University of Cape Town - Open UCT

8 downloads 2522 Views 4MB Size Report
Submitted to the University of Cape Town in partial fulfilment of the ... I also thank my sponsors in the Netherlands for their financial support and more ...... not that many responsible companies that can restore them into a working order.
n

of

C

ap

e

To

w

The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or noncommercial research purposes only.

U ni

ve

rs ity

Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author.

THERMODYNAMIC ANALYSIS OF A THREE-FLUID ABSORPTION REFRIGERATION MACHINE

By

Andrew Zulu

Submitted to the University of Cape Town in partial fulfilment of the requirements for the degree of Master of Science in Engineering

September 2000

ACKNOWLEDGEMENTS I express with sincerity my deep gratitude to my supervisor Dr G. Vicatos for his incredible practical and technical assistance throughout each stage of the project. He tirelessly offered a lot of useful suggestions, encouragement and guidance, which have shaped a large part of this work.

I also thank my sponsors in the Netherlands for their financial support and more specifically Project Co-ordinators Dr L.Robben and Ms. L.Van Kollenburg for their availability throughout the period.

I also wish to thank Mechanical Engineering Workshop staff Mr

Watkins and Mr H.

Tomlinson for the their technical assistance with the modifications to the rig; Mr 1. Mayer for his assistance with regard to the test instrumentation.

11

SYNOPSIS The design of systems that operate on low-grade energy is receiving increased attention. This is motivated by global rapid energy consumption, its increasing cost and depletion of energy resources such as petroleum fuels [10]. Since its development in the middle of the twentieth century, there has been growing amount of research into optimising its energy utilisation.

This thesis investigates the three-fluid absorption refrigeration system operating on lowgrade (heat) energy. In particular the temperature-time response of the various components of a domestic size absorption unit were investigated with respect to the pressure of hydrogen in the system under varying power input. Design modifications of the boiler, lift tube, vapour-liquid separator and heat exchanger were made while maintaining the same principle of operation.

Data collected in the form of temperatures, hydrogen pressure and power input revealed that the time-temperature response of the unit improved from six hours (according to manufacturer's recommendations) to just over one hour. This data was recorded for a range of hydrogen pressures between 7.5 bar and 27.5 bar and for power supplies of 261W, 315W and 370W.

Despite the much faster time response, the performance of the unit was poor. The refrigeration capacity was measured to be 11 W at lowest evaporator temperature, which was obtained at 12.5 bar hydrogen pressure. With a generator power input of 370W the Coefficient of Performance (COP) was insignificant. Since the load on the evaporator could not be measured the COP and various component loads could not be determined.

111

CONTENTS ACKNOWLEDGEMENTS ...................................................................................... ii SyNOPSiS ........................................................................................................... iii LIST OF FIGURES ............................................................................................... v LIST OF TABLES ................................................................................................ vii NOMENCLANTURE ............................................................................................ vii CHAPTER 1 INTRODUCTION ..................................................................... 1 1.1 Historical note ..................................................................................... 1 1.2 Why aqua-ammonia absorption refrigeration? .................................... 2 1.3 Objectives of this work ........................................................................ 3 CHAPTER 2 THE THREE-FLUID ABSORPTION REFRIGERATION MACHINE - LITERATURE REViEW ........................................ 5 2.1 Principle of operation ........................................................................... 5 2.2 The working fluids ................................................................................ 7 2.2.1 Ammonia-water ............................................................................. 7 2.2.2 Hydrogen ....................................................................................... 7 2.3 Theoretical analysis of an ideal cycle .................................................. 8 2.3.1 First Law analysis .......................................................................... 8 2.3.2 Second Law analysis ................................................................... 10 2.3.3 Vapour-liquid equilibrium ............................................................. 12 2.3.4 Cycle optimisation ....................................................................... 14 CHAPTER 3 THE ENTHALPY-CONCENTRATION DIAGRAM .................. 16 3.1 Theory and derivation ....................................................................... 16 3.2 Graphical nlodel ............................................................................... 22 3.3 Flow chart .......................................................................................... 24 CHAPTER 4 DESIGN MODIFICATIONS AI\JD EXPERIMENTAL ME-rHOD ................................................................................ 25 4.1 Design modifications ......................................................................... 25 4.1.1 Lift tube and boiler pump ............................................................. 25 4.1.2 Liquid-vapour separator ............................................................... 26 4.1.3 Charge level indicator (sight glass) .............................................. 28 4.1.4 Solution heat exchanger .............................................................. 28 4.2 Experimental method ......................................................................... 29 4.2.1 Charging ...................................................................................... 29 4.2.1.1 Introduction ............................................................................ 29 4.2.1.2 Charging procedure ............................................................... 30 4.2.2 Temperature measurement ......................................................... 31 4.2.3 Test procedure and data collection .............................................. 31

IV

CHAPTER 5 RESULTS AND DISCUSSION ............................................... 34 5.0 Temperature profiles ......................................................................... 34 5.1 Boiler ................................................................................................. 34 5.2 Condenser ......................................................................................... 37 5.3 Evaporators ....................................................................................... 41 5.3.1 Low temperature evaporator ........................................................ 41 5.3.2 High temperature evaporator ....................................................... 42 5.4 Pre-coolers ........................................................................................ 48 5.4.1 Low temperature pre-cooler. ........................................................ 48 5.4.2 High temperature pre-cooler. ....................................................... 48 5.4.3 Performance of the pre-coolers ................................................... 54 5.5 Solution heat exchanger .................................................................... 55 5.6 Absorber ............................................................................................ 58 CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS ...................... 64 REFERENCES .............................................................................................. 66 BIBLIOGRAPHY ............................................................................................ 68 APPENDIX 1: EXPERIMENTAL RESULTS .................................................. 70 APPENDIX 2: SELECTED COMPUTED RESULTS ...................................... 99 APPENDIX 3: QUICKBASIC PROGRAMMME LISTING ............................. 101 APPENDIX 4: GENERAL INFORMATION AND SPECIFICATIONS FOR THE 6-POINT AND 12-POINT DATA RECORDERS ........... 108

LIST OF FIGURES 1.1 Schematic diagram of the simple two-fluid absorption machine .............. 1 2.1 Principle of operation of the three-fluid experimental unit.. ...................... 6 2.2 Schematic line diagram of the experimental three-fluid absorption machine .................................................................................................. 8 3.1 Enthalpy-concentration diagram for ammonia-water mixtures ............... 23 3.2 Flowchart for h-x programme ................................................................ 24 4.1 Lift-tube performance for various internal tube diameters ..................... 25 4.2 Original percolator pump, lift-tube and heat exchanger ......................... 26 4.3 The modified lift-tube/boiler, incorporating the immersed heating element and the heat exchanger .......................................................... 27 4.4 The modified liquid-vapour separator .................................................... 27 4.5 The solution level indicator .................................................................... 28 4.6 Charging of ammonia and hydrogen ..................................................... 30 4.7 Front and back views of experimental unit, with temperature recording instruments ............................................................................ 33 5.1 Boiler's time response at 7.5 bar hydrogen ........................................... 34 5.2 Boiler's time response at 12.5 bar hydrogen ......................................... 35 5.3 Boiler's time response at 17.5 bar hydrogen ......................................... 35 5.4 Boiler's time response at 22.5 bar hydrogen ......................................... 36

