘‘ βˆ’βˆž

+ 𝑒 (𝑑, π‘₯) 𝑓 (𝑐11 𝑒 + V) , +∞ πœ•V (𝑑, π‘₯) = 𝑑2 ∫ 𝐽 (𝑦 βˆ’ π‘₯) [V (𝑑, 𝑦) βˆ’ V (𝑑, π‘₯)] 𝑑𝑦 πœ•π‘‘ βˆ’βˆž

(6)

+ V (𝑑, π‘₯) 𝑔 (𝑒 + 𝑐22 V) ,

π‘Ÿ(1βˆ’π‘’)

𝑑𝑒 = 𝑒𝑓 (𝑐11 𝑒 + V) , 𝑑𝑑

by the variation of the population near π‘₯. As we know that the individuals can move freely, then the movement of individuals is bounded to affect the other individuals. So, the Laplacian operator may have some shortage to describe the diffusion. One way to deal with this problem is to replace the Laplacian operator with a convolution diffusion ∞ term βˆ«βˆ’βˆž 𝐽(π‘₯ βˆ’ 𝑦)[𝑒(𝑑, 𝑦) βˆ’ 𝑒(𝑑, π‘₯)]𝑑𝑦. This implies that the probability distribution function for the population at location 𝑦 moving to the location π‘₯ is 𝐽(π‘₯ βˆ’ 𝑦). At time 𝑑, the total individuals that move from the whole space into the ∞ location π‘₯ will be βˆ«βˆ’βˆž 𝐽(π‘₯ βˆ’ 𝑦)[𝑒(𝑑, 𝑦) βˆ’ 𝑒(𝑑, π‘₯)]𝑑𝑦. Therefore, one may call it as a nonlocal diffusion, and, correspondingly, call πœ•2 𝑒(𝑑, π‘₯)/πœ•π‘₯2 as a local diffusion. During the recent years, the models with the nonlocal diffusion have been attracted much more attentions (see [15–18]). In this paper, instead of (2), we will concentrate on the following pioneer-climax species with nonlocal diffusion:

(5)

Selgrade and Roberds [9], Sumner [10] analyzed the Hopf bifurcation of (5), and Selgrade and Namkoong [11], Sumner [12] considered the stable periodic behavior of (5). Because of the existence of rich equilibria and the various ranges of parameters, the dynamics of ordinary differential system (5) are complex, and a detailed review of all equilibrium types can be found in Buchanan [13, 14]. Although the Laplacian operator Ξ” := πœ•2 /πœ•π‘₯2 is always used to model the diffusion of the species, it suggests that the population at the location π‘₯ can only be influenced

where 𝑑1 , 𝑑2 are positive constants accounting for the diffusivity, 𝐽(𝑧) is a kernel function which is continuous on R satisfying ∫ 𝐽 (π‘₯) 𝑑π‘₯ = 1, R

𝐽 (π‘₯) = 𝐽 (βˆ’π‘₯) ∫ 𝐽 (π‘₯) 𝑒]π‘₯ 𝑑π‘₯ < ∞ R

𝐽 (π‘₯) β‰₯ 0, for π‘₯ ∈ R,

(A1)

for any fixed ] ∈ [0, ∞) .

We are interested in traveling wavefronts accounting for a mildinvasion of the two species (traveling wavefronts connecting a boundary equilibrium and the coexistence equilibrium). For system (2), the sufficient condition for (2) to have a mildinvasion is 𝑑2 /𝑑1 β‰₯ 1/2 (see [6]), but our condition in this paper for system (6) is 𝑑2 /𝑑1 β‰₯ 1, which reveals a fact that the nonlocal diffusion of either the pioneer species or the climax species did affect the climax invasion and wave propagation. Please see Section 5 for the discussion. The remaining of this paper is organized as follows. In Section 2, there are some preliminaries about the equilibria and the system is transformed into a cooperative one. In Section 3, we prove the existence of traveling wavefronts by using an iteration scheme combined with a pair of admissible upper and lower solutions, which can be constructed obviously, and thus a criterion of the existence for traveling wavefronts is obtained. We also give a discussion on asymptotic behavior for the traveling wavefront tail as 𝑠 = π‘₯ + 𝑐𝑑 β†’ βˆ’βˆž in Section 4. At last, we give some concluding discussions in Section 5.

Abstract and Applied Analysis

3

2. Preliminaries



It is evident that (0, 0) is a trivial equilibrium of (6). The system (6) has at least four equilibria and at most six equilibria. The existence of nonnegative steady states depends on the locations of the three nullclines: 𝑐11 𝑒 + V = 𝑧0 ,

𝑒 + 𝑐22 V = 𝑀1 ,

𝑒 + 𝑐22 V = 𝑀2 .

(7)

The long-term behavior of solutions to (6) can be qualitatively different caused by the different number, distribution, and types of equilibria. The dynamics of the system (6) are of course very rich and complex. However, in this paper, we will only consider the following case: 𝑧 𝑀1 < 0 < 𝑀2 . 𝑐11

𝑀 𝑧0 > 2 , 𝑐22

𝑐22 𝑧0 βˆ’ 𝑀2 , 𝑐11 𝑐22 βˆ’ 1

Vβˆ— =

𝑐11 𝑀2 βˆ’ 𝑧0 . 𝑐11 𝑐22 βˆ’ 1

(9)

It is obvious that π‘’βˆ— < 𝑧0 /𝑐11 . We further assume that βˆ—

𝑀 ≀𝑒

βˆ—

+ V (𝑑, π‘₯) 𝑔 (

𝑀1 /𝑐22

𝑒 + 𝑐22  = 𝑀2

𝑒 + 𝑐22  = 𝑀1

𝑀1

(π‘’βˆ— , βˆ— )

+ π‘€βˆ—

𝑒 𝑧0 /𝑐11

𝑀2

Figure 2: One coexistence state for the two species with π‘€βˆ— ≀ π‘’βˆ— .

wavefront is a traveling wave solution (πœ™(𝑠), πœ‘(𝑠)) which has finite limits (πœ™(±∞), πœ‘(±∞)). Denoting the traveling wave coordinate π‘₯ + 𝑐𝑑 still by 𝑑, we derive the wave profile system from (11): +∞

βˆ’βˆž

(10)

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑)

+ (πœ™ (𝑑) βˆ’ σΈ€ 

π‘πœ‘ (𝑑) = 𝑑2 ∫

+∞

βˆ’βˆž

𝑧0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) , 𝑐11

(12)

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑)

+ πœ‘ (𝑑) 𝑔 (

𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) . 𝑐11

Associated with (12), we consider its solutions subject to the following boundary value conditions:

+∞ πœ•π‘’ (𝑑, π‘₯) = 𝑑1 ∫ 𝐽 (𝑦 βˆ’ π‘₯) 𝑒 (𝑑, 𝑦) 𝑑𝑦 βˆ’ 𝑑1 𝑒 (𝑑, π‘₯) πœ•π‘‘ βˆ’βˆž

+∞ πœ•V (𝑑, π‘₯) = 𝑑2 ∫ 𝐽 (𝑦 βˆ’ π‘₯) V (𝑑, 𝑦) 𝑑𝑦 βˆ’ 𝑑2 V (𝑑, π‘₯) πœ•π‘‘ βˆ’βˆž

𝑀2 /𝑐22

π‘πœ™σΈ€  (𝑑) = 𝑑1 ∫

for the technical reason. See Figure 2 for this situation. As mentioned in the introduction, we are interested in the coexistence of the two species. That means that we will seek traveling wavefronts connecting equilibrium (𝑧0 /𝑐11 , 0) and equilibrium (π‘’βˆ— , Vβˆ— ). By making changes of variables 𝑒̃ = 𝑧0 /𝑐11 βˆ’ 𝑒, ΜƒV = V and dropping the tildes, system (6) becomes

𝑧 + (𝑒 (𝑑, π‘₯) βˆ’ 0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 𝑒 + V) , 𝑐11

𝑐11 𝑒 +  = 𝑧0

(8)

The condition 𝑐11 𝑐22 > 1 follows as a sequence. Under the previous assumption, (6) has four nontrivial equilibria: (𝑧0 /𝑐11 , 0), (0, 𝑀1 /𝑐22 ), (0, 𝑀2 /𝑐22 ), and (π‘’βˆ— , Vβˆ— ) except for (0, 0), where π‘’βˆ— =

𝑧0

lim (πœ™ (𝑑) , πœ‘ (𝑑)) = (0, 0) ,

𝑑 β†’ βˆ’βˆž

lim (πœ™ (𝑑) , πœ‘ (𝑑)) = (𝑒+ , V+ ) .

𝑑 β†’ +∞

(11)

𝑧0 βˆ’ 𝑒 + 𝑐22 V) , 𝑐11

and the equilibria (𝑧0 /𝑐11 , 0), (π‘’βˆ— , Vβˆ— ) are changed into (0, 0), (𝑒+ , V+ ), respectively, where 𝑒+ = 𝑧0 /𝑐11 βˆ’ π‘’βˆ— , V+ = Vβˆ— .

