Use of Nutrient Balances in Comprehensive Watershed Water Quality ...

3 downloads 0 Views 4MB Size Report
Jun 5, 1998 - Donigian, Anthony S. Use of nutrient balances in comprehensive watershed water quality modeling of. Chesapeake Bay / by Anthony S.
Technical Report EL-98-5 June 1998

US Army Corps of Engineers Waterways Experiment Station

Use of Nutrient Balances in Comprehensive Watershed Water Quality Modeling of Chesapeake Bay by Anthony S. Donigian, Jr., Radha V. Chinnaswamy Aqua Terra Consultants Patrick N. Deliman, WES

Approved For Public Release; Distribution Is Unlimited

19980701 225 DTIC QUALITY INSPECTED 1

Prepared for U.S. Environmental Protection Agency

The contents of this report arc not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

PRINTED ON RECYCLED PAPER $

Technical Report EL-98-5 June 1998

Use of Nutrient Balances in Comprehensive Watershed Water Quality Modeling of Chesapeake Bay by Anthony S. Donigian, Jr., Radha V. Chinnaswamy Aqua Terra Consultants 2672 Bayshore Parkway, Suite 1001 Mountain View, CA 94043-1001 Patrick N. Deliman U.S. Army Corps of Engineers Waterways Experiment Station 3909 Halls Ferry Road Vicksburg, MS 39180-6199

Final report Approved for public release; distribution is unlimited

Prepared for

Chesapeake Bay Program Office U.S. Environmental Protection Agency Annapolis, MD 21403

US Army Corps of Engineers

I 1

Waterways Experiment Station

-K-

HEAOOUARTBS BULDMG

ENTRANCE

FOR INFORMATION CONTACT: PUBLIC AFFAIRS OFFICE U.S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION 3909 HALLS FERRY ROAD VICKSBURG, MISSISSIPPI 39180-6199 PHONE: (601) 634-2502

ENVflONMENTAI. lABORATORY —

STRUCTURES LABORATORY

AREA OF RESERVAT«» . 2 rjqw«

Waterways Experiment Station Cataloging-in-Publication Data Donigian, Anthony S. Use of nutrient balances in comprehensive watershed water quality modeling of Chesapeake Bay / by Anthony S. Donigian, Jr., Radha V. Chinnaswamy, Patrick N. Deliman ; prepared for Chesapeake Bay Program Office, U.S. Environmental Protection Agency. 118 p.: ill.; 28 cm. - (Technical report; EL-98-5) Includes bibliographic references. 1. Water quality - Mathematical models. 2. Environmental quality -Mathematical models. 3. Valley ecology - Mathematical models. 4. Stream ecology - Mathematical models. 4. Chesapeake Bay (Md. and Va.) - Mathematical models. I. Chinnaswamy, Radhakrishnan V. II. Deliman, Patrick N. III. United States. Army. Corps of Engineers. IV. U.S. Army Engineer Waterways Experiment Station. V. Environmental Laboratory (U.S. Army Engineer Waterways Experiment Station) VI. United States. Environmental Protection Agency. Chesapeake Bay Program. VII. Title. VIII. Series: Technical report (U.S. Army Engineer Waterways Experiment Station); EL-98-5. TA7 W34 no.EL-98-5

Contents Preface Conversion Factors, Non-SI to SI Units of Measurement 1-Introduction

yj vii 1

Study Background Scope and Objectives Summary Conclusions and Recommendations Format of this Report

1 i 2 6

2-Expected Nutrient Balances by Land Use Categories

7

Overview and Summary Tables Forest Balances Pasture Balances Urban Balances Agricultural Cropland Balances Closure 3-Application of Nutrient Balances and Model Refinements to the Shenandoah River Watershed

7 8 8 9 11 11 14

Overview of Model Refinements Hydrology Simulation Nonpoint Source and Loading Assessment Water Quality Calibration Results Conclusions and Recommendations

14 15 16 25 28

References Appendix A: Shenandoah Model Segments Results SF 298

38 Al

in

List of Figures Figure 1.

Chesapeake Bay Watershed Model and Shenandoah Model Segments

Figure 2.

Simulated and Observed Flow at Reach 190, SF Shenandoah River at Front Royal, VA

18

Figure 3.

Simulated and Observed Row at Reach 200, Shenandoah River at Millville, WV

19

Figure 4.

Frequency Analysis of Flow at Reach 190, SF Shenandoah River at Front Royal, VA ... 20

Figure 5.

Frequency Analysis of Flow at Reach 200, Shenandoah River at Millville, WV

21

Figure 6.

Simulated and Observed Sediment (TSS) Concentration at Reach 200, Shenandoah River at Millville, WV

30

Simulated and Observed N03-N Concentration at Reach 200, Shenandoah River at Millville, WV

31

Simulated and Observed NH3-N Concentration at Reach 200, Shenandoah River at Millville, WV

32

Simulated and Observed Organic N Concentration at Reach 200, Shenandoah River at Millville, WV

33

Figure 7. Figure 8. Figure 9.

3

Figure 10. Simulated and Observed Total N Concentration at Reach 200, Shenandoah River at Millville, WV

34

Figure 11. Simulated and Observed P04-P Concentration at Reach 200, Shenandoah River at Millville, WV

35

Figure 12. Simulated and Observed Organic P Concentration at Reach 200, Shenandoah River at Millville, WV

36

Figure 13. Simulated and Observed Total P Concentration at Reach 200, Shenandoah River at Millville, WV

37

IV

List of Tables Table 1.

Typical Nitrogen Balances for Major Crops and Land Use/Land Cover Categories

12

Table 2.

Typical Phosphorus Balances for Major Crops and Land Use/Land Cover Categories

13

Table 3.

Shenandoah River Watershed Hydrologie Calibration: Comparison of Annual Total Observed versus Simulated Flow

17

Unit Area Nonpoint Source Loading Rates for Each Land Use for the Shenandoah Basin

23

Percent of Total Load Contributed From Each Source in Shenandoah Basin

23

Table 4. Table 5.

Preface The work herein was authorized under U.S. Army Engineer Waterways Experiment Station (WES) Contract No. DACW39-94-C-0052 with Aqua Terra Consultants, dated 30 March 1994 and amended 25 July 1995; the work was completed on 30 September 1996. Dr. Patrick N. Deliman, Environmental Laboratory (EL), WES, was the Project Officer and co-author of this report. He was instrumental in facilitating the administration and execution of the contract work. The Use of Nutrient Balances in Comprehensive Watershed Water Quality Modeling of Chesapeake Bay study, as documented in this report, was performed for the U.S. Environmental Protection Agency Chesapeake Bay Program Office (CBPO), Annapolis, MD. Mr. Lewis Linker, CBPO, was point of contact The CBPO provided data for model testing and refinement within the Chesapeake Bay Watershed Model that were critical to the successful completion of this study. Mr. Linker and his staff at the CBPO are acknowledged for their assistance and cooperation. Mr. Anthony S. Donigian, Aqua Terra, was the Principal Investigator and Project Manager, responsible for the overall technical direction of the work and preparation of the final report. Mr. Radha V. Chinnaswamy, also of Aqua Terra, reviewed the literature and assisted in developing nutrient balances for the simulated land-use categories; he also performed model testing and calibration and assisted in preparing the final report. Messrs. Brian Bicknell and Thomas Jobes, Aqua Terra, assisted with operational and technical model application issues throughout the study. At the time of publication of this report, Director of WES was Dr. Robert W. Whalin, and EL Director was Dr. John Harrison. Dr. Richard E. Price was Chief, Environmental and Effects Division, EL. WES Commander was COL Robin R. Cababa, EN. This report should be cited as follows: Donigian, A. S., Chinnaswamy, R. V., and Deliman, P. N. (1998). "Use of nutrient balances in comprehensive watershed water quality modeling of Chesapeake Bay," Technical Report EL-98-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

The contents of this report are not to be usedfor advertising, publication.

VI

Conversion Factors, Non-SI to SI Units of Measurement

Non-SI Units of measurement used in this report can be converted to SI units as follows: Bv

To Obtain

2.471

hectares

0.02831685

cubic meters

Fahrenheit degrees

5/9

Celsius degrees1

feet

0.3048

meters

inches

2.54

centimeters

pounds (mass)

0.4535924

kilograms

square miles

2.590

square kilometers

1

To Obtain Celsius (C) temperature from Fahrenheit (F) readings, use the following formula: C = (5/9)(F-32).

vn

1 Introduction Study Background In 1987 the Chesapeake Bay Agreement was signed by the EPA Administrator and governors of the member states recommending a 40% reduction in nutrient loadings to the Chesapeake Bay to restore and maintain the water quality and living resources of the Bay. The Chesapeake Bay Watershed Model, based on the U.S. EPA Hydrologie Simulation Program-Fortran (HSPF) (Bicknell et al. 1993) was used to provide a framework for quantifying and evaluating the needed nutrient loading reductions to the Chesapeake Bay, and to allow the Chesapeake Bay Program Office (CBPO) to evaluate the impacts of land use changes and alternate nutrient and agricultural management practices. The Watershed Model provides total pollutant loadings from all land areas tributary to the Bay in order to drive a fully dynamic three-dimensional, hydrodynamic/water quality model of Chesapeake Bay. The CBP Watershed Model is a unique state-of-the-art watershed modeling capability that includes detailed soil process simulation for agricultural areas, linked to an instream water quality and nutrient model capable of representing comprehensive point and nonpoint pollutant loadings for die entire 68,000 square mile drainage area of the Chesapeake Bay. In 1992, major refinements and recalibration of the Watershed Model was completed and a report prepared describing the CBP Phase II Watershed Model application to the Bay drainage for calculating nutrient loadings to the Bay (Donigian et al. 1994). That work included updating and extending the model database, incorporating detailed agricultural process simulation using the AGCHEM modules of HSPF, developing capabilities for instream sediment-nutrient interactions, and re-calibrating the improved model for the extended time period. However, for non-agricultural areas, simple empirically-derived algorithms were used to estimate nonpoint loadings, both surface and subsurface, based on user-derived potency factors, washoff rates, and subsurface concentrations. This approach for the non-agricultural lands, including the large areas of forested lands, did not maintain a nutrient balance and inhibited detailed assessment of the impacts and contributions of atmospheric pollutant sources (specifically nitrogen) to overall water quality.

Scope and Objectives Recent HSPF code enhancements (Bicknell et al., 1996a) have extended the detailed AGCHEM algorithms to forested areas (Hunsaker et al, 1994; Bicknell et al., 1996b), have added more direct input of atmospheric sources, and have improved the AGCHEM plant uptake functions for better representation of agricultural nutrient management practices (Donigian et al., 1995). These Chapter 1

Introduction

enhancements have shown the added benefits of performing detailed nutrient balance calculations for the non-agricultural areas. As a result of these efforts, additional improvements and refinements were identified and recommended to more directly consider atmospheric deposition and other nutrient sources by allowing nutrient balance approaches for all land uses, consistent with the recommendations of the Chesapeake Bay Executive Council and the Nonpoint Source Evaluation Panel in 1990 (Chesapeake Bay Nonpoint Source Evaluation Panel, 1990). This comprehensive nutrient balance approach will help improve the overall utility of the Watershed Model as a planning tool for comprehensive watershed planning and assessment of nutrient management/reduction alternatives. The specific improvements recommended and tasks identified in this effort include the following developmental and application aspects: Model Development and Refinement

• Develop nutrient balances and simulation procedures for the AGCHEM module to better represent nutrient cycling, mass balance, and runoff contributions for non-agricultural lands •

Test the AGCHEM procedures and refinements on the non-agricultural land uses, along with atmospheric sources, for selected segments of the CBP Watershed Model

Model Testing and Application

• Apply the refined AGCHEM procedures for the non-agricultural lands to a selected subbasin of the Chesapeake Bay drainage • Re-calibrate the Watershed Model, with the refined AGCHEM, for the selected subbasin and assess the load contributions from all sources and the impact of the refined procedures We selected the Shenandoah River subbasin within the Chesapeake Bay drainage to fully test the refined AGCHEM module integrated within the Watershed Model framework. Figure 1 shows the CBP Phase III Watershed Model segmentation for the Above Fall Line (AFL) region, along with the location of the Shenandoah subbasin. The most recent land use, point source, meteorologic, atmospheric deposition, septic system load, flow, and water quality data used in the current Phase IV watershed model effort was provided by the Chesapeake Bay Program Office (L. Linker, personal communication, 1996).