v

5.1 Boiler's time response at 7.5 bar hydrogen ........................................... 34 5.2 Boiler's time response at 12.5 bar hydrogen ......................................... 35 5.3 Boiler's time response at 17.5 bar hydrogen ......................................... 35 5.4 Boiler's time response at 22.5 bar hydrogen ......................................... 36 5.5 Boiler's time response at 27.5 bar hydrogen ......................................... 36 5.6 Condenser's time response at 7.5 bar hydrogen ................................... 38 5.7 Condenser's time response at 12.5 bar hydrogen ................................. 38 5.8 Condenser's time response at 17.5 bar hydrogen ................................. 39 5.9 Condenser's time response at 22.5 bar hydrogen ................................. 39 5.10 Condenser's time response at 27.5 bar hydrogen ................................. 40 5.11 Saturation temperature in the condenser ............................................. 40 5.12 The two evaporators as they appear in the experimental rig ................. 41 5.13 Low temp. evaporator's time response at 7.5 bar hydrogen .................. 42 5.14 Low temp. evaporator's time response at 12.5 bar hydrogen ................ 43 5.15 Low temp. evaporator's time response at 17.5 bar hydrogen ................ 43 5.16 Low temp. evaporator's time response at 22.5 bar hydrogen ................ 44 5.17 Low temp. evaporator's time response at 27.5 bar hydrogen ................ 44 5.18 Evaporator temperature as a function of hydrogen pressure ................. 45 5.19 High temp. evaporator's time response at 7.5 bar hydrogen ................ .45 5.20 High temp. evaporator's time response at 12.5 bar hydrogen ............... 46 5.21 High temp. evaporator's time response at 17.5 bar hydrogen ............... 46 5.22 High temp. evaporator's time response at 22.5 bar hydrogen ............... 47 5.23 High temp. evaporator's time response at 27.5 bar hydrogen ............... 47 5.24 Low temp. pre-cooler's time response at 7.5 bar hydrogen ................... 49 5.25 Low temp. pre-cooler's time response at 12.5 bar hydrogen ................. 49 5.26 Low temp. pre-cooler's time response at 17.5 bar hydrogen ................. 50 5.27 Low temp. pre-cooler's time response at 22.5 bar hydrogen ................. 50 5.28 Low temp. pre-cooler's time response at 27.5 bar Ilydrogen ................. 51 5.29 High temp. pre-cooler's time response at 7.5 bar hydrogen .................. 51 5.30 High temp. pre-cooler's time response at 12.5 bar hydrogen ................ 52 5.31 High temp. pre-cooler's time response at 17.5 bar hydrogen ................ 52 5.32 High temp. pre-cooler's time response at 22.5 bar hydrogen ................ 53 5.33 High temp. pre-cooler's time response at 27.5 bar hydrogen ................ 53 5.34 Low temp. pre-cooler effectiveness as a function of hydrogen pressure ............................................................................................... 54 5.35 Heat exchanger's time response at 7.5 bar hydrogen ........................... 55 5.36 Heat exchanger's time response at 12.5 bar hydrogen ......................... 56 5.37 Heat exchanger's time response at 17.5 bar hydrogen ......................... 56 5.38 Heat exchanger's time response at 22.5 bar hydrogen ......................... 57 5.39 Heat exchanger's time response at 27.5 bar hydrogen ......................... 57 5.40 Enthalpy-concentration diagram showing conditions at solution heat exchanger ..................................................................................... 58 5.41 Absorber's time response at 7.5 bar hydrogen ...................................... 59 5.42 Absorber's time response at 12.5 bar hydrogen .................................... 59

VI

5.43 Absorber's time response at 17.5 bar hydrogen .................................... 60 5.44 Absorber's time response at 22.5 bar hydrogen .................................... 60 5.45 Absorber's time response at 27.5 bar hydrogen .................................... 61 5.46 Conditions at the absorber .................................................................... 62 5.47 Conditions at the absorber .................................................................... 63

LIST OF TABLES 3.1 3.2 3.3 4.1 5.1 5.2

Coefficients for polynomial equations ....................................................... 21 Coefficients for equations for pure components ...................................... 21 Coefficients for the Gibbs excess free energy function ............................ 22 Thermocouple temperature measuring points ......................................... 32 Lowest and average evaporator temperatures ........................................ 61 Ammonia partial and absolute pressures ................................................ 63

NOMENCLANTURE SYMBOL IAi

I Bi • Cj i COP • Co Dj Ej

F G g

.H h I m n

P Q IR

S Is T it v W

DESCRIPTION coefficients for equations for pure components coefficients for equations fo! pure components coefficients for equations for pure components coefficient of Qerforrnance specific heat capacity at constant pressure coefficients for equations for pure components coefficients for Gibbs excess free energy number of degrees of freedom Gibbs free energy Gibbs specific free energy Henry's law constant specific enthalpy irreversibility factor mass flow rate ratio of condenser to absorber heat rate pressure; number of Qhases · heat rate molar gas constant ' entropy specific entropy · absolute temperature temperature · specific volume ' work

UNITS [- ]

I

[-1

H [-] kJlkg.K

iH H . f' i

i

i

kJ kJlkg kPa kJlkg

r-1 gls i

[-]

I bar;

[-J

I

iW kJlkrnoLK kJ I I kJlkg

K I

°c3

m lkg i

i i

W

Vll

x

GREEK SYMBOL I

a L\



'" E 0

E E



E3

7.292369

Ell

-96.40398

E4

-1.032613xlO- L

E12

122.6973

E5

80.74824

E13

-7.582637

E6

• -84.61214

E14

6.012445xlO-4

E7

24.52882

E15

54.87018

E8

9.598767xIO-J

E16

-76.67596

i

3.2 GRAPHICAL MODEL

The above equations were plotted to formulate the enthalpy-concentration (h-x), plotted in figure 3.1. These equations were used to create a computer program that gives the properties of ammonia, water and their mixture in both liquid and vapour states. This program was then converted into subroutines to serve as a more precise calculation tool of the properties of the mixture, in the simulation program of absorption refrigeration machines by Vicatos [21].

The enthalpy-concentration diagram produced in this work, figure 3.1, agrees entirely with that of the pUblication of Ziegler and Trepp [24J shown in appendix 5. But in addition to this, for the first time known to the author, a computer program that evaluates these properties has been made public.

The reference state for the plot is zero enthalpy at zero degrees centigrade for both pure ammonia and pure water.

Chapter 3

The Enthalpy-Concentration Diagram

23 DIAGRAM

~NTHALPY-CDNCENTRATIDN

A;'VJMDNIA

\,VATER

MIXTUR

S

3000

2BOO 2680 400

2200 2000

IBOO 1600 1400 1200 1000

BOO 600 400

200

o 200 -400 -600

o MASS

0.'

0.2 0 3 0.4 0,5 0 6 0 7 0

CCNC

NTRATIDN

[Kg

B

0,9

Ar""1,.,..-,onio./Kg

Figure 3.1 Enthalpy-concentration diagram for ammonia-water mixtures

10

Sol""]

24

Chapter 3 The Enthalpy-Concentration Diagram

3.3 FLOWCHART

(!rogram AMOWAT ') p

Yes

Enter X-step

Temperature T

Yes

1

r

Enter X-step

( END)

Figure 3.2 Flowchart for h-x program (program listed in appendix 3)

Chapter 4 Design Modifications and Experimental Method

25

CHAPTER 4 DESIGN MODIFICATIONS AND EXPERIMENTAL METHOD 4.1 DESIGN MODIFICATIONS

4.1.1 Lift tube and Boiler pump

4.0

-

VI 3.5

M

E 3.0

-D-6.00mm -lr-S.OOmm

~ II)

~

2.5

--10.00mm - 100 Cl. E ~ 80

·T12-

40 20

o

10 20

30 40

50 60 70 80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Time [min]

Figure 5.3 Boiler'S time response at 17.5 bar hydrogen

Chapter 5 Results and Discussion

36

220 200

···0··· T8-261

180

~

160

--0- T8-315

140

-Q-T8-370

120

"U·'T12-

::l

~ 100 Q) a.

E Q)

I-

-D- T12· 80

-Q-T1260 40

o~~~--~~~--~~~--~~~--

o

10

20

30

40

50

60

70

80

__

~~

__

--~~~--~~

__

--~-

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

Time [minI

Figure 5.4 Boilers time response at 22.5 bar hydrogen

220 200

0 0 --000--0 -0--0--0--0--0--0

180

aD,

I

I

160

I

P/

I

I

140

Q I

?';;;' 120

i

I

[pO"

I

,[r

,O·,O··O"D"O

--0- T8-315 ",

0--0-.0"

0

Pd'"

?000Dod

100

a. E ~ 80

-Q-T8·370

-D- T12-Q-T12-

60 40 20

o

10

20

30

40

50

60

70

80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230

Time [minI

Figure 5.5 Boiler's time response at 27.5 bar hydrogen

Chapter 5 Results and Discussion

37

5.2 CONDENSER

The condenser's time response is shown in figures 5.6 to 5.l0. It is observed that the condenser reaches steady state conditions in 40 to 45 minutes. In all experiments it is observed that the higher the power input the higher the condenser temperature. For the higher hydrogen pressures the curves produce two temperature "regimes" as shown in figures 5.8 to 5.10. These are the inlet temperature Tl and the outlet temperatures T2 and T3. It is quite clear that the higher the hydrogen pressure the larger the separation of these temperatures. In addition the condensate temperature T2 is almost constant regardless of the experimental condition. This behaviour can be explained as follows:

In the condenser there is a phase change of the ammonia-water vapour mixture from gas to liquid and because there is no hydrogen in the condenser, the total pressure is equal to the ammonia-water vapour partial pressure.

