Trigonometry Formulas

19 downloads 9365 Views 35KB Size Report
TRIGONOMETRY. Right Triangle Definitions. Circular Definitions. Other Identities sin cos tan sec csc opp adj hyp hyp opp adj cot adj opp hyp hyp adj opp θ θ θ.
TRIGONOMETRY Right Triangle Definitions opp adj sin θ = cos θ = hyp hyp opp adj cotθ = tan θ = adj opp hyp hyp sec θ = csc θ = adj opp

Circular Definitions sin θ = tan θ = sec θ =

y

cos θ =

r y

cotθ =

x r

csc θ =

x

Other Identities

x r x

tan x =

y r

sec x =

sin x

cot x =

cos x 1

cos x sin x 1

csc x =

cos x

sin x

y

Reduction Formulas

Sum and Difference Formulas

Pythagorean Identities

sin( − x ) = − sin( x )

cos(u ± v ) = cos u ⋅ cos v ∓ sin u ⋅ sin v sin(u ± v ) = sin u ⋅ cos v ± cos u ⋅ sin v tan u ± tan v tan(u ± v ) = 1 ∓ tan u ⋅ tan v

sin θ + cos θ = 1

cos( − x ) = cos( x )

tan( − x ) = − tan( x ) cot( − x ) = − cot( x ) sec( − x ) = sec( x ) csc( − x ) = − csc( x )

Double Angle Formulas sin(2u ) = 2 sin u cos u 2

2

cos(2u ) = cos u − sin u

Power Reducing Formulas 2

1 − cos(2u )

2

2 1 + cos(2u )

2

2 1 − cos(2u )

sin u =

2

cos(2u ) = 2 cos u − 1 cos u =

2

cos(2u ) = 1 − 2 sin u tan(2u ) =

2 tan u

tan u =

2

1 − tan u

cos u cos v = 0.5[cos(u − v ) + cos(u + v )] sin u cos v = 0.5[sin(u + v ) + sin(u − v )]

2

2

2

2

1 + tan θ = sec θ 1 + cot θ = csc θ

⎛π ⎞ ⎛π ⎞ − x ⎟ = cos x cos ⎜ − x ⎟ = sin x ⎝2 ⎠ ⎝2 ⎠ ⎛π ⎞ ⎛π ⎞ tan ⎜ − x ⎟ = cot x cot ⎜ − x ⎟ = tan x ⎝2 ⎠ ⎝2 ⎠ ⎛π ⎞ ⎛π ⎞ sec ⎜ − x ⎟ = csc x csc ⎜ − x ⎟ = sec x ⎝2 ⎠ ⎝2 ⎠ sin ⎜

Special Angles cos 0 = 1 cos

π

3

=

6 sin 0 = 0 sin

cos u sin v = 0.5[sin(u + v ) − sin(u − v )]

2

Cofunction Identities

1 + cos(2u )

Product to Sum Formulas sin u sin v = 0.5[cos(u − v ) − cos(u + v )]

2

π

cos

2 =

6

1 2

π

=

4 sin

π

=

4

2 2 2

cos

π

=

3 sin

2

π

1

cos

2 =

3

π

=0

2 3

sin

2

π

=1

2

Derivative Rules

d dx d dx d dx

sin x = cos x 2

tan x = sec x sec x = sec x tan x

d dx d dx d dx

cos x = − sin x 2

cot x = − csc x csc x = − csc x cot x

d dx d dx d dx

arcsin x = arctan x = arc sec x =

1

d

1− x 1

dx d

2

2

x +1 1 2

x x −1

dx d dx

ln x =

1 x

cosh x = sinh x sinh x = cosh x

d

x

x

a = ln a ⋅ a dx d n n −1 x = n⋅x dx