Ultra Wideband Cascaded Low Noise Amplifier ...

4 downloads 40660 Views 4MB Size Report
CDNLive 2014. Tel Aviv. Israel. Talk Outline. • Technion – Fraunhofer IAF Collaboration. • Technology (brief). • High frequency MMIC design challenges.
A Millimeter Wave Broadband, Low Noise and High Gain Integrated Receiver Front-end Based on GaAs Metamorphic HEMTs A step-by-Step high frequency design flow with ADS and Cadence

Aleksey Dyskin

Tel Aviv, 3 November, 2014

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Talk Outline • • • • • • •

Technion – Fraunhofer IAF Collaboration Technology (brief) High frequency MMIC design challenges Front End building blocks ADS/Cadence flow Some measured results Conclusions.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Technion – Fraunhofer IAF collaboration Started in 2009 between Prof. D. Ritter and Prof. I. Kallfass groups.

The first 100nm mHEMT technology (and meanwhile the last) project was started.

First works in InP technology were carried out.(Dr. Kraus PhD thesis on Sigma-Delta)

Technion-2013.

The project was finished with 2 tape-outs and 4 published papers.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Technology|GaAs metamorphic HEMT 100 nm by Fraunhofer IAF

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Technology – metamorphic HEMT Material

Doping

In0.53Ga0.47As

Si

In0.52Al0.48As

n.i.d. Si

Al0.48In0.52As

a = 5.87 (InP)

Al0.48Ga0.52As

a = 5.65 (GaAs)

Remarks cap Schottky barrier -doping

In0.52Al0.48As

n.i.d.

spacer

InxGa1-xAs

n.i.d.

channel

In0.52Al0.48As

n.i.d.

buffer

In0.52Al0.48As   Ga0.52Al0.48As

n.i.d. metamorphic buffer

4“ si GaAs substrate

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Technology – 100 nm mHEMT  fT / fmax 220 / 300 GHz  MMICs up to 200 GHz  typical LNA yield > 80%  3 Mask sets per year

SiN GATE

MET1

MESA

250 nm SiN passivation

Technion-2013.

OHM

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Technology - Passives METG GATE SiN MET1

MESA

OHM

MET1

SiN NiCr

SUBSTRATE

Au

• two metalization levels

• 250 nm CVD SiN passivation

• 2.7 µm Au air bridge technology

• full-wafer backside process

• 225 pF/mm2 MIM capacitors

• microstrip technology

• 50 /sq NiCr resistors

• grounded coplanar technology Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

High Frequency MMIC Challenges

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Electromagnetic Simulations Important and indispensable tool for passives/high frequency interconnects

ADS has a Momentum EM simulator, Cadence still does not.

High frequency design should be assisted with accurate EM analysis Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Proper DRC and LVS Each high frequency IC has plenty of passive/active cells to verify both for design rules and schematic matching

No applicable DRC/LVS in ADS. Usually LVS is being performed only visually.

Even one small LVS or DRC mistake can ruin entire tape out. Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

SoC capabilities The aim of each semiconductor company is to put all the blocks into one chip (SoC)

Cadence gives a proper environment for integrating the high frequency IC into one chip.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Front End Building Blocks

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Why do we need wide bandwidth? • • • •

Backhaul communications (70-84 GHz) High resolution radiometry applications Multifunctional communication standards (60, E Bands) Instrumentation needs

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Low Noise Amplifier • • • • •

50-90 GHz bandwidth High gain and low noise figure Broadband I/O matching Linear Compact

Low Noise Amplifier

A.Dyskin, D Ritter, I. Kallfass, “Ultra Wideband Cascaded Low Noise Amplifier Implemented in 100 nm GaAs mHEMT Technology”, Technion-2013. pp.1-4,IEEE International Symposium on Signals,Systems and Electronics, October 2012, , Potsdam, Germany.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Low Noise Amplifier • • •



Ls inductive degeneration. L1 resonates out input capacitance. L2 and C1 and Cin keep constant Q matching thus ensuring broader performance for single stage. 4-order matching network, also utilized for biasing, eliminating the need of additional biasing elements.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Asymmetric Passive Switch • • • • •

50-90 GHz bandwidth Low insertion loss Broadband I/O matching One operating voltage Compact