Since there is no distillation column, it can be assumed that the ammonia-water vapour has a concentration of 0.9. Referring to figure 5.11, this vapour at 22 bar pressure condenses at 60°C. From figure 5.9, which shows a similar working pressure of 22.5bar, it is evident that the incoming vapour is slightly superheated (67°C) and hence it reaches saturation within a small distance from the inlet to condenser. The latent heat of condensation is given up at about 60°C and the remaining drop of temperature is due to the sub-cooling of the condensate to about 30°C, which is close to ambient temperature.

Chapter 5 Results and Discussion

38

70

···6···T1-261W

65

--.fr- T1-315W 60

-t:r- T1-370W

55

···0···T2-261W --0- T2-315W

'050

e....

-0-- T2-370W

~

.3 45

··U··T3-261W

~


c. E 40

--0- T3-315W

~

/~-~-~-~-~-~-~-~-~-~-~-~-~,

35

.... ... -£:s ...

-.(j

-D-T3-370W "

........ ... !::s···!:s.···!:s.··l~:J··6-··t:rl::...]·· f:::, "'!:s."-!S"!:::,.

30

.. 0'·0

25

"0"0

20

o

10

20

30

40

50

60

70

80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Time [min]

Figure 5.6 Condenser's time response at 7.5 bar hydrogen

70

.. ·6· .. T1-261W 65

--.fr- T1-315W

-t:r- T1-370W

60

· .. 0 .. T2-261W

55

--0- T2-315W 50

-0-- T2-370W

!!! .3 45

.. U·T3-261W

~

--0- T3-315W


0.

E 40

-D-T3-370W

~

35 30 25

o

10

20

30

40

50

60

70

80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Time [min]

Figure 5.7 Condenser's time response at 12.5 bar hydrogen

Chapter 5 Results and Discussion

39

70 65 60

... D. ... T1-261W 55

U

L. ~

.z

--f:r- T1-315W ---fr- T1-370W

50

···O···T2-261W 45

--0- T2-315W

~ 40

-0-T2-370W

~

I-

-G-T1930 25

o

10

20

30

40

50

60

70

80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Time [min]

Figure 5.42 Absorber's time response at 12.5 bar hydrogen

60

Chapter 5 Results and Discussion

65 60

... /:1 .. T7·261 --.fr- T7·315

-r:r- T7·370 ···0··· T9·261 --0- T9·315

-0-T9·370

··-O-·T19· --Q- T19·

o

10

20

30

40

50

60

70

80

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 Time [min]

Figure 5.43 Absorber's time response at 17.5 bar hydrogen

65 60

55 ...6. .. T7·261

50

0'

--I:s- T7·315

-r:r- T7·370

45

.. ·0··T9·261

L

e:: 40

--0- T9-315

:l

e 170 173 172 186 189 192 39.91 111 25.6127.1160.21144115611601164 24.1123.8124.4127.1129.6132.9 22.4122.4121.7114.71 5 I 3.6 23.2123.2123.2123.1123.2122.31 21 119.5 23.8123.7123.7123.3 23.6123.6123.2122.4 \23.1\23. 23.7 23.

60

1

.--

291 29.11 29.21 29.41 29.31 29.41 29.21 29.21 29.41 29.3 27127.1 27.2 27.3 27.4 27.4 27.4 27.7 27.4 n 4.8 4.2 4.2 4.3 4.2 4.4 4.4 4.3 -3.5 -3.41 2 1.941

I I .-

50.9151.6 1721 1731 1811 1751 1781 1861 1751 1801 1821 182 175 178 176 182 1951 1961 1971 1961 1971 1981 1981 1981 1981 197 198 198 199 198 1671 1681 1681 1691 1691 1701 1701 1691 1711 170 170 170 171 170 51.7 51.9 52.1 44.6146.6147.7148.71 50150.7151.1151.1151.1151.2 1.811.711.811.611.511.411.511.511.31 1 1.4 1.5 7.7 7.6 14.9112.7111.6110.71 9.51 91 8.81 8.41 8 9.3 19.3 18.8 18.1 18.5 18.8 7.3\ 17.4\ 17\ 16.4 "I 16.7 16.7 6.6136.9136.7136.1 37137.2 37.4

177 198 170 52.1 1.4 7.7

198 53 184 198 170 52 1.4 7.8

199 53 179 198 170 52 1.4 7.74

89

Appendices

POWER 261 Watts HYDROGEN PRESSURE 22.5 Bars STEADY-STATE PRESSURE 25.75 Bars Time[m] Ti T2 T3 T4 TS T6 T7 T8 T9 Ti0 Tii Ti2 Ti3 TiS Ti6 Ti7 Ti8 Ti9

0

5

10

15

20

25

30

35

40

45

50

22.4 21.6 21.5 20.8 20.5 20.9 23 24.8 21.4 22.5 24.9 23.1 23.5 22.9 23.2 23.3 23.1 23.4

21.9 21.6 21.5 20.8 21.1 20.9 22.4

21.8 21.7 21.6 20.8 21.2 20.8 22.4 32.4 21.4 120 131 35.4 23.5 22.8 22.9 23.1 23.1 23.4

22 21.7 21.5 20.8 21.3 20.7 22.4

61 22.2 21.6 21 20.7 20.4 22.6 190 23 150 189 87.6 24.1 22.8 22.5 23 22.9 23.3

60.9 24.4 21.5 18.7 21.1 20.9

61.5 26.3 22 10.3 20.7 19.4 28.6 185 28.2 153 185 118 27.8 6.1 22.8 23.6 23.4 24.9

61.8 26.9 22.7 8.4 19.4 17.6 30.8 188 30.7 156 189 130 30.2 2.9 22.6 23.7 23.4 26.2

62 27.2 23.4 7.2 18.7 16.6 33.3 191 32.5 159 191 140 32.1 1.3 21.6 23.5 23.1 27.1

62.5 27.4 24 7.2 18 15.6 35.4 193 34.2 161 194 150 34.1 1.5 20.8 23.2 22.5 27.9

62.5 27.5 24.3 8.2 17.8 14.8 38.1 195

25 21.4 71.6 87.8 23.3 23.4 22.8 23 23.2 23.1 23.3

142 21.5 150 169 64.6 23.5 22.8 23 23.2 23.1 23.4

24.4 184 25.9 150 184 102 26.2 18.2 22.6 23.1 23.1 23.4

35.7 163 195 155 35.8 1.8 19.7 22.8 22 28.6

55

60

70

80

62.7 27.5 24.5 7.3 17.7 14.6 39.3 196 37 164 196 158 37.4 1.5 18.9 22.4 21.5 29.2

63 27.6 24.7 8.2 10 14.7 40.3 197

63.2 27.4 25.1 8.4 3.6 14.3 43.3 198 39.6 166 198 162 39.7 2.7 16.9 21.8 20.1 30

63.2 27.7 25.1 8.4 2.3 13.6 44.3 198 40.4 166 198 163 41 2.1 16.2 21.4 19.7 30.5

38.2 165 197 161 38.6 2.3 18.3 22.2 21.2 29.6

90 100 110 120 130 140 150 160 170 180 SIS 63.3 27.8 25 8.1 1.9 13.4 44.7 198 41 166 199 163 41.8 1.9 16 21.3 19.6 30.7

63.4 27.9 25.3 7.7 1.6 13 45.4 198

63.4 27.9 25.3 7.4 1.1 12.6 45.4 198

41.6 166 199 163 42.2 1.8 15.8 21.3 19.5 30.9

41.9 167 199 164 42.4 1.7 15.6 21.2 19.4 31.1

63.2 27.8 25.2 7.1 0.8 12.5 45.4 198 41.7 166 199 163 42.6 1.7 15.6 21.2 19.3 31

63.2 27.7 25.2 7.8 0.6 12.7 45.5 198 42 166 198 163 42.6 1.7 15.5 21.1 19.3 31.1

63.2 27.5 25.2 7.1 0 12.5 45.7

63.2 27.6 25.7 7.3 0.2 12.5 46.2

198 42.3 166 199 163 43 1.8 15.4 21.1 19.3 31.2

199 42.7 166 199 164 42.9 1.7 15.3 21.1 19.3 31.4

63.2 27.5 25.8 7 -0.3 12.3 46.6 198 42.9 167 199 164 43.1 1.7 15.4 21.1 19.5 31.7