SUMMARY CONCLUSIONS AND RECOMMENDATIONS The water quality results from this effort are not greatly different from those produced in the earlier study, in spite of all the changes implemented, including more extensive application of AGCHEM, addition of septic system loads, refinement of loading rates, and additional calibration. However, this simply indicates that the prior calibration was a good representation of the observed data, and that the changes implemented to better define the load sources were incorporated while maintaining the accuracy of the overall simulation. The real benefits of the current refinement phase of the CBP Chapter 1

introduction

AFL Model Segments

Shenandoah Model Segments

Figure 1. Chesapeake Bay Watershed Model and Shenandoah Mode! Segments

Chapter 1

Introduction

Watershed Model are realized from the extension of the nutrient balance approach to all major land use (except urban, in our simulations), and the utility of this approach for nutrient management. Below we discuss some of the areas where the current results differ from those presented earlier in Donigian et al (1995), and identify some problems that still remain for selected constituents, where further 'fine tuning' of the calibration is recommended: a. The N03-N simulation is acceptable but not as seasonally correct as the earlier results reported by Donigian et al (1995). We suspect that the differences primarily in late summer, fall, and winter for selected years are due mostly to the newly-added septic loads and possibly inaccuracies in the seasonal loadings from the forest and pasture segments, i.e. the added AGCHEM segments. b. Both the NH3-N and P04-P simulations have improved with reduced contributions from cropland (along with reduced sediment loads), reduced peaks due to nutrient application adjustments, and increased algal uptake due to higher benthic algae levels than in the previous efforts. c. Simulation of both Organic N and Organic P has improved in this effort, and since Organic P is the major component of Total P similar improvement is shown there. Except for the November 1985 storm, the organics are generally well represented, although many of the peaks are still somewhat high. The improvements result from reduced sediment loads (and associated organics), adjustments to the N/P ratios, changes to manure applications, and reductions in phytoplankton levels (which are included in the organic state variables). d. With the detailed AGCHEM simulation of forests, the forest segment is now a major contributor of organic N, both labile and refractory in both dissolved and particulate forms, along with the animal acres segment. Also, for the forest segment, BOD and Organic P loads are calculated from the organic N components; thus BOD loads from forest are also a major component. In the Shenandoah, our results indicate that forests contribute about 25% of the Organic N load and 30% of the BOD load, while the animal acres segment contributes more than 30% of the Organic N to the stream. Both of these components need further investigation as there is little data to confirm this level of contribution. Our primary recommendations resulting from this effort are as follows: 1. Finer segmentation for all stream reaches should be pursued as a major component of future Watershed Model enhancements. Increasing the spatial detail of the model by about a factor of lOx, along with appropriate detail in the precipitation and land use inputs, will help to improve all the process simulations, with specific benefits for the sediment and associated constituents, and benthic processes. 2. A more consistent approach for both BOD and organics loading needs to be developed and applied consistently across all land use categories. Currently the forest simulation enhancements provide loadings of both labile and refractory organic N components (dissolved and paniculate), while the other AGCHEM segments (Hi-Till, Lo-Till, Hay, Pasture) are restricted to just the refractory particulate organic N and P eroded from the land surface. The 4

Chapter 1

Introduction

forest organic N capabilities can, and probably should, be applied to all land segments to implement this consistent loading representation. Further investigation of partitioning and transformation parameters for the organics will be needed, along with consideration of extending the forest N simulation approach to include phosphorous (see #8, below). 3. The current representation of septic system loads needs to be re-evaluated. The use of a constant load has helped to reduce the seasonality of the N03 simulation shown in both the observed data and the previous model simulations. A revised approach is needed to allow the septic loadings to be 'hydrologically-driven' so that the seasonality of the hydrologic regime and loadings is represented. 4. The algal simulation, both phytoplankton and benthic algae, need more data, investigation, and evaluation. In this effort, the benthic algal levels were increased dramatically, by factors of 10 to 20, based on very limited data from widely scattered sites outside the Chesapeake Bay drainage. Additional literature data should be identified and actual site-specific data within the Chesapeake Bay watersheds collected to confirm the general magnitude of both the benthic and phytoplankton levels represented in the model. The algal simulation has such a critical impact on inorganic nutrient levels that major improvements in their modeling will depend on establishing realistic levels for the algal populations. 5. The urban land use should be divided into separate urban categories - residential, commercial, industrial — each with pervious and impervious fractions, as a prelude for nutrient mass balance and AGCHEM-type model application. Although CBPO has pursued an AGCHEM approach for the aggregated urban pervious segment, we feel a better definition of specific urban activities is needed to develop reasonable nutrient balances. 6. The CBPO should explore the option of eliminating the current 'composite crop' representation in the model, developed as part of the Phase II enhancements in 1991, and move to simulating each major crop individually in each cropland category. Recent computer hardware developments have eliminated many of the run time restrictions that required this simplification, and such an approach would allow more accurate representation of agricultural practices and the resulting nutrient balances. 7. In conjunction with representing each major crop, the nutrient application rates, timing, procedures, and composition distribution (both fertilizers and manure) should be closely reviewed and revised as needed. Experience with both the Watershed Model and the detailed Patuxent Model has confirmed the critical importance of the assumptions underlying the nutrient applications in the model. 8. The forest N simulation approach should be extended to include the P cycle, so that both N and P mass balances can be implemented for all land segments. Just as the previous AGCHEM module provided a valid framework for the forest N enhancements, the P cycle processes currently in AGCHEM can be readily adapted for forested conditions. Field site testing on small forested watersheds would be needed to fully evaluate the code enhancements.

Chapter 1

Introduction

Format of this Report Following this introduction, Chapter 2 describes the development of nutrient balances for all land uses with the focus on the non-agricultural cropland segments while Chapter 3 presents the results of model testing and re-calibration to the Shenandoah subbasin. The Appendix includes complete simulation results for the Shenandoah subbasin..

Chapter 1

Introduction

2 Expected Nutrient Balances by Land Use Categories Overview and Summary Tables As part of this study, 'expected' nutrient balances were developed for forest, pasture, and urban land use categories to help guide the model application and calibration effort for those land segments for which the new HSPF Version 11.0 AGCHEM module was applied to simulate the detailed nitrogen dynamics. Consequently, the AGCHEM sections replaced the PQUAL sections in the Watershed Model for forest for only the N species, and for pasture for both N and P species. Although the preliminary nutrient balances for the urban land use were developed, the nutrient loadings from the urban segment in the Model were still simulated using PQUAL, as in Phase EH; the basis for this decision is discussed in Chapter 3. Tables 1 and 2 (at the end of this chapter) show the typical or expected nitrogen and phosphorus balances, respectively, for different major crops and land cover/use categories. The information in the tables is presented in a 'production' sense by estimating the annual INPUTS and OUTPUTS for the soil-plant system. The INPUTS represent external additions to the system, such as nutrient applications (i.e. fertilizer and manure), in addition to net mineralization from the soil that supplies plant-available inorganic nutrients. The OUTPUTS represent various loss mechanisms, plus plant uptake (e.g. through harvest or plant retention) that extracts the nutrients from the soil impacting the potential for nutrient export and losses. Thus, although mineralization and plant uptake are not truly external to the soil-plant system, they are most often key components in establishing representative nutrient balances for most land use/cover categories. A review of the literature was performed to develop the nutrient balances for each category. The nitrogen balance for forest was derived primarily from information in the report by Oak Ridge National Laboratory (ORNL; Hunsaker et al., 1994) that was the basis for the algorithm enhancements to AGCHEM for the forest N cycling (Bicknell et al., 1996). Since HSPF does not currently have the capability to simulate the forest P cycling in detail, the PQUAL module was used for P loading simulations and hence we did not develop the P balance for forests. Also, the nutrient balances for agricultural croplands developed during Phase II (Donigian et al., 1994) were used in this study and are included in Tables 1 and 2. In this chapter (below), we briefly discuss the development of the 'expected' nutrient balances for each land use/cover as background for the values shown in the tables.

Chapter 2

Expected Nutrient Balances

Forest Balances In the previous CBP modeling efforts, the PQUAL module in HSPF was used to compute the N and P loadings from the forest segments based on user-defined potency factors and subsurface concentrations. Since the Chesapeake Bay watershed has approximately 60% forested land and there was concern regarding the level of N loadings from these areas, there was a need to simulate the N cycling in forests with a more detailed mass balance approach that would also allow more direct consideration of atmospheric deposition inputs and impacts. The ORNL report (Hunsaker et al., 1994) provided the design details for the enhancement of the AGCHEM/NTTR module in HSPF based on an extensive literature review of forest nitrogen pools and fluxes, review of monitored N data from the CBP region, and available N models. The literature review focused on the data collected from two studies: the International Biological Program which provided data on 116 forest research sites around the world, and the Integrated Forest Study that provided 17 forest research sites (16 in North America). The information and data collected at these sites and subsequently presented in the ORNL report formed a reasonable basis for developing the nitrogen balance shown in Table 1, besides serving as a tool for the development of forest N module. Based on the review of available literature and information provided in ORNL report, the following general summary is presented. • The primary sources of input to forests are atmospheric N deposition, with nitrogen fixation for some species, along with plant available N (inorganic N) from mineralization. Forest fertilization can be important in silvicultural activities and should be included if appropriate for a specific site assessment; we have not included forest fertilization in Table 1. • The major pathways by which N export losses occur include leaching from soil and denitrification. Also, the surface runoff losses are generally small except when the forest system has reached higher levels of N saturation (Stoddard, 1994). Although plant uptake is not a true 'loss' from the system, it is a key component in the overall balance. •

The other processes that play important roles in forest N cycling are retention of ammoniumN by soils, immobilization of available nitrogen by microorganisms, and return of plant N to the soil both belowground and through the forest litter layer. See Hunsaker et al (1994) and Bicknell et al (1996c) for additional details. Since mineralization and plant uptake are such dominant components of a forest N balance, an accurate accounting of their fluxes is critical to modeling the N cycling and export to waterbodies.

Pasture Balances A significant portion of the Chesapeake Bay region consists of pasture, or grassland ecosystems. The grassland/pasture ecosystem presents a wide diversity of environments, productivity and degree of management. The limited literature data available for the input-output dynamics of nutrients in both grasslands and pastures are often based on studies conducted across the continental U.S. and are not specific to CBP region. However, based on the review of available literature data on nitrogen cycling 3

Chapter 2

Expected Nutrient Balances

in these ecosystems, the following general conclusions are presented. Since there are very little literature data available on phosphorus cycling in the grassland systems, ,many of the corresponding components were assumed to be analogous to N cycle components. • The principal sources of N inputs are atmospheric deposition, manure and N fertilizer applications, along with the mineralization contribution to plant-available N as noted above for forests. Symbiotic and nonsymbiotic fixation of N2 is considered small or insignificant under typical grassland conditions (Woodmansee, 1978). • The N uptake by plants (aboveground, belowground and understory) are in the range of 6580% of the total N input (Legg and Meisinger, 1982; Muchovej and Rechcigl, 1994). Hence, an average 73% plant N uptake was assumed in Table 1. • In pasture, loss due to volatilization is significant (Muchovej and Rechcigl, 1994). About 1025% is lost due to volatilization of NH3 from animal urine and feces while about 5% is lost due to surface runoff (Meisinger and Randall, 1991; Legg and Meisinger, 1982). Consequently, an average 17% volatilization loss and 5% surface runoff loss were assumed in Table 1; clearly, these values will vary by site-specific conditions. • Denitrification is not a significant factor in N balance for most pasture and grasslands (Woodmansee, 1978). This is probably due to the fact that native and extensively managed grasslands are N deficient (Muchovej and Rechcigl, 1994). However, denitrification is very site-specific and was assumed to be similar to hay land for our balance. • Some studies indicate that leaching is an important factor while other studies indicate leaching is either small or insignificant in these systems (Woodmansee, 1978; Legg and Meisinger, 1982; Keeney, 1982). Since very little research has been done on nitrate leaching from grasslands in the U.S. (Muchovej and Rechcigl, 1994) and those studies were conducted at different soils, climatic conditions and vegetation type, it is difficult to generalize the leaching potential of pasture land. However, subsurface losses are one of the major pathways by which N is transported from grasslands (Muchovej and Rechcigl, 1994). Hence, the leaching and subsurface losses were assumed to be the same as that for hay lands since hay and pasture lands have similar conditions. • Mineralization and immobilization are important factors in the grassland N balance. However, data are not available on the mineralization and immobilization rates for grassland systems. As mentioned above, since pasture and hay lands have similar conditions, mineralization and immobilization for pasture were assumed to be in the same range as that for hay lands. For conditions where manure inputs are significant, mineralization rates in the surface soil layers should reflect the higher values common to the readily mineralizable portion of manure organics.