3. Existence of Traveling Wavefronts A traveling wavefront of (6) connecting equilibria (𝑧0 /𝑐11 , 0) and (π‘’βˆ— , Vβˆ— ) can be changed into a traveling wavefront of (11) connecting (0, 0) and (𝑒+ , V+ ). Therefore, we consider the system (11) hereby. A traveling wave solution of (11) is a solution with the form 𝑒(𝑑, π‘₯) = πœ™(π‘₯ + 𝑐𝑑) = πœ™(𝑠) and V(𝑑, π‘₯) = πœ‘(π‘₯ + 𝑐𝑑) = πœ‘(𝑠), where 𝑠 = π‘₯ + 𝑐𝑑 and 𝑐 > 0 is a wave speed. A traveling

(13)

For π‘Ž = (π‘Ž1 , π‘Ž2 ), 𝑏 = (𝑏1 , 𝑏2 ) ∈ R2 , π‘Ž ≀ 𝑏 implies π‘Žπ‘– ≀ 𝑏𝑖 (𝑖 = 1, 2); π‘Ž < 𝑏 implies π‘Ž ≀ 𝑏 but π‘Ž =ΜΈ 𝑏; π‘Ž β‰ͺ 𝑏 implies π‘Žπ‘– < 𝑏𝑖 (𝑖 = 1, 2). Furthermore, the norm β€– β‹… β€– in R2 is the Euclidean norm. Define D = {(πœ™, πœ‘) ∈ 𝐢 (R, R2 ) | 0 ≀ πœ™ (𝑑) ≀ 𝑒+ , 0 ≀ πœ‘ (𝑑) ≀ V+ , 𝑑 ∈ R} .

(14)

For some constants 𝛽1 , 𝛽2 , letting 𝑏1 = 𝛽1 βˆ’ 𝑑1 , 𝑏2 = 𝛽2 βˆ’ 𝑑2 , we define an operator 𝐻 = (𝐻1 , 𝐻2 ) : D β†’ 𝐢(R, R2 ) by 𝐻1 (πœ™, πœ‘) (𝑑) = 𝑑1 ∫

+∞

βˆ’βˆž

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦

+ (πœ™ (𝑑) βˆ’

𝑧0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) + 𝑏1 πœ™ (𝑑) , 𝑐11

4

Abstract and Applied Analysis 𝐻2 (πœ™, πœ‘) (𝑑)

𝐻2 (πœ™1 , πœ‘2 ) (𝑑) βˆ’ 𝐻2 (πœ™1 , πœ‘1 ) (𝑑) +∞

= 𝑑2 ∫

βˆ’βˆž

= 𝑑2 ∫

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦

+ πœ‘ (𝑑) 𝑔 (

βˆ’βˆž

𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) + 𝑏2 πœ‘ (𝑑) . 𝑐11

(19)

Then, (12) can be written as an equivalent form:

π‘πœ‘σΈ€  (𝑑) = βˆ’π›½2 πœ‘ (𝑑) + 𝐻2 (πœ™, πœ‘) (𝑑) .

(16)

𝑑 1 𝑄2 (πœ™, πœ‘) (𝑑) = π‘’βˆ’(𝛽2 /𝑐)𝑑 ∫ 𝑒(𝛽2 /𝑐)𝑠 𝐻2 (πœ™, πœ‘) (𝑠) 𝑑𝑠. 𝑐 βˆ’βˆž

(17)

Lemma 1. Assume that (A1) holds, for sufficiently large 𝛽1 , 𝛽2 > 0 and (πœ™π‘– , πœ‘π‘– ) ∈ D, 𝑖 = 1, 2 with πœ™1 (𝑠) ≀ πœ™2 (𝑠) and πœ‘1 (𝑠) ≀ πœ‘2 (𝑠), 𝑠 ∈ R; one has 𝐻2 (πœ™1 , πœ‘2 )(𝑑) β‰₯ 𝐻2 (πœ™1 , πœ‘1 )(𝑑), 𝐻2 (πœ™2 , πœ‘1 )(𝑑) β‰₯ 𝐻2 (πœ™1 , πœ‘1 )(𝑑)

Proof. In order to prove (i), let 𝑓1 (π‘₯, 𝑦) = (π‘₯ βˆ’ 𝑧0 /𝑐11 )𝑓(𝑧0 βˆ’ 𝑐11 π‘₯ + 𝑦) + 𝑏1 π‘₯, 𝑔1 (π‘₯, 𝑦) = 𝑦𝑔(𝑧0 /𝑐11 βˆ’ π‘₯ + 𝑐22 𝑦) + 𝑏2 𝑦. Then πœ•π‘“1 = 𝑓 (𝑧0 βˆ’ 𝑐11 π‘₯ + 𝑦) πœ•π‘₯ (18)

𝑧0 βˆ’ π‘₯ + 𝑐22 𝑦) + 𝛽2 βˆ’ 𝑑2 . 𝑐11

For 0 ≀ π‘₯ ≀ 𝑒+ , 0 ≀ 𝑦 ≀ V+ and sufficiently large 𝛽1 , 𝛽2 > 0, it follows that πœ•π‘“1 /πœ•π‘₯ β‰₯ 0, πœ•π‘”1 /πœ•π‘¦ β‰₯ 0. Thus, if πœ™1 (𝑠) ≀ πœ™2 (𝑠) and πœ‘1 (𝑠) ≀ πœ‘2 (𝑠) for 𝑠 ∈ R, we have

βˆ’βˆž

𝐽 (𝑦 βˆ’ 𝑑) [πœ™2 (𝑦) βˆ’ πœ™1 (𝑦)] 𝑑𝑦

+ 𝑓1 (πœ™2 , πœ‘1 ) βˆ’ 𝑓1 (πœ™1 , πœ‘1 ) β‰₯ 0,

𝑧0 𝑧 𝑧 βˆ’ ( 0 βˆ’ π‘’βˆ— ) ≀ 0 βˆ’ πœ™2 (𝑑) + 𝑐22 πœ‘1 (𝑑) 𝑐11 𝑐11 𝑐11

𝑧 ≀ 0 βˆ’ πœ™1 (𝑑) + 𝑐22 πœ‘1 (𝑑) . 𝑐11

(21)

Note that 𝑔󸀠 (𝑀) < 0 for 𝑀 > π‘€βˆ— . This leads to

𝑧0 βˆ’ πœ™2 (𝑑) + 𝑐22 πœ‘1 (𝑑)) 𝑐11

(22)

𝑧0 βˆ’ πœ™1 (𝑑) + 𝑐22 πœ‘1 (𝑑))] β‰₯ 0. 𝑐11

The proof is complete. The conclusion of the following lemma is direct. Lemma 2. Assume that 𝛽1 > 0, 𝛽2 > 0 are sufficiently large. For (πœ™, πœ‘) ∈ D with πœ™(𝑑), πœ‘(𝑑) nondecreasing on 𝑑 ∈ R, 𝐻1 (πœ™, πœ‘)(𝑑), 𝐻2 (πœ™, πœ‘)(𝑑) are also nondecreasing on 𝑑 ∈ R.

+ (𝑧0 βˆ’ 𝑐11 π‘₯) 𝑓󸀠 (𝑧0 βˆ’ 𝑐11 π‘₯ + 𝑦) + 𝛽1 βˆ’ 𝑑1 ,

+∞

π‘€βˆ— ≀ π‘’βˆ— =

βˆ’π‘” (

for all 𝑑 ∈ R.

= 𝑑1 ∫

From 0 ≀ πœ‘1 (𝑑) ≀ V+ = Vβˆ— , 0 ≀ πœ™1 (𝑑) ≀ πœ™2 (𝑑) ≀ 𝑒+ = 𝑧0 /𝑐11 βˆ’ π‘’βˆ— , we have

= πœ‘1 (𝑑) [𝑔 (

(ii) 𝐻1 (πœ™1 , πœ‘2 )(𝑑) β‰₯ 𝐻1 (πœ™1 , πœ‘1 )(𝑑),

𝐻1 (πœ™2 , πœ‘1 ) (𝑑) βˆ’ 𝐻1 (πœ™1 , πœ‘1 ) (𝑑)

𝑧0 ) [𝑓 (𝑧0 βˆ’ 𝑐11 πœ™1 (𝑑) + πœ‘2 (𝑑)) 𝑐11

𝐻2 (πœ™2 , πœ‘1 ) (𝑑) βˆ’ 𝐻2 (πœ™1 , πœ‘1 ) (𝑑)

(i) 𝐻1 (πœ™2 , πœ‘1 )(𝑑) β‰₯ 𝐻1 (πœ™1 , πœ‘1 )(𝑑),

+ 𝑐22 𝑦𝑔󸀠 (

𝐻1 (πœ™1 , πœ‘2 ) (𝑑) βˆ’ 𝐻1 (πœ™1 , πœ‘1 ) (𝑑)

βˆ’π‘“ (𝑧0 βˆ’ 𝑐11 πœ™1 (𝑑) + πœ‘1 (𝑑))] β‰₯ 0. (20)

It is obvious that a traveling wave solution of the problem (12) and (13) is a fixed point of 𝑄 and vice verse. The following lemma states the monotone property of 𝐻.

