Universality Issues in Reversible Computing Systems and Cellular

9 downloads 0 Views 772KB Size Report
Universality of RTMs. Theorem [Bennett, 1973]. For any one-tape (irreversible) TM T, there is a garbage-less 3-tape reversible TM which simulates the former.
Universality Issues in Reversible Computing Systems and Cellular Automata Kenichi Morita Hiroshima University

Contents 1. 2. 3. 4.

Introduction Reversible Turing machines (RTMs) Reversible logic elements and circuits Reversible cellular automata (RCAs)

Even very simple reversible systems have universal computing ability!

1. Introduction

Reversible Computing • Roughly speaking, it is a “backward deterministic” computing; i.e., every computational configuration has at most one predecessor.

···

-

-

-

-

···

↑ Computational configuration

• Though its definition is rather simple, it reflects physical reversibility well.

Reversible Computing • Roughly speaking, it is a “backward deterministic” computing; i.e., every computational configuration has at most one predecessor. No such configuration exists

···

-

j -

-

-

···

↑ Computational configuration

• Though its definition is rather simple, it reflects physical reversibility well.

Several Models of Reversible Computing • • • • •

Reversible Turing machines (RTMs) Reversible logic elements and circuits Reversible cellular automata (RCAs) Reversible counter machines (RCMs) Others —————————————————— • These models are closely related each other. • Reversible computers work in a very different fashion from classical computers!

2. Reversible Turing Machines

Reversible Turing Machines (RTMs) A “backward deterministic” TM.

· · · · s · · · · · 6

q

Definition of a TM T = (Q, S, q0, qf , s0, δ) Q: S: q0 : qf : s0 : δ:

a finite set of states. a finite set of tape symbols. an initial state q0 ∈ Q. a final state qf ∈ Q. a blank symbol s0 ∈ S. a move relation given by a set of quintuples [p, s, s, d, q] ∈ Q× S × S × {−, 0, +} × Q.

Definition of an RTM A TM T = (Q, S, q0, qf , s0, δ) is called reversible iff the following condition holds for any pair of distinct quintuples [p1, s1, s1, d1, q1] and [p2, s2, s2, d2, q2]. If q1 = q2, then s1 = s2 ∧ d1 = d2 (If the next states are the same, then the written symbols must be different and the shift directions must be the same.)

Universality of RTMs Theorem [Bennett, 1973] For any one-tape (irreversible) TM T , there is a garbage-less 3-tape reversible TM which simulates the former.

A Small Universal RTM (URTM) A URTM is an RTM that can compute any recursive function. Theorem The following URTMs exist: 17-state 5-symbol URTM [Morita and Yamaguchi, 2007] 15-state 6-symbol URTM [Morita, 2008]

A Small Universal RTM (URTM) A URTM is an RTM that can compute any recursive function. Theorem The following URTMs exist: 17-state 5-symbol URTM [Morita and Yamaguchi, 2007] 15-state 6-symbol URTM [Morita, 2008]

These URTMs can simulate any cyclic tag system [Cook, 2004], which is proved to be universal.

Cyclic Tag System (CTAG) [Cook, 2004] C = (k, {Y, N }, (halt, p1, · · · , pk−1)) • k: the length of a cycle (positive integer). • {Y, N }: the alphabet used in a CTAG. • (p1, · · · , pk−1) ∈ ({Y, N }∗)k−1 : production rules. An instantaneous description (ID) is a pair (v, i), where v ∈ {Y, N }∗ and i ∈ {0,· · · ,k−1}. For any (v, i), (w, j) ∈ {Y, N }∗ × {0, · · · , k − 1}, (Y v, i) ⇒ (w, j) iff

[m = 0] ∧ [j = i + 1 mod k] ∧[w = vpi], (N v, i) ⇒ (w, j) iff [j = i + 1 mod k] ∧ [w = v].