Urban Balances There are very few studies and literature data on the nutrient dynamics in an urban environment. Although the few available studies were performed in parts of the northeastern U.S., they provide Chapter 2

Expected Nutrient Balances

current state of knowledge on the fate of the fertilizers applied to home lawns. Based on the review of available literature data, the following general conclusions are presented. Since there are no literature data available on phosphorus cycling in urban land use, it was assumed to be analogous to N cycling in our tables. • The principal source of N input is fertilizer N applied to lawns. Intensively managed turfgrass receives between 100-200 lb N/ac/yr (Muchovej and Rechcigl, 1994; Petrovic, 1990; Morton et al. 1988; Gold et al., 1990). • In general, the N uptake by turfgrass is in the range of 5-74% of the total N input depending on the N release rate, application rate, and species of grass (Petrovic, 1990). On an average, about 35-60% of the applied N is found in clippings while about 14-21% of the fertilizer N is found in a thatch layer (Petrovic, 1990; Muchovej and Rechcigl, 1994). Therefore, the total N taken up by turfgrass is in the range of 50-80%. In Table 1, we assumed that an average 65% of the total N input was taken up by plants. • Loss of applied fertilizer to the atmosphere as either ammonia due to volatilization or as one of several nitrous oxide compounds (e.g. denitrification) is a significant factor in the N balance of turfgrass (Petrovic, 1990). Factors such as presence or absence of thatch, irrigation and humidity can affect the rate of volatilization. The soil moisture and temperature have a significant influence on denitrification rates. About 10-36% of the applied fertilizer N is lost due to volatilization and/or denitrification (Petrovic, 1990). In Table 1, we assumed that an average 23% was lost due to volatilization and denitrification. • The fertilizer management practices, soil texture, and irrigation appear to have influence on the leaching losses in turfgrass. Even though the leaching losses from turfgrasses are variable, in general these losses are less than 10% of the applied N (Muchovej and Rechcigl, 1994; Morton et al. 1988). Hence, we assumed that ten percent of the total N input is lost due to leaching. • Surface runoff losses are minimal (less than 7% of the total waterborne loss) in turfgrass with permeable soils (Morton et al. 1988; Petrovic, 1990). For our purposes, we assumed that about 5% of the total N input is lost in surface runoff. • Mineralization rates are not known or little research has been done for turfgrass (Petrovic, 1990). However, we assumed that N and P mineralization rates for urban lawns are in the same range as that for hay and pasture land. Studies comparing rural and urban forest N cycling indicate lower mineralization rates, less cycling, and lower labile N and nitrification in the urban environments possibly due to pollution effects on vegetation and litter quality (Goldman et al., 1995; White and McDonnell, 1988). A significant limitation in applying the urban nutrient balance within the framework of the Watershed Model is the lumped, or aggregate, nature of the urban land use segment that includes residential, commercial, industrial, parks, etc. A more refined definition of the urban category, with the specific activities and land cover is needed to attempt a nutrient balance modeling approach (see Chapter 3).

10

Chapter 2

Expected Nutrient Balances

Agricultural Cropland Balances The nitrogen and phosphorus balances developed for croplands during the Phase II modeling effort (Donigian et al., 1994) were also used in this study without modification. The values included in Tables 1 and 2 are typical nitrogen and phosphorus balances expected for Corn, Soybean, Grains and Hay when the nutrients are applied at agronomic rates meeting crop requirements. Moreover, since plant uptake amounts are a function of crop yields, the uptake values are based on average yields expected for the Chesapeake Bay region. Our experience with using these values for agricultural croplands indicates that wide variations can be expected depending on site-specific conditions. For example, yields can vary with species, double-cropping and winter cover crops will increase uptake levels, and the composition of nutrient inputs (e.g. organic versus inorganic), especially for manure and sludge applications, will have a major impact on the N and P balance components. Thus, users should attempt to develop site-specific balances to the extent possible and/or refine the values in the tables for specific local conditions.

Closure The nutrient balances in Tables 1 and 2 for forest, pasture and urban land uses were based on literature data collected in different parts of the U.S., but with a specific focus on the Chesapeake Bay region, while the values for the croplands are more directly pertinent to the Bay region.. Even though the data may have been derived from somewhat diverse sites and conditions, and the techniques used in collecting the data may have been different, the available literature and the data formed a reasonably good basis for determining the general magnitude of many of the nutrient balance components. Model users should use these balances as general guides in evaluating simulation results with the knowledge that local conditions can have a major impact on the values shown in the tables. As noted above, these balances should be updated and/or modified whenever more site-specific data are available.

Chapter 2

Expected Nutrient Balances

1 1

o

01 L.

3

*■*

a co a.

:

in CM

CM O t O •» O «- 1

2

o < m «- r- CM

.

;

o o >o o »»

I «— 1 o i m •- f i. o

.2 *c o o> 0) **

O N» 1

1

o f>- o



u.

in «- CM in ■ i ■



o «- «-

s.

r». o

o .„ * 1_

"ZL TO *-• QJ

>o

S o «- o

+

&">

*■*

->

2 + IA

-* » o> o

.O

o

_i

0) CO

.& y"N

V CO X

>>

7

o

o oo O «- vT

o X

c o

i



o > o

c o

K

o

«—

Ü

l-"~ T o « j= ^>

*-» •5?

CM

+

o

*-»

^ O

^■N

oT—>

£ •—

in

+

CO

>

— X

+ (A C CO

9! ■6

>. o CO

+ moo

t»l «- ■» ■ i i in N- in

m

IM

oo



N. in

o

O

CM

in

o in •* to «in r- o CM «-

in

P

■ in

1

r**■

«

2

o CM va O H- «-

tu

m c

*

x C —

o £

6

i_

ai O

•— ^

£ c > oo

^2

O • IIX Bl OCO cx in ~T co u o &o> CM «- K O oi "D i c 01

+

in o CM

i^

01

«

_

S2 N^ ai *■* £ > o J 8 O» J; u) J: O

co g t- D >« L. CO 5 Oil m c» L3« O CMO)«-«lv'L. «~- o> C 0> .. 3 O > o "•MO O — a> t. •- ^ _. _

a> •*

-c ec

CO

k>

«2

tC-5 01

*
o

a o O p

■S-* Ü o

3 —■ (A O)

■n (0

0°-.

o

« « CO' JD. • -vi01"- ■

or

2E UJ

n-

CO

n

1

1

r

o o

CO

O

"fr

CO CO

O >


-

e=> -c o



—'




to

3C


CT> o>

-
-

o

CO OQ _

cv
_i

'S

u >-

3E o

SOD:

V

E

o

ce

— to u •— O

3

E

— sco — I

a>

«

'■'■■'■

SJD Nl *Q1J

Appendix A Shenandoah Model Segments Results

A5

CHESAPEAKE BAY WATERSHED HYDROLOGIC CALIBRATION COMPARISON OF ANNUAL TOTAL OBSERVED vs SIMULATED FLOW PHASE IV

SF SHENANDOAH RIVER AT FRONT ROYAL, VA (SEGMENT 190) OBSERVED*

YEAR

SIMULATED** FLOW (in) 20.05

1984

FLOW (in) 18.60

1985

16.20

17.10

1986

7.34

7.24

1987

16.10

14.73

1988

7.71

7.06

1989

15.08

16.35

1990 1991

13.58 11.67

15.41 11.63

13.29

13.70

MEAN

* - Observed Flow at SF Shenandoah River at Front Royal. VA ** - Simulated Outflow from RCH 190

SHENANDOAH RIVER AT MILLVILLE, WV (SEGMENT 200) OBSERVED*

SIMULATED*

1984

FLOW (in) 17.82

FLOW (in) 18.27

1985

12.99

14.35

1986 1987 1988

6.92 13.95 7.72

6.88 12.09 6.72

1989

12.02

13.15

1990 1991

11.58 10.50

13.78 9.99

11.69

11.90

YEAR

MEAN

* - Observed Flow at Shenandoah River at Millville. WV ** - Simulated Outflow from RCH 200

A6

Appendix A Shenandoah Model Segments Results

an

en o> C3

3E >■'

o

CO

on

CO CO Cn

CO CO

A O

o

O

o

(SJO)MOU

O CD CO

en

C3 O IT3



CXI

l/OH Nl 0N00 1N3HIG3S

Appendix A Shenandoah Mode) Segments Results

A7

(SJO)MOU

A8

0 93a Nl

dH31 H3IVM

Appendix A Shenandoah Mcxiel Segments Results

o

O cr>


• ■
- ■*"" cc o t— on O I— Z ■


1— CO CO

o>

»—

-

SE UJ CJ

—1

CJ

oc


o o

o_ 1 z o O oe: f^ O- u_ oo cy> o 1— ■"«-

*~

UJ

ac UJ CO

•< DC UJ

m

> ^

C3

OrT

lO CO

O Z

«—


-

o

-
— O 1—

-c

C3 Q UJ ►—

cr>




(SJO)MOU

A16

oo

r-~



ac

Q£ 1— UJ CO

-


2 CO

-*-

CM

OO

DC ■


Or Z UJ LLJ 0£ ZC

■ ■







'i

■ i

o

o

SJO N! M01J

Appendix A Shenandoah Model Segments Results

A23

1

1

1

1

1

1

r

■Jf " O

^

cn

3Z

en

j:

-5:

-

"3'

oo o o> — 1—

t—

z

UJ CO

z

CO 00

en

O CJ

CO CO 1— 2: UJ

rCO

en

•—

UJ

S _l 1

— o

UJ CO C3 UJ

—h

">*

— >-

1 1

3

>• »— C£ UJ -
• —

z oc

-< ea o UJ UJ co co

a

* lO

=E

CO

CO

DO O



3:

-


■■

1 1

UJ

zt

UJ CO 03 O

-c

a

=:

en

UJ



>■

CE


.

esi

•«—

o in

(SdO)MOU

1/9K Nl DNOO N-CON

Appendix A Shenandoah Model Segments Results

A27

o o o

(SJO)MOU

A28

a •



l/OH Nl 0N00 N 1V101

Appendix A Shenandoah Model Segments Results

n

i

;

i

i

r *

^

*

*

co o

* OS

X —

CO ^-

* —3}

-

Q UJ

UJ CO

e>

LU 1

C3 2

-• — ce


.

a_

Q-

to

CD O

DO CO

3K

*

o

*-

*

d O

*

_!