πœ•π‘”1 𝑧 = 𝑔 ( 0 βˆ’ π‘₯ + 𝑐22 𝑦) πœ•π‘¦ 𝑐11

For (ii), we know that 0 ≀ πœ™1 (𝑑) ≀ 𝑒+ = 𝑧0 /𝑐11 βˆ’ π‘’βˆ— ≀ 𝑧0 /𝑐11 and 𝑓󸀠 (𝑦) < 0 for 𝑦 ∈ R. It follows that

= (πœ™1 (𝑑) βˆ’

Denote 𝑄 = (𝑄1 , 𝑄2 ) by 𝑑 1 𝑄1 (πœ™, πœ‘) (𝑑) = π‘’βˆ’(𝛽1 /𝑐)𝑑 ∫ 𝑒(𝛽1 /𝑐)𝑠 𝐻1 (πœ™, πœ‘) (𝑠) 𝑑𝑠, 𝑐 βˆ’βˆž

𝐽 (𝑦 βˆ’ 𝑑) [πœ‘2 (𝑦) βˆ’ πœ‘1 (𝑦)] 𝑑𝑦

+ 𝑔1 (πœ™1 , πœ‘2 ) βˆ’ 𝑔1 (πœ™1 , πœ‘1 ) β‰₯ 0. (15)

π‘πœ™σΈ€  (𝑑) = βˆ’π›½1 πœ™ (𝑑) + 𝐻1 (πœ™, πœ‘) (𝑑) ,

+∞

We can easily see that 𝑄 = (𝑄1 , 𝑄2 ) also enjoys the same properties as those for 𝐻 = (𝐻1 , 𝐻2 ) settled in Lemmas 1 and 2. Let πœ‡ ∈ (0, min {𝛽1 /𝑐, 𝛽2 /𝑐}) and 󡄨 󡄨 π΅πœ‡ (R, R2 ) = {πœ™ ∈ 𝐢 (R, R2 ) | sup σ΅„¨σ΅„¨σ΅„¨πœ™ (𝑑)󡄨󡄨󡄨 π‘’βˆ’πœ‡|𝑑| < ∞} . π‘‘βˆˆR

(23) It is clear that (π΅πœ‡ (R, R2 ), | β‹… |πœ‡ ) is a Banach space equipped with the norm | β‹… |πœ‡ defined by |πœ™|πœ‡ = supπ‘‘βˆˆR |πœ™(𝑑)|π‘’βˆ’πœ‡|𝑑| . Definition 3. A pair of continuous functions Ξ¦(𝑑) = (πœ™(𝑑), πœ‘(𝑑)), Ξ¦(𝑑) = (πœ™(𝑑), πœ‘(𝑑)) is called an upper solution and

Abstract and Applied Analysis

5

a lower solution of (12), respectively, if there exists a set Ξ“ = {𝑇𝑖 ∈ R, 𝑖 = 1, . . . , π‘˜} such that Ξ¦ and Ξ¦ are differentiσΈ€  able in R \ Ξ“ and the essential bounded functions Ξ¦ , Ξ¦σΈ€  satisfy 𝑑1 ∫

+∞

βˆ’βˆž

+∞

βˆ’βˆž

𝑑1 ∫

βˆ’βˆž

+∞

βˆ’βˆž

πœ™π‘› (𝑑) = 𝑄1 (πœ™π‘›βˆ’1 , πœ‘π‘›βˆ’1 ) (𝑑) , πœ‘π‘› (𝑑) = 𝑄2 (πœ™π‘›βˆ’1 , πœ‘π‘›βˆ’1 ) (𝑑) , πœ™ (𝑑) = 𝑄1 (πœ™ 𝑛

𝑧0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) ≀ 0, 𝑐11

𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) ≀ 0, 𝑐11

𝑛

π‘›βˆ’1

,πœ‘

π‘›βˆ’1

,πœ‘

π‘›βˆ’1

(26)

) (𝑑) .

𝑛

(i) (πœ™π‘› (𝑑), πœ‘π‘› (𝑑)) ∈ Ξ›; (24)

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™ (𝑑) 𝑧0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) β‰₯ 0, 𝑐11

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ‘σΈ€  (𝑑) 𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) β‰₯ 0 𝑐11

for 𝑑 ∈ R \ Ξ“.

(ii) (πœ™

π‘›βˆ’1

(𝑑), πœ‘

π‘›βˆ’1

(𝑑)) ≀ (πœ™π‘› (𝑑), πœ‘ (𝑑)) ≀ (πœ™π‘› (𝑑), πœ‘π‘› (𝑑)) ≀

(πœ™π‘›βˆ’1 (𝑑), πœ‘π‘›βˆ’1 (𝑑)) for 𝑑 ∈ R;

𝑛

(iii) (πœ™π‘› (𝑑), πœ‘π‘› (𝑑)) and (πœ™ (𝑑), πœ‘ (𝑑)) is a pair of upper and 𝑛 𝑛 lower solutions of (12); (iv) (πœ™π‘› (𝑑), πœ‘π‘› (𝑑)) and (πœ™ (𝑑), πœ‘ (𝑑)) are continuously differ𝑛 𝑛 entiable on 𝑑 ∈ R. Proof. We only give the argument for 𝑛 = 2, and the situation for 𝑛 β‰₯ 3 can be obtained by mathematical induction. From Definition 3, we obtain σΈ€ 

𝐻1 (πœ™1 , πœ‘1 ) (𝑑) ≀ π‘πœ™1 (𝑑) + 𝛽1 πœ™1 (𝑑)

In what follows, we assume that (12) has an upper solution (πœ™(𝑑), πœ‘(𝑑)) and a lower solution (πœ™(𝑑), πœ‘(𝑑)), such that (P1) (0, 0) β‰ͺ (πœ™(𝑑), πœ‘(𝑑)) ≀ (πœ™(𝑑), πœ‘(𝑑)) ≀ (𝑒+ , V+ ) for 𝑑 ∈ R; (P2) lim𝑑 β†’ βˆ’βˆž (πœ™(𝑑), πœ‘(𝑑)) = (0, 0), lim𝑑 β†’ +∞ (πœ™(𝑑), πœ‘(𝑑)) = (𝑒+ , V+ );

πœ™2 (𝑑) = 𝑄1 (πœ™1 , πœ‘1 ) (𝑑) = ≀

are nondecreasing for 𝑑 ∈ R.} (25)

(28)

where 𝑖 = 1, 2, . . . , π‘˜ + 1. By similar arguments, we can get (πœ™ (𝑑) , πœ‘ (𝑑)) ≀ (πœ™ (𝑑) , πœ‘ (𝑑)) ≀ (πœ™2 (𝑑) , πœ‘2 (𝑑)) 1

(ii) πœ™ (𝑑) , πœ‘ (𝑑)

1 𝑑 βˆ’(𝛽1 /𝑐)(π‘‘βˆ’π‘ ) 𝐻1 (πœ™1 , πœ‘1 ) (𝑠) 𝑑𝑠 ∫ 𝑒 𝑐 βˆ’βˆž

} σΈ€  Γ— [π‘πœ™1 (𝑠) + 𝛽1 πœ™1 (𝑠)] 𝑑𝑠} = πœ™1 (𝑑) , }

Ξ› (Ξ¦, Ξ¦)

πœ‘ (𝑑) ≀ πœ‘ (𝑑) ≀ πœ‘ (𝑑) ,

(27)

𝑑 1 { π‘–βˆ’1 𝑇𝑗 ( + ) π‘’βˆ’(𝛽1 /𝑐)(π‘‘βˆ’π‘ ) ∫ βˆ‘ ∫ 𝑐 { 𝑗=1 π‘‡π‘—βˆ’1 π‘‡π‘–βˆ’1 {

Define the following profile set Ξ› = Ξ›(Ξ¦, Ξ¦) by

= {(πœ™, πœ‘) ∈ D | (i) πœ™ (𝑑) ≀ πœ™ (𝑑) ≀ πœ™ (𝑑) ,

for 𝑑 ∈ R \ Ξ“.

Let 𝑇0 = βˆ’βˆž, π‘‡π‘˜+1 = +∞. For any 𝑑 ∈ R, there exists some 𝑖 such that 𝑑 ∈ (π‘‡π‘–βˆ’1 , 𝑇𝑖 ] (𝑖 = 1, 2, β‹…, π‘˜) or 𝑑 ∈ (π‘‡π‘˜ , ∞). We then derive

(P3) πœ™(𝑑) and πœ‘(𝑑) are nondecreasing.

It is obvious that Ξ›(Ξ¦, Ξ¦) is nonempty.

) (𝑑) ,

Lemma 4. For 𝑛 β‰₯ 2, the functions πœ™π‘› (𝑑), πœ‘π‘› (𝑑) and πœ™ (𝑑), 𝑛 πœ‘ (𝑑) defined by (26) satisfy

σΈ€ 

+ πœ‘ (𝑑) 𝑔 (

π‘›βˆ’1

πœ‘ (𝑑) = 𝑄2 (πœ™

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ‘σΈ€  (𝑑)

+ (πœ™ (𝑑) βˆ’ 𝑑2 ∫

1

σΈ€ 

+ πœ‘ (𝑑) 𝑔 ( +∞

1

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™ (𝑑)

+ (πœ™ (𝑑) βˆ’ 𝑑2 ∫

For 𝑑 ∈ R and 𝑛 β‰₯ 2, define (πœ™1 , πœ‘1 )(𝑑) = (πœ™, πœ‘)(𝑑), (πœ™ , πœ‘ )(𝑑) = (πœ™, πœ‘)(𝑑) and

1

2

2

≀ (πœ™1 (𝑑) , πœ‘1 (𝑑))

(29)

for 𝑑 ∈ R.

The previous arguments implies that the conclusion (ii) holds. From the monotone property of 𝑄, we can easily obtain that πœ™2 (𝑑), πœ‘2 (𝑑) are nondecreasing for 𝑑 ∈ R, and therefore the conclusion (i) holds.

6

Abstract and Applied Analysis For πœ™2 (𝑑) = 𝑄1 (πœ™1 , πœ‘1 )(𝑑), by Lemma 1, we have σΈ€ 

βˆ’ 𝛽1 πœ™2 (𝑑) βˆ’ π‘πœ™2 (𝑑) + 𝐻1 (πœ™2 , πœ‘2 ) (𝑑) σΈ€ 

≀ βˆ’π›½1 πœ™2 (𝑑) βˆ’ π‘πœ™2 (𝑑) + 𝐻1 (πœ™1 , πœ‘1 ) (𝑑) = 0

(30) for 𝑑 ∈ R \ Ξ“.