A Simple Example of a CTAG System C1 = (3, {Y, N }, (halt, Y N , Y Y )) If an initial word N Y Y is given, the computing on C1 proceeds as follows: (N Y Y , ⇒( Y Y , ⇒( Y Y N , ⇒( Y N Y Y ,

0 1 2 0

) ) ) )

The quintuple set of the URTM(17,5) q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12 q13 q14 q15 q16

b $ − q2 halt ∗ − q3 b + q12 Y + q5 b − q6 Y − q3 N + q8 b − q9 N − q3

∗ − q14 b + q16 N + q0

Y $ − q1 Y − q1 Y − q2 b + q4 Y + q4

N b − q13 N − q1 N − q2 b + q7 N + q4



$

∗ + q0 ∗ − q2 b + q10 ∗ + q4

b − q1 null $ + q4

Y − q6 Y + q7

N − q6 N + q7

∗ − q6 ∗ + q7

$ − q6 $ + q7

Y − q9 Y + q10 Y + q11 Y + q12 Y − q13 Y − q14 Y + q15 Y + q16

N − q9 N + q10 N + q11 N + q12 N − q13 N − q14 N + q15 N + q16

∗ − q9 ∗ + q10 ∗ + q11 ∗ + q12 ∗ − q13 b + q15 ∗ + q15 ∗ + q16

$ − q9 $ + q11 Y + q0 $ − q3 $ − q13 $ + q15 $ − q14

Simulating the CTAG C1 by the URTM(17,5) t=0 The rules of the CTAG C1

A given string

b Y Y * N Y * b $ N Y Y b b b b b 6

q0 t=6 b Y Y * N Y b * $ b Y Y b b b b b 6

q15 t = 59 b Y Y b N Y * * $ N $ Y Y N b b b 6

q11 t = 142 b Y Y * N Y * b $ N Y $ Y N Y Y b 6

q11 The final string t = 148 b Y Y * N Y * b b N Y Y $ N Y Y b 6

q1

Small UTMs and URTMs Symbols 6

•UTM(2,18)[Rogozhin,1996]

•UTM(3,9)[Kudlek, Rogozhin, 2002] •UTM(4,6)[Rogozhin,1996] •URTM(15,6)[Morita, 2008] •UTM(5,5)[Rogozhin,1996] •URTM(17,5)[Morita, Yamaguchi, 2007] •UTM(6,4)[Neary, Woods,2007] •UTM(9,3)[Neary, Woods,2007] •UTM(18,2)[Neary, Woods,2007] -

States

3. Reversible Logic Elements

Reversible Logic Element A logic element whose function is described by a one-to-one mapping. (1) Reversible logic elements without memory (i.e., reversible logic gates): • Toffoli gate [Toffoli, 1980] • Fredkin gate [Fredkin and Toffoli, 1982] • etc. (2) Reversible logic elements with memory: • Rotary element (RE) [Morita, 2001] • etc.

Rotary element (RE) A 2-state 4-input-line 4-output-line element.

H-state n n

? 6  

V-state n n

? 6  

e w - e w -

w w-

? 6

s

s

e - e

? 6

s s

(Remark) We assume signal “1” is given at most one input line.

Operations of an RE • Parallel case: t=0 t=1 ? 6  

? 6  

-

-

-

--

? 6

? 6

• Orthogonal case: t=0

t=1

? 6  

? 6  

-

-

? 6

6-

? ? 6

Logical Universality of a Rotary Element A Fredkin gate can be composed of REs and delay elements. 10

?

p

-

q

5

c

1

1

?

?

-

-

6 ?

-

? -

3

6 ?

 -

3



-

6



?



6 ?



-y

 -c

3

5

-x

3

(Remark) But, this is not a good method to use REs.

Any Reversible Turing Machine Can Be Composed Only of REs [Morita, 2001] ? 



-

? 

-

?

6

 6

6

 6  -

6  6 

6 

6

6

6

6  6 

6



-

?





?

? 

-

 6 ? 





?

6 -

6 ?

-

-

-

 ?

-

6



6

-

6



-







 ?

-

? 

? 

-

?







-

-

?

6

? 6

6

-

? 

6



6







-

?

6

?

? 6

6

-

? 

6

6 -

?

6 -

-

6 6

?  6



-

-

-

? 

 ? 

-

6 ? 



6

-

6

-

-

-

-

6

-

6

?

