TS9 Gupta and Pankaj - doiSerbia

8 downloads 0 Views 235KB Size Report
where E is the Young's modulus and C is the compressibility factor of the material in term of Lame's constant, and are given by E. C. = +. +. = +. m l m. l m m/ l m.
THERMO ELASTIC-PLASTIC TRANSITION IN A THIN ROTATING DISC WITH INCLUSION by

Sant Kumar GUPTA and PANKAJ Original scientific paper UDC: 621.66:620.193.94 BIBLID: 0354-9836, 11 (2007), 1, 103-118

Stresses for the elastic-plastic transition and fully plastic state have been derived for a thin rotating disc with shaft at different temperatures and results have been discussed and depicted graphically. It has been observed that the rotating disc with inclusion and made of compressible material requires lesser angular speed to yield at the internal surface and higher percentage increase in angular speed to become fully plastic as compare to disc made of incompressible material. With the introduction of thermal effect the rotating disc with inclusion required lesser angular speed to yield at the internal surface. Rotating disc made of compressible material with inclusion requires higher percentage increase in angular speed to become fully-plastic as compare to disc made of incompressible material. Thermal effect also increases the values of radial and circumferential stresses at the internal surface for fully-plastic state. Key words: stress, displacement, rotating disc, angular speed, inclusion, temperature

Introduction

Rotating discs are an essential part of the rotating machinery structure, e. g. rotors, turbines, compressors, flywheel, and computer’s disc drive. The stress analysis of thin rotating discs made of isotropic material has been discussed extensively by Timoshenko and Goodier [1] in the elastic range and by Chakrabarty [2] and Heyman [3] for the plastic range. Their solutions for the problem of fully plastic state do not involve the plane stress condition, that is to say, one can obtain the same stresses and angular speed necessary for fully plastic stress of the disc without using the plane stress condition (i. e. Tzz = 0). Gupta and Shukla [4] obtained a different solution for the fully plastic state by using Seth’s transition theory [5] and plane stress condition. This theory does not required any assumptions like an yield condition or incompressibility condition and thus poses and solves a more general problem from which cases pertaining to the above assumptions can be worked out. It utilizes the concept of generalized strain measure and asymptotic solution at critical points or turning points of the differential equations defining the deformed field and has been successfully applied to a large number of problems [4, 7-14, 16]. DOI:10.2298/TSCI0701103G

103

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

Seth [6] has defined the generalized principal strain measure as: A

n

eii

-1 A A A 1 eii = ò [1 - 2 eii ] 2 d eii = [1 - (1 - 2 eii )], (i = 1, 2, 3) n 0

(1)

A

where n is the measure and eii are the Almansi finite strain components [6]. In this paper, we investigate the problem of “thermo elastic-plastic transition in a thin rotating disc with shaft” by using Seth’s transition theory. Results have been discussed and depicted graphically. Governing equations

We consider a thin annular disc with central bore of radius a and outer radius b (fig. 1). The disc, produced of material of constant density, is mounted on a rigid shaft. The disc is rotating with angular speed w about a central axis perpendicular to its plane. The thickness of disc is assumed to be constant and is taken sufficiently small so that the disc is effectively in a state of plane stress, that is, the axial stress Tzz is zero. The temperature at the central bore of the disc is Q. The displacement components in cylindrical polar co-ordinates are given by [6]: u = r(1 – b), v = 0, w = dz

(2)

where b is position function, depending on r = ( x 2 + y 2 )1/ 2 only, and d is a constant. The finite strain components are given by Seth [6] as: 2

A

¶u 1æ ¶u ö 1 - ç ÷ = [1 - ( rb¢ + b) 2 ] ¶r 2è ¶r ø 2 2 A 1 u u e º = (1 - b 2 ) qq (3) r 2r 2 2 2 1 ¶w 1æ ¶w ö º - ç ÷ = [1 - (1 - d ) 2 ] 2 ¶ z 2è ¶ z ø

e rr º

A

ezz Figure 1. Geometry of rotating disc

104

A

A

A

e rq = eqz = ezr = 0

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

where b' = db/dr and meaning of superscripts A is Almansi. Substituting eqs. (3) in eq. (1), the generalized components of strain are: 1 e rr = [1 - ( rb¢ + b) n ] n 1 eqq = (1 - b n ) n 1 ezz = [1 - (1 - d ) n ] n e rq = eqz = ezr = 0