In a similar way, we can prove that βˆ’π›½2 πœ‘2 (𝑑) βˆ’ π‘πœ‘σΈ€  (𝑑) + 𝐻2 (πœ™2 , πœ‘2 ) (𝑑) ≀ 0, 2

βˆ’π›½1 πœ™ (𝑑) βˆ’ 2

σΈ€  π‘πœ™2

(𝑑) + 𝐻1 (πœ™ , πœ‘ ) (𝑑) β‰₯ 0, 2

2

(31)

βˆ’π›½2 πœ‘ (𝑑) βˆ’ π‘πœ‘σΈ€  (𝑑) + 𝐻2 (πœ™ , πœ‘ ) (𝑑) β‰₯ 0 2

2

2

(36)

2

for 𝑑 ∈ R\Ξ“. This indicates that (πœ™2 (𝑑), πœ‘2 (𝑑)) and (πœ™ (𝑑), πœ‘ (𝑑)) 2 2 are a pair of upper and lower solutions of (12). The conclusion (iv) is obvious. The proof is complete. Lemma 5. lim𝑛 β†’ ∞ (πœ™π‘› (𝑑), πœ‘π‘› (𝑑)) = (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) ∈ Ξ›, and the convergence is uniform with respect to the decay norm | β‹… |πœ‡ . Proof. We have from Lemma 4 that the following limit exists: lim (πœ™π‘› (𝑑) , πœ‘π‘› (𝑑)) = (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑)) .

π‘›β†’βˆž

(32)

It is easy to know that Ξ› is a closed and convex set. By the nondecreasing property of (πœ™π‘› (𝑑), πœ‘π‘› (𝑑)), we have (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) ∈ Ξ›. In the following, we prove that the convergence is uniform with respect to the decay norm. Since 󡄨 󡄨󡄨 󡄨󡄨(πœ™π‘› (𝑑) , πœ‘π‘› (𝑑)) βˆ’ (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑))󡄨󡄨󡄨 ≀ 2 (𝑒+ + V+ ) for 𝑛 β‰₯ 1, 󡄨 󡄨 (33) for any πœ€ > 0, there exists a 𝑇 = 𝑇(πœ€) > 0, such that for all 𝑛 β‰₯ 1, 󡄨 󡄨 sup 󡄨󡄨󡄨󡄨(πœ™π‘› (𝑑) , πœ‘π‘› (𝑑)) βˆ’ (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑))󡄨󡄨󡄨󡄨 π‘’βˆ’πœ‡|𝑑| < πœ€. (34) 𝑑>|𝑇| ∞

Now, we consider the sequences {(πœ™π‘› , πœ‘π‘› )}𝑛=1 for 𝑑 ∈ [βˆ’π‘‡, 𝑇]. Note πœ™π‘› (𝑑) is nondecreasing on 𝑑, and thus σΈ€ 

0 ≀ πœ™π‘› (𝑑) = 𝑄1σΈ€  (πœ™π‘›βˆ’1 , πœ‘π‘›βˆ’1 ) (𝑑) =

𝛽 1 𝐻 (πœ™ , πœ‘ ) (𝑑) βˆ’ 21 π‘’βˆ’(𝛽1 /𝑐)𝑑 𝑐 1 π‘›βˆ’1 π‘›βˆ’1 𝑐 Γ—βˆ«

𝑑

βˆ’βˆž

≀

𝑒(𝛽1 /𝑐)𝑠 𝐻1 (πœ™π‘›βˆ’1 , πœ‘π‘›βˆ’1 ) (𝑠) 𝑑𝑠

1 1 𝐻 (πœ™ , πœ‘ ) (𝑑) ≀ 𝐻1 (πœ™1 , πœ‘1 ) (𝑑) . 𝑐 1 π‘›βˆ’1 π‘›βˆ’1 𝑐

Furthermore, we have 󡄨 󡄨 sup 󡄨󡄨󡄨󡄨(πœ™π‘› (𝑑) , πœ‘π‘› (𝑑)) βˆ’ (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑))󡄨󡄨󡄨󡄨 π‘’βˆ’πœ‡|𝑑| < πœ€

π‘‘βˆˆ[βˆ’π‘‡,𝑇]

(37)

for 𝑛 > π‘βˆ— . Summarizing the previous arguments, for 𝑛 > π‘βˆ— we have 󡄨 󡄨 sup󡄨󡄨󡄨󡄨(πœ™π‘› , πœ‘π‘› ) βˆ’ (πœ™βˆ— , πœ‘βˆ— )σ΅„¨σ΅„¨σ΅„¨σ΅„¨πœ‡ π‘‘βˆˆR 󡄨 󡄨 = sup 󡄨󡄨󡄨󡄨(πœ™π‘› (𝑑) , πœ‘π‘› (𝑑)) βˆ’ (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑))󡄨󡄨󡄨󡄨 π‘’βˆ’πœ‡|𝑑| < πœ€. π‘‘βˆˆR

(38) The proof is complete. Theorem 6. Assume that (A1) holds; if (12) has a pair of upper and lower solutions that satisfy (P1)–(P3), then the system (11) has a traveling wavefront satisfying (13). Proof. By the Lebesgue’s dominated convergence theorem and the iteration scheme (26), we have (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑)) = (𝑄1 (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑)) , 𝑄2 (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑))) . (39) Therefore, (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) is a fixed point of 𝑄, which also satisfies (12). Furthermore, (P2) indicates that (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) satisfy lim𝑑 β†’ βˆ’βˆž (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) = (0, 0). On the other hand, we have from the monotonicity of (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) that lim𝑑 β†’ βˆ’βˆž (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) = (𝑒, V) exists. Furthermore, since (0, 0) β‰ͺ (πœ™(𝑑), πœ‘(𝑑)) ≀ (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)), we know that (𝑒, V) ≫ (0, 0). By using L’HΛ†ospital’s rule, we obtain 𝑒 = lim πœ™βˆ— (𝑑) = lim 𝑄1 (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑)) π‘‘β†’βˆž

π‘‘β†’βˆž

𝑑

(35)

By (πœ™1 (𝑑), πœ‘1 (𝑑)) ∈ 𝐷, there exists a positive constant 𝑀1 , such σΈ€ 

there exists a positive number 𝑀2 , such that |πœ‘σΈ€ π‘› (𝑑)| ≀ 𝑀2 for 𝑑 ∈ [βˆ’π‘‡, 𝑇]. From the previous estimates, we know that {(πœ™π‘› (𝑑), πœ‘π‘› (𝑑))}∞ 𝑛=1 is equicontinuous on [βˆ’π‘‡, 𝑇] with respect to the supremum norm. On the other hand, we have from Lemma 4 ∞ (ii) that {(πœ™π‘› (𝑑), πœ‘π‘› (𝑑))}𝑛=1 is uniformly bounded. By ArzΒ΄ela∞ Ascoli theorem, there exist subsequences of {(πœ™π‘› (𝑑), πœ‘π‘› (𝑑))}𝑛=1 which are uniformly convergent in 𝑑 ∈ [βˆ’π‘‡, 𝑇]. Without loss of generality, we still express this subsequence as {(πœ™π‘› (𝑑), βˆ— πœ‘π‘› (𝑑))}∞ 𝑛=1 . Thus, there exists a positive integer 𝑁 > 2, such that 󡄨 󡄨 sup 󡄨󡄨󡄨󡄨(πœ™π‘› (𝑑) , πœ‘π‘› (𝑑)) βˆ’ (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑))󡄨󡄨󡄨󡄨 < πœ€ for 𝑛 > π‘βˆ— . π‘‘βˆˆ[βˆ’π‘‡,𝑇]

that |πœ™π‘› (𝑑)| ≀ 𝑀1 for 𝑑 ∈ [βˆ’π‘‡, 𝑇]. Similarly, we can prove that

= lim

(1/𝑐) βˆ«βˆ’βˆž 𝑒(𝛽1 /𝑐)𝑠 𝐻1 (πœ™βˆ— , πœ‘βˆ— ) (𝑠) 𝑑𝑠

π‘‘β†’βˆž

=

1 𝐻 (𝑒, V) . 𝛽1 1

𝑒(𝛽1 /𝑐)𝑑

(40)

Abstract and Applied Analysis

7

Similarly, one can obtain V = (1/𝛽2 )𝐻2 (𝑒, V). That is, (𝑒, V) is an equilibrium of (12). Note that the assumption (10) implies that there is only one positive equilibrium (𝑒+ , V+ ) of (12) satisfying (0, 0) < (𝑒, V) ≀ (𝑒+ , V+ ). Therefore, (𝑒, V) = (𝑒+ , V+ ) and (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) is a traveling wavefront satisfying (13). The proof is complete. In order to construct a pair of admissible upper-lower solutions for (12), we linearize (12) at (0, 0) and obtain +∞

𝑑1 ∫

βˆ’βˆž

𝑑2 ∫

βˆ’βˆž

σΈ€ 

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ‘ (𝑑)

+ πœ‘ (𝑑) 𝑔 (

𝐹 (πœ†, 𝑐) := 𝑑2 ∫

βˆ’βˆž

πœ™ (𝑑) = min {π‘’πœ† 1 𝑑 , 𝑒+ } ,

(41)

𝑧0 ) = 0. 𝑐11

𝑧 𝐽 (𝑦) 𝑒 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ† + 𝑔 ( 0 ) = 0. 𝑐11 (42) πœ†π‘¦

Then for 𝑑2 β‰₯ 𝑑1 , (πœ™(𝑑), πœ‘(𝑑)) is an upper solution of (12).