6

? 



?

? 

-

-

-

-

6

-



• • •

-

6



?

 6

6 ? 

-

6

6

?

-

6





-

? 

6 ? 

?

-

6

-

6 ?  -

 ?

-

-

? 

6

-

6



6

?

-

-

6

6

?  

6

6 -

6

6 6 6



6

? 



6

?



6

-

? 

-

-

?  -

6

? 

6



6

-

-

-

6

6 ? 

-

-

?  

6 -

6

-

6

 6

?

6

?  

-

6



-

? 

-

6

q0

6

?  

6

? 

-

? -

6 ? 

•-

-

6

Accept 

Begin



6

-

Reject 

? 



0 1 0 · ·

?  6

?  6

-

A Simple Example of an RTM Tparity Tparity = (Q, {0, 1}, q0, qacc, 0, δ) Q = {q0, q1, q2, qacc, qrej} δ = {[ [ [ [ [

q0, 0, 1, R, q1 ], q1, 0, 1, N, qacc ], q1, 1, 0, R, q2 ], q2, 0, 1, N, qrej ], q2, 1, 0, R, q1 ] }.

A Simple Example of an RTM Tparity

t=0 0 1 1 0 6

q0

A Simple Example of an RTM Tparity

t=1 1 1 1 0 6

q1

A Simple Example of an RTM Tparity

t=2 1 0 1 0 6

q2

A Simple Example of an RTM Tparity

t=3 1 0 0 0 6

q1

A Simple Example of an RTM Tparity

t=3 1 0 0 1 6

qacc

Reject Accept

t=0

Begin

head 0

1

1

0

Reject Accept

t = 1402

Begin

1

head 1

1

0

Reject Accept

t = 2816

Begin

1

0

head 1

0

Reject Accept

t = 5000

Begin

1

0

0

head 0

Reject Accept

t = 6875

Begin

1

0

0

head 1

Billiard Ball Model (BBM) – A reversible physical model of computing – [Fredkin and Toffoli, 1982] 

c

cx

R

R



cx

R

x



R R

c

Realization of an RE by BBM [Morita, 2008] n

n 

w





s0



w I

n1  



V

 I

s1 I

I

-

n0

R 

w1

I

R

R 

H

I 6





w0

?

R



e



I 



?

R

I

R I -

6

e0



e1

6 ?

s

s

R

R

R

R

I 

e

Parallel Case t=0

t=1

? 6  

? 6  6

-

-

? 6

? 6

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Movements of Balls (State: V , Input: s) n

n

6

w w

e V -

?

s

s

e

Orthogonal Case t=0

t=1

? 6  

? 6   

-

-

? 6

-? 6

Movements of Balls (State: H, Input: s) n

n



w

6

s0

e

R

w

-



s1 I

I I 

H 6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n

n



w

6

s0

e

R

w

-



s1 I

I I 

H 6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n

n



w

6

s0

e

R

w

-



s1 I

I I 

H 6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n

n



w

6

s0

e

R

w

-



s1 I

I I 

H 6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n

n



w

6

s0

e

R

w

-



s1 I

I I 

H 6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n

n



w

6

s0

e

R

w

-



s1 I

I I 

H 6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0

e

R

w

-



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

Movements of Balls (State: H, Input: s) n



w

n

6

s0 R

w

e V -



s1 I

I I 

6

R



?

s

s

e

3. Reversible Cellular Automata

Reversible Cellular Automata (RCAs) • It is a CA whose global function is one-to-one. • A kind of spatio-temporal model of a physically reversible space. • In spite of the strong restriction of reversibility, they have rich ability of computing. – Computation-universality – Self-reproduction – Synchronization – etc.

Partitioned Cellular Automata • 1D Partitioned CA (PCA) L C R L C R L C R t 

 

f

?



 

t+1 i−1 i+1 i A local function f of a 1D PCA. • We can design RCAs easily using PCAs.