L

ITS

(SJO)MOIJ

Appendix A Shenandoah Model Segments Results

'

CO CO

*■

m ex

1/9H Nl DNOO d-tOd

A31

*

on

ce o

3 —

CO CO

*

co o

*"

*

A O o

J

L

in

J m

O

!SJO)MOU

A32

*

CNJ

I

I

• ee

UJ CO

*

CO CO

en—

** -c I—

»—

o

3 — CO

en OD O

SE

*

Q£ UJ I»

— oc




on C3 ■«£ UJ CP to

oo en

o

a

CO to

-i

-

d o

o tO CM CM -*

t^cM to r— o N- o o to o -fCOSino

oooo

ooooo

oooo

oooo

III I

»» CM N. in stNOX! •o oo -* to •» »-CM »»

CM CO «o -o «o «-»«-

N00 o tO

UJ UJ UJ F- «- to o o f-» to o IO tO CM CM •»•OlMfU

UJ UJ UJ or- CM o «t-- >0 Of- O O CM t^-O O CM »» «—I*" O

oooo

ooooo

oooo

ooooo

Ul

Ul Ul »- «— CMO CMO CM IO

>» r~- >oin oo o CM oo to

t-NON IM tnf- -o

CM Kl «-CM K-

o ooo

UJ

R o

«OKI • -» oo • CM •o «-

««o in » O O

oNoo

OK1o to o »r-- . ooo

E-02 E-01

Ul

OMNO-t O«- CM CM u-1 «O CM O "f-

2

O 3 ^N «—< o C OH- — •"««L»v^ C H- O «1 ~- C *-> CO -• w 3 C «0 —> CO x CO co«»H- **-

c •CO oc

o c D at

3

3

O 3 01—> O OH- —'

«1 U) Ul B)

O 3 *J 41- O C UH-w O

O O a CM- —• a t- *- £ —• 9-1-1 »«- « « a BV ti *— co 01 LV«M0L4>«]T]iJ o scaooDcaSo O

«-* »- *•»CV *-»«IC—!•— COl-_ltO»-CDl^- «-

"8S co se

01

^a

^\ CO «0 ^s ^.ja 4-» —» V* v-»

to o

to z z

0) IA

3 3 o 3 *» O O 3 «-» z «i — o c z 11 — O C -l üta: co c H- E« «J u

Cl« Cl «i— a

O H- «1 Cl — o Hc ♦-» II 3 C CO S o 3 C — CO — 00 CO CO CO *«»1J3 Ha

o

—i

a:

ja

01 O) CO t-

^s

u (A ■a o z

t-

l—

a L. L. 01 9 a.3 «J z v 3 £O c C «0 3 —1

z CO Ul

CO *J o

4-i 01 CO U

^■»

J3

-i

coo CO (0 CO 4-i o

o

CO

u a: o


••-J

01 Ol O C_ O 4J

»CO

•— z

o


H- 01 01 CO c. S.*» 3 4J Of L. VCCLQ.} ** 3 EC O 3 003CL030 O O 3 U3~JO JOh »3-iai1U) 01

J3 a

O CO 01

c u

o < ai a

—>:

L L —' OH-CUOJO) COOH-CJIOI CO Oft. Q.V 3 VELai 4J 03(XC03003ao30 CO 3 _l C3 H-

01

01 DC

A39

«- ooo o«-o

in ro • oo

o eo o «• in

00

CM

. .*>

«- o IV st m«-

1

Ki oinr«- ' t-t-oin »x)S • w— . • «— • COCM«o

O-OOr-NO t— 0CM«-0 «inioo sto co in «st KI «o

»OKieooo CM cost »-«o •Ost •«o • -o • «-st in «-«-

M>vto

CM o

in

Kl CM

• eo «o







o

o

c— «— OO

ID CO

c is c IP

•CM • •(Mm o o o

OlMSOO OIOCM«-OOO

in «o o

UI UI (Mono>4S KI «-ineo«o CM tOO-t-OO.M

1

«—

Z

O CM in

«-CM o o

CM o

1—

m^mo eo«-oco in •«— • «»CM «0 m«o

sf«-f>- '-JS •KtKIKIvO o«o oo • •in^a- • • • • >«3NO«OT»T-stinO» s-CM •«-CM in CM • st«-in o o

«- CM o o I 1 st - »str- »KIKIKHO o co o o • • KI st • • • • • *o«- «o«o o«- stin o «o «- •«-CM in CM »st«—in o o

st«oo i ■

oo

t 1 UI UI cMst st «-st o NIMOSin'O st mm CMO co

CM CM O

ui isostst co o st • o • •««-St «OKI • N. in«o

C0«-OKI«-t-OOKIKIj0 0 CM »«-CMincM ••»«-in o o

CM OCM«-

o

co CM m«CMin stNst • CM • OKI •!»•«-Kl«o

st CM Kl 1*-st st O -O «O CO IV «o • • in«— • • KI «• «st in OO

o

«— co CM

«-NO CM O «-

o f— «a- in is. «-CMK.U1 in «O *0 N- • • •••«—«— OO O

«—

^N ID ID -^ VÜ *J —
aCH-oioia VULQ.IV 0.0)30.00 SOMD-IIL.

*J 4J c■— az —» a.

A41

IM>»OS

CO O • M • «-ro «\J o

o ro -» r«*eo«-eo «* -o • • «-«O rO o

»»moeo f\i^»o«* i|MO • o o

I-- m r->» ro • ro oo • ■ *— • • »o o

O >0 N N ochinN o «F- • r>-oo «N • «-rON o

«-NO*J ■* o o o •* "O • • o o ««-«- • «M o

rOOOrO •* m o o N o o ro • -o • «-«- -N o

o»mm • ro «- • rvi CM

UJ o ro CM o. ooinN o -F- • «- o • ro • Nro N o

-o.-o.jroooro «* «o • • i-oro «— 1— • «— o

ui ovroo «*oo«o rucooiM -NO • «— • • «— oo

OONS o o in f o

CM «- O CM noon Ninon • «- o • oo

■»NO« »moN * o

o UJ in N «* O CM o •00 o

CM o

ro o PJ o «(0(O-0-0S

■ ^» -o • • «- • «r^ o CM rvi m (M o «CM CM O CM CM

22.98 2.343 6.319 26.91 20.69

o «o ON o ro o • o

1.446 7.679 0.0000 9.125

•OCMfO Oin K. o • ro «-ro CM

» N •

Z) —1 I— *-" CO •— o o

I

1.248 0.4349E0.0000 1.291

0.3000E19.99 3.752 23.74

o

UJ O o «• o CM o UJ o o o co • o

»-o »» >o ro m ro • • '»»0 m o

ON oo o ro o • o

invttMom 0"»M>M • -* oo • • «- • • in «— NN N» N CM

o co oo o ho • o

o co in in N oo r-- >o«- r• ro ro • • co • •«* ro «- N ro N «-

ro •* » o

u co o 'DO

o a jl —• CA fll X

c o — o N —• CO C-

c c o c o — o— a v o N CO N —>~- —' CO H- —l_ — XI

o ro • N«-

c o — a N —• ~-O

O)3So0fD0.00 ji-aoiD-iiL. «-> OMD O CO 3

j= 4-«

O

A42

Appendix A Shenandoah Mode) Segments Results

ui«£ >«o < • ss,o» :EM =3 to

ru o m • «— • "CM •

o

o o

o

R• CM

O

o

o

Os • ■©. «-«-•s-M

• co in«— o

o

o o os

000 ON-«—so o>«-OsO o.

«Os • CM

s*«-ls- •-*ls. >M «OM Os OsOO«— • • CO s* ■ • ■ • • sOM OsO «— «— Min CO Is-CM •«—MinCM • s* «—in O O

Os*M • s* • .rs. s* 00 0>M ■ rs. in«—

o so s* • «—

rs. CM eo so Osin'so • ocooos • • so CM m«— •«— o

oo o co ors.«- •

in m K CM

ms* ON-«-«o os«-oso o> Mors. >s*rs. •MSOMO. sOCMO«- • • oo s* • • • • -sOM OsO «-«-Mm oo sOCM •«— MinCM «s*«—m o o

o

oo I

OKI CO

rs- CM s* s* rs. • • " • CM «— «— s* rs. •

I

Ul Ul

s*M CO s* M • 0> • «-O -CM

s* «-«-«-s» «CM -s» M • •

rs-

o

o*~oo'~*~

Os

in M

Ul Ul

CM in oo co oo> Osm o

CM O CM sO«- ««*|s.«-«- • M

OOOO

O

m so s* rs. CM M in os rs. >CMS*OS* • 'ins* • • • Otn «- «— Mm oo (MtncM • s*«— m o

M • •«— «-0«—s* • OOsO«-

o

O O I

in «—s* oo o

|S-s*

CO Os

fs- Mm «— «—

s*s* M O Mfs- O CM in •«— • MO -M •«-CM«-

f> oo. rs-o f.. >o in «—|sOsco Osmso

mo os CM Mrs. o os «-m M Os

sO CMOS in sQ M CMO «O ■ ■ • sO •

I

Ul Ul

so rs-«— os* o co • in«— • •

o

oooo

•«—



'IMst

oo

I

o

co os «— •

tu O«-«-s0 o co oo • o



• sO

CM«— -*s* • t> in «—

o

I

Ul Ul Minr- CM CM«

rs. M co so so is. msoco Os*im COM CM

fs- mis- om »o

«—

OOOOOO

o

• • «o CM Osm «—«—«—in so so«— •«—cMmcM ••*«— in o o

sO Is. CM • CM

fs-O OsO «— M m«— KIstN «-rs-fs. .s*m -MSOCMCO -too«- • ■cost • • • • ■ sOM OsO «-«-Mm oo «OCM •«—MtncM •-*«— m

M Ms* (MS. CM O COM O 00 O MMCM«-|s-CM

•*.£

sOM CO Os

Ul Ul OM mso Os in oo m «— in in in ocMtn •

m «— eo in

«-«-o M in ISls- ■*.*«- M -*

o'ddd'



&

Ul OM Ms* OOss* •

Osm otn s*o o«-eohs-m

«-N.IS. -mos -MCOOOS O rs. O CO • "s*s* • • ■

o • «rsIs-CO 00 s* • oom«— o

«-1M OO i i

O iMstino CO Is. Os Os s* Is- OO -so ms* CO Os

CO s* sO «—

tu m «-co «— co co s*|s.s*

• O

tu so in m oo CM so co • •

OlMtOtOstS

«OsO «—M SO O CO CM 00 • 00 • (MM «m

• • > •«— M OOOO

s*

«— o

_ Ul Ul

RSIC£5s_ «- CMM s*CM 00

Lor-sOst • Os _. «— ■ oooo -

o

OO Os CM

o«-o



M • -M CM CM «-S*

•00 m eomos* tvirs.