63.2 27.6 25.6 7 -0.2 12 46.4 199 43 167 199 164 43.4 1.7 15.2 21.1 19.2 31.4

63.2 27.5 25.6 7 -0.2 12 46.7 199 43.1 167 199 164 43.6 1.7 15.2 21.1 19.2 31.7

63.2 27.5 25.6 7.08 -0.1 12.3 46.3 198 42.8 166 199 164 43.2 1.72 15.3 21.1 19.3 31.5

Appendices

90

POWER 315 Watts HYDROGEN PRESSURE 22.5 Bars STEADY-STATE PRESSURE 25.75 Bars -

Time[m] Ti T2 T3 T4 T5 T6 T7 T8 T9 Ti0 Tii Ti2 Ti3 Ti5 Ti6 T17 Ti8 Ti9

0

5

10

15

20

25

21 20.9 20.9 19.5 20.3 20.3 22.3 31.6 20.7 24.8 33 23.2 23.1 22 22.7 22.6 22.1 22.9

21 20.9 20.9 19.5 20.3 20.3 22.3 31.6 20.7 24.8 33 23.2 23.1 22 22.7 22.6 22.1 22.9

21 20.9 20.9 19.4 20.4 20.4 22.3 31.7 20.8 82.7 97.6 24.5 23 22.7 22.6 22.7 22.1 22.9

21 20.9 20.9 19.4 20.3 20.3 22.2 56.5 20.8 143 152 47.6 22.9 21.8 22.7 22.7 22.3 22.9

61 21.3 21.1 19.7 19.4 19.5 22.7 175 23.5 136 175 69.4 24 21.9 22 22.2 22 22.8

61.2 23.2 21.1 17.4 20.1 20.7 23.9 179 26.4 156 179 78.5 25.8 15.7 22.1

30

61.6 25 21.4 9.7 19.5 18.7 28.4 186 29.1 163 187 135 27.6 4.4 22.4 '--.. 2i"1 22.8 28 22.5 22.9 24.6

35

40-45

50

61.8 25.6 21.9 8.8 18.5 16.8 31.2 190 31 167 191 153 29.6 2.8 22 22.8 22.5 25.9

62.1 26 22.6 7.3 17.7 15.9 33.8 193 33.7 166 193 159 32 1.6 21.2 22.8 22.2 27

62.9 27.3 23.6 8.7 9.8 14.8 38.6 197 36.9 165 199 163 36.4 2.5 19.2 22.3 21.3 28.9

62.5 27.1 23.4 8.8 17.5 14.9 36.8 196 35.6 163 197 161 34.4 1.8 20.1 22.4 21.8 28.1

55

60

63 27.5 24.1 8.8 2.8 14.1 41.6 199 37.3 166 200 165 36.3 2.8 18.3 22.1 20.8 29.4

63.1 27.6 24.4 8.5 1.6 13.1 42.9 199 38.2 167 201 165 37.9 2.3 17.4 21.7 20.2 29.6

-70· 63.1 27.5 24.3 7.5 0.7 11.9 43.8 199 39.2 167 200 165

-39.-4

1.9 16.6 21.3 19.7 29.9

80

63.2 27.7 24.5 6.3 -0.3 10.4 45.3 200 41.2 168 201 166 41.1 1.5 15.4 20.9 19.1 30.7

90100 110 120 130 140 150 160 170 180'SiS 63.3 27.6 24.5 6.2 -0.3 9.5 46.1 200 . .42.1 168 202 167 42.4 1.2 14.5 20.4 18.4 31.1 -_

63.2 27.7 24.6 5.7 -0.4 9 46.1 200 42.4 168 201 166 42.9 0.9 14.1 20.1 18.2 31.4

.---.-~

63.4 27.7 24.6 .5.4 -0.7 8.9 46.5 200 42.8 168 201 166 43.1 0.8 13.9 20.1 18.1 31.5

-----

63.2 27.4 24.8 ;.-::5.2 -1.4 9 47.1 201 43.3 169 201 167 43.5 0.8 13.7 20 17.8 31.7

-_.

63.4 27.7 25 4.9 -1.1 8 47.2 201 43.8 169 201 167 44 0.7 13.4 19.9 17.8 32

.-

63.5 27.7 25 4.9 -1.3 8.3 47.4 200 44 169 202 167 44.2 0.5 13.3 20 17.8 31.9 -

63.4 27.7 25 4.9 -1.4 8.3 47.1 200 43.8 168 201 167 44.1 0.3 13.1 19.8 17.5 31.6

63.2 27.8 24.6 4.8 -1.6 8.4 47 200 43.8 168 201 167 44 0.3 13.3 19.9 17.7 31.8

63.4 27.9 24.8 5.3 -1.3 8.8 47.1 200 43.7 168 201 167 43.9 0.3 13.3 20 17.7 31.6

63.2 27.7 24.5 4.7 -1.6 8.2 46.8 200 43.5 168 201 166 43.7 0.3 13.5 19.8 17.7 31.8

63.3 27.8 24.8 4.92 -1.4 8.4 47.1 200 43.8 168 201 167 44 0.34 13.3 19.9 17.7 31.7

91

Appendices

POWER 370 Watts HYDROGEN PRESSURE 22.5 Bars STEADY-STATE PRESSURE 26.25 Bars Time[m) 0 Ti T2 T3 T4 TS T6 T7 T8 T9 Ti0 Tii Ti2 Ti3 TiS Ti6 Ti7 Ti8 Ti9

22 22 21 20 21 20 24 38 21 28 40 25 23 22 23 23 22 23

5

10 15 20 25 30 3540--45 50

22 22 21 20 21 20 24 39

59 22 21 20 20 19 25 170

62 24 21 18 21 19 24 185

63 25 22 19 20 20 26 196

63 28 23 13 19 17 35 201

64 28 25 12 4.4 15 40 203

65 28 25 8.4 0.3 11 43 204

65 28 25 6.6 -1 4.9 45 205

65 28 25 6.1 -2 2.6 47 207

65 28 26 5.5 -2 2.2 49 208

66 28 26 5.2 -2 2.6 49 208

66 28 25 4.7 -2 2.2 50 209

66 28 26 4.9 -2 3.3 51 208

66 27 25 4.6 -2 1.7 51 208

66 27 25 4.7 -3 1.7 51 209

107 120 28 23 22 23 23 22 23

146 175 69 24 22 23 22 22 23

170 187 137 26 16 22 22 22 23

174 196 165 27 18 23 23 23 25

184 200 172 31 7.4 22 23 23 27

182 203 174 34 5.8 20 23 22 29

184 204 175 39 3.7 18 22 20 30

189 205 176 41 2.7 16 21 19 31

184 207 177 43 1.7 13 20 18 32

187 208 178 45 1.7 12 19 17 33

188 208 178 47 1.4 9.8 18 15 33

185 208 180 47 1.8 9.1 18 15 34

192 208 180 48 1.9 7.8 17 15 35

195 208 181 49 2.2 7.1 16 14 35

193 208 180 49 2.2 6.6 16 13 35

55 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 21

1.2 50 209

66 27 24 4.1 -3 2.2 51 209

66 27 24 4.2 -3 1.2 51 209

66 27 25 4.9 -3 1.4 50 210

66 28 24 4.3 -3 1.3 51 209

66 28 24 3.8 -4 0.9 50 208

66 28 24 4 -4 1.9 50 209

67 29 26 4.2 -2 1.6 51 209

68 68 69 68 29 29 29 29 26 27 27 26 4.5 4.6 4.4 4.5 -2 -2 -2 -2 1.6 1.8 1.7 1.5 52 52 52 52 210 210 210 210