𝑑1 ∫

+∞

βˆ’βˆž

σΈ€ 

≀ 𝑑1 ∫

+∞

βˆ’βˆž

(by (𝐴1) and 𝑒𝑦 + π‘’βˆ’π‘¦ β‰₯ 2) ,

𝑧0 ) > 0, 𝑐11

= (𝑑1 ∫

+∞

βˆ’βˆž

+∞ πœ•πΉ (πœ†, 𝑐) = 𝑑2 ∫ 𝑦𝐽 (𝑦) π‘’πœ†π‘¦ 𝑑𝑦 βˆ’ 𝑐, πœ•πœ† βˆ’βˆž +∞ πœ•2 𝐹 (πœ†, 𝑐) = 𝑑 𝑦2 𝐽 (𝑦) π‘’πœ†π‘¦ 𝑑𝑦 > 0 for any πœ† ∈ R, ∫ 2 πœ•πœ†2 βˆ’βˆž

(43)

(i) There exists a (πœ†βˆ— , π‘βˆ— ), πœ†βˆ— > 0, π‘βˆ— > 0 such that 𝐹 (πœ†βˆ— , π‘βˆ— ) = 0,

πœ•πΉ (πœ†, 𝑐) 󡄨󡄨󡄨󡄨 = 0. 󡄨 πœ•πœ† 󡄨󡄨󡄨(πœ†βˆ— ,π‘βˆ— )

β‰€βˆ’

+∞

βˆ’βˆž

𝐹 (πœ†, 𝑐) < 0 for πœ† 1 < πœ† < πœ† 2 .

(45)

𝑧 𝑑1 𝑑 𝑔 ( 0 ) + 1 π‘πœ† 1 βˆ’ π‘πœ† 1 ) π‘’πœ† 1 𝑑 𝑑2 𝑐11 𝑑2

𝑧 𝑑1 𝑔 ( 0 ) π‘’πœ† 1 𝑑 < 0. 𝑑2 𝑐11

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ‘σΈ€  (𝑑)

+ πœ‘ (𝑑) 𝑔 (

(ii) For 0 < 𝑐 < π‘βˆ— , 𝐹(πœ†, 𝑐) > 0 for πœ† ∈ R. (iii) For 𝑐 > π‘βˆ— , the equation 𝐹(πœ†, 𝑐) = 0 has two zeros 0 < πœ† 1 < πœ† 2 such that

(48)

Similarly, we have from the fact πœ‘(𝑑) ≀ 𝑐11 π‘’πœ† 1 𝑑 for 𝑑 ∈ R, 𝑐11 𝑐22 > 1 and 𝑔󸀠 (𝑀) < 0 for 𝑀 > π‘€βˆ— that 𝑑2 ∫

(44)

𝐽 (𝑦) π‘’πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑1 βˆ’ π‘πœ† 1 ) π‘’πœ† 1 𝑑

+π‘πœ† 1 ) βˆ’ π‘πœ† 1 ] π‘’πœ† 1 𝑑 = (βˆ’

Lemma 7. The following conclusions are true.

𝑧0 ) 𝑓 (𝑧0 ) 𝑐11

+∞ 𝑑1 (𝑑2 ∫ 𝐽 (𝑦) π‘’πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ† 1 𝑑2 βˆ’βˆž

=[

The convex property of 𝐹 leads to 𝐹(+∞, 𝑐) = +∞ for any 𝑐 > 0. In view of the previous observation, we have the following lemma directly.

𝑧0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) 𝑐11

𝐽 (𝑦 βˆ’ 𝑑) π‘’πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑1 π‘’πœ† 1 𝑑 βˆ’ π‘πœ† 1 π‘’πœ† 1 𝑑

+ (π‘’πœ† 1 𝑑 βˆ’

𝐹 (πœ†, +∞) = βˆ’βˆž for any πœ† > 0,

πœ•πΉ (πœ†, 𝑐) = βˆ’πœ† < 0 for any πœ† > 0. πœ•π‘

(47)

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™ (𝑑) + (πœ™ (𝑑) βˆ’

for any πœ† > 0

𝐹 (0, 𝑐) = 𝑔 (

𝑐11 π‘’πœ† 1 𝑑2 = V+ .

Notice that V+ = 𝑐11 𝑒+ , we have 𝑑0 := 𝑑1 = 𝑑2 = (1/πœ† 1 ) ln (V+ /𝑐11 ). If 𝑑 < 𝑑0 , πœ™(𝑑) = π‘’πœ† 1 𝑑 , πœ‘(𝑑) = 𝑐11 π‘’πœ† 1 𝑑 , we have from the fact πœ™(𝑑) ≀ π‘’πœ† 1 𝑑 for 𝑑 ∈ R and 𝑀1 < π‘€βˆ— ≀ π‘’βˆ— < 𝑧0 /𝑐11 < 𝑀2 that

Note that 𝐹 (πœ†, 0) > 0

πœ‘ (𝑑) = min {𝑐11 π‘’πœ† 1 𝑑 , V+ } . (46)

π‘’πœ† 1 𝑑1 = 𝑒+ ,

Thus, we consider the following characteristic equation: +∞

Lemma 8. Define

Proof. Let 𝑑1 , 𝑑2 be such that

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™σΈ€  (𝑑) = 0,

+∞

Now we are ready to construct the upper solution of (12).

≀ 𝑑2 ∫

+∞

βˆ’βˆž

𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) 𝑐11

𝐽 (𝑦 βˆ’ 𝑑) 𝑐11 π‘’πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 𝑐11 π‘’πœ† 1 𝑑 βˆ’ 𝑐𝑐11 πœ† 1 π‘’πœ† 1 𝑑

+ 𝑐11 π‘’πœ† 1 𝑑 𝑔 (

𝑧0 βˆ’ π‘’πœ† 1 𝑑 + 𝑐11 𝑐22 π‘’πœ† 1 𝑑 ) 𝑐11

8

Abstract and Applied Analysis +∞

< (𝑑2 ∫

βˆ’βˆž

Let π‘š := minπ‘€βˆˆ[𝑧0 /𝑐11 ,𝑧0 /𝑐11 +𝑐22 V+ ] 𝑔󸀠 (𝑀) < 0. By the fact that

𝐽 (𝑦) π‘’πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ† 1

𝑐11 𝑐22 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ) β‰₯ 0

𝑧 +𝑔 ( 0 )) 𝑐11 π‘’πœ† 1 𝑑 = 0. 𝑐11 If 𝑑 > 𝑑0 , πœ™(𝑑) = 𝑒+ , πœ‘(𝑑) = V+ , we have +∞

βˆ’βˆž

𝑑2 ∫

βˆ’βˆž

(50)

σΈ€ 

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ‘ (𝑑)

+ πœ‘ (𝑑) 𝑔 ( ≀ V+ 𝑔 (

𝑔(

𝑧0 + 𝑐11 𝑐22 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 )) 𝑐11

= [𝑔 (

σΈ€ 

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™ (𝑑)

𝑧 + (πœ™ (𝑑) βˆ’ 0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) ≀ 0; 𝑐11 +∞

β‰₯ π‘šπ‘11 𝑐22 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ) + 𝑔 (

𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) 𝑐11

𝑧0 βˆ’ 𝑒+ + 𝑐22 V+ ) = V+ 𝑔 (𝑀2 ) = 0. 𝑐11

βˆ’βˆž

𝐽 (𝑦) π‘’πœ‚πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ‚πœ† 1 + 𝑔 (

(π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ) ≀ 𝑒2πœ† 1 𝑑 ,

(π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ) 𝑔 (

𝑧0 ) < 0. 𝑐11

πœ™ (𝑑) = 0, βˆ—

πœ‘ (𝑑) = max {𝑐11 (𝑒 βˆ—

πœ‚πœ† 1 𝑑

βˆ’ π‘žπ‘’

(52)

) , 0} ,

(πœ™ (𝑑) , πœ‘ (𝑑)) := (𝑄1 (πœ™ (𝑑) , πœ‘ (𝑑)) , 𝑄2 (πœ™ (𝑑) , πœ‘ (𝑑))) βˆ— βˆ— βˆ— βˆ— (54)

(πœ™ (𝑑) , πœ‘ (𝑑)) ≫ (0, 0)

for 𝑑 ∈ R.

(55)

Proof. Let 𝑑3 be such that 𝑐11 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ) = 0, it follows that 1 1 ln < 0. (πœ‚ βˆ’ 1) πœ† 1 π‘ž

(56)

If 𝑑 < 𝑑3 < 0, πœ™ (𝑑) = 0, πœ‘ (𝑑) = 𝑐11 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ), and βˆ—

𝑑1 ∫

+∞

βˆ’βˆž

βˆ—

𝑧 𝑧0 πœ† 1 𝑑 ) 𝑒 + π‘šπ‘11 𝑐22 𝑒2πœ† 1 𝑑 βˆ’ 𝑔 ( 0 ) π‘žπ‘’πœ‚πœ† 1 𝑑 . 𝑐11 𝑐11

+∞

(61)

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ‘σΈ€  (𝑑) + πœ‘ (𝑑) βˆ—

Γ— 𝑔(

βˆ—

βˆ—

𝑧0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) βˆ— βˆ— 𝑐11

β‰₯ 𝑐11 𝑑2 ∫

+∞

βˆ’βˆž

πœ†1 𝑑

Γ— (𝑒

βˆ—

𝐽 (𝑦 βˆ’ 𝑑) [π‘’πœ† 1 𝑦 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑦 ] 𝑑𝑦 βˆ’ 𝑑2 𝑐11

βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 )

Γ— 𝑔(

𝑧0 + 𝑐11 𝑐22 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 )) 𝑐11 +∞

β‰₯ 𝑐11 π‘’πœ† 1 𝑑 [𝑑2 ∫

βˆ’βˆž

𝐽 (𝑦) π‘’πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ† 1 + 𝑔 (

βˆ’ 𝑐11 π‘’πœ‚πœ† 1 𝑑 {π‘ž [𝑑2 ∫

βˆ—

+𝑔 (

βˆ—

𝑧 + (πœ™ (𝑑) βˆ’ 0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) βˆ— βˆ— βˆ— 𝑐11 𝑧 𝑓 (𝑧0 ) 𝑧 = βˆ’ 0 𝑓 (𝑧0 + πœ‘ (𝑑)) β‰₯ βˆ’ 0 = 0. βˆ— 𝑐11 𝑐11

+∞

βˆ’βˆž

) for 𝑑 ∈ R, we have

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™σΈ€  (𝑑) βˆ—

𝑧0 + 𝑐11 𝑐22 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 )) 𝑐11

βˆ’ 𝑐𝑐11 (πœ† 1 π‘’πœ† 1 𝑑 βˆ’ π‘žπœ‚πœ† 1 π‘’πœ‚πœ† 1 𝑑 ) + 𝑐11 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 )

is a lower solution of (12) satisfying

πœ‘ (𝑑) β‰₯ 𝑐11 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’

(60)

Therefore, βˆ’βˆž

where π‘ž > 1 is a constant to be chosen later. Then (πœ™ (𝑑), πœ‘ (𝑑)) βˆ— βˆ— is a lower solution of (12). Furthermore,

βˆ— πœ‚πœ† 1 𝑑

β‰₯ 𝑔(

𝑑2 ∫ (53)

𝑑3 =

(59)

and thus

Lemma 9. Define πœ†1 𝑑

𝑧0 ). 𝑐11

2

(51)

Let πœ‚ ∈ (1, min{2, πœ† 2 /πœ† 1 }) satisfying πœ† 1 < πœ‚πœ† 1 < πœ† 2 , we can obtain from (45) that +∞

𝑧 𝑧 𝑧0 + 𝑐11 𝑐22 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 )) βˆ’ 𝑔 ( 0 )] + 𝑔 ( 0 ) 𝑐11 𝑐11 𝑐11

Note that (58) leads to π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 > 0 for 𝑑 < 𝑑3 ; it follows that

The proof is complete.