(4)

The stress-strain relation for thermo elastic isotropic material are given by [17]: Tij = ldijI1 + 2meij – xQdij,

(i, j = 1, 2, 3)

(5)

where Tij are the stress components, l and m are Lame’s constants, I1 = ekk is the first strain invariant, dij is the Kronecker’s delta, x = a(3l + 2m), a being the coefficient of thermal expansion, and Q is the temperature. Further, Q has to satisfy: Ñ2 Q = 0 d 2 Q 1 d 2 Q 1 d æ dQ ö + º çr ÷=0 dr 2 r dr 2 r dr è dr ø or

dQ k = dr r

which has solutions:

Q= k1 (log r + k2)

(6)

where k1 and k2 are constants of integration and can determined from the boundary condition. Equation (5) for this problem become: 2 lm 2mxQ T rr = (e rr + eqq ) + 2me rr l + 2m l + 2m Tqq =

2 lm 2mxQ (e rr + eqq ) + 2eqq l + 2m l + 2m

(7)

T rq = Tqz = Tzr = Tzz = 0 Substituting eqs. (4) in eq. (5), the strain components in terms of stresses are obtained as [15]: 105

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

2

e rr =

¶u 1æ ¶u ö 1 1é 1-C ù - ç Tqq ú + aQ ÷ = [1 - (rb¢ + b) 2 ] = êT rr Eë ¶r 2è ¶r ø 2 2-C û 1æ 1-C u u2 1 ö 2 = (1 - b ) = ç Tqq eqq = T rr ÷ + aQ 2-C r 2r 2 2 Eè ø

(8)

2

ezz =

¶w 1æ ¶w ö 1 1-C (T rr - Tqq ) + aQ - ç ÷ = [1 - (1 - d) 2 ] = ¶ z 2è ¶ z ø 2 E (2 - C ) e rq = eqz = ezr = 0

where E is the Young’s modulus and C is the compressibility factor of the material in term of Lame’s constant, and are given by E = m(3 l + 2m) / ( l + m) and C = 2m / ( l + 2m). Substituting eqs. (4) in eqs. (7), we get: n é ö rb¢ nCxQ ù üï 2m ìï n ê1 - C + (2 - C )æ úý C + 3 2 b 1 + ç ÷ í ç ÷ n ï b 2mb n ú ï êë è ø ûþ î n ì é ö 2m ï rb¢ nCxQ ù üï n ê2 - C + (1 - C )æ úý = 3 2 C b + 1 + ç ÷ í ç b ÷ n ï 2mb n ú ï êë è ø ûþ î T rq = Tqz = Tzr = Tzz = 0

T rr =

Tqq and

(9)

All equations of equilibrium are satisfied except: d ( rT rr ) - Tqq + rw 2 r 2 = 0 dr

(10)

where r is the density of the material of the rotating disc. The temperature satisfying Laplace eq. (6) with boundary condition: Q = Q0 at r = a, Q = 0 at r = b where Q0 is constant, given by [17]: k1 =

Q

and k 2 = - log b a b Substituting k1 and k2 form eq. (6), we get: log

Q0 log Q1 = log

106

a b

r b

(11)

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

Using eqs. (9) and (11) in eq. (10), we get a non-linear differential equation in b as: (2 - C ) nb n +1 P ( P + 1) n -1

dP nrw 2 r 2 nCxQ0 = + db 2m 2m

+ b n {1 - ( P + 1) n - np[1 - C + (2 - C )( P + 1) n ]}

(12)

where Q 0 = Q0 / log( a / b) and rb' = bP (P is function of b and b is function of r). From eq. (12), the turning points of b are P = –1 and ±4. The boundary conditions are: u = 0 at r = a and Trr = 0 at r = b

(13)

Solution through the principal stresses

For finding the plastic stress, the transition function is taken through the principal stress (see Seth [7, 8], Hulsurkar [9], and Gupta et al. [10-14, 16]) at the transition point P ® ±4. We take the transition function R as:

R=

nCxQ n (Tqq - CxQ) = (3 - 2C ) - b n [2 - C + (1 - C )( P + 1) n ] 2m m

(14)

Taking the logarithmic differentiation of eq. (14) with respect to r and using eq. (12), we get: bn d (log R ) =dr