190 209 181 49 2.6 6.9 17 13 35

185 209 180 49 2.5 6.9 17 13 35

195 209 181 49 2.6 6.6 17 13 35

188 210 180 48 2.2 6.1 16 12 35

188 208 180 49 2.3 6.5 16 12 35

189 208 180 49 2.6 6.7 17 13 35

185 208 180 49 2.8 6.8 17 13 35

191 209 181 49 1.7 5.8 16 12 35

192 210 181 50 1.2 5.2 16 11 34

66 27 24 3.9 -4

192 210 181 50 1 4.8 16 11 35

191 210 181 50 0.8 4.6 15 11 34

190 209 181 50 0.9 4.9 15 11 35

26 4.5 -2 1.9 52 210

26 4.5 -2 1.71 52 210

193 209 180 49 1 5.2 15 11 35

191 210 181 50 1 4.9 15 11 34

1

92

Appendices

POWER 261 Watts HYDROGEN PRESSURE 25.0 Bars STEADY-STATE PRESSURE 28.0 Bars Time[m]

~

...

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T15 T16 T17 T18 T19

0

5

10 15 20 25

21 20 20 19 20 19 22 35 20 26 37 24 23 22 22 22 22 23

21 20 20 19 19 19 23 35 20 39 56 24 23 22 22 22 22 23

21 21 20 19 20 19 22 36 20 101 113 30 23 22 22 22 22 23

30 35 40 45 50

r 55 60 65 70·· is '80 85 95 105 115 125 135 '145 155 165 175 185 195 SIS

T

21 21 20 19 20 19 22 52 20 151 159 63 23 22 22 22 22 23 ..

~

21 21 21 19 19 19 22 191 21 152 193 73 24 22 22 22 22 23 ._--_.

65 65 22 25 21 21 20 16 19 19 19 19 25 24 188 191 25 27 153 158 188 191 84 95 26 26 22 15 22 22 22 22 22 22 23 23 .-

._--_.

65 26 21 17 20 19 26 196 28 163 197 99 26 20 22 22 22 24

66 26 22 15 19 18 33 197 29 164 198 127 28 11 21 23 22 26

66 26 22 8.1 19 15 35 199 30 166 200 139 30 2.7 20 22 21 26

66 26 23 7.1 17 14 37 200 33 167 201 147 34 0.7 19 22 21 27

·66 26 23 7 17 13 38 201 35 168 201 151 36 0.4 18 21 20 27

66 26 23 7.2 14 13 39 202 36 169 203 153 36 0.5 17 21 19 28

66 26 23 7.3 6.6 13 40 203 37 170 203 156 37 1.7 16 20 18 29

66 27 24 7.7 4.8 13 41 204 37 171 205 158 38 2 16 20 18 29

67 26 24 7.9 3.9 13 42 204 38 181 204 162 38 1.9 16 20 18 29 .

__ .

66 26 24 7.1 2.8 12 42 204 38 171 205 165 39 1.6 15 20 18 29 _..

66 26 24 7 2.5 12 43 204 39 171 205 166 40 1.5 15 20 18 29 .

__ .

67 27 24 6.4 1.9 12 44 205 40 172 206 168 41 1.2 15 20 18 30 '--....

67 27 25 6.3 1.5 11 44 205 40 172 205 168 41 1 15 20 17 30

67 27 25 6.5 1.7 11 44 204 40 172 205 166 42 1 15 20 17 30

67 27 25 6 1 11 44 204 40 171 205 165 42 0.7 14 20 17 30

67 27 24 5.9 0.5 11 44 204 40 171 204 166 42 0.7 14 19 17 30

67 27 25 6.6 0.6 11 45 204 41 171 205 167 42 0.4 14 20 17 30

67 26 25 6.6 0.8 11 45 204 41 171 206 168 42 0.9 14 20 17 31

67 26 25 6.6 1.9 11 45 204 42 171 205 168 42 0.9 15 20 18 31

67 27 25 6.1 0.9 11 45 204 41 172 205 168 42 0.9 15 20 18 31

67 27 25 6.2 0.9 11 45 204 41 171 205 167 42 0.5 15 20 18 31

67 27 25 6.3 1.7 11 45 204 41 171 205 167 42 0.5 14 20 18 31

67 27 25 6.4 1.2 11 45 204 41 171 205 168 42 0.7 14 20 18 31

Appendices

93

POWER 315 Watts HYDROGEN PRESSURE 25.0 Bars STEADY-STATE PRESSURE 28.25 Bars ---

Time[m]

0

Ti T2 T3 T4 T5 T6 T7 T8 T9 Ti0 Tii Ti2 Ti3 TiS Ti6 Ti7 Ti8 Ti9

21 21 21 19 20 20 23 36 21 26 38 24 23 22 22 22 22 23

5 10

15 20 25 30 35 40 45 50

55 60 65 70 75 80 85 95 105 115 125 135 145 155 165 175 185 195 SIS T

21 21 21 19 20 20 23 36 21 79 96 25 23 22 22 22 22 23

21 21 21 19 20 20 23 57 21 146 156 49 23 22 22 22 22 23

65 21 21 20 19 19 25 177 25 140 178 73 25 22 22 22 22 23

65 23 21 18 19 19 24 187 28 152 188 102 26 18 22 22 22 23

65 25 21 17 19 20 24 192 29 159 194 134 26 16 22 22 22 23

66 26 22 16 19 19 32 199 30 166 201 155 27 14 22 24 23 26

66 26 23 11 19 16 36 202 31 169 202 165 29 4.5 21 23 22 27

66 26 23 8.1 18 14 38 203 34 170 205 169 33 1.8 19 22 21 27

66 26 24 8.8 4.6 14 41 205 36 172 206 171 35 3,1 18 22 20 28

67 26 24 8.2 2.4 13 43 206 37 173 208 172 37 2.6 17 21 20 29

66 26 24 7.7 1.9 12 44 207 39 174 208 173 39 1,9 16 21 19 30

66 26 24 6.8 1.4 10 45 207 40 174 208 173 40 1.6 16 21 19 30

67 27 25 6.7 1.2 9.8 46 207 41 174 208 173 42 1.2 15 21 18 31

67 27 25 6.5 1.3 9.6 46 207 42 174 208 173 42 1.2 15 20 18 31

67 27 25 6.5 1.2 9.3 47 207 43 175 208 173 43 1.2 15 20 18 32

67 27 25 6.2 1 9.2 47 207 43 175 208 173 43 1.2 14 20 18 32

67 27 25 5.9 0.8 9 47 207 44 175 208 173 44 1.2 14 20 18 32

67 27 25 5.6 0.8 8.8 48 208 44

175 209 174 44 1 14 20 18 32

67 27 25 5.7 0.7 8.8 48 207 44 175 208 174 45 1.1 14 20 18 32

67 27 25 5.9 1.1 9.2 48 208 45 175 209 174 45 1.2 14 20 18 33

67 27 25 5.1 0.1 8.4 48 208 44 175 208 174 45 0.7 14 20 17 32

67 27 25 5.6

67 27 25 5.5 o 0.3 8.3 8.6 48 48 208 207 45 44 175 175 200 208 174 173 45 45 0.5 0.9 13 13 20 19 17 17 32 32

67 27 25 5.9 0.4 9 48 207 44 174 208 173 45 0.9 14 20 17 32

67 27 25 5.9 0.8 9.4 48 207 44 174 208 173 44 1.1 14 20 18 33

67 27 25 5.9 0.2 9 47 206 44 174 207 172 45 0.9 14 20 17 32

67 27 25 6 0.3 9 47 207 44 174 208 173 44 0.9 14 20 17 32

67 27 25 6 0.1 8.9 47 206 44 174 207 172 44 0.7 14 20 17 32

67 27 25 5.9 0.4 9.1 47 206 44 174 208 172 44 0.9 14 20 17

32

-------

94

Appendices

POWER 370 Watts HYDROGEN PRESSURE 25.0 Bars STEADY-STATE PRESSURE 28.5 Bars Time[m] Ti T2 T3 T4 T5 T6 T7 T8 T9 Ti0 Tii Ti2 Ti3 TiS Ti6 Ti7 Ti8 Ti9

