unified fractional integral formulae for the generalized mittag ... - icstm

1 downloads 0 Views 86KB Size Report
Unified fractional integral formulae for … Daya Lal Sutha, Sunil Dutt Purohit www.josa.ro. Mathematics Section. 118. In 1903, Gosta Mittag-Leffler [5] introduced ...
Journal of Science and Arts

Year 14, No. 2(27), pp. 117-124, 2014

ORIGINAL PAPER

UNIFIED FRACTIONAL INTEGRAL FORMULAE FOR THE GENERALIZED MITTAG-LEFFLER FUNCTIONS DAYA LAL SUTHAR 1, SUNIL DUTT PUROHIT 2 _________________________________________________ Manuscript received: 07.04.2014; Accepted paper: 19.05.2014; Published online: 30.06.2014.

Abstract. The fractional calculus operators has gained noticeable importance and popularity due to its established applications in describing/modeling and solving various integral equations, ordinary differential equations and partial differential equations in many fields of science and engineering. The Mittag-Leffler functions are important special functions, that provides solutions to number of problems formulated in terms of fractional order differential, integral and difference equations; therefore, it has recently become a subject of interest for many authors in the field of fractional calculus and its applications. The aim of this paper is to evaluate two unified fractional integrals involving the product of generalized Mittag-Leffler function and Appell function F3 (.) . These integrals are further applied in proving two theorems on Marichev-Saigo-Maeda fractional integral operators. The results are expressed in terms of generalized Wright function and hypergeometric functions p Fq (.) . Further, we point out also their relevance. Keywords: Marichev-Saigo-Maeda fractional integral operators, generalized MittagLeffler function, generalized Wright function, generalized hypergeometric series.

1. INTRODUCTION

The fractional calculus operators involving various special functions have found significant importance and applications in modeling of relevant systems in various fields science and engineering, such as turbulence and fluid dynamics, stochastic dynamical system, plasma physics and controlled thermonuclear fusion, nonlinear control theory, image processing, nonlinear biological systems, astrophysics, and in quantum mechanics. Therefore, a remarkably large number of authors have studied, in depth, the properties, applications, and different extensions of various operators of fractional calculus. For detailed account of fractional calculus operators along with their properties and applications, one may refer to the research monographs by Miller and Ross [4], Samko et al. [14] and Kiryakova [2].

1

Poornima University, School of Basic and Applied Science, 303905 Jaipur, India. E-mail: [email protected]. M.P. University Agri. Tech., College of Technology and Engineering, Department of Basic-Sciences (Mathematics), 313001 Udaipur, India. E-mail: [email protected]. 2

ISSN: 1844 – 9581

Mathematics Section

Unified fractional integral formulae for …

118

Daya Lal Sutha, Sunil Dutt Purohit

In 1903, Gosta Mittag-Leffler [5] introduced the function Eα ( z ) , defined by: ∞

1 zn n = 0 Γ (α n + 1)

(α ∈C ) ; Re(α ) > 0

Eα ( z ) = ∑

(1.1)

A further, two-index generalization of this function was given by Wiman [17] as: ∞

1 zn n = 0 Γ (α n + β )

Eα , β ( z ) = ∑

(α , β ∈C ) ,

(1.2)

where Re(α ) > 0 and Re( β ) > 0 . By means of the series representation a generalization of Mittag-Leffler function (1.2) is introduced by Prabhakar [7] as:

(δ ) n zn Γ β γ n + n ( ) ! n=0 ∞

Eβδ , γ ( z ) = ∑

(1.3)

where β , γ , δ ∈C (Re( β ) > 0) . Further, it is an entire function of order [Re( β )]−1 [7]. Since the Mittag-Leffler function provides solutions to certain problems formulated in terms of fractional order differential, integral and difference equations, therefore, a number of useful generalization of the this function has been introduced and studied many authors. Recently, Salim and Faraj [13] has introduced and studied a new generalization of the MittagLeffler function, by means of the power series: Eνδ,,ρξ ,, qp ( z ) =

(δ ) qn



∑ Γ (ν n + ρ )(ξ )

n=0

zn

(1.4)

pn

where ν , ρ , δ , ξ ∈C ; ℜ(ν ), ℜ( ρ ), ℜ(δ ), ℜ(ξ ), p, q > 0 such that q ≤ℜ(ν ) + p . The generalized Wright hypergeometric function pψ q ( z ) , for z ∈ C , complex

ai , b j ∈C , and α i , β j ∈ R (α i , β j ≠ 0 ; i = 1, 2,..., p; j = 1, 2,..., q ) is defined as below: p