Universal Reversible CAs — 1D Case — • On infinite configurations: 24-state RPCA • On finite configurations: 98-state RPCA

[Morita, 2008] [Morita, 2007]

cf. 1D Universal Irreversible CAs: • On infinite configurations: 2-state CA (ECA of rule 110) [Cook, 2004] • On finite configurations: 7-state CA (a modified model) [Lindgren et al., 1990]

Universal Reversible CAs — 2D Case — • On infinite configurations: – 2-state Margolus-neighbor RCA [Margolus, 1984] – 16-state RPCAs [Morita and Ueno, 1992] – 8-state triangular RPCA [Imai and Morita, 1998]

An 8-State Triangular RPCA T1 [Imai and Morita, 1998] • It has an extremely simple local function: →













••







•• •



A Fredkin Gate in a Triangular 8-State RPCA T1

Universal Reversible CAs — 2D Case — • On infinite configurations: – 2-state Margolus-neighbor RCA [Margolus, 1984] – 16-state RPCAs [Morita and Ueno, 1992] – 8-state triangular RPCA [Imai and Morita, 1998] • On finite configurations: – 81-state RPCA [Morita and Ogiro, 2001]

A 34-State Universal RPCA P3 P3 = (Z2, {0, 1, 2}4, g3, (0, 0, 0, 0)) ◦









◦ •









(a) •

• •

(b)

• →



• →

• • •

(d)

◦ •

(e)



(c)





• →

◦ • •



◦ ◦ • ◦

◦ • •

• ◦

◦ →

◦ ◦ •

(f)

(g)

(h)











• ◦ ◦

(i)

◦ • ◦

(j)

• →

• ◦ • •

(k)



• ◦ •

(l)

◦ ◦ • • ◦ w





z y



w x → z yx

(m)

The rule scheme (m) represents 33 rules not specified by (a)–(l) (w, x, y, z ∈ { blank, ◦, • } = {0, 1, 2}).

Reversible Counter Machine in P3 Space aaaa aaaa aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaq aqqqa a a aqqaq aqaa a a aa aa aa aq qqaa a a aqaq qa aaaa aaaaq q aaaa aaaaaa aq qa aa q q qq qqqq qq aa aa aaaa aaqaa qq qaaaa aaaa aa aa

aaaa aaaa

aaaa aaaa

aaaa aaaa aaaa aaaaa a aa aa aaaa aaaa a a aaaa aaaa aaaa aaaa

aaaa aaaa

aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa

aaaq aqqqa a a aqqaq aqaa aaa aa aaa aq qaqa a a aaqq qa aaaa aaaaq q aaaa aaaaaa aq qa aa qq qqqqq qqq aaa aaa q q aaaa aaaa q qaaaa aaaa a a

aaaq aqqqa a a aqqqa aqaa aa a aa aaaa aaaa q qaqaa aaa aaqaq qa a a aaaa aaaaq q aaaa aaaaa aq qa aa qq qqqqq qqq aaa aaa q q aaaa aaaa q qaaaa aaaa a a

aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa

aaaq aqqqa a a aqqaq aqaa aaa aa aaa aaqa qaqaqa a a aqaqqa qaaa aaaq qaqqaa a a aqaqqa qaaa aa aa aa a a aaaq aqqqa a a aqqaq qaaa

aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa

aaaq aqqqa a a aqqqa qaaa aa a aa aa a aa aaaq qaqqa a a aqqqa qaaa

aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa aa aa aaaa aaaa aa aa aaaa aaaa

aaaa aaaa aaaa aaaa

aaaa aaaa aaaa aaaa begin →q

end ←

aaaa aaaa

aaaa aaaaq q aaaa aaaa a a aaa aaa qq qqqqq qqq q q aaaa aaaa q qaaaa aaaaaa aq qa aa aq qqaa a a aqaq qa aa aa aa a a aaaq aqqqa a a aqqaq qaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaaa aaaaa aa aa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa a a aaa aaa