é 1 - ( P + 1) n - n(1 - C ) P + ù 1-C ê nrw 2 r 2 nCxQ 0 (3 - 2C ) ú + (2 - C ) nPb n + ú 2 - C ê+ n m( 4 - 2C ) b n û ë 2mb ì nCxQ ü r í3 - 2C - b n [2 - C + (1 - C )( P + 1) n ] ý 2m þ î

(15)

Taking the asymptotic value of eq. (15) at P ® ±4 and integrating, we get: -

R = K1 r

1 2-C

(16)

where K1 is a constant of integration, which can be determine by boundary condition. From eqs. (14) and (16), we have:

107

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

1

Tqq

2m = A1 r 2 - C + n

CxQ0 log

r b

(17)

a b Substituting eq. (17) in eq. (10) and integrating, we get:

1

Tqq

2m(2 - C ) = A1 r 2 - C + n(1 - C )

log

r b - CxQ0 - rw 2 r 2 + K 2 a a 3 r log log b b

CxQ0 log

(18)

where K2 is a constant of integration, which can be determine by boundary condition. Substituting eq. (17) and (18) in second equation of eqs. (8), we get: r é ù 2(2 - C ) aEQ0 log B1 ú 2(1 - C ) ê rw 2 r 2 aEQ0 (2 - C ) b b = 1+ + ê ú a a r ú E (2 - C ) ê 3 log log b b ë û

(19)

where Cx = aE(2 – C). Substituting eq. (19) in eq. (2), we get: r é ù ê rw 2 r 2 aEQ0 (2 - C ) 2(2 - C ) aEQ0 log b B1 ú 2(1 - C ) ê + + ú u = r - r 1a a r ú (20) 3 log log E (2 - C ) ê b b ê ú êë úû where E = 2m(3 – 2C)/(2 – C) is the Young’s modulus in term of compressibility factor. Using boundary condition (13) in eqs. (18) and (20), we get:

K1 =

rw 2 n(1 - C )(b 3 - a 3 ) 6m(2

K2 =

108

1- C - C )b 2 - C

+

aEQ0 n(1 - C )(b - a ) 2m log

a b

1- C b 2- C

-

aEQ0 na 1- C mb 2 - C

rw 2 a 3 aEQ0 (2 - C ) a 2(2 - C ) aEQ0 a + + a 3 1-C log b

(21)

(22)

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

Substituting eqs. (21) and (22) in eqs. (17), (18), and (20), respectively, we get the transitional stresses and displacement as: 1- C

rw 2 (1 - C )(b 3 - a 3 ) æ r ö 2 - C Tqq = + ç ÷ 3r (2 - C ) èbø é r 1- C 1- C ù ê log b 2a æ r ö 2 - C (1 - C )( b - a ) æ r ö 2- C ú + + aEQ0 (2 - C ) ê ç ÷ ç ÷ ú a èbø ê log a (2 - C ) r è b ø ú r (2 - C ) log êë b b û

(23)

1- C ù é 2- C rw 2 ê 3 r æ ö T rr = - r3 + a3 ú + ( b - a 3 )ç ÷ ú 3r ê èbø úû êë 1- C é ù aEQ0 (2 - C ) ê r b - a æ r ö 2- C a ú + log + + -1 + ç ÷ ê a b r èbø r ú log úû êë b 1- C ù é 2aEQ0 (2 - C ) ê a a æ r ö 2 - C ú + - ç ÷ êr r è b ø ú 1-C êë úû

and

é rw 2 ( r 3 - a 3 ) aEQ0 (2 - C )( r - a ) + ê a 3r r log ê b 2 1-C ê u = r - r 1r æ ö ê log ÷ E 2-C ê 2(2 - C ) aEQ0 ç a b - ÷ ç + ê 1-C ç log a r ÷ ê ç ÷ b è ø ë

(24)

ù +ú ú ú ú ú ú ú û

(25)

From eqs. (23) and (24), we get:

T rr - Tqq

rw 2 = 3

1- C é 3 ù 3 æ r ö 2- C b a a3 ú ê 2 + -r + ç ÷ ê r (2 - C ) è b ø r ú êë ûú

ù 1- C 1- C é a 2-C 2a æ r ö 2 - C b - a æ r ö 2 - C 2 - C a - r ú ê + aEQ0 2 + + ç ÷ ç ÷ ú ê r 1 - C (1 - C ) r è b ø a r ú r èbø log êë b û