 (ai , α i )1, p  ψ ( z ) = ψ z = p q p q  (b j , β j )1, q 



∑ k =0

∏ Γ (a + α k ) z i

i =1 q

∏ Γ (b

k

i

. j

(1.5)

+ β jk) k !

j =1

Wright [18] introduced the generalized Wright function (1.5) and proved several theorems on the asymptotic expansion of pψ q ( z ) [18-20] for all values of the argument z, under the condition: q

p

j =1

i =1

∑ β j − ∑α i > −1.

www.josa.ro

Mathematics Section

Unified fractional integral formulae for …

The

generalized

Daya Lal Sutha, Sunil Dutt Purohit

hypergeometric

function

for

ai , b j ∈ C

complex

119

and

b j ≠ 0, −1,... (i = 1, 2,, p; j = 1, 2,, q ) is given by the power series [1]: ∞

(a1 ) r  (a p ) r z r

r =0

(b1 ) r  (bq ) r r!

p Fq ( a1 , , a p ; b1 , , bq ; z ) = ∑

,

(1.6)

where for convergence, we have z < 1 if p = q + 1 and for any z if p ≤ q . The function (1.6) is a special case of the generalized Wright function (1.5) for α1 = ... = α p = β1 = ... = β q = 1 : q

∏Γ (b ) j

p Fq ( a1 , , a p ; b1 , , bq ; z ) =

j =1 p

∏Γ (a ) i

(ai , 1)1,  (b j , 1)1,

ψq 

p

p q

 z 

(1.7)

i =1

A useful generalization of the hypergeometric fractional integrals, including the Saigo operators [10-11], has been introduced by Marichev [3] (see details in Samko et al. [14]) and later extended and studied by Saigo and Maeda [12] in term of any complex order with Appell function F3 (.) in the kernel, as follows: Let α ,α ′, β , β ′, γ ∈ C and x > 0 , then the generalized fractional calculus operators (the Marichev-Saigo-Maeda operators) involving the Appell function, or Horn's F3-function are defined by the following equations: −α

(I

α ,α ′ , β , β ′ , γ 0, +

f

(I

α ,α ′ , β , β ′ , γ

f )( x) =

0, −

) ( x ) = Γx(γ ) ∫ ( x − t ) x

γ −1 −α ′

0

x −α ′



γ (t − x ) ∫ Γ (γ ) x

t

t x  F3  α ,α ′, β , β ′; γ ;1 − ,1 −  f (t )dt x t 

(ℜ(γ ) > 0 )

x t  t F3  α ,α ′, β , β ′; γ ;1 − ,1 −  f (t )dt (ℜ(γ ) > 0 ) t x 

−1 −α

(1.8) (1.9)

For the definition of the Appell function F3 (.) the interested reader may refer to the monograph by Srivastava and Karlson [16] (see [1, 6]). Following Saigo et al. [10, 15], the image formulas for a power function, under operators (1.8) and (1.9), are given by:

(I

α ,α ′ , β , β ′ , γ 0, +

 ρ , ρ + γ − α − α ′ − β , ρ + β ′ − α ′  ρ −α −α ′ + γ −1 x ρ −1 ) ( x ) = Γ  x  ρ + β ′, ρ + γ − α − α ′, ρ + γ − α ′ − β 

(1.10)

where ℜ( ρ ) > max {0 ℜ,(α + α ′ + β − γ ), ℜ(α ′ − β ′)} and ℜ(γ ) > 0 .

(I

α ,α ′ , β , β ′ , γ 0, −

1 − ρ − β , 1 − ρ − γ + α + α ′, 1 − ρ + α + β ′ − γ  x ρ −1 ) ( x ) = x ρ −α −α ′ + γ −1 Γ    1 − ρ, 1 −ρ + α + α ′ + β ′ − γ , 1 −ρ + α − β 

(1.11)

wher ℜ( ρ ) < 1 + min {ℜ(− β ), ℜ(α + α ′ − γ ), ℜ(α + β ′ − γ )} and ℜ(γ ) > 0 . The symbol occurring in (1.10) and (1.11) is given by:  a, b, c  Γ(a) Γ(b)Γ(c) Γ = .  Γ ( d ) Γ (e)Γ ( f ) d , e, f 

ISSN: 1844 – 9581

Mathematics Section

Unified fractional integral formulae for …

120

Daya Lal Sutha, Sunil Dutt Purohit

The computations of fractional integrals (and fractional derivatives) of special functions of one and more variables are important from the point of view of the usefulness of these results in the evaluation of generalized integrals and the solution of differential and integral equations (for example see [8]-[9]). Motivated by these avenues of applications, here we establish two image formulas for the generalized Mittag-Leffler function (1.4), involving left and right sided operators of Saigo-Meada fractional integral operators [12], in term of the generalized Wright function [18].