𝑑2 ∫

(58)

we have (49)

𝑑1 ∫

for 𝑑 < 𝑑3 ,

(57)

β‰₯ βˆ’π‘11 π‘’πœ‚πœ† 1 𝑑 {π‘ž [𝑑2 ∫

+∞

βˆ’βˆž

+𝑔 (

𝑧0 )] 𝑐11

𝐽 (𝑦) π‘’πœ‚πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ‚πœ† 1

𝑧0 )] βˆ’ π‘šπ‘11 𝑐22 𝑒(2βˆ’πœ‚)πœ† 1 𝑑 } 𝑐11 𝐽 (𝑦) π‘’πœ‚πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ‚πœ† 1 𝑧0 )] βˆ’ π‘šπ‘11 𝑐22 } . 𝑐11

(62)

Abstract and Applied Analysis

9

Let π‘ž > 1 sufficiently large; we can have +∞

π‘ž [𝑑2 ∫

βˆ’βˆž

𝐽 (𝑦) π‘’πœ‚πœ† 1 𝑦 𝑑𝑦 βˆ’ 𝑑2 βˆ’ π‘πœ‚πœ† 1 (63)

𝑧 +𝑔 ( 0 )] βˆ’ π‘šπ‘11 𝑐22 < 0, 𝑐11 hence, +∞

𝑑2 ∫

βˆ’βˆž

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦 βˆ’ 𝑑2 πœ‘ (𝑑) βˆ’ π‘πœ™σΈ€  (𝑑) βˆ—

βˆ—

βˆ—

𝑧 + πœ‘ (𝑑) 𝑔 ( 0 βˆ’ πœ™ (𝑑) + 𝑐22 πœ‘ (𝑑)) β‰₯ 0. βˆ— βˆ— βˆ— 𝑐11

(64)

If 𝑑 > 𝑑3 , πœ™ (𝑑) = 0, πœ‘ (𝑑) = 0, and πœ‘ (𝑑) β‰₯ 0 for 𝑑 ∈ R, we βˆ— βˆ— βˆ— have +∞

𝑑1 ∫

βˆ’βˆž

method, we can obtain a subsequence of {(πœ™π‘˜ (𝑑), πœ‘π‘˜ (𝑑))}, still denoted by {(πœ™π‘˜ (𝑑), πœ‘π‘˜ (𝑑))}, such that (πœ™π‘˜ (𝑑), πœ‘π‘˜ (𝑑)) β†’ (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) uniformly for 𝑑 in any bounded subset of R, as π‘˜ β†’ ∞. Clearly, (πœ™βˆ— (𝑑), πœ‘βˆ— (𝑑)) is nondecreasing and (πœ™βˆ— (0), πœ‘βˆ— (0)) = (𝑒+ /2, V+ /2). By the dominated convergence theorem and (67), it follows that 𝑑 βˆ— βˆ— 1 πœ™βˆ— (𝑑) = βˆ— π‘’βˆ’(𝛽1 /𝑐 )𝑑 ∫ 𝑒(𝛽1 /𝑐 )𝑠 𝐻1 (πœ™βˆ— , πœ‘βˆ— ) (𝑠) 𝑑𝑠, 𝑐 βˆ’βˆž (68) 1 βˆ’(𝛽2 /π‘βˆ— )𝑑 𝑑 (𝛽2 /π‘βˆ— )𝑠 βˆ— βˆ— βˆ— 𝐻2 (πœ™ , πœ‘ ) (𝑠) 𝑑𝑠. πœ‘ (𝑑) = βˆ— 𝑒 ∫ 𝑒 𝑐 βˆ’βˆž Since lim𝑑 β†’ ±∞ πœ™βˆ— (𝑑) and lim𝑑 β†’ ±∞ πœ‘βˆ— (𝑑) exist, using L’HΛ†ospital rule leads to lim (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑)) = (0, 0) ,

𝑑 β†’ βˆ’βˆž

lim (πœ™βˆ— (𝑑) , πœ‘βˆ— (𝑑)) = (𝑒+ , V+ ) .

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1 πœ™ (𝑑) βˆ’ π‘πœ™σΈ€  (𝑑) βˆ—

βˆ—

(69)

𝑑 β†’ +∞

βˆ—

(65)

Thus, (πœ™ (𝑑), πœ‘βˆ— (𝑑)) is a traveling wavefront of the system (11) connecting (0, 0) and (𝑒+ , V+ ).

From the previous arguments, we obtain that (πœ™ (𝑑), βˆ— πœ‘ (𝑑)) is a lower solution of (12). By Lemma 4, we can get that βˆ— (πœ™(𝑑), πœ‘(𝑑)) is also a lower solution. Furthermore, for 𝑑 < 𝑑3 , πœ‘ (𝑑) > 0, by direct calculation, we have 𝐻1 (πœ™ , πœ‘ )(𝑑) > 0 βˆ— βˆ— βˆ— for 𝑑 < 𝑑3 . Therefore, πœ™(𝑑) = 𝑄1 (πœ™ , πœ‘ ) (𝑑) > 0 for 𝑑 ∈ βˆ— βˆ— R. Similarly, we have πœ‘(𝑑) > 0 for 𝑑 ∈ R. The proof is complete.

Remark 11. We say that the π‘βˆ— is the minimal wave speed in the sense that (11) has no traveling wavefront with 𝑐 ∈ (0, π‘βˆ— ). We could briefly explain this in the following. In fact, the linearization of (12) at zero solution is (41), and the function 𝐹(πœ†, 𝑐) is obtained by substituting π‘’πœ†π‘‘ in the second equation of (41). For 0 < 𝑐 < π‘βˆ— , we know from (ii) of Lemma 7 that 𝐹(πœ†, 𝑐) > 0 for any πœ† ∈ R. We have from the second equation of (12) and the second equation of (41) that (12) cannot have a solution (πœ™(𝑑), πœ‘(𝑑)) that satisfies lim𝑑 β†’ βˆ’βˆž (πœ™(𝑑), πœ‘(𝑑)) = (0, 0).

𝑧 + (πœ™ (𝑑) βˆ’ 0 ) 𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) = 0. βˆ— βˆ— βˆ— 𝑐11

Theorem 10. Assume that (A1) and 𝑑2 β‰₯ 𝑑1 hold. Then for any 𝑐 β‰₯ π‘βˆ— , the system (11) has a traveling wavefront with speed 𝑐, which connects (0, 0) and (𝑒+ , V+ ). Proof. The conclusion for 𝑐 > π‘βˆ— can be obtained from the previous discussions. We only need to establish the existence of wave fronts when 𝑐 = π‘βˆ— . Let π‘π‘˜ βŠ‚ (π‘βˆ— , π‘βˆ— + 1) with limπ‘˜ β†’ ∞ π‘π‘˜ = π‘βˆ— . For π‘π‘˜ > π‘βˆ— , (12) with 𝑐 = π‘π‘˜ admits a nondecreasing solution (πœ™π‘˜ (𝑑), πœ‘π‘˜ (𝑑)) such that lim (πœ™π‘˜ (𝑑) , πœ‘π‘˜ (𝑑)) = (0, 0) ,

𝑑 β†’ βˆ’βˆž

lim (πœ™π‘˜ (𝑑) , πœ‘π‘˜ (𝑑)) = (𝑒+ , V+ ) .

(66)

𝑑 β†’ +∞

Without loss of generality, we assume that (πœ™π‘˜ (0), πœ‘π‘˜ (0)) = (𝑒+ /2, V+ /2). Obviously, |πœ™π‘˜ (𝑑)| ≀ 𝑒+ , |πœ‘π‘˜ (𝑑)| ≀ V+ , and πœ™π‘˜ (𝑑), πœ‘π‘˜ (𝑑) satisfy πœ™π‘˜ (𝑑) = πœ‘π‘˜ (𝑑) =

1 βˆ’(𝛽1 /π‘π‘˜ )𝑑 𝑑 (𝛽1 /π‘π‘˜ )𝑠 𝑒 𝐻1 (πœ™π‘˜ , πœ‘π‘˜ ) (𝑠) 𝑑𝑠, ∫ 𝑒 π‘π‘˜ βˆ’βˆž 1 βˆ’(𝛽2 /π‘π‘˜ )𝑑 𝑑 (𝛽2 /π‘π‘˜ )𝑠 𝑒 𝐻2 (πœ™π‘˜ , πœ‘π‘˜ ) (𝑠) 𝑑𝑠. ∫ 𝑒 π‘π‘˜ βˆ’βˆž

(67)

As the same argument in Lemma 5, we can obtain that {(πœ™π‘˜ (𝑑), πœ‘π‘˜ (𝑑))} is uniformly bounded and equicontinuous on R; using ArzΒ΄ela-Ascoli theorem and the standard diagonal

βˆ—

Theorem 12. Assume that (A1) and 𝑑2 β‰₯ 𝑑1 hold. Then for any 𝑐 β‰₯ π‘βˆ— , the system (6) has a traveling wavefront with speed c, which connects (𝑧0 /𝑐11 , 0) and (π‘’βˆ— , Vβˆ— ).