(26) 109

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

From eq. (26), it is seen that T rr - Tqq is maximum at the internal surface (that is at r = a), therefore yielding of the disc takes place at the internal surface of the disc and eq. (26) can be written as: 1- C

T rr - Tqq

r =a

rw 2 ( b 3 - a 3 ) æ a ö 2 - C = + ç ÷ 3(2 - C ) a è b ø

é ù 1 -C 1 -C ê b - a æ a ö2 -C 2 æ a ö 2 - C 2(2 - C ) ú + aEQ0 ê + ç ÷ ç ÷ ú =Y a b C b C 1 1 è ø è ø ê a log ú b ë û where Y is the yielding stress. The angular speed Wi necessary for initial yielding is given by: 1

æ a ö 2- C 3(2 - C )ç ÷ 2b2 rw èbø i Wi2 = = a3 Y 1b3 3(2 - C ) aEQ0 a3 Y 13 b

a é ù 1 ê1 - b 2(2 - C ) æ a ö 2 - C 2 aú + ç ÷ ú ê 1-C è b ø 1- C bú ê log a b ë û

and wi =

Wi b

(27)

Y r

The disc becomes fully plastic (C ® 0) at the external surface and eq. (26) becomes: T rr - Tqq

r =b

é ù ê b-a rw 2 ( b 3 - a 3 ) aú = + aEQ0 ê -2 ú =Y bú 6b ê b log a b ë û

where E = 3m. The angular Wf speed required for fully plastic state is given by:

W 2f =

110

rw 2f b 2 Y

a ö æ ÷ ç 16 6 aEQ0 ç a÷ b = -2 a a3 a3 Y ç b÷ 11ç log ÷ 3 3 b ø è b b

(28)

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

where wf =

Wf b

Y r

We introduce the following non-dimensional components: rw i2 b 2 rw 2f b 2 T T aEQ0 r a u R = , R 0 = , s r = rr , s q = qq , u = , Q1 = , Wi2= , and W f2 = b b Y Y b Y Y Y Elastic-plastic transitional stresses, angular speed and displacement from eq. (23)-(25), and (27) in non-dimensional form become: 1- C Wi2 é (1 - R 03 )(1 - C ) 2 - C ù ê ú+ sq = R 3R ê 2-C úû ë 1- C ù é (1 - R )(1 - C ) 1 - C 2R 0 log R 0 2 C R + R 2- C ú + Q1 (2 - C )ê log R 0 (2 - C )R êë (2 - C )R log R 0 úû

sr =

+

(29)

1- C ù Wi2 é ê(1 - R 03 ) R 2 - C - R 3 + R 03 ú + 3R ê úû ë

1- C 1- C ù 2Q (2 - C ) æ R 1 - R0 2- C R0 Q1 (2 - C ) é ç 0 - R0 R 2- C êlog R + R + - 1ú + 1 R R 1-C ç R R log R 0 ê úû ë è

ö ÷ (30) ÷ ø

1 1 é ù 3Q1 (2 - C ) ê1 - R 0 2(2 - C ) 2 - C 3(2 - C ) 2- C 2 = R0 + R0 R0 ú ú 1 - R 03 1 - R 03 ê log R 0 1-C 1-C ë û

(31)

Wi2 and

Wi2 é ù (R 3 - R 03 ) + ê ú Y 1-C 3R ê ú u = R - R 1-2 E 2 - C ê+ Q1 (2 - C )(R - R 0 ) + 2(2 - C ) Q1 æç log R - R 0 ö÷ú êë R log R 0 1 - C çè log R 0 R ÷øúû

(32)

Stresses, displacement, and angular speed for fully plastic state (C ® 0), are obtained from eqs. (29), (30), (32), and (28) as: 111

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

sq =

W 2f æ 1 - R 03 ç 3R çè 2

ö æ 1 - R0 R ÷ + 2Q1 çç ÷ è 2R log R 0 ø

sr = +

W f2 3R

log R R 0 R log R 0

ö R ÷÷ ø

R+

R0 R ö æR - 1 ÷ + 4Q1 ç 0 - 0 R R ø è R

ö R÷ ø

æ log R 2Q ( R - R 0 ) Y é W 2f R ( R 3 - R 03 ) + 1 + 4Q1 çç ê E ë 3R R log R 0 è log R 0 R 0

and W 2f =

(33)