0 21 21 21 19 20 19 23 37 21 27 38 24 23 21 22 22 22 22

5 21 21 21 19 20 20 23 36 21 74 95 24 23 21 22 22 22 23 i

10 21 21 21 19 20 19 23 67 21 148 162 48 22 21 22 22 22 22

15 64 21 21 20 20 19 25 179 25 156 182 69 24 21 21 21 21 22

___

---

20 65 23 21 17 20 19 23 191 28 171 192 111 25 14 21 21 21 22 '---

-

25 66 25 20 18 20 19 25 199 29 179 200 165 25 17 22 22 22 24

30 66 27 21 13 19 16 33 204 31 183 205 174 28 7.8 21 23 22 26

-----,---

35 66 26 22 12 6 15 37 207 33 190 208 178 30 5.1 20 22 21 27

40 67 27 23 9.5 1.1 11 40 208 35 190 208 178 32 4 18 22 20 28

---

-

45 67 26 23 7.3 -0 8.5 42 209 37 190 209 180 35 2.6 17 21 19 28

50 67 27 23 5.4 -1 5.4 44 210 40 192 211 181 39 1.1 15 20 18 29

55 67 27 24 5.2 -1 2.3 46 211 42 192 211 182 40 0.8 13 19 17 30

60 68 27 25 4.9 -1 2 48 212 44 190 213 183 42 0.3 11 19 16 31

65 68 27 25 4.9

70 68 27 25 5

-1

-1

2 49 213 45 188 214 184 44 0.2 9.7 18 15 32

1.9 49 213 45 189 213 184 44 0.5 9.4 18 15 32

75 68 27 24 5.1 -2 1.8 49 213 46 189 213 184 44 0.7 9 17 15 32

80 68 27 23 4.3 -3 0.9 47 212 45 191 212 183 43 0.8 9 17 15 32

85 67 27 22 3.5 -4 0 46 211 43 194 211 182 42 0.9 9 18 15 32

95 67 27 22 3.4 -4 0 46 211 43 190 211 181 41 0.6 8.5 17 14 32

105 67 27 22 2.7 -4 -1 45 211 43 188 211 182 41 0.2 7.9 17 14 31

115 67 27 22 4.2 -4 4.6 46 211 42 193 210 181 42 0.8 8.5 17 15 30

125 67 27 22 4.3 -4 5.2 45 211 42 187 211 181 42 0.9 9.2 17 15 29

135 67 28 22 3.7 -4 2.4 45 210 42 191 210 181 42 0.5 9 17 14 29

145 67 27 22 3.8 -3 5 44 211 41 192 211 182 41 0.7 9 17 15 27

-------

155 67 27 23 3 -3 0.4 48 212 44 188 213 183 43 -0 8 16 13 31

165 68 27 25 3.5 -2 1.2

50 214 46 195 214 185 45 0.2 7.5 17 13 33

175 68 27 25 2.9 -3 0.8 51 215 47 190 215 186 46 0.4 7.2 17 13 34

185 68 27 24 3.2 -3 1.3 51 215 48 192 215 186 48 0.9 7.5 17 13 35

195 SIS • 68 68 27 271 25 25! 3.2 3.3 -2 -21 0.8 1.1 52 51 216 215 48 48 199 193! 216 216 187 186 48 47, 1.1 0.8! 7.4 7.4 18 17 13 13! 35 34

95

Appendices

POWER 261 Watts HYDROGEN PRESSURE 27.5 Bars STEADY-STATE PRESSURE 30.5 Bars Time[m]

Ti T2 T3 T4

T5 T6 T7 T8 T9 Ti0 Tii Ti2

Ti3 Ti5 Ti6 Ti7 Ti8 Ti9

01

51

101

151

201

251

301

35

401

451

501

551

601

701

801

901 1001 1101 1201 1301 1401 1501 1601 1701 18018/8

21.31 21.61 21.21 21.31 21.81 68.81 69.41 69.5 701 69.41 69.71 69.91 70.11 70.31 70.61 70.51 21.3121.21 21121.1121. 25125.7126.1125.8126.2126.4126.6126.6126.9126.81 21.3121.2121.1121.1121.3121.1121.3121.2121.71 22.11 22.6 23.91 24.11 23.61 19.91 19.91 19.71 19.91 20.31 20.31 16.61 17.41 15.31 7.41 5.8 6.31 6.81 7.4 20.8120.8120.61 20.71 201 20120.71 20.41 20.21 18.81 17.5 201 201 19.61 19.41 19.31 19.41 201 19.61 18.21 15.61 14.4 23.5123.61 23122.8122.91 25124.5125.8131.9133.9134.9136.1137.6139.9141.41 41.71 39.2138.6140.5159.61 1941 1931 1951 1991 2021 2041 2051 2061 2071 2091 2101 211 21.31 21.21 20.91 21.11 22.41 25.51 27.11 27.61 28.21 28.91 31.81 33.41 34.51 35.91 371 37.81 27.8153.61 1111 1601 1511 1571 1601 1641 1681 1701 1711 1721 1741 1761 1771 1771 41.6171.61 1231 1681 1971 1941 1961 1991 2031 2051 2061 2071 2081 2101 2111 2111 124.7124.9132.5167.9175.7181.4187.2190.61 90.7196.21 1131 1061 1201 1351 1411 1401 4.4 26.5 26.7 26.6 27.5 28.3 33.5 34.3 35.3 36.1 37.9 38.9 22 22.2 15 17 12.1 1.8 -0.4 0.6 0 -0.4 1.1 1.5 22.4 22.3 22. 21.9 21.7 21.8 22.2 22.3 21.3 20.4 19.6 18.7 17.3 16.7 16.3 22.4 22.4 22. 22.3 22.3 22.2 23.1 23.1 23

70.51 70.71 70.81 70.61 70.61 70.71 26.71 26.91 26.81 26.81 26.71 26.61 24.1 51 24.3 24.5 6.8 6.6 ·.8 4.3 21 12.31 42.7 38.71 1771 2111 1521 39.7 1.4 16.2

39.31 1781 2111 1561 40.1 1.2 15.8

39.41 1781 2111 1531 40.3 1 15.6

39.41 1771 2111 1511 40.6 1 15.6

39.3 177 211 1521 40.5 0.9 15.6

1771 2111 1421 40.4 0.9 15.6

70.51 26.51 24.2 7.2 4.3 12.51

70.61 26.61 24.4 7.1 4.3 12.51

70.61 26.51 24.3 7.2 4.1 12.51

70.6 26.6 24.3 6.98 4.16 12.4

1761 2111 1411 40.5 1.1 15.9

1771 2111 1391 40.3 1.2 15.9

1771 2111 1461 40.3 1.3 15.9

177 211 144 40.4 1.08 15.8

18.4 29.9

96

Appendices

POWER 315 Watts HYDROGEN PRESSURE 27.5 Bars STEADY-STATE PRESSURE 31.0 Bars

Time[m] Ti T2 T3 T4 TS T6 T7 T8 T9 TiD Tii Ti2 Ti3 TiS Ti6 Ti7 Ti8 Ti9

5

10

15

20

25

30

35

40

'20.3 20.4 20.2 20.2 20.3 20.4 18.7 18.8 19.5 19.8 19.3 19.5 22.2 22.3

20.4 20.2 20.4 18.9 19.7 19.5 22.2 35.9 20.3 114 126 33 22.4 21.1 21.8 21.9 21.8 22.2

20.6 20.4 20.4 19 19.2 19.4 22.5 138 20.6 146 172 73.4 22.5 21.1 21.8 21.6 21.8 22.1

68.3 20.7 20.4 19.4 19 18.6 24 183 24.3 146 185 75.6 24.1 21.1 21.1 21.5 21.5 22.2

68.4 22.6 20.1 18.1 19.2 18.7 22.5 193 26.2 157 195 90.3 24.9 18.4 21 21.5 21.5 22.4