2. MAIN RESULTS

In this section, we establish image formulas for the generalized Mittag-Leffler function involving left and right sided operators of Saigo-Meada fractional integral operators (1.8) and (1.9), in term of the generalized Wright function. These formulas are given by the following theorems: Theorem 2.1. Let α ,α ′, β , β ′, γ ,υ , ρ ∈ C and p, q > 0 ,ν > 0, q ≤ ℜ(ν ) + p be such that

ℜ(γ ) > 0 ,ℜ(υ ) > −1

ℜ( ρ + υ ) > max [ 0 ℜ,(α + α ′ + β − γ ), ℜ(α ′ − β ′) ] then there hold the formula:

(I

α ,α ′ , β , β ′ , γ 0, +

(t

ρ −1

δ ,ξ , q ν , ρ, p

E

x ρ −α −α ′ + γ −1Γ (ξ ) [ct ]) ( x ) = Γ (δ ) υ

)

 ( ρ + γ − α − α ′ − β , υ ), ( ρ + β ′ − α ′, υ ),(δ , q ), (1, 1)  × 4ψ 4  (cx)υ   ( ρ + γ − α − α ′, υ ), ( ρ + γ − α ′ − β ,υ ),( ρ + β ′, υ ),(ξ , p ) 

(2.1)

Proof: On using (1.4) and writing the function in the series form, the left hand side of (2.1), leads to

(I

α ,α ′, β , β ′,γ

0, +

(δ ) qn (c)υn

))(x) = ∑ Γ(ν n + ρ )(ξ ) (I α α β β γ t ρ υ )(x).

(

t ρ −1Eνδ,,ρξ ,, qp [ctυ ]



n=0

, ′, , ′, 0, +

pn

+ n −1

(2.2)

Now, upon using the image formula (1.10), which is valid under the conditions stated with Theorem 2.1, we get

(I α α β β γ (t ρ , ′, , ′, 0, +

))(x) = x

−1 δ , ξ , q Eν , ρ , p [ctυ ]

×

ρ −α −α ′ + γ −1

Γ(ξ )

Γ(δ )

Γ(δ + qn) Γ( ρ + γ − α − α ′ − β + υn) n = 0 Γ(ξ + pn)Γ( ρ + γ − α − α ′ + υn) ∞



((cx)υ ) n Γ( ρ + β ′ − α ′ + υn) Γ(1 + n) . n! Γ( ρ + γ − α ′ − β + υn) Γ( ρ + β ′ + υn)

(2.3)

Interpreting the right-hand side of the above equation, in view of the definition (1.5), we arrive at the result (2.1). www.josa.ro

Mathematics Section

Unified fractional integral formulae for …

Daya Lal Sutha, Sunil Dutt Purohit

121

Theorem 2.2. Let α ,α ′, β , β ′, γ ,υ , ρ , µ ∈ C and p, q ,ν > 0 , q ≤ ℜ(ν ) + p , such that ℜ(γ ) > 0, ℜ(υ ) > −1, ℜ( ρ − υ ) < 1 + min[ℜ(− β ), ℜ(α + α ′ − γ ), ℜ(α + β ′ − γ )], then the following formula holds true: x − ρ − µ −α −α ′ + γ Γ(ξ ) α ,α ′, β , β ′,γ − ρ − µ δ , ξ , q −υ I 0, − t Eν , ρ , p [ct ] ( x ) = Γ(δ )

(

))

(

 (α + α ′ − γ + µ + ρ , υ ), (α + β ′ − γ + µ + ρ , υ ), ( µ − β + ρ , υ ), (δ , q) , (1, 1)  × 5ψ 5  (cx) −υ . ′ ′ + + + − + + − + + µ ρ υ α α β γ µ ρ υ α β µ ρ υ ρ υ ξ ( , ) , ( , ) , ( , ) , ( , ) , ( , p )   (2.4)

Proof: By using (1.4), the left had side of (2.4), can be written as:

(I

α ,α ′, β , β ′,γ

0, −

(t

−ρ −µ

(δ ) qn (c) −υn

))(x ) = ∑ Γ(ν n + ρ )(ξ ) (I α α β β γ t ∞

Eνδ,,ρξ ,, pq [ct −υ ]

n=0

, ′ , , ′, 0, −

− ρ − µ −υn

pn

)(x), (2.5)

which on using the image formula (1.11), arrive at

(I α α β β γ (t ρ µ Eνδ ρξ , ′, , ′, 0, −



×∑ n=0

×

− −

))(x) = x

, ,q −υ , , p [ct ]