4. Asymptotic Behavior for Traveling Wavefronts In this section, we discuss the asymptotic behavior for the traveling wavefronts obtained in the previous section as 𝑑 β†’ βˆ’βˆž. Theorem 13. Let (πœ™(𝑑), πœ“(𝑑)) be a traveling wavefront of (11) decided by Theorem 10; then lim (πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 , πœ‘ (𝑑) π‘’βˆ’πœ† 1 𝑑 )

𝑑 β†’ βˆ’βˆž

=(

𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) ,𝑐 ), π‘πœ† 1 (𝑑1 βˆ’ 𝑑2 ) βˆ’ 𝑑1 𝑔 (𝑧0 /𝑐11 ) + 𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) 11

lim (πœ™σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 , πœ‘σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 )

𝑑 β†’ βˆ’βˆž

=(

πœ† 1 𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) ,𝑐 πœ† ), π‘πœ† 1 (𝑑1 βˆ’ 𝑑2 ) βˆ’ 𝑑1 𝑔 (𝑧0 /𝑐11 ) + 𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) 11 1 (70)

where πœ† 1 is the smallest root of the characteristic equation (42).

10

Abstract and Applied Analysis On the other hand, by (76), (15), (42), and (75), noting 𝑓(𝑧0 ) = 0 and using L’HΛ†ospital’s rule, we get

Proof. Note that 𝑐11 (π‘’πœ† 1 𝑑 βˆ’ π‘žπ‘’πœ‚πœ† 1 𝑑 ) ≀ πœ‘ (𝑑) ≀ 𝑐11 π‘’πœ† 1 𝑑

for 𝑑 ∈ R.

(71)

lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑

𝑑 β†’ βˆ’βˆž

Then we have 󡄨 󡄨 lim σ΅„¨σ΅„¨σ΅„¨πœ‘ (𝑑) π‘’βˆ’πœ† 1 𝑑 βˆ’ 𝑐11 󡄨󡄨󡄨󡄨 ≀ lim 𝑐11 π‘žπ‘’(πœ‚βˆ’1)πœ† 1 𝑑 = 0, 𝑑 β†’ βˆ’βˆž

𝑑 β†’ βˆ’βˆž 󡄨

lim πœ‘ (𝑑) π‘’βˆ’πœ† 1 𝑑 = 𝑐11 .

𝑑 1 lim π‘’βˆ’(πœ† 1 +𝛽1 /𝑐)𝑑 ∫ 𝑒(𝛽1 /𝑐)𝑠 𝐻1 (πœ™, πœ‘) (𝑠) 𝑑𝑠 𝑐 𝑑 β†’ βˆ’βˆž βˆ’βˆž

=

𝑒(𝛽1 /𝑐)𝑑 𝐻1 (πœ™, πœ‘) (𝑑) 1 lim 𝑐 𝑑 β†’ βˆ’βˆž (πœ† 1 + 𝛽1 /𝑐) 𝑒(πœ† 1 +𝛽1 /𝑐)𝑑

=

+∞ 1 (𝑑1 lim π‘’βˆ’πœ† 1 𝑑 ∫ 𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 𝑑 β†’ βˆ’βˆž (π‘πœ† 1 + 𝛽1 ) βˆ’βˆž

(72)

which implies that (73)

𝑑 β†’ βˆ’βˆž

=

Note that we have from 0 ≀ πœ‘(𝑑)π‘’βˆ’πœ† 1 𝑑 ≀ 𝑐11 and (A1) that π‘’βˆ’πœ† 1 𝑑 ∫

+∞

βˆ’βˆž

=∫

+∞

βˆ’βˆž

βˆ’

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦

+𝑏1 lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 )

(74) πœ†1 𝑦

𝐽 (𝑦) 𝑒

βˆ’πœ† 1 (𝑦+𝑑)

πœ‘ (𝑦 + 𝑑) 𝑒

𝑑𝑦 < ∞,

𝑑 β†’ βˆ’βˆž

=

which is uniformly on 𝑑. By the second equation of (12), we have from (73), 𝐹(πœ† 1 , 𝑐) = 0 and convergence theorem that

𝑧 𝑑 1 [ 1 (𝑑2 + π‘πœ† 1 βˆ’ 𝑔 ( 0 )) lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 𝑑 β†’ βˆ’βˆž 𝑐11 (π‘πœ† 1 + 𝛽1 ) 𝑑2 βˆ’

lim πœ‘σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑

𝑑 β†’ βˆ’βˆž

=

𝑑 β†’ βˆ’βˆž

+∞

βˆ’βˆž

𝑑 β†’ βˆ’βˆž

=

𝐽 (𝑦 βˆ’ 𝑑) πœ‘ (𝑦) 𝑑𝑦]

𝑧 π‘πœ† 𝑑 𝑑 1 [(𝑏1 + 𝑑1 + 1 1 βˆ’ 1 𝑔 ( 0 )) 𝑑2 𝑑2 𝑐11 (π‘πœ† 1 + 𝛽1 ) Γ— lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 + 𝑑 β†’ βˆ’βˆž

𝑧 1 = [𝑐11 (𝑔 ( 0 ) βˆ’ 𝑑2 ) 𝑐 𝑐11 +𝑑2 lim π‘’βˆ’πœ† 1 𝑑 ∫ 𝑑 β†’ βˆ’βˆž

=

+∞

βˆ’βˆž

+ 𝑑2 ∫

βˆ’βˆž

𝑧0 𝑓󸀠 (𝑧0 ) πœ†1

Γ— lim πœ™σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 βˆ’ 𝑧0 𝑓󸀠 (𝑧0 ) ] . 𝑑 β†’ βˆ’βˆž

𝐽 (𝑦) πœ‘ (𝑦 + 𝑑) 𝑑𝑦]

(77) By the first equation of (12), we have from (75) and 𝐹(πœ† 1 , 𝑐) = 0 that

𝑧 1 [𝑐 (𝑔 ( 0 ) βˆ’ 𝑑2 ) 𝑐 11 𝑐11 +∞

𝑧0 𝑓󸀠 (𝑧0 ) βˆ’π‘11 πœ™σΈ€  (𝑑) + πœ‘σΈ€  (𝑑) lim 𝑐11 πœ† 1 𝑑 β†’ βˆ’βˆž π‘’πœ† 1 𝑑

+𝑏1 lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 ]

𝑧 1 [𝑐11 (𝑔 ( 0 ) βˆ’ 𝑑2 ) 𝑐 𝑐11 +𝑑2 lim π‘’βˆ’πœ† 1 𝑑 ∫

𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) 𝑧0 lim 𝑐11 𝑑 β†’ βˆ’βˆž π‘’πœ† 1 𝑑

𝑐 lim πœ™σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 𝑑 β†’ βˆ’βˆž

𝐽 (𝑦) π‘’πœ† 1 𝑦 lim πœ‘ (𝑦 + 𝑑) π‘’βˆ’πœ† 1 (𝑦+𝑑) 𝑑𝑦] 𝑑 β†’ βˆ’βˆž

𝑧 𝑧 1 = [𝑐11 (𝑔 ( 0 ) βˆ’ 𝑑2 ) + 𝑐11 (𝑑2 + π‘πœ† 1 βˆ’ 𝑔 ( 0 ))] 𝑐 𝑐11 𝑐11

= 𝑑1 lim π‘’βˆ’πœ† 1 𝑑 ∫ 𝑑 β†’ βˆ’βˆž

= 𝑐11 πœ† 1 .

Since πœ™(𝑑) = 𝑄1 (πœ™, πœ‘)(𝑑), by (17), we know that

𝐽 (𝑦 βˆ’ 𝑑) πœ™ (𝑦) 𝑑𝑦 βˆ’ 𝑑1

=

𝑓 (𝑧0 βˆ’ 𝑐11 πœ™ (𝑑) + πœ‘ (𝑑)) 𝑧0 lim 𝑐11 𝑑 β†’ βˆ’βˆž π‘’πœ† 1 𝑑

𝑧 𝑑1 (𝑑2 + π‘πœ† 1 βˆ’ 𝑔 ( 0 )) lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 𝑑 β†’ βˆ’βˆž 𝑑2 𝑐11 βˆ’ 𝑑1 lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 + 𝑑 β†’ βˆ’βˆž

𝑑

1 πœ™ (𝑑) = π‘’βˆ’(𝛽1 /𝑐)𝑑 ∫ 𝑒(𝛽1 /𝑐)𝑠 𝐻1 (πœ™, πœ‘) (𝑠) 𝑑𝑠. 𝑐 βˆ’βˆž

βˆ’βˆž

Γ— lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 βˆ’ 𝑑 β†’ βˆ’βˆž

(75)

+∞

(76)

𝑧0 𝑓󸀠 (𝑧0 ) πœ†1

Γ— lim πœ™σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 βˆ’ 𝑧0 𝑓󸀠 (𝑧0 ) 𝑑 β†’ βˆ’βˆž

Abstract and Applied Analysis =

11

𝑧 𝑑1 (π‘πœ† 1 βˆ’ 𝑔 ( 0 )) lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑 𝑑 β†’ βˆ’βˆž 𝑑2 𝑐11