68.8 24.6 20.1 16.6 19.4 19.3 22.5 198 26.9 163 200 113 24.7 15.6 21.7 21.8 21.6 23.1

69.2 25.3 20.7 18.1 19.4 20.9 25.5 203 27.8 169 205 128 25.7 17.7 22.2 23.1 22.3 25.5

69.2 25.5 21.4 9.3 18.7 15.4 34 207 28.8 174 209 147 27.1 4.6 21 22.8 22.1

0

33.2 20.2 27.2 36.3 23.7 22.4 21 21.7 21.9 21.9 22.1

33.1 20.3 46.2 67.9 23.6 22.4 21.1 21.8 21.8 21.8 22.2

45

50

69.4 26.1 22.4 7.8 17.5 13.7 36.5 208 31.2 175 210 165 32.4 0.7 19.9 22.2 21.3 26 26.6

69.7 26 22.8 7.3 15.7 12.9 38 210 34.8 177 211 171 35.2 1 18.9 21.9 20.7 27.6

55

60

70

69.9 70 70 25.9 26 25.9 23.1 23.2 23.5 7.8 7.5 6.9 4.2 2.7 1.8 12.9 12.2 11.1 40.2 41.7 43.2 212 212 212 36.5 37.4 39.3 179 179 179 213 213 213 174 176 177 35.9 37.5 39.4 2.1 1.6 1.3 18 17.2 16.2 21.7 21.2 20.8 20 19.4 18.7 28.8 29.4 30.1

80

90 100 110 120 130 140 150 160 170 180 SIS

69.9 70.7 70.8 71.1 71.1 71.1 71 71.1 71.2 25.8 26.7 26.7 26.9 26.8 27 26.9 26.8 26.7 23.6 24.3 24.5 24.8 24.6 24.3 24.3 24.2 24.1 6.3 6.3 5.4 4.8 5.4 4.9 4.5 4.9 4.3 o -0.3 1.4 1.3 0.8 0.4 0.5 0.2 0.1 10.1 9.6 8.6 7.9 8.1 8.2 7.9 8.1 7.6 44.2 45.4 46.2 46.9 46.9 46.5 46.6 46.6 46.5 212 214 215 215 215 215 215 215 215 40.7 42.1 42.8 43.4 43.8 43.6 43.8 43.7 43.5 180 181 102 182 182 182 182 182 182 214 216 216 216 217 216 217 217 216 177 180 180 181 181 181 181 181 181 41.1 42.3 42.8 43.4 43.7 43.6 43.8 43.7 43.7 1.1 0.7 0.4 0.2 0.2 0.2 0.1 0.2 0.2 15.6 15.1 14.3 13.7 13.6 13.5 13.3 13.2 13.3 20.7 20.8 20.3 20.1 19.7 19.8 19.5 19.4 19.6 18.4 18.3 17.7 17.3 17 17 16.9 16.7 16.8 30.9 31.2 31.4 31.5 31.6 31.8 31.8 31.6 31

71 26.9 24.5 4.2 -0.2 7.5

70.6 26.4 23.7 4.7 -0.7 7.6

71 26.7 24.2 4.52 -0.2 7.74

46.8 215 43.8 182 216 181 43.9 0.2 12.9 19.4 16.6 31.6

46.3 215 43.5 182 215 181 43.7 0.3 13.3 19.6 16.8 31.9

46.6 215 43.7 182 216 181 43.8 0.2 13.2 19.5 16.8 31.6

j

97

Appendices

POWER 370 Watts HYDROGEN PRESSURE 27.5 Bars STEADY-STATE PRESSURE 31.0 Bars Time[m] Ti T2 T3 T4 TS T6 T7 T8 T9 Ti0 Tii Ti2 T13 TiS Ti6 Ti7 Ti8 Ti9 .

0 20 20 20 19 19 19 21 28 20 23 29 22 22 21 21 21 21 22

5 20 20 20 19 20 19 21 27 20 23 29 22 21 21 21 21 21 22 --

10 15 20 25 30 35 40 45 20 20 68 69 69 70 70 70 20 20 20 22 25 25 26 26 20 20 20 20 20 21 22 22 19 19 19 17 17 15 9.9 9 20 20 19 19 19 19 17 3 19 19 18 19 19 17 14 12 21 21 23 23 23 31 35 38 27 39 183 197 204 211 214 216 20 20 23 26 27 28 30 33 67 148 163 172 185 186 194 195 87 157 187 198 205 212 216 217 22 39 79 89 158 177 184 187 22 22 23 25 25 26 29 32 21 21 21 16 17 12 4.6 4.3 21 21 21 21 21 22 20 19 22 22 21 21 22 23 22 22 21 21 21 21 22 22 22 21 22 22 22 22 23 25 26 27

50 71 26 22 8.3 1.3 11 40 217 35 199 218 188 35 3.1 17 21 20 28

55 71 26 22 6.2 0.4 8.3 42 218 37 198 219 190 37 2.3 16 21 19 28

60 71 26 23 5.3 -0.1 4.8 44 219 38 200 220 191 39 1.6 14 20 17 29

70 71 26 23 4.7 -0.4 4.3 45 220 40 201 220 190 41 1.5 12 19 16 30

80 71 26 22 4.6 -0.6 2.6 45 219 41 199 220 191 42 1.3 11 18 16 30

90 71 26 24 4.5 -0.5 2.1 47 221 43 204 221 191 43 1.7 9.9 18 15 30

100 71 27 23 4.2 -0.8 2 47 221 43 203 222 191 44 1.3 9.9 18 15 31

110 72 26 24 4.3 -0.4 2.2 47 221 43 197 221 192 44 1.2 9.1 17 14 30

120 71 26 23 4.1 -0.7 2 47 222 43 200 222 192 44 1.1 9.3 17 14 31

130 140 72 72 26 26 23 24 4.5 4.5 -0.6 -0.7 1.9 1.9 48 48 221 222 43 44 197 199 222 222 192 192 44 44 1.4 1.2 9.3 8.8 17 17 14 14 31 30

150 72 26 24 4.5 -0.6 1.9 48 221 44 205 222 193 44 1.1 8.5 17 13 31

160 72 26 24 4.5 -0.4 1.9 48 222 44 204 222 192 44 0.9 8.5 17 13 31

170 72 27 24 4.2 -0.4 2.1 48 222 44 203 223 193 45 1.1 8.5 17 13 31

180 72 26 23 4.2 -1 2 48 222 44 198 222 192 45 1.1 8.4 17 13 31

190 SIS 72 72 26 26! 23 24 4.2 4.3 -1 -0.71 1.9 21 48 48' 222 222 44 44 196 201 222 222 192 192 45 45 1.4 1.1 8.8 8.6 17 17 14 13 31 31

98

POWER 315 Watts HYDROGEN PRESSURE 0.0 Bars [No Hydrogen] STEADY-STATE PRESSURE 0.5 Bars [No

Time[m] Ti T2 T3 T4 T5 T6 T7 T8 T9 TiO Tii Ti2 Ti3 Ti5 Ti6 Ti7 Ti8 Ti9

0 19.5 19.4 19.4 19.4 19.4 19.4 20.2 26.4 19.4 22.9 26.9 21.5 21.3 21.1 21.3 21.2 21.1 21.2