− ρ − µ −α −α ′+γ

Γ(ξ )

Γ(δ )

Γ(α + α ′ − γ + µ + ρ + υn) Γ (α + β ′ − γ + µ + ρ + υn) Γ( µ + ρ + υn) Γ (α + α ′ + β ′ − γ + µ + ρ + υn)

((cx) −υ ) n Γ(α − β + µ + υn) Γ(δ + qn) Γ (1 + r ) n! Γ (α − β + µ + ρ + υn) Γ ( ρ + υn) Γ (ξ + pn)

(2.6)

Interpreting the right-hand side of the above equation, in view of the definition (1.5), we arrive at the result (2.4).

3. SPECIAL CASES

In this section, we consider some special cases of the main results derived in the preceding section. If we set α ′ = 0 in the operators (1.8) and (1.9), then we have the following known identities:

(I α β (I α β

) ( ) ηβ α f )( x ) = (I α β η f )( x ).

+ , 0, −η , β ′,α 0, +

α ,β , η f ( x ) = I 0, f ( x ). +

+ , 0, − , ′, 0, −

(3.1)

, , 0, −

(3.2)

where the hypergeometric operators, appeared in the right hand side are due to Saigo[10], defined as:

(I α β η f )( x) = xΓ(α ) , , 0, +

ISSN: 1844 – 9581

−α − β

x

α −1

∫0 ( x − t )

2 F1

(α + β ,−η ;α ;1 − t/x ) f (t )dt , (3.3) Mathematics Section

Unified fractional integral formulae for …

122

(I α β η f )( x) = Γ(1α ) ∫

∞ (t x

, , 0, −

Daya Lal Sutha, Sunil Dutt Purohit

− x)α −1 t −α − β 2 F1 (α + β ,−η ; α ;1 − x/t ) f (t )dt .

(3.4)

−η , γ = 0, β = α and replace α by α + β in (2.1) and (2.2), Therefore, if we set α ′ = we get the following results, involving the left and right hand sided Saigo type integral operators: Corollary 3.1. Let α , β ,η , δ , ξ , ρ ∈ C and p, q ,ν > 0 , q ≤ ℜ(ν ) + p , ℜ(α ) > 0 , ℜ( ρ + η − β ) > 0 , then there hold the formula:

(I α β η (t ρ

))

x ρ − β −1Γ(ξ ) Γ(δ )   ( ρ + η − β , υ ), (δ , q ), (1, 1) × 3ψ 3  (cx)υ   ( ρ − β , υ ), ( ρ + α + η ,υ ), (ξ , p )  , , 0, +

−1 δ , ξ , q Eν , ρ , p

[ctυ ] ( x ) =

(3.5)

Corollary 3.2. Let and p, q ,ν > 0 , α , β ,η , δ , ξ , ρ ∈ C ℜ(α + ρ ) > max[ −ℜ( β ), ℜ(η ] , then the following formula hold:

(I α β η (t

q ≤ ℜ(ν ) + p ,

))

x − ρ − µ − β Γ(ξ ) Γ(δ )  ( ρ + µ + β , υ ), ( ρ + µ + η , υ ), (δ , q ), (1, 1)  × 4ψ 4  (cx) −υ . ( ρ , υ ), ( ρ + µ , υ ), ( ρ + µ + α + β + η , υ ), (ξ , p )  , , 0, −

−µ −ρ

Eνδ,,ρξ ,, qp [ct −υ ] ( x ) =

(3.6)

Further, if we follow results of Corollaries 3.1 and 3.2, when β = − α , we arrive at the following results involving left and right sided Riemann-Liouville fractional integration operator. Corollary 3.3. If α , δ , ξ , ρ ∈ C and p, q ,ν > 0 , q ≤ ℜ(ν ) + p , ℜ(α ) > 0 ,ℜ( ρ ) > 0 , then we have

(I α (t ρ 0, +

−1 δ , ξ , q Eν , ρ , p

))

[ctυ ] ( x ) =

(δ , q ), (1, 1)   x ρ +α −1Γ(ξ ) (cx)υ . 2ψ 2  Γ(δ )  ( ρ + α , υ ), (ξ , p ) 

(3.7)

Remark 1. If we set ξ= p= q= 1 in equation (3.7), we get the known result given by Saxena and Saigo [15]. Corollary 3.4. Let α , δ , ξ , ρ ∈ C and p, q ,ν > 0 , q ≤ ℜ(ν ) + p , ℜ(α + ρ ) > max[ −ℜ(−α )] , then