CMS*

so

oos mco

Ms*sO «Ms* •CMMOCM sOCMOrs. • "CM-* ■ • •

OM M • «o • • «— CMO «-M

• • «o CM om «—«—«— s* so so CM .«-cMtncM «s*«—m o o

• oo m«o

01

o

>. (£ to E LU ZEL

u a


O C Ul ' s-AC LHf CH- «U «1 — C- *J Cfl — v* 3 C CO

—«

COsV*4- sjC O s- C CO 3

en at

X

M CO 0) 0) O O CO —1 —1 M 4-1 V) 0 sV 4-» O

O 41—» ÜHto tH- t> LtJ 3 C

3 O 41 — O _Quzaia.ac — a. O O EEEivavEstof eo z «—

ffpg»-o£OfOo:o

O c» eo • co • • «- -»-to o

N- »— CO CO Kl CM O CO IMO-fO •»-CO • «- • «CM O O

in • N. • • f>-

*Omo*«- to o in NOON . . O • »-»- -CM O

OOsCOv} o om »» o • sr • «- o» ■ to •»-tO CM o

»-JOB KINOS in ■ o • ■ NO fO

«-pi«- to «»r>- in eo CM *o o in ••**■ CM •

O »-CM fo oin rm • N- • «-0 «to •CM to CM o

•- — •— X L L-JJi} SOIOIC

—• C C 4J u- — — — IIZU.OZCL

01 o

A44

Appendix A Shenandoah Model Segments Results

»-»-CM O O O

acto 3 to

»»•

Ovtnoo to »-«* »-to »-in«* -r«-

8:

CM O«* O o

•OOftHOO in tot«-«*t«. O CM«- •©> . . . in»1*»

CMNO

«-

• o

rvjeo mo

UJ UJ UJ «* O Oin CM I«. 3 NO CM in«* CM «» tO C0«*N0

0«r- T-m MO> • • • «to-* OO

to eoo »-m «» .■••■• o 00 oo o

»-0 -o o mo -*co «o-o o«IMO> • ■

CM in to to

OO

o oo o'o'o

LU LU LU 00O CM«» «-«—«* I«, Nto oo o r» eo «-«»

UJ LU LU •o«-co«*«-t~ in CM «-Sto • • ■ • »-to«*

O I«- «- «O 1«- K-

CM tO«- OO O «* O O «-NO «* O OO OO o «o

ON«* co o

-* CM »— a

eo to CO o

Nn«too O «»in CO «O nos -CM ■ . . NO CM |N. CMNO «- • O

O O O t«-CM to NO «-co CM OCM CM tO . Nö ■ . «0 o

«*«o o «o «-m f«.o

LU LU LU LU o «»«* min «- |N- o »-0 «- «»«»to CM O«*C0 NO CM

»—

o to

I«. in in to

O OO o o o

o

oo»-o>» in ONO I«. O«* «* OfN- «in «-o CM NO «*

CM CO

O O O OO o

o

tN-CM00OOOO|N.C0C0N0 OinNOtoomcocMCMCMin

O CO O • O ■ ««* a . a • ■ «O 00 O CM O«-CMfM«» in«- •«- «CM«* «»-»-CM

o

oooooo

o

o

.

"*■

t>-«* CO

»—

00 «*CM t«-0 NNNinN - .o • • ■ «*CM «o CMin»- ■ o

»-CM fO O into CM N0

to

< Q.

to

NO in in oo in too «-to u-i h-co ao • • a N..oo CMin «- a o

«»

in«» CO o

«ONtNtO »-«-NO«-

tO • • • ■«-CM«» o

c

f CO o

CM •o

O CO-OfN-O in ONO to in • NOCM ao o • • o to «-CMIN-CM • o

«* >»N» 00 o

CO LU

ac

a


OLnoino«*o«-inino «-|N.tN.CMON»NOfOCMCMN* O IN- O «O a a«* • a • • • NOCO O CM 0«-CMCM «»

«— to «o o o

•-N CO

co



O«*e0fN«»to «*r-

tOO*««CMON*NOtOCMCM«* NO CM O «O • « «* a • a • • NO CO O CM O«-CMCM«* •«- «CM«» ««-«-CM O O O

NOCM

«-N» CM O O O

«-»-CM OO o

o CD

in«*otno«*o»-inino

to to «* «-

IN.

«-CM o o LU

ee. LJ

«*«coo O00 OCM

oooooo

o

1

o «OfO 00 O

NO NO to CM NO in O NO CM in o o in «-»-oo CM to *— «- CM in in

0.1000E19.82 15.72 35.54

N. N.

0.4000E19.70 15.72 35.42

CM O

LU LU UJ

5"2

(A 01 O

z (0

♦J

o

X o X 4-> o — o c O NICO «WNt- 41 a LV

-I •«9 "P

8

O 3 C a w O CO -J V) i—

«» O a.

eo o 1-

to«»occcc«»ccc

0 "°&8i8:& - 8:8:8: a a • (Q Q (Q "J . CO (0 CO S. Q. Q.« N» NO

o



o

N-ONO«— NO CO NI CM

totoiN-to NO O • • ■ • torn oo

UI conjoin MCM CM tn CMN» N»OO OM • • • • CMCM oo

UI UI Oin«- stOS •—OOO NO in NO NotN-cMtoom co in«- CM »in ■•••«-. o oo o o «-«-«-M O OO O i I I I UI UI UI UI «— IN. «— O N» O o«-eofocM NO (Minn IN. IN. «IN. «— CO N» «— «—

N-N»

CO o

M CO IN-O MOON. »-«»CM«» MO"" • _'MN» OO

oooooo

co IN" O

I UI CMN- fN. CM O M OCM O CMM«-MN» .

.....«— o oo oo «— «—

NO

O «a UI a. » »■N >< x v

NOM

co o

M «■ -» mN» co o

NOtntn oo m MO«-NO in fN-co «NO • • • N-M co CMm«- ■ o

I

CMS. O CM ONO NOO

N»m o>» |N-N»

.

.

• .«-CM OO

N»m CMO OSiniM CMN» N»NO

MOO • • • "CMM OO

I

00 O IN-

• o

UI O O «»«»

oco ONO oo o«—ino «MM NO NO O .«» .M • . .NOtN- • -M«-N0 "O t—cM «CMN-CON» »CMMM

oo co o o • • ■ «- M CM in o

N.CMC0«-OO«-N.«MOCM OinNOCOCMN-CMCMCMOM OCOO -MO •«» "O • ■ -NON- • M«- N. "O in«- «CMNCON» .CMMM

o NO .»o o o co co o • " • MM CM NO

UN.N»O«-OOO«-C0ON» MO|N.MCMN0MMN»N0 00 NOCMO -MN -N» .M ■

OCO

N»N— N-in N-NO ONOO .Of-

o

o

«-«-IN. CM »- «-

oooooo

I I I I I I III Itl III III lit It!

N» N»

«— .

NO IN.«- oco o N» CM «- m O CM M OM CMin «NO CMN» CMCO M

R

o

OOOOOO

IN.

M O

m

UJ UI co N»m «- M o N» N»CM«-0 «~ M «-N» ONO CO M«-«- CMN» CM

iC

OOOOOO

o

«-NO CM OOO

I.I

o ooo UI o ONO com N—MmcMNO NO m «— NO N— . CO * * NO «- .N»NO • o o

o

•M «-N»

o

o

o

I UJ O CMO O OCM 00 CM«-

«

II I UI UI UI «O CM CO NOCM N. ON—00 N» NO CM MA» «-N» in m in CM «-NO «-

CM

o

CONtlMNO N-IN-CM inf— NO N—tN. .fN. • • "NTM NO CM in «- . o

NO

oooooo »-

Nr— M

CO CM o •

I

I

UJ UI UI UI «- NO co N-m oo ■Ntmco «-co NO CM M«- MO NO ON» N. NO CM «OOOOOO

NO CO

«-«-CM OOO ill UI UI UI N» ON. OO N. NO CMNO «-0 NNO O«— NO«- O CMN»0 M«* O oooooo

00 CM

N-

M O

«-«-CM

O

CM COm



CM CM in •M «-N»

o

O

«O

UI UI UI UI in «-«-N-N. o m O N» NO N. NCM eoN.CMm in

«-CMN»M«-N»

in M

o

CM

oooooo

o

ONO

in

• • NO CO " " N» «— fS. "O NOCM -CMN-CON» .CMMM

■ ■■ UI UI UI NO

mOCMCMNOm CM ^ CO N» NCM NOM N—M CM

N»CM NO

OOOOOO

o

MN»|N.CMU1M

OmocMococo«— nnin

OCM >»N0 COM

om

«-F-N.CMCMM«-MN»«-N-

ON.O "MNO ■^■^■M • • . NO 00 • • N» «-N. "O NO»- .CMN-CON» 'CMMM O O

«-M CNINO •M «-N»

o

UI

N-O OO ON»N»«-CMN»M «- fN. N- CM CM «- »- M N» O N-— '^ ^N .«MNO ^* »*N .N» - -*• .M . .** N»00 • • NO 00 • .N»«-N- «o NOCM -CMN-CON» .CMMM

o

o

OON»M

oocooo o • • • CM NO • M «-N»

N»M

o



M«O O

ooo III

CM NO . N» N»N»

CO

O

O m

CONO IN-O ONO M o ■ NO CM " NO O ■ • ON» N— IMS CM • O

X

C

O 3 «V —> o OH---

COCO OO «- O CM m CM CM NOM

UI UI UI

m «-o oo o

M fN-O CM»- fN. N» OM COO CM NO m co N»fN. OOOOO

«-

o

CM N»

N.

UI UI IMt-SNfOO CO CONOCO M NO m •*«-•» N» M *—«o CMm M OOOOOO

o

»O CO •

o

UI OM N»CO

om coo ON»-*|N. CMN»M NOCMCM»-«-CM«*0 N. NOCMO "MNO .N» .M • • " NO CO • • N» «—N- «o NOCM .CMIN-CON» .CMMM

OO CON. o • • >

MN»

o

CM CMm •M «-N»



o

o

N^ NV

«> to CO CO

E £ E i*JO« ETU v f vvE-KOfOCC O o < •

UJ CM OtO CM xtOstvt

«—

«—

CM O

CM «-«-in «ooooo

CM«O O

00

cc o u.

fs!

m to oo o
c CO

0.8040 5.067 9.441 15.31 0.8234E

O s» s»

o

s*s» 00

«— o

«—

CM

o m to

in s3-

m O

•—

to o m

«—

CM

o in o

O

s3-

CM O

o

UI stOstOftl to oo m to O o Os»to to O «-«—«- 00

o

•-«-«-to oo oo

o

o

«—

c CO CO

CM «-«-to «ooooo

o

oo •CO o •



o

Is-

oooto to -ts.

Is. 00 in CM

ödäöö

0.1970E0.1757 0.1453 0.2534 1.224

co

UJ

0.4510E0.6896E0.2017 0.1793E-

o

i-

CM O

m m o

CM O

0.1854E0.1828 0.2060 0.3499E-

0.2990 3.041 7.593 10.93 0.4467E-

O

CO

«—

«-

0.3633E0.3186 0.2108 0.6382E-

«—

0.2958E0.1824E0.2028E0.9782E0.4148E-

o

UJ CL

O CM OfO

o

0.6293E0.3196E0.2292E0.1698E0.6135E-

—J

00 O CM 00

oo

0.2922E0.5707E0.1931E0.3548E0.1060

o

CM«-

CM«O O

0.8967E0.4395 0.3550 0.8035

o to

CM

CM O

o

0.2376E0.7118 0.8489 1.584

o

CM O

0.5200E 1.037 5.745 6.834 0.3114E-

«—

ooooo

ooooo

•o to •

o

«-fs•s»

s3-

«— O

o

CM

s3-CO miM



00 s»

• Is. ■ O CMCM CM CM 00

st

20.15 213.2 69.33

«O

o

si-CM CM sf in

CM O

Is.

0.2298E0.4221E0.1460 0.6740E0.4742

&>CM too oo «-omm oo

HI HI HI HI

UI UI mm s3-o o stlflNON mfs-sj-o to «-to «-O sj-

0.4173E0.7785E0.1465 0.3343E0.5935

0.3289E0.5410E0.1937 0.0000 CM O

itt CMIrtsTO to

0.7505E0.9605 1.972 2.940

fs-KI CO

CM«-«-s3- «OOOOO

0.3524E0.6885 0.2953 0.9873

o

CM O

0.1140 1.857 6.691 8.662 0.1206E

o

0.8579E0.1163 0.1973 0.9338E-

o>

«o

0.3740E0.8975E0.2032E0.0000 0.3303E-

00 CM CO

0.3600E0.8340 5.431 6.301 0.1425E'

o to to

o

0.4691E0.1611 0.3307 0.4965

CM

o

to

to m o

o

cd

CM

m o

co

«-

•■s, CO Si

3

3 3 O 3 O 3 O 3 -w ci —• O «0 CO CO —' O CO— O C U si-—i C U ■*- —' CO CO u >OCZ«— OC_l BOH—■«OO»— « OC 10 L

ooooo

oooooo

UJ UJ UJ o ro o NO CM

UJ UJ UJ OOOOOO oooooo i-i-CO^N «-«-o in N* CM

O-JOOOiro

CMCMO«-tO o • ■ • • »»-«-»»CM in CM » . co >ro >incM • *tf- • N. • «— o o o

ro to »CM •«- «o • . «- . «- ■ CM o o o CMO

o

oo

I

II

o oo oo o

UJ CM© . .«0 «-«0 • 0

CO «»CO «- NONO «- «»© . .«0 CMNO • O

«»©

• o>

o«rcocM Ot-inSo • • • orocMin 'CM«-to o

oeo«ro o «- CM eg ofM-pco o •■& • • «- •«o o

ro o> • ««-

CM CO

ro«» o .

oin4 r-.NO m Kir«- ■ oo

oomo

0*0 K10> 0eo Kin 0 • • •

•CM «—«» O

©ror«-NO o«-rMro o «»CM «o -r«. • ■«- -fM 00

o> «• o «—

Kiotneon N»or--eoro >o >oo co «-©CM • • co • «- CM «o

OCMOO

OOMCM

OOMOOO

«— «r«. • O»

r«-oinroo «»©000m •oniin»too • • • t- •COIOCM o

CM

•CO 0 • CM CO

«_

ro«o Kin •>» NO • «»co

roro o>ro • • N.CM «»«-

ro • ON «-

-»«* t-.N0

«—in O-ON

o>

00«-

• in



NO

©«»«-«»

0 • • • oto tor«. • CM «-ro

in «- «-

Ü

CO N«.