[(1 - R 03 ) R - R 3 + R 03 ] +

2Q1 æ 1 - R0 ç log R + log R 0 è r

u = R - R 1-

R+

ö 6Q1 æ 1 - R 0 6 çç - 2R 0 ÷÷ 3 3 1 - R0 1 - R 0 è log R 0 ø

(34)

öù ÷÷ú øû

(35)

(36)

Particular case

When there is no thermal effect (Q1 = 0), the transitional stresses from eq. (29) to (32) become: sq =

1- C Wi2 é (1 - R 03 )(1 - C ) 2 - C ù ê ú R 3R ê 2-C úû ë

1- C ù Wi2 é 3 ê(1 - R 0 ) R 2 - C - R 3 + R 03 ú sr = 3R ê úû ë

u = R - R 1-2

ù Y 1 - C é Wi2 ( R 3 - R 03 ) ú ê E 2 - C ë 3R û

(37)

(38)

(39)

1

where Wi2

3(2 - C ) 2 - C = R 1 - R 03 0

(40)

For fully plastic state stresses, displacement, and angular speed from eq. (33) to (36) becomes:

112

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

sq =

sr =

W 2f 3R

W 2f 1 - R 03 3R

2

R

[(1 - R 03 ) R - R 3 + R 03 ]

u = R - R 1-

where W 2f =

Y W 2f ( R 3 - R 03 ) E 3R

rw 2f b 2 Y

=

6 1 - R 03

(41)

(42)

(43)

(44)

These equation are same as obtained by Gupta and Pankaj [15]. Results and discussion

For calculating the stresses, angular speed, and displacement based on the above analysis, the following values have been taken: C = 0.00, 0.25, 0.5, and 0.75, E/Y = 1/2 and 2, Q 0 = 0 and 700 °F, a = 5.0 ×10 –5 deg F–1 (for methyl methacrylate) [18], Q 1 = = aEQ0/Y = 0, 0.0175, and 0.07 for E/Y = 1/2 and 2, and q0 = 0 and 700 °F, respectively. Curves have been drawn in fig. 2 between angular speed Wi2 required for initial yielding and various radii ratios R0 = a/b for C = 0, 0.25, 0.5, and 0.75 at Q1 = 0, 0.0175, and 0.07. It has been observed that in the absence of thermal effect the rotating disc made of incompressible material with inclusion require higher angular speed to yield at the internal surface as compare to disc made of compressible material and a much higher angular speed is required to yield with the increase in radii ratio. With the introduction of thermal effects, lesser angular speed is required to yield at the internal surface. It can also be seen from tab. 1 that for compressible material higher percentage increased in angular speed is required to become fully plastic as compared to rotating disc made of incompressible material. In figs. 3 and 4, curves have been drawn for stresses and displacement with respect to radii ratio R = r/b for elastic-plastic transition and fully plastic state, respectively. It has been seen that temperature has a quite effect on radial and circumferential stresses i. e. with the introduction of thermal effect it decrease the value of radial and circumferential stress at the internal surface for transitional state, whereas from fig. 4, it can been seen that thermal effect increases the values of radial and circumferential stress at the internal surface for fully-plastic state.

113

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

Figure 2. Angular speed required for initial yielding at the internal surface of the rotating disc

Table 1. Angular speed required for initial yielding and fully plastic state

0.5 £ R £ 1.0

Different values Compressibility of temperatures, of material, Q1 C

114

0 0.0175 0.07 0 0.0175 0.07 0 0.0175 0.07 0 0.0175 0.07

0 0 0 0.25 0.25 0.25 0.5 0.5 0.5 0.75 0.75 0.75

Percentage increase in Angular speed Angular speed angular speed required for required for ö initial yielding, fully-plastic state æç W2f - 1÷100 Wi2 W2f ç W2 ÷ i è ø [%] 18.92071152 6.857143 4.848732 22.33762967 7.063705 4.719678 33.40392435 7.682293 4.317334 30.31804128 6.857143 4.037701 34.11840831 7.063705 3.926953 46.46463551 7.682293 3.581684 45.4831515 6.857143 3.239797 49.81396203 7.063705 3.147226 63.94078954 7.682293 2.858767 66.90601558 6.857143 2.461496 72.02346519 7.063705 2.387026 88.82842534 7.682293 2.154855

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

Figure 3a. Stresses at the elastic plastic transition state

Figure 3b. Stresses at the elastic plastic transition state

115

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

Figure 3c. Stresses at the elastic plastic transition state

Figure 4. Stresses at the fully plastic state

116

Gupta, S. K., Pankaj: Thermo Elastic-Plastic Transition in a Thin Rotating ...