aa aa aaaa aaaaa a aaaa aaaa q qaaaa aaaa aa aa aaaa aaaa aa aa aaa aaa q aaaa aaaa aaaa aaaaaa aa aa aaa aaa aaa aa aaa aa aaa a a a aaaa aaaa aaaa aaaaaa aaaaq q aqaaa aaaa a aaa aa aa aa aa a a aaaa aaaaa aaaaa aaaaq qq aqaaa aaaa aa aa aaaq aqqqaa a a aqqaaq aqaa aaaq qaqqaa a a aqaqqa aqaa aa aaaaaa aaaa aaaa aaaaq qq aaqaa aaaa qq qqqq qq aa aaaa aa aa a a aa q q aa a a aa aa aaaa aa a a a a q q a a qq qqqq qq a a aaaa aaaa q qaaaa aaaa a a aaaq qaqqa a a aqqqa qaaa aaqa qaqqa a a aqqqa qaaa a a aa aa aaaa aaaa q qaaaa aaaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaaaa aa aa aa a a aa aa aaaa aaaa aaaa aaaaaa aa a a aa aa aa aa aa aa aa aa aa aa aa aa aa aa aaaa aaaa aa aaa a a a a aaa aa a a aa aaa a a a a aaa aa a a aa aaa aaa aa aaa aaaq qq aqaa aaaaa aa aaq qqqaa a a aqqaq qaa aaq qqqaa a a aqqaq qaa aaq qqqaa a a aqqaq qaa aaq qqqaa a a aqaqq qaa aa a a aa q q a a a a a a aa a a aa a a qq qqqq qq a a aa a a aa aa a a aa a a aaa aaa aaa aaa aaa aaa aaaa aaaa q qaaaa aaaa aaaq qaqqa a a aqqqa qaaa aaaq aqqqa a a aqqaq aqaa aaaq aqqqa a a aqqaq aqaa aaqa aqqqa a a aqqaq aqaa a a a a a a aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaaaa aaaaa aaa aaa aa aa aaa aaa a a aa aa aa aa aa aa aaaa aaaa aaaa aaaa aaaa aaaa aa aaa aa aaa aa aaa aa aaa aa aaa a a a a a aa aa aa aa aaa aaa a a aaaa aaaaq qq aaqaa aaaaaa aa aaaq aqqqaa a a aqqaaq aqaa aaaq aqqqaa a a aqqaqa aqaa aaaq aqqqaa a a aqqaaq aqaa aaaq aqqqaa a a aqqaaq aqaa a aa a a aaa qq qqq q aa aa a a a a a aa a a a aa a a aaa aqaa qqq qaaqa aaa aaq qaqaqa a a aaaqqq qaa aaq qaaqqa a a aaqqaq qaa aaq qaqqaa a a aaqqaq qaa aaq qaaqqa a a aaqqaq qaa aaa aaa aaa aaa aaa aaa aa a a aa aa a a aa a a aa a a aa aa aa aaaa aaaa aa aa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aa aa aa aa aa aa aaaa aaaa aaaa aaaa aa aa aaaa aaaa aaaa aaaa aaaa aaaa a a aaa aaa aaaa aaaa aa aa aa aa aa aaq qq aqa aa aaaa aaaaq q aaaa aaaa a a aaaq aqqqa a a aqqaq aqaa aaaq qaqqa a a aqqqa aqaa a a a a q q aa a a aa aa a a aa aaa aaaa aaa qq qqqq qq qq qqqq qq aaa aaa aaaa aaaa q qaaaa aaaa qaa qaqqaa a a aaqqaq qaa aaq qaaqqa a a aaqqaq qaa aaa aaa aaa aqaa qqq qqaaa aaa aaa aaa aaa aaa a a a a aaa aaa a a a a a a a a a a aa aa aa aa a aq q q a a aaaa aaaa a a a aaaaa aaaaa aaaaa aaaa a a aaa aaa aaa aaa aaa aaa a a aa aaaa aa aa aa aaaa aaaaq q aqaaa aaaa aaa aaa aaaa aaaa aa aa aaa aaa aaaa aaaaaa aa aaaa aaaa q qaaaa aaaa aaa aaa aaaa aaaa a a aa aa q q aaaa aaaa aaaa aaaaa a aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaaaa aaaaq q aaaa aaaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aqq qqa aaa aaa aqq qqa aaa aaa aaaa aaaa aaa aaa aaa a a a aqq qqq qa a aaa aaa q qaaa