The generalized boundary conditions, lim (

𝑧 𝑓󸀠 (𝑧0 ) + 0 lim πœ™σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 βˆ’ 𝑧0 𝑓󸀠 (𝑧0 ) . πœ† 1 𝑑 β†’ βˆ’βˆž

𝑑 β†’ βˆ’βˆž

(78) Combining (77) and (78), and noting that 𝛽1 = 𝑏1 + 𝑑1 , we obtain from a direct calculation that lim πœ™ (𝑑) π‘’βˆ’πœ† 1 𝑑

𝑑 β†’ βˆ’βˆž

=

𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) , π‘πœ† 1 (𝑑1 βˆ’ 𝑑2 ) βˆ’ 𝑑1 𝑔 (𝑧0 /𝑐11 ) + 𝑑2 𝑧0 𝑓󸀠 (𝑧0 )

lim πœ™σΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑

(79)

𝑑 β†’ βˆ’βˆž

=

πœ† 1 𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) . π‘πœ† 1 (𝑑1 βˆ’ 𝑑2 ) βˆ’ 𝑑1 𝑔 (𝑧0 /𝑐11 ) + 𝑑2 𝑧0 𝑓󸀠 (𝑧0 )

Now, letting (𝜁(𝑑), 𝜍(𝑑)) be a traveling wavefront of (6) decided by Theorem 12, by the equivalence between (6) and (11), we know that (𝜁(𝑑), 𝜍(𝑑)) = (𝑧0 /𝑐11 βˆ’ πœ™(𝑑), πœ‘(𝑑)) and thus obtain the following theorem. Theorem 14. Let (𝜁(𝑑), 𝜍(𝑑)) be a traveling wavefront of (6) decided by Theorem 12; then lim (𝜁 (𝑑) π‘’βˆ’πœ† 1 𝑑 , 𝜍 (𝑑) π‘’βˆ’πœ† 1 𝑑 ) = (∞, 𝑐11 ) ,

𝑑 β†’ βˆ’βˆž

lim (πœσΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 , πœσΈ€  (𝑑) π‘’βˆ’πœ† 1 𝑑 )

𝑑 β†’ βˆ’βˆž

πœ† 1 𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) =( ,𝑐 πœ† ), π‘πœ† 1 (𝑑2 βˆ’ 𝑑1 ) + 𝑑1 𝑔 (𝑧0 /𝑐11 ) βˆ’ 𝑑2 𝑧0 𝑓󸀠 (𝑧0 ) 11 1 (80) where πœ† 1 is the smallest root of the characteristic equation (42).

5. Concluding Discussions We have considered a reaction model with nonlocal diffusion for competing pioneer-climax species. Some recent works (see Brown et al. [4], Yuan and Zou [6]) showed that the model with local diffusion (expressed by Laplacian operator) supports traveling wavefronts connecting two boundary equilibria or one boundary equilibrium and the coexisting equilibrium under some restrictions on the parameters. In Yuan and Zou [6], the sufficient condition for (2) to have the traveling wavefront connecting (𝑧0 /𝑐11 , 0) and (π‘’βˆ— , Vβˆ— ) is 𝑑2 /𝑑1 β‰₯ 1/2, but ours for (6) with nonlocal diffusion is 𝑑2 /𝑑1 β‰₯ 1. For a fixed 𝑑2 , to shift 𝑑2 /𝑑1 β‰₯ 1/2 to 𝑑2 /𝑑1 β‰₯ 1, one needs a smaller 𝑑1 . But for a fixed 𝑑1 , to shift 𝑑2 /𝑑1 β‰₯ 1/2 to 𝑑2 /𝑑1 β‰₯ 1, one needs a larger 𝑑2 . These facts imply that the nonlocal diffusion of the pioneer species accelerates the mild wave propagation, while the nonlocal diffusion of the climax species defers the mild wave propagation. That is to say, the nonlocal diffusion did affect the wave propagation of these two competitive species.

𝑧0 𝑧 βˆ’ πœ™ (𝑑) , πœ‘ (𝑑)) = ( 0 , 0) , 𝑐11 𝑐11

𝑧 lim ( 0 βˆ’ πœ™ (𝑑) , πœ‘ (𝑑)) = (π‘’βˆ— , Vβˆ— ) , π‘‘β†’βˆž 𝑐 11

(81)

lead to an explanation that the climax species starts its invasion after that the pioneer species has achieved its steady state, and also the competition between the two species was not intense; they can achieve a coexistence state finally. See [19] for the significance of biological invasion. We believe that this is the first time that the dynamics of the pioneer-climax competition model with nonlocal diffusion are studied. This model has complicated equilibrium structure, and we only considered one possible case about the traveling wavefront connecting one boundary equilibrium and the coexisting equilibrium. Some other situations about the species invasions and propagation of waves would be of great interest for further research.

Acknowledgments The authors are very grateful to the anonymous referees for careful reading and helpful suggestions which led to an improvement of their original paper. Research is supported by the Natural Science Foundation of China (11171120), the Doctoral Program of Higher Education of China (20094407110001), and the Natural Science Foundation of Guangdong Province (10151063101000003).

References [1] W. E. Ricker, β€œStock and recruitment,” Journal of the Fisheries Research Board of Canada, vol. 11, pp. 559–623, 1954. [2] M. P. Hassell and H. N. Comins, β€œDiscrete time models for twospecies competition,” Theoretical Population Biology, vol. 9, no. 2, pp. 202–221, 1976. [3] J. M. Cushing, β€œNonlinear matrix models and population dynamics,” Natural Resource Modeling, vol. 2, no. 4, pp. 539–580, 1988. [4] S. Brown, J. Dockery, and M. Pernarowski, β€œTraveling wave solutions of a reaction diffusion model for competing pioneer and climax species,” Mathematical Biosciences, vol. 194, no. 1, pp. 21–36, 2005. [5] B. Buonomo and S. Rionero, β€œLinear and nonlinear stability thresholds for a diffusive model of pioneer and climax species interaction,” Mathematical Methods in the Applied Sciences, vol. 32, no. 7, pp. 811–824, 2009. [6] Z. Yuan and X. Zou, β€œCo-invasion waves in a reaction diffusion model for competing pioneer and climax species,” Nonlinear Analysis: Real World Applications, vol. 11, no. 1, pp. 232–245, 2010. [7] J. H. van Vuuren, β€œThe existence of travelling plane waves in a general class of competition-diffusion systems,” IMA Journal of Applied Mathematics, vol. 55, no. 2, pp. 135–148, 1995. [8] J. D. Murray, Mathematical Biology. I, vol. 17 of Interdisciplinary Applied Mathematics, Springer, New York, NY, USA, 3rd edition, 2002.

12 [9] J. F. Selgrade and J. H. Roberds, β€œLumped-density population models of pioneer-climax type and stability analysis of Hopf bifurcations,” Mathematical Biosciences, vol. 135, no. 1, pp. 1–21, 1996. [10] S. Sumner, β€œHopf bifurcation in pioneer-climax competing species models,” Mathematical Biosciences, vol. 137, no. 1, pp. 1–24, 1996. [11] J. F. Selgrade and G. Namkoong, β€œStable periodic behavior in a pioneer-climax model,” Natural Resource Modeling, vol. 4, no. 2, pp. 215–227, 1990. [12] S. Sumner, β€œStable periodic behavior in pioneer-climax competing species models with constant rate forcing,” Natural Resource Modeling, vol. 11, no. 2, pp. 155–171, 1998. [13] J. R. Buchanan, β€œAsymptotic behavior of two interacting pioneer/climax species,” in Differential Equations with Applications to Biology (Halifax, NS, 1997), vol. 21 of Fields Institute Communications, pp. 51–63, American Mathematical Society, Providence, RI, USA, 1999. [14] J. R. Buchanan, β€œTuring instability in pioneer/climax species interactions,” Mathematical Biosciences, vol. 194, no. 2, pp. 199– 216, 2005. [15] P. W. Bates, X. Chen, and A. J. J. Chmaj, β€œHeteroclinic solutions of a van der Waals model with indefinite nonlocal interactions,” Calculus of Variations and Partial Differential Equations, vol. 24, no. 3, pp. 261–281, 2005. [16] X. Chen, β€œExistence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations,” Advances in Differential Equations, vol. 2, no. 1, pp. 125–160, 1997. [17] S. Pan, β€œTraveling wave fronts of delayed non-local diffusion systems without quasimonotonicity,” Journal of Mathematical Analysis and Applications, vol. 346, no. 2, pp. 415–424, 2008. [18] X. Yu, C. Wu, and P. Weng, β€œTraveling waves for a SIRS model with nonlocal diffusion,” International Journal of Biomathematics, vol. 5, no. 5, Article ID 1250036, 26 pages, 2012. [19] N. Shigesada and K. Kawasaki, Biological Invasions: Theory and Practice, Oxford University Press, Oxford, UK, 1997.

Abstract and Applied Analysis

Advances in

Operations Research Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Advances in

Decision Sciences Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Applied Mathematics

Algebra

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Probability and Statistics Volume 2014

The Scientific World Journal Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Differential Equations Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Submit your manuscripts at http://www.hindawi.com International Journal of

Advances in

Combinatorics Hindawi Publishing Corporation http://www.hindawi.com

Mathematical Physics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Journal of

Complex Analysis Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Journal of

Mathematics Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Discrete Mathematics

Journal of

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Discrete Dynamics in Nature and Society

Journal of

Function Spaces Hindawi Publishing Corporation http://www.hindawi.com

Abstract and Applied Analysis

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

International Journal of

Journal of

Stochastic Analysis

Optimization

Hindawi Publishing Corporation http://www.hindawi.com

Hindawi Publishing Corporation http://www.hindawi.com

Volume 2014

Volume 2014