10

20

30

Hydro~enl

,-:.:--------

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180 SIS

29.3 53.9 58.2 85.5 76 82.7 74.6 74.6 71.6 77.6 71.8 78.2 69.2 81.3 84.1 80.5 71.5 84.9 20.7 26.2 25.8 38.2 40.9 37.3 42.6 34.6 36.2 35.1 40.5 41 37.9 37.2 36.1 33.7 33.4 35.7 24 31.5 28.7 26.4 26.8 25.4 24.8 24.6 27.1 25.1 26.9 24.9 21.3 22.9 25 25.3 25.5 24.7 20.1 20.7 20.8 21.3 20.7 20.5 20.7 21.2 21.3 21.9 22 22.2 22.1 22.6 22.5 23.1 22.4 22.5 19.8 19.9 20.1 19.8 19.5 19.3 19.6 20.5 21.9 22.5 23.1 22.1 22.7 22.2 22.6 23 23.2 22.7 22 21.1 21.4 21.6 21.9 21.5 22 19.6 19.5 19.4 19.2 19 18.8 19.2 20.2 20.7 21.2 21 28.2 31.8 34.6 31.2 28.9 27.5 28.9 29.1 27.9 27.1 27.4 26.7 27.4 26.6 26.3 27.7 27.3 26.5 92.3 108.5 115.9 117.9 115.4 113.7 115.1 113.5 112.9 112.3 111.6 110.5 111.7 111.3 110.5 110.7 111.2 110.4 21.3 23 26.2 25.9 25.3 24.5 24.9 25.1 24.5 23.6 23.3 22.6 23.2 22.7 22.7 22.8 23.5 22.8 71.6 78.9 91.3 102.1 99.7 103.7 98.4 101.3 99.5 101.8 94.2 100.8 95.8 104.3 100.1 101.6 97 100.8 118 97.1 109.7 120 116.3 115.7 114.7 114.8 114 113.5 112.8 111.9 113 112.2 111 112.4 112.2 111 65 67.5 77.4 85.7 98.2 97 76.9 89.4 76.8 89.3 77.7 86.1 83.9 92.8 90.6 87.8 79.6 95.8 24 27.6 31.1 30.6 29.5 28.7 29.1 29.7 28.2 27 26.8 26.9 26.7 26.6 26.2 27.3 27.3 26.6 21.3 21.6 21.8 22.4 22.8 22.9 23.7 24.8 25.6 26 26.1 26.1 26.1 26.4 26.2 26.5 26.5 26.2 21.4 21.2 21.1 21.2 21.5 21.8 21.8 21.9 22.2 22.1 22.5 21.8 22.3 22 22 22 22.1 22 21.6 21.6 21.4 21.7 21.9 22 22.3 22.7 22.2 22.2 22.4 22.5 22.3 22.2 22.3 22.4 22.5 22.6 21.5 21.7 21.9 22 22.5 22.9 23.3 23.2 22.5 22.6 22.8 22.9 22.8 22.8 22.7 22.9 22.9 22.9 22.7 24.1 26 26.5 26.6 26.4 26.8 26.9 25.3 25 24.9 24.9 24.9 24.9 24.6 24.9 25 24.7

Appendices

APPENDIX 2: SELECTED COMPUTED RESULTS

99

Appendices

100

Heat exchanger effectivenesses at various hydrogen pressures and power inputs POWER [W] 261 315 370 261 315 370 261 315 370 261 315 370 261 261 370 261 315 370 261 315 370 261 315 370 261 315 370

P1 [barl 7.5 7.5 7.5 10 10 10 12.5 12.5 12.5 15 15 15 17.5 17.5 17.5 20 20 20 22.5 22.5 22.5 25 25 25 27.5 27.5 27.5

P2 [bar] 3.835 4.14 4.365 4.329 3.943 4.096 3.955 3.958 4.037 4.034 4.034 4.259 4.291 4.291 4.034 4.365 4.375 4.224 4.385 4.438 4.214 4.317 4.278 4.304 4.285 4.333 4.192

Ehex [-] 0.998 0.971 0.976 0.999 0.99 0.973 0.992 0.999 0.992 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.993 0.999 0.999 0.997 0.999 0.999 0.996 0.999 0.999 0.999 0.999

Epcl [-] 0.059 0.065 0.048 0.227 0.777 0.707 0.687 0.651 0.694 0.7 0.722 0.629 0.675 0.675 0.642 0.653 0.678 0.617 0.63 0.667 0.503 0.685 0.672 0.637 0.801 0.721 0.642

Epch [- ] 0.682 0.731 0.623 0.642 0.467 0.467 0.488 0.595 0.586 0.51 0.565 0.72 0.602 0.602 0.632 0.563 0.578 0.544 0.611 0.618 0.713 0.702 0.683 0.667 0.706 0.675 0.688

Legend PI: Low pressure P2: High pressure Ehex: effectiveness of solution heat exchanger Elpc: effectiveness of low pressure pre-cooler Ehpc: effectiveness of high pressure pre-cooler

Appendix 3 QuickBasic Programme Listing

APPENDIX 3: QUICKBASIC PROGRAMMME LISTING

101

102

Appendix 3 QuickBasic Programme Listing

PROGRAMME "AMOWAT" , Thermodynamic Properties of Ammonia-Water mixtures

DIM Cl(50), C2(50), C3(50), P(50), T(50), X(50), Y(50) DIM HL(50), HG(50), ALPHA(50), LOGALPHA(50)

,------------------------------------------------------------------------------------------------------'CONSTANTS [for use in subroutines]

,------------------------------------------------------------------------------------------------------, Coefficients for the equations for the pure components AlA = 3.971423E-02: A2A = -1.790557E-05: A3A = -1.308905E-02: A4A 3.752836E-03 'Specific volume constants for ammonia (liquid) AIW = 2.748796E-02: A2W = -1.016665E-05: A3W = -4.452025E-03: A4W = 8.389246E-04 'Specific volume constants for water (liquid) BIA = 16.34519: B2A = -6.508119: B3A = 1.448937

'Specific heat constants for

ammonia (liquid) BIW = 12.14557: B2W = -1.898065: B3W = .2911966#

'Specific heat constants

for water (liquid) CIA = -1.049377E-02: C2A = -8.288224: C3A = -664.7257: C4A = -3045.352 'Specific volume constants for ammonia (gas) Cl W = 2.136131E-02: C2W = -31.69291: C3W = -46346.11: C4W = 0 'Specific volume constants for water (gas) DIA = 3.673647: D2A = 9.989629E-02: D3A = 3.6 17622E-02

'Specific heat

constants for ammonia (gas) DIW = 4.01917: D2W = -.0517555: D3W = 1.951939E-02

'Specific heat

constants for water (gas) HORLA

4.878573: HORGA = 26.46888: SORLA = 1.644773: SORGA =

8.339026: TORA

3.2252: PORA = 2

'Reduced initial ammonia properties:

Liquid enthalpy, gas enthalpy, liquid entropy, gas entropy, temperature, pressure resp. HORLW = 21.821141#: HORGW = 60.965058#: SORLW = 5.733498: SORGW 13.45343: TORW

5.0705: PORW = 3 'Reduced initial water properties: Liquid

enthalpy, gas enthalpy, liquid entropy, gas entropy, temeperature, pressure resp.

Appendix 3 QuickBasic Programme Listing

103

, Coefficients for the Gibbs excess energy function El

=

-46.26129: E2 = 2.060225E-02: E3 = 7.292369: E4

-1.032613E-02: E5 =

80.74824 E6 = -84.61214: E7 = 24.52882: E8 = 9.598767E-03: E9 = -1.475383: EI0 =5.038107E-03 Ell

-96.40398: E12 = 122.6973: ED

= -7.582637: E14 =

6.012445E-04: E15 =

54.87018: E16 = -76.67596

,------------------------------------------------------------------------------------------------------MAIN PROGRAMME

, ------------------------------------------------------------------------------------------------------5 INPUT "Enter Tor P if Temperature or Pressure is constant, respectively"; OK1$ IF OKl$ = "P" OR OK1$ IF OK1$ = liT" OR OKl$

= "p" THEN GOTO

10

"t" THEN GOTO 25

GOT05 10 INPUT "Press RETURN to enter default pressure values or enter P to change them"; OK2$

IF OK2$ =

""

THEN: NPV = 16: pel)

.1: P(2) =.2: P(3) = .4: P(4) = .6: P(5) = 1:

P(6) = 1.5: P(7) = 2: P(8) = 3: P(9) = 4: P(lO)::: 6: P(ll) = 8: P(12) = 10: P(13) = 15: P(14) = 20: P(15) = 30: P(16) = 40: GOTO 15 'Default pressure values INPUT "Number of Pressure values"; NPV

'Number of Pressure Values

FORI= 1 TONPV INPUT "Pressure values in bars (enter separately)"; PCI) NEXT I 15 INPUT "Press RETURN to enter default X-step or enter X to change it"; OK3$ IF OK3$ :::

If!!

THEN XSTEP = .02: GOTO 20

'Increment in X

INPUT "X-step"; XSTEP 20 FOR I ::: 1 TO NPV: X = 0: Y = 0 DO WHILE X