Acknowledgment

The authors are grateful to the referee for his critical comments, which led to a significant improvement of the paper. Nomenclature a, b C K1, K2, k1, k2 Tij, eij u, v, w Y

– – – – – –

internal and external radii of the disc, [m] compressibility factor, [–] constants of integration, [–] stress [kgm–1s–2] and strain rate tensor displacement components, [m] yield stress, [kgm–1s–2]

Greek letters

Q sr sq r W2 w

– – – – – –

temperature, [°F] radial stress component (Trr/Y), [–] circumferential stress component (Tqq/Y), Q1 = aEQ0/Y, [–] density of material, [kgm–3] rw2b2/E (speed factor), R = r/b, R0 = a/b (radii ratio), [–] angular speed of rotation, [s–1]

References [1] Timoshenko, S. P., Goodier, J. N., Theory of Elasticity, McGraw-Hill, New York, USA, 1951 [2] Chakrabarty, J., Theory of Plasticity, McGraw-Hill, New York, USA, 1987 [3] Heyman, J., Plastic Design of Rotating Discs, Proc. Inst. Mech. Engrs, 172 (1958), pp. 531546 [4] Gupta, S. K., Shukla, R. K., Elastic-Plastic Transition in a Thin Rotating Disc, Ganita, 45 (1994), pp. 78-85 [5] Seth, B. R., Transition Theory of Elastic-Plastic Deformation, Creep and Relaxation Nature, 195 (1962), pp. 896-897 [6] Seth, B. R., Measure Concept in Mechanics, Int. J. Non-Linear Mech., 1 (1966), pp. 35-40 [7] Seth, B. R., Creep Transition, J. Math. Phys. Sci., 6 (1972), pp. 1-5 [8] Seth, B. R., Elastic-Plastic Transition in Shells and Tubes under Pressure, ZAMM, 43 (1963), pp. 345-351 [9] Hulsurkar, S., Transition Theory of Creep Shell under Uniform Pressure, ZAMM, 46 (1966), pp. 431-437 [10] Gupta, S. K., Dharmani, R. L., Rana, V. D., Creep Transition in Torsion, Int. J. Non-Linear Mech., 13 (1979), pp. 303-309 [11] Gupta, S. K., Dharmani, R. L., Creep Transition in Bending of Rectangular Plates, Int. J. Non-Linear Mech., 15 (1980), pp. 147-154 [12] Gupta, S. K., Dharmani, R. L., Creep Transition in Thick Walled Cylinder under Internal Pressure, ZAMM, 59 (1979), pp. 517-521

117

THERMAL SCIENCE: Vol. 11 (2007), No. 1, pp. 103-118

[13] Gupta , S. K., Rana, V. D., Thermo Elastic-Plastic and Creep Transition in Rotating Cylinders, J. Math. Phys. Sci., 23 (1989), pp. 71-90 [14] Gupta, S. K., Sharma, S., Proceedings, 3rd International Congress on Thermal Stresses, Cracow, Poland, 1999, pp. 345-348 [15] Gupta, S. K., Pankaj, Elastic-Plastic Transition in a Thin Rotating Disc with Inclusion, send to the Indian Journal of Pure and Appl. Mathematics (Nov. 2005) (under publication) [16] Gupta, S. K., Thermo Elastic-Plastic Transition of Thick-Walled Rotating Cylinder, Proceedings, 1st International Symposium on Thermal Stresses and Related Topics, 1995, Hamamatsu, Japan [17] Parkus, H., Thermo-Elasticity, Springer-Verlag, Wien, New York, 1976 [18] Levitsky, M., Shaffer, B. W., Residual Thermal Stresses in a Solid Sphere form a Thermosetting Material, Jr. of Appl. Mech., Trans. of ASME, 42 (1975), 3, pp. 651-655

Author’s address: S. K. Gupta, Pankaj Department of Mathematics, Himachal Pradesh University Summer-Hill, Shimla-171005, India Corresponding author Pankaj E-mail: [email protected].

Paper submitted: April 14, 2006 Paper revised: December 12, 2006 Paper accepted: December 20, 2006

118