J3 —• Z 2 «^ 1 1 z

Q-ro ro a UXO« 0 z z 0 (A O 4^
(0 0

—• Ja a.
00- «—0 0 • • • OO CM CM •CM«-«* O

c

«»ro CO O O • • "O '«-tOCM O

«-

c

^N

oo«-m«» «o • -»-o soeo • ■ o> -«-rocM o

0

ro CM r«. 0»

0

t«. in • O

«»OOONQ

0

o«»m roNoo • • • 000

CM

©000 0 to 0 in 0 CM«- 0 0 • t«. •

oinino



000

ON • • ■CMCO

«»«-

«»CO

NO

roco «0

ro«o

«»0 OIM 0-0 ro«o

insr-

0 ro«- m

O CO«- CM O CM«» O © •!"- • ■ «— -CM 0 0

•CM «- tO 0

00

toroco inroo f«. • • -CMCO m«-«—

NO

oN-o-u-i or«-«»r«OO-t— • • • • «000

OSOIM

O CO CONOKI Ovf 0 ■ " •

tOCM «(MOO

OON t«.coro o • ■ • ©«-tootor«- • OCM«»NO o »r~ • • •«•CM«-ro • «- ■ «00000

0 0

ro«o««»«-to • to 0«0«-«-

CM

«»«-

.

• too «0 «- CM

«* r«. «—

O CM

CM

CMo>

o«»o MnS -0 coo . . «0 «-in • 0

«»mt«. CMinco ro ■ • »too» «a«-«-

NO

NO«-

«» •

in • «-

VO O o c at a o c u O a L L^O O LL-Z «y. «I 0» 01 CO CLO.lVIILa.3« *•—'3O.OOC03Q.OO C>«I3 J>- LUSJh

N)01 et

«J.O. —• co o, _i

«). ai or

o ♦J

cs o co «J

o «J

(A l_ 01

>c

0

in«» 0 • 0 ON to 000 •«»«CMO eo • • «- •«-«»ro 0

c 0 «c c •M coo co o~-— N C ••- *■» *■» »Of«« —•— CO N N OM>-

ro

• ro



CM»•>» •«— CM«O

o

-ro •»

co o o in o o •4- ro o N- •«•«• o o

CM in

ro CM

in coo»» o

N»O ON» ON» IN. o

«- ON »TOO *— so so ■ o • • • CM in intM-*»•

JMC0 CO



ro • »ro •OlM«o

o





«—•

«ro •>t

ro • • • •tV-T-O o

o

o

a.

»voon «-«-«- ro

•»•»MOO inin O «»CM 1--«... .CM CM «-N» Is•

Ul Ul CM «r- N» r«- CM -«- -in • «- CM»o

o

«—

*-v (0 CO s«. SS.J2 4-» —' S-» V*

f_

o H-

Ul X

31 O 3 o 0> C osj-—» CO ~- »-S CD t-ss. O s-

rO-»COCMCM«-sOts-rOCMsO O CO so • s» O •NOMs rs. so o ro • • o s» • • • ■ • so CM r--o o •— ro o ro m «- •«-CM in CM • s» «-m o o

• so in «— o

r-s»ocMCMr— «-«-rocMin insors. . s» s» •Mst«-m CMOOS» • •ro-» ■ • • • • so CM r- «- o «- ro «- •* so «- ««-CMincM • s» «—in o o

Ul o in CMO ooo ■ «— • »CO «-otN.ro • co in •— o

•tOOONo o EEEE«Js3Es»ci«-' cox i— •'*'•< b-rc Or

o

co

tu

tu

—' N N CO N N I "- — O •— —

0> O ««. O 0) Ü 3 4j»D—'CH-cuajat-H-ajcua £30.00 Q.CO 3 _l In o x: a.

o)3S:oof3a.oo O V> 3 _l r- O.U 3 _J 1•— i_ co O «J o «-•— JC «♦- z a. a>

a a •»- •— —

(U :

. oz o.

a

Appendix A Shenandoah Model Segments Results

A53

tu«— < •

oo -oeo «- to KM«- • -»

JEtO 3 CO

K) (Min «—

•-».»

. ...— .»

• o

o to «-0 o co «-to

i-CMS ■

to



:.

• o«-«o

UJ UJ

m oo oo O in •— " o CM fc 0O-»

UJ UJ

o o -» NO to «o f-- to in in eg to «— o

in CM o f»- to in o «o oo •» • •

NO CM CM o

oooo

o oo o

oo

3

o

UJ (MNt IO N— NQ in in ■ CO • -NO »-CM tO IO • co in N—

r-mo>s.ss.N.oro(MM to o

3

«I O CO to •*• u L o 3 _J CO -» o a.

O 3 4-> —' O C *t-—. 0) «-•»- E E ~ "p v co

-^ -O —• -^

CO 0) O _i a.

a. —> C3 CO a:«u o O t—

O O CM to ON- in •

-»-»O00OO«—«-OONOtO inofN- •toco •toocMO

o • • to «—-»co-» . co in •— o

«— 00 O -» • "fN--» • . . • "NO CM OCM O«—CM-» NO

«o«— • «—CM in O

IS

-^ J3 —.

t-N*-—« a L«. E-» — I -J « *4- 0)CU «> a • **nmna*nnn ** oi c o. 3 *J Ccc C Q. en 3 C O O Q.Q.Q.C04J ZCL a. 3 OU3 Jh cv cu cu — «J in eo co «o o roeo CMI«. .,» . . «- • «-CM O

•»noon KIKI r>-«» O • CM in • • CM CM CM CM I-

OOO o«»r«. «- .o CM CM • •CMKI o

O CM«- O CMin o to

O

t~to

Oi-OOMMr«- T- f- f>- «~ «~

«»

oooooo

co CM

«* CM

• o

O «» CM t«. ooMn

NO

oooooo «o tO oo eo o

oo CM

ui oo o o o «» CUMNOO «- ooo eo to >h> • >m «- • to in • o o

IU MO-NON

mo. co -t OSN41 CO CM • • • • CMCM o o

O to O «-

UI UI CM CM o I«O-O tO t~-

UI -» CM «» o O«— -* CM

UJ UI UJ UJ UI UI

CM «» (M «-

m NO NO *— co >o in in «o I«- «— to o CM o to «— to m oo to IM NO ro oooooo

oooooo

«» m «* o • o

UI O NO CM CO oinsiM o • • • «»I«- m to ■ «- «- to o

to «* eo

CM o to in I«-O O »O r«-o co m CM r«-1«. to -o • •«»«-•- • . • «o to o «o o «- • • oo m«— •«— •■—to »oo»«— ooo

o co NO N-NOO

CM o O «o • r«.ro co o

«* o

o to •

o CMCM «»o «-oco eo«oo in in oin CM«-^N»

co*^ o

«» o o oo oo m «» o o OOr-OfM

«— O t«. O ON CM-* ON to«-1«-«» «—NO ■ ■ ■ «CMtO oo

«O CM 00 o

«—

• «» «O • o o

«-t«. co-» O -t O CO CMO O f-. co IN» • « • "»-CM OO

O oo ■ Isinto oo o

«» o«— »to ...«—«— to (Min «— • o

«oo «-in o«* m to «NO» «— t«. . . • -CMCM OO

CM

«» S. h«-

ui ui UJ to «- oo m to f«co NO o m r«. m o «- «o to«* o «— to ro K-«— «—

UI UI UI o co r-- to «» in eo ON CM O «-«—«»«» O t- O «- to to

oooooo

oooooo

«-T-NT-tO o oo o I I I I UI UI UI UJ



oooooo

oooooo

UI UI UI OOO-«- ON «»CO ON«» ON 00«- 00 I«, CM N. «— m ««— ON fN_ «— tO tO

UI UI t>> O tO to «om CM om «—«—«—

oooooo

UI «-«» CMO o«» m «—

o to in «M . o

UI O«» "O co

CM

OOOOOO

o

f-«j-o co o co f«. T-«» «» Tm «o r«-NO o r«-«a* to m in to CM o o «o • •«*»—«—• • '«OMONOOI- . .co >Or- •«— ««—to «00«— ooo

UI O CO CMO OIMNO o • • ■ NJ Sinn • «-«-to o

«aooeooooi«-«-«*«*«int«-r««Noor«-«Ntroininto OONOO 'O • •«*«—«— . • •«OIOONOO«- ■ -co m «— •*— •«—to . o o «— o o o

o in m «—

Of- CMO oinMM

«»«»ocoooof«-«—«*«»«mON-«oot«-«»toinmto «— CO o • o • •«» «— «— ■ ■ • «o to o «o o «- . .oo NO«— •«— ««—to «oo«— o o o

tot«, into • «- «-to o

it to

to

N»oooocMOtomr«-oo«o «ON-NOSoeomNSMo «» «—o -O • • N» «— «— • • • «o to o «o o «- • «oo «o CM •«- ««—to • o o «— o o o

o «o CM co o o f-.«o o • • • .om in«— .«- «-to o

C0 »«. XI —«

tONOtOIO-QtOfiStOtOIOlO »«.•««»«. s«. *«."««»«."«« ~«. •«« >«, XI XI XI XI XI XI XI XI XI xi xi ^ _._»—._._•_•_»_' —# -w

^« 10 ■-«, xi

c 0) to E to —» a -p _i 4J tu ocoo. ho. —* o to CC 4-" O O t-

z tO-»«3CCCC«»CCC o = a—• — — — o — — —
ooocto -o a —< Qt.za_io.to EEE_4-»«34-'E«»«3--' v w E--t- O^OK O «c

CM-»0 O O ins NO «o «» -» m -t«••■ NO CM t>. CMNO «- • o NO

to

CO

to z UI X u a


^ ctH- L — v^ 3 —< to a •*Nf- Hc o — c a 3 ec ec.

3 O 3 -> O M-—• t. H* m «J « C to •-• CO

3 3 O 3 O 3 v at _. o ai — o c m to Ü*. —• Ü H- —• 0» tO C «I- —# a tLH£ o >«-. E —1 git- ti V a «i«- oi till t-NUtO-MtOt-NN^COTJ o 3COOO3C«J0i c —i to —■ m i— _J w — eo to 01 to to z .^ I. o z z

*-» *•*

T2S CO 3

UI UI O t«t-m CM«» oo in

UI CM «O t«oo «- CM «- CO O «-«- «-

oooooo

oooooo

a "«.