(W ( t α

0, −

−µ −ρ

δ ,ξ , q ν , ρ, p

E

x − ρ − µ −α Γ (ξ ) ( ρ + µ − α , υ ), (δ , q ), (1, 1)  [ct ]) ( x ) = (cx) −υ  3ψ 3  Γ (δ )  ( ρ , υ ), ( ρ + µ , υ ), (ξ , p )  −υ

)

(3.8)

Remark 2. If we set ξ= p= q= 1, µ= α in equation (3.8), we get the known result given by Saxena and Saigo [15].

www.josa.ro

Mathematics Section

Unified fractional integral formulae for …

Daya Lal Sutha, Sunil Dutt Purohit

123

Finally, if we follow Corollaries 3.1 and 3.2, in respective case β = 0 , then we arrive at the following corollary concerning left and right sided Erdélyi-Kober fractional integration operators. Corollary 3.5. Let α ,δ ,ξ , ρ ∈ C ℜ(α ) > 0 ,ℜ( ρ + η ) > 0 , then there hold the formula:

(Eα η (t ρ , 0, +

−1 δ , ξ , q Eν , ρ , p

))

[ctυ ] ( x ) =

(

)

p, q ,ν > 0 ,

q ≤ ℜ(ν ) + p ,

 ( ρ + η , υ ), (δ , q ), (1, 1)  x ρ −1Γ(ξ ) (cx)υ . 3ψ 3  Γ(δ )  ( ρ , υ ), ( ρ + α + η ,υ ), (ξ , p ) 

Corollary 3.6. Let α ,δ ,ξ , ρ ∈ C ℜ(α + ρ ) > max[ℜ(η ] , then there hold the formula K 0,α −, η ( t − µ − ρ Eνδ,,ρξ ,, qp [ct −υ ]) ( x ) =

and

and

p, q ,ν > 0 ,

(3.9)

q ≤ ℜ(ν ) + p ,

 ( ρ + µ , υ ), ( ρ + µ + η , υ ), (δ , q ), (1, 1)  x − ρ − µ Γ (ξ ) × 4ψ 4  (cx) −υ  Γ (δ ) ( ρ , υ ), ( ρ + µ , υ ), ( ρ + µ + α + η , υ ), (ξ , p)  (3.10)

REFERENCES

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16]

Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G., Higher Transcendental Functions, Vol.1, McGraw-Hill, New York, 1953. Kiryakova, V., Generalized Fractional Calculus and Applications, Vol. 301, Longman Scientific & Technical, Essex, UK, 1994. Marichev, O.I., Izv. AN BSSR Ser. Fiz.-Mat. Nauk, 1, 128, 1974. Miller, K.S., Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley-Inter-Science, John Wiley & Sons, New York, USA, 1993. Mittag-Leffer, G.M., C.R. Acad. Sci. Paris., 137, 554, 1903. Prudnikov, A.P., Brychkov, Yu.A., Marichev, O.I., Integrals and Series. Special Functions, Vol. 1-5, Gordon & Breach., New York, 1992. Prabhakar, T.R., Yokohama Math. J., 19, 7, 1971. Purohit, S.D., Kalla, S.L., Suthar, D.L., SCIENTIA, Series A: Mathematical Sciences, 21, 87, 2011. Purohit, S.D., Suthar, D.L., Kalla, S.L., Le Matematiche, 67(1), 21, 2012. Saigo, M., Math. Rep. Kyushu Univ. 11, 135, 1978. Saigo, M.A., Math. Japonica, 24(4), 377, 1979. Saigo, M., Maeda, N., More generalization of fractional calculus, In: Transform Metods and Special Functions, Sofia, 386, 1998. Salim, T.O., Faraj, A.W., Journal of Fractional Calculus and Applications, 3(5), 1, 2012. Samko, S., Kilbas, A., Marichev, O., Fractional Integrals and Derivatives. Theory and Applications, Gordon & Breach. Sci. Publ., New York, 1993. Saxena, R.K., Saigo, M., J. Frac. Calc. 19, 89, 2001. Srivastava, H.M., Karlson, P.W., Multiple Gaussion Hypergeometric Series, Ellis Horwood Limited, New York, 1985.

ISSN: 1844 – 9581

Mathematics Section

Unified fractional integral formulae for …

124

[17] [18] [19] [20]

Daya Lal Sutha, Sunil Dutt Purohit

Wiman, A., Acta Math., 29, 191, 1905. Wright, E.M., J. London Math. Soc., 10, 286, 1935. Wright, E.M., Philos. Trans. Roy. Soc. London A, 238, 423, 1940. Wright, E.M., Proc. London Math. Soc., 46(2), 389, 1940.

www.josa.ro

Mathematics Section