Asymmetric Switch A.Dyskin, N. Peleg, S. Wagner, D Ritter, I. Kallfass, “An asymmetrical 60-90 GHz single-pole double throw switch MMIC”, pp 145-148, European Microwave Integrated Circuits Conference,Technion-2013. October 2013, Nuremberg, Germany.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Asymmetric Passive Switch • • • • •

L4 and L5 match Port3. λ/4 translates open to short and vice versa. L2 and L3 match Port1. L1 matches Port2. LDC produces capacitive loading on M1 gate at high frequencies, providing DC feed on low frequencies. Port1 L3 λ/4

L2 LDC Vctrl

Port3 L5

Vctrl

M2

L4 RG MIM

M1

MIM L1 Port2

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Symmetric Active Switch • • • • •

50-90 GHz bandwidth High gain and low noise figure Broadband I/O matching Linear Compact

Symmetric Active Switch

A.Dyskin, S. Wagner, D Ritter, I. Kallfass, “An active 60-90 GHz single-pole double throw switch MMIC”, Journal of Infrared, Millimeter and Terahertz Waves, Vol.35, IssueTechnion-2013. 4, pp. 412-417, April 2014.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Symmetric Active Switch

• • • •

The branch amplifier was matched stand alone, based on the LNA The input stage was matched to the minimum noise The output stage was matched to the maximum power. In order to compensate the capacitance of the inactive stage, the capacitance compensation network was introduced.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

ADS/Cadence Flow

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Schematic Design Schematic design made in ADS:   

Momentum simulations of the EM parts (stubs and vias) Short DC and S-params optimizations Large signal Harmonic Balance

Schematic design is verified in Cadence with SpectreRF:   

The whole design is converted to Cadence (EM parts are converted as s-params files) Brief verification of DC and S-params results. Freeze

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout Design Layout Design is made in Virtuoso Layout XL    

Each coplanar line/stub should be connected properly. Back - metallization vias should be connected properly. Proper RF and DC ports definitions for future DRC/LVS If there are layout constraints, should be re-simulated in Momentum, simulated as a whole circuit.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout design – what is EM simulated? Port1 L3 λ/4

L2 LDC Vctrl

Port3 L5

Vctrl

M2

L4 RG

M1

MIM

MIM L1 Port2

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

DRC/LVS iteration verifications DRC and LVS should be run on the Layout with Assura   

DRC is being run continuously on the layout from the early steps to avoid future complicated fixes. If there are any DRC issues, Momentum should be re-run to verify the performance of the fixed circuit, if needed. LVS black boxes should be well defined (s-param elements)

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

The entire flow Schematic with ADS Momentum on interconnects Momentum on passives

Schematic with SpectreRF Design verification Freeze

Layout with Layout XL DRC at early stages Layout constraints?

Layout check with Assura DRC Problems? LVS check

Tape out Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout Design – Virtuoso Examples

Low Noise Amplifier

Active Switch Asymmetric Switch

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout Design – Virtuoso Examples

Front End

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Some Measured Results| LNA

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout

3.5 X 1 mm2 Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

S-params

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Noise figure

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Some Measured Results| Asymmetric Switch

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout

1.1 X 0.9 mm2

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Insertion Loss

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Ports Matching

•Good matching between measurements and simulations •Good power matching at all the ports of the switch.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Linearity Simulation

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Some Measured Results| Active Switch

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout

2.6 X 1.5 mm2

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

S-Params

Was fixed in second tape-out

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Layout

These back side vias were added to avoid parasitic resonances with ground planes. Could be avoided with careful EM simulations (takes a lot of time for such high frequencies and bandwidth).

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Noise simulation

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Conclusions

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Conclusions and achievements High frequency design still involves 2 simulators for successful design

The first ever reported active switch topology with state-of-theart performance

The proposed flow indeed works

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Acknowledgments • Prof. Ritter research group at the Technion. • Prof. Ingmar Kallfass research group at Fraunhofer IAF, Freiburg, Germany. • Measurements and modeling team at Fraunhofer IAF, Freiburg, Germany.

Technion-2013.

A.Dyskin. CDNLive 2014. Tel Aviv. Israel

Thank you for your time.

Technion-2013.