XI

_l IO

O 4->

O

oi —• a) a

s«ro*-oooi-MO^

• tO »"NJ-

o

ON

UJ OlMMNtO »- O00 CO «co inm o»-

O NO •



N.

fN-tO

NO

o



«M»-N»

co o

O CM



«m

CO



o

UJ

O

•* o o o to



O CO «- oo

to

oo inN» oro

00 «O CM

• fN. • «- •>*

co o

o

. »NO •

o

•st NO NO OO f—OO O CM

O o»- -o

• • • »— »—

fN-

o

inn oo o

to CMm «-



•* N3• o •*«*■ co o

CM«» O O in I— NO NO NO N* in • • • • NO f- CM NO »-

O m f— CM • o

rONOom O«»IONO NTO-»IO

«-t— • • • •CMro oo

Of- f-f00 CM OOFfN-O f—to

co m •





»«-CM

ooo III 111 UJ UJ f-o eo N» o o cMONO»-moo N» »-»-s» NO »»-toON»cM»• ••••• oooooo »-»-to ooo

«o

■*J MJ UJ

•**

NO CM o o NO

fC

Nj-NONj-in cocMCMO in«-om »-S» • • • •CMCM oo

o o o

UJ UJ UJ ONTNOofN-ro o in-* to ro-■» m F-to eo co ^t

NO o

«*\tsojmN

»o

in ro ro mcM eo co in CMNO

NO CM

in eo

«- torn o»- »oooooo

«o

tO NO

ooo iii UJ UJ UJ m NO »-NO co o iAtnSm4-'a)c.»j«)"p«^ai — v3C0)O»>»'O3CC0OO3CC0«IOC4 —' «•—mi— ccjio»ni--im-mwiO «I u

c ~a ee.

CM

UJ UJ cOstrur-mM srvtinswo «NtNtlMIMO CM »- m «— ■* CM



NO ro CMm • ro»-Nj-

»O

UJ UJ UJ UJ NO torn mro m o o o CMO ro o o «- f-NO «• »Mvtr-N

J*N 10

CO ^ •V.J3 ♦J —'

00

OKl-fS o • • •

o o eo oo

mNOtN-tocMNOtotONa-soeo CM o o -101— •-» -to • • • NO CO • »-^»-tN- »o >o»- -iMfN-eo-» -CMtoto o o

OOffJOOflflOOIDQ •—^,-, ^. v, «^, .^ »^ »s.-» —.

• tO

o





CMNO

»-NJ-

^N CO

ja _#

J3XI ja JDXI si si xi ja ja JQ —»—.—#—-—*—* -^ _._._. _•

-, ja

10 o) o _i • a.

SE tONfCSCCCCNfCCC OZK-._*■> ai i0.013 3 o en

< «c < < z o 1- < a. o

0.

N-'

O. —• V 01 CJ — *J 01 LOdSOOOCQ^'OO.—*4^*J *J o 1- z a _ ■ 0. a c— O O EEEE4->C)'MEN3-C>4-' eoz

a» «1 a 0.1 v CL O O z> —11-

ee

H-

Appendix A Shenandoah Model Segments Results

I UJ

ooins (C, • inr- O

»< «a-

io < >o I • o

o » « *o oo ■J">0 «Mf> o

mo mo »»- CMCM

»«» . .

»— , . . «—

• • rum oo

CM«-

»*»«-

CM o in CMO CM p. mo in Oino o

N» -o



oo CMMJN-CO O«- r-(MCh • mo-eo ~»tn •*»»

inmmr--* in«a-eo eo rvi

0-» o o in o "O • *- in o >o

NOO*• >0 o in O oo >* «* v JZ - 3 3 Q.O O OO DI3aOO£3aOO Q.CO 3 — —I I— 4J O CO 3 _J ►— CLOT 3 —I I— CO •— L. (A o U 4-> O JZ •— •— JZ a CS N o —• N- ~- ..—XI XI

z a. a z a.

-M O

Appendix A Shenandoah Model Segments Results

A59

PER ACRE LOAD CONTRIBUTED FROH EACH LAND USE IN SHENANDOAH BASIN (LB/AC); SEDIMENT IN TONS/AC Segment

ANHL RES

Total Load

ORGN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.608 1.129 0.609 1.100 1.174 0.828 1.020

5.649 3.961 0.981 5.327 1.454 2.718 3.869 2.632 3.324

TN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

3.395 2.257 1.375 2.499 1.085 1.910 1.776 1.527 1.978

28.100 23.020 14.460 25.090 17.970 30.480 28.090 19.100 23.289

25.460 20.140 11.210 20.020 15.070 26.840 25.860 15.840 20.055

7.816 6.058 4.044 7.035 3.909 7.919 6.799 5.921 6.188

12.030 9.507 4.294 9.309 4.093 9.302 9.314 6.691 8.068

7.429 5.028 2.867 5.937 3.144 6.928 5.709 4.355 5.175

1944.048 1915.276 1056.243 1852.619 1131.745 1857.141 1706.858 1383.287 1605.902

12.385 11.111 10.775 12.155 10.620 13.598 12.166 11.021 11.729

10.392 8.343 5.808 8.955 6.141 9.198 8.545 6.944 8.041

MEAN

0.036 0.021 0.006 0.033 0.008 0.026 0.026 0.018 0.022

1.559 1.846 1.012 2.015 1.270 2.761 2.230 1.189 1.735

1.906 1.291 0.788 1.556 1.150 2.333 1.811 0.969 1.475

0.249 0.266 0.131 0.280 0.068 0.284 0.321 0.244 0.230

0.472 0.321 0.079 0.353 0.061 0.261 0.321 0.173 0.255

0.548 0.347 0.158 0.469 0.086 0.646 0.420 0.488 0.395

67.036 66.044 36.422 63.883 39.026 64.039 58.857 47.700 55.376

0.445 0.396 0.418 0.434 0.406 0.469 0.442 0.419 0.429

0.687 0.593 0.430 0.654 0.427 0.568 0.513 0.429 0.538

ORGP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.036 0.028 0.014 0.029 0.015 0.026 0.030 0.020 0.025

1.571 1.109 0.273 1.486 0.405 0.759 1.080 0.734 0.927

1.348 0.985 0.203 1.198 0.311 0.577 0.919 0.554 0.762

0.405 0.262 0.123 0.279 0.088 0.305 0.266 0.236 0.245

0.510 0.349 0.096 0.382 0.078 0.290 0.350 0.197 0.282

0.343 0.275 0.046 0.281 0.031 0.153 0.261 0.099 0.186

100.554 99.066 54.633 95.825 58.539 96.059 88.286 71.549 83.064

0.485 0.437 0.462 0.476 0.450 0.508 0.482 0.462 0.470

0.401 0.311 0.146 0.340 0.158 0.253 0.285 0.211 0.263

P04 1984 1985 1986 1987 1988 1989 1990 1991

A60

Appendix A Shenandoah Model Segments Results

Segment

190

.

.

FOR

HTC

LTC

PAS

URB

HAY

ANML

RES

Total Load

0.071 0.049 0.020 0.061 0.023 0.052 0.056 0.039 0.046

3.130 2.956 1.285 3.501 1.675 3.520 3.310 1.922 2.662

3.254 2.276 0.990 2.755 1.460 2.910 2.730 1.523 2.237

0.654 0.528 0.254 0.559 0.156 0.588 0.587 0.480 0.476

0.982 0.670 0.176 0.735 0.139 0.551 0.671 0.370 0.537

0.891 0.622 0.204 0.750 0.117 0.799 0.680 0.587 0.581

335.181 330.220 182.111 319.417 195.128 320.197 294.286 238.498 276.880

0.930 0.833 0.880 0.910 0.856 0.977 0.924 0.881 0.899

1.156 0.971 0.613 1.058 0.625 0.887 0.857 0.689 0.857

MEAN

14.795 12.537 6.305 10.579 5.959 10.832 10.940 8.009 9.995

123.300 116.100 20.520 141.300 32.100 75.000 113.700 69.900 86.490

74.700 72.300 11.730 80.700 23.490 45.900 68.400 36.000 51.653

11.010 7.350 3.450 7.650 2.646 8.460 7.410 6.390 6.796

28.860 19.770 5.460 21.630 4.440 16.440 19.830 11.160 15.949

25.200 20.490 3.810 21.000 3.120 12.690 19.350 8.280 14.243

4692.528 4623.079 2549.551 4471.839 2731.798 4482.755 4120.003 3338.969 3876.315

27.450 24.750 26.160 26.970 25.470 28.770 27.300 26.130 26.625

25.313 21.486 8.551 22.137 9.315 17.875 20.567 13.978 17.403

SED 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.097 0.058 0.018 0.078 0.025 0.056 0.081 0.041 0.057

1.680 1.160 0.287 1.570 0.429 0.806 1.130 0.772 0.979

1.210 0.864 0.178 1.060 0.275 0.517 0.811 0.489 0.676

0.305 0.193 0.089 0.207 0.064 0.226 0.197 0.173 0.182

0.291 0.189 0.043 0.215 0.032 0.149 0.193 0.100 0.152

0.469 0.366 0.062 0.377 0.046 0.213 0.346 0.142 0.253

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.291 0.198 0.054 0.233 0.058 0.157 0.205 0.124 0.165

TP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN BOD 1984 1985

1986 1987 1988 1989 1990 1991

Appendix A Shenandoah Model Segments Results

>

A61

Segment

ANHL RES

Total Load

URB

HAY

0.594 0.351 0.204 0.342 0.219 0.409 0.446 0.259 0.353

0.366 0.214 0.133 0.214 0.121 0.232 0.294 0.120 0.212

0.584 0.235 0.238 0.266 0.181 0.422 0.340 0.274 0.317

234.778 211.834 129.661 214.257 139.478 194.622 223.523 134.624 185.347

2.170 1.910 1.680 2.020 1.700 2.390 2.140 1.580 1.949

1.636 1.405 1.320 1.418 1.366 0.970 0.992 0.847 1.244

11.305

4.141 2.935 2.784 3.499 2.647 3.541 3.792 2.908 3.281

6.790 5.080 3.390 4.440 3.210 4.690 5.590 3.590 4.598

4.868 2.595 2.377 3.365 2.530 3.789 3.707 2.809 3.255

58.694 52.959 32.415 53.564 34.870 48.656 55.881 33.656 46.337

6.380 5.700 5.490 6.140 5.180 6.780 6.450 5.390 5.939

4.411 3.188 2.948 4.513 2.965 3.788 3.618 2.683 3.514

6.451 2.167 0.723 1.998 1.278 2.421 4.053 1.652 2.593

4.966 1.788 0.481 1.263 0.548 1.537 2.969 1.247 1.850

2.004 0.983 0.630 1.121 0.418 1.203 1.579 0.427 1.046

2.360 1.254 0.720 1.317 0.646 1.451 1.881 0.582 1.276

0.744 0.260 0.045 0.119 0.031 0.145 0.481 0.164 0.249

1760.834 1588.758 972.455 1606.928 1046.086 1459.666 1676.423 1009.678 1390.104

3.317 3.072 3.168 3.276 3.020 3.473 3.376 3.187 3.236

2.337 1.491 0.872 1.366 0.840 1.373 2.005 0.942 1.403

2.914 1.704 1.503 3.592 0.967 1.277 1.679 1.088 1.841

24.650 15.050 12.330 17.210 17.160 23.520 21.220 11.140 17.785

20.450 13.080 9.410 12.610 14.250 20.030 20.350 8.107 14.786

6.740 4.269 3.618 4.963 3.285 5.152 5.817 3.594 4.680

9.516 6.548 4.243 5.971 3.977 6.373 7.765 4.292 6.085

6.196 3.090 2.660 3.750 2.742 4.356 4.528 247 ,821

1702.139 1535.799 940.040 1553.364 1011.217 1411.011 1620.542 976.022 1343.767

11.867 10.682 10.338 11.436 9.900 12.643 11.966 10.157 11.124

8.269 5.980 5.077 7.192 5.103 6.035 6.505 4.406 6.071

P04 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.010 0.005 0.001 0.002 0.001 0.003 0.012 0.003 0.005