a a aaaq q q qaaa a a aaaq q aaa aaaa a a aqq qqq qa a q qqq qq q qqq qq aa aaa a a a a a a a a a aa aaa a aaaa aaaqa qq qaaaa aaaa aa aa aaaq qaqaqa a a aqaqqa qaaa aaqa qaqaqa a a aqaqqa qaaa aa aa a a aaaa aaaqa qq qaaaa aaaa a aaa a aaa aaa aaa a aaa aaa aaa a aaaaaa aaa a a a a a a a a aa aa a a aa aa aaaa aaaa aaaa aaaaaaa aaa a a pa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa a a aaaaa aaaaa a aaa aa aa aq qa aaa a aa aq a aqa aa aa aq qa aaa a aa aq a aqa aaa a aa aaq qq aqa aaaa aa aq qqaa a a aqaq qa aq qqaa a a aqaq qa aq qqaa a a aqaq qa aq qqaa a a aqaq qa a a a aa a a a aa a a a aa qq qqqq qq aa aa aa a a aa a a a a a a a a a a a a a a a a a a a q q a a a a a a a aaa aaaa aaaa q qaaaa aaaa aaqa qaqqa a a aqqqa qaaa aaaq qaqqa a a aqqqa qaaa aaaq qaqqa a a aqqqa qaaa aaqa qaqqa a a aqqqa qaaa a a a a a a aa aaa aaa aaa aa aaa aa aaa aa aaa a aaaa aaaa a a a aa aa aa aa aaaa aaaa aaaa aaaa a a aaa aaa aaaa aaaa aaaa aaaa aaaa aaaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aaa aa aa aa aa aaa aaa a a aaaa aaaaq qq aqaaa aaaaaa aa aaaq aqqaqa a a aqaqaq aqaa aaaq aqqaqa a a aaqqqa aqaa aaaq aqqaqa a a aqaqaq aqaa aaaq aqqqaa a a aqaqaq aqaa aa a a aa aa a a aa aa a a aa qq qqqq qq aa aa aa a a aa aaa aaa aaa aaa aaa aaa a a a a q q a a a a aaaa aaaa q qaaaa aaaa aaqa qaqqa a a aqqaq qaaa aaaq qaqqa a a aqqqa qaaa aaaq qaqqa a a aqqqa qaaa aaqa qaqqa a a aqqqa qaaa a a a a a a a aaa a aaa a a a a a a aaa aaa pa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa aaaa a a aa aaa aaa aaaa aaaa aaaa aaaa a a aaaa aaaa aaaa aaaa aaaa aaaa aa aa a a aa aa aaa aaa aa aa aa aa aa aaq qq qaa aa aaaa aaaaq q aaaa aaaa a a aaaq aqqqa a a aqqaq aqaa aaaq qaqqa a a aqqqa aqaa a a a a q q aa a a aa aaa aaaa aaa qq qqqq qq aa a a aaa qq qqqqq qqq aaa aaa a a a aaaa aaaa q qaaaa aaaa aaaa aaqaa qq qaaaa aaaa a a aaaq qaqaqa a a aqaqqa qaaa aaqa qaqaqa a a aqaqqa qaaa aaaa aaaa a aaa aaa aaa a a a a a a aaa aaa aaa aaa a aq q qqa a aaaa aaaa aa aa aa aaaaaa aaaaa aaaaa aaaa aa aa aa aa aa aa aa aa aa aa aaa aaaa a a a aaaa aaaaq q aaaa aaaa aa aa aaaa aaaa a a

aaaa aaaa

pa aaaa aaaa

aaaa aaaa pa aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

aaaa aaaa

Movie of an RCM(2) in P3

Self-Reproduction of a Worm in 2D RCA [Morita and Imai, 1996]

Self-Reproduction of a Loop in 3D RCA [Imai, Hori and Morita, 2002]

Concluding Remarks • We saw even very simple reversible systems have computation-universality. • Computation can be carried out in a very different way from that of conventional computers. • We expect that further studies on them will give new insights for future computing.

Thank you for your attention!

Suggest Documents