1.015 1.374 1.045 1.464 1.425 2.093 1.631 0.717 1.345

1.040 1.009 0.752 1.135 1.372 1.992 1.393 0.527 1.153

0.182 0.149 0.091 0.147 0.061 0.130 0.205 0.118 0.135

0.308 0.159 0.086 0.169 0.077 0.187 0.245 0.066 0.162

0.423 0.160 0.176 0.285 0.089 0.357 0.389 0.273 0.269

58.694 52.959 32.415 53.564 34.870 48.656 55.881 33.656 46.337

0.435 0.397 0.409 0.426 0.387 0.457 0.442 0.412 0.421

0.326 0.287 0.235 0.307 0.265 0.330 0.326 0.225 0.288

ORGP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.030 0.020 0.010 0.013 0.009 0.014 0.035 0.013 0.018

1.802 0.608 0.201 0.559 0.358 0.677 1.138 0.462 0.726

1.328 0.481 0.129 0.338 0.147 0.412 0.797 0.333 0.496

0.377 0.181 0.117 0.210 0.075 0.225 0.298 0.077 0.195

0.337 0.179 0.103 0.188 0.092 0.207 0.269 0.083 0.182

0.200 0.071 0.012 0.032 0.008 0.039 0.131 0.044 0.067

88.042 79.438 48.623 80.346 52.304 72.983 83.821 50.484 69.505

0.474 0.439 0.453 0.468 0.431 0.496 0.482 0.455 0.462

0.301 0.161 0.094 0.154 0.094 0.159 0.231 0.103 0.162

FOR

HTC

LTC

NH3 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.106 0.061 0.041 0.059 0.033 0.048 0.057 0.046 0.057

3.142 1.334 2.172 2.178 1.715 2.165 2.166 1.183 2.007

2.695 0.895 1.583 1.632 1.574 1.810 2.032 0.839 1.632

N03 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

1.584 0.804 0.987 2.940 0.497 0.630 0.418 0.478 1.042

15.050 11.550 9.438 13.040 14.170 18.930 15.010 8.301 13.186

12.790

ORGN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

1.224 0.839 0.474 0.593 0.438 0.600 1.203 0.563 0.742

TN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

A62

10.400 7.347 9.713 12.130 16.690 15.350

6.020

Appendix A Shenandoah Model Segments Results

Segment

200

^ FOR

HTC

UTC

PAS

URB

HAY

ANML

RES

>

Total Load

TP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.040 0.025 0.011 0.016 0.010 0.017 0.047 0.016 0.023

2.817 1.982 1.246 2.023 1.783 2.770 2.769 1.178 2.071

2.368 1.490 0.881 1.473 1.519 2.404 2.189 0.860 1.648

0.558 0.331 0.208 0.357 0.137 0.355 0.503 0.194 0.330

0.645 0.338 0.189 0.357 0.169 0.394 0.514 0.149 0.344

0.623 0.232 0.189 0.317 0.098 0.397 0.520 0.317 0.336

293.472 264.793 162.076 267.821 174.348 243.278 279.404 168.280 231.684

0.909 0.836 0.862 0.894 0.818 0.953 0.924 0.867 0.883

0.674 0.491 0.356 0.505 0.387 0.529 0.602 0.356 0.488

BOO 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

11.932 8.383 5.249 6.283 4.759 6.214 9.549 5.747 7.265

144.000 58.800 15.150 45.600 26.340 57.300 111.000 32.100 61.286

66.900 32.100 7.890 20.160 11.040 28.140 50.700 15.120 29.006

10.410 5.370 3.390 5.910 2.379 6.330 8.220 2.451 5.558

19.080 10.140 5.820 10.650 5.220 11.730 15.210 4.710 10.320

19.830 9.750 1.779 4.470 1.974 6.240 16.620 4.140 8.100

4108.612 3707.101 2269.063 3749.498 2440.868 3405.888 3911.653 2355.914 3243.574

26.820 24.840 25.620 26.490 24.420 28.080 27.300 25.770 26.168

20.921 12.268 6.727 10.566 7.074 11.397 17.299 8.106 11.795

SED 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

0.082 0.045 0.003 0.012 0.001 0.014 0.137 0.015 0.039

1.920 0.640 0.215 0.598 0.380 0.715 1.200 0.489 0.770

1.180 0.429 0.116 0.304 0.134 0.370 0.701 0.296 0.441

0.274 0.131 0.083 0.151 0.053 0.163 0.215 0.052 0.140

0.280 0.133 0.074 0.149 0.065 0.168 0.222 0.052 0.143

0.275 0.102 0.019 0.051 0.016 0.060 0.177 0.063 0.095

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.247 0.105 0.037 0.083 0.034 0.094 0.212 0.054 0.108

Appendix A Shenandoah Model Segments Results

A63

PERCENT OF TOTAL LOAD CONTRIBUTED FROH EACH LAND USE/SOURCE IN SHENANDOAH BASIN Segment

190

.

--> Atmos Point Source Dep

Septic Load

Total Load

FOR

HTC

LTC

PAS

URB

HAY

ANHL

RES

NH3 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

2.96 2.65 1.77 2.38 1.24 2.17 2.46 2.79 2.33

4.75 2.41 2.90 3.56 2.29 4.74 4.28 3.30 3.60

11.66 4.00 5.15 6.57 4.69 8.44 8.62 5.84 7.13

8.88 7.63 3.63 7.02 3.03 9.44 8.42 7.91 7.12

1.69 1.65 0.63 1.53 0.51 1.37 1.69 1.20 1.32

4.29 3.06 1.72 2.80 1.30 7.33 3.52 3.78 3.55

4.95 6.68 4.08 5.66 3.99 6.08 6.08 5.65 5.39

2.21 2.72 2.59 2.58 2.48 3.30 2.95 2.88 2.69

0.37 0.42 0.27 0.41 0.30 0.52 0.44 0.41 0.39

58.24 68.75 77.28 67.51 80.15 56.60 61.56 66.25 66.45

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N03 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

16.53 10.69 10.91 13.40 6.34 6.80 5.48 7.89 9.93

7.36 8.65 7.87 7.82 9.62 9.92 9.86 8.14 8.66

14.83 17.66 14.19 14.26 18.70 20.89 21.38 16.01 17.36

19.64 20.28 21.19 22.88 20.53 22.64 22.02 23.36 21.58

10.67 10.82 7.68 9.40 7.18 9.25 9.78 9.29 9.41

12.06 9.80 9.18 11.27 10.01 11.87 10.85 10.88 10.88

0.51 0.61 0.46 0.55 0.47 0.49 0.50 0.50 0.51

2.63 2.82 3.70 2.90 3.43 2.87 2.90 3.16 3.00

0.44 0.47 0.43 0.45 0.44 0.42 0.44 0.45 0.44

1.88 2.02 2.35 1.98 2.31 1.49 1.68 2.00 1.92

13.46 16.20 22.04 15.09 20.98 13.35 15.10 18.31 16.29

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ORGN 1984 -1985 1986 1987 1988 1989 1990 1991 MEAN

24.38 24.38 25.21 22.13 24.45 23.92 24.53 23.08 23.93

4.11 3.53 1.81 4.65 2.60 2.63 3.60 3.27 3.47

8.52 7.56 3.24 9.05 4.82 4.83 7.39 5.96 6.89

15.42 12.29 11.91 12.74 8.52 15.52 13.02 15.28 13.47

8.40 7.05 4.03 7.55 3.18 6.38 7.39 5.55 6.67

5.04 4.82 1.67 4.90 1.13 2.92 4.78 2.46 3.87

26.94 32.51 37.13 30.78 38.54 34.27 30.27 32.72 31.97

2.34 2.59 5.67 2.76 5.34 3.27 2.98 3.81 3.27

0.07 0.07 0.12 0.07 0.12 0.08 0.08 0.09 0.08

4.78 5.21 9.22 5.38 11.27 6.19 5.95 7.80 6.39

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

TN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

16.20 13.41 11.74 13.84 8.76 10.30 10.31 10.90 12.20

5.97 6.09 5.50 6.19 6.46 7.32 7.26 6.07 6.39

12.56 12.37 9.89 11.45 12.57 14.95 15.50 11.69 12.78

16.43 15.86 15.21 17.16 13.90 18.80 17.38 18.62 16.81

8.27 8.14 5.28 7.43 4.76 7.23 7.79 6.89 7.17

8.55 7.21 5.90 7.93 6.12 9.01 7.99 7.50 7.70

7.61 9.33 7.39 8.41 7.49 8.21 8.12 8.10 8.12

2.50 2.79 3.89 2.84 3.62 3.10 2.98 3.32 3.06

0.32 0.35 0.33 0.34 0.34 0.36 0.35 0.36 0.35

14.71 15.86 22.54 16.41 24.31 12.94 13.93 16.23 16.52

6.89 8.58 12.32 7.99 11.65 7.78 8.38 10.31 8.90

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

P04 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

2.57 1.74 0.70 2.48 0.94 2.26 2.55 2.13 2.00

5.01 6.88 5.20 6.81 6.57 10.73 9.60 6.11 7.13

14.22 11.16 9.38 12.20 13.80 21.04 18.10 11.56 14.06

7.92 9.80 6.66 9.36 3.46 10.90 13.66 12.42 9.36

4.91 3.87 1.32 3.86 1.02 3.28 4.48 2.88 3.39

9.55 6.99 4.39 8.59 2.41 13.60 9.79 13.59 8.79

3.97 4.53 3.44 3.97 3.72 4.58 4.67 4.52 4.19

1.36 1.40 2.04 1.39 1.99 1.73 1.81 2.04 1.67

0.07 0.07 0.08 0.07 0.08 0.08 0.09 0.09 0.08

50.43 53.56 66.79 51.27 66.03 31.81 35.26 44.66 49.33

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ORGP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

4.40 4.45 4.68 4.17 4.62 5.16 5.19 4.75 4.64

8.65 7.88 4.13 9.66 5.66 6.61 8.37 7.66 7.78

17.23 16.25 7.11 18.08 10.08 11.66 16.53 13.44 14.84

22.06 18.42 18.35 17.95 12.24 26.25 20.42 24.39 20.38

9.09 8.04 4.72 8.04 3.55 8.19 8.79 6.67 7.65

10.24 10.60 3.75 9.90 2.37 7.21 10.94 5.61 8.46

10.20 12.97 15.21 11.47 15.06 15.41 12.60 13.77 12.84

2.53 2.95 6.63 2.94 5.97 4.20 3.54 4.58 3.75

0.35 0.41 0.67 0.37 0.64 0.52 0.46 0.55 0.46

15.24 18.04 34.72 17.42 39.79 14.78 13.15 18.60 19.20

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

A64

Appendix A Shenandoah Model Segments Results

Segment

190

. -*" Miniua

ru mi

Septic Load

Total Load

FOR

HTC

LTC

PAS

URB

HAY

ANML

RES

TP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

3.05 2.49 1.61 2.87 1.81 2.92 3.25 2.78 2.68

5.98 6.72 4.63 7.30 5.92 8.76 8.52 6.16 6.86

14.43 12.02 8.28 13.34 11.98 16.81 16.32 11.32 13.38

12.36 11.88 9.04 11.54 5.46 14.49 14.96 15.21 12.13

6.07 4.94 2.05 4.96 1.60 4.44 5.60 3.84 4.48

9.22 7.66 3.97 8.48 2.25 10.78 9.49 10.19 8.11

11.79 13.83 12.08 12.27 12.70 14.68 13.95 14.07 13.14

1.69 1.80 3.01 1.80 2.87 2.31 2.26 2.68 2.20

0.16 0.17 0.21 0.16 0.22 0.20 0.21 0.23 0.19

35.25 38.49 55.12 37.24 55.20 24.61 25.45 33.52 36.84

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

BOO 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

28.98 28.93 36.56 23.70 31.72 30.05 26.37 28.40 28.48

10.76 11.93 5.30 14.10 7.61 9.27 12.21 11.04 10.97

15.12 17.24 7.03 18.68 12.92 13.16 17.04 13.19 15.21

9.50 7.47 8.81 7.55 6.20 10.34 7.87 9.98 8.53

8.15 6.58 4.56 6.99 3.41 6.57 6.89 5.70 6.55

11.91 11.41 5.33 11.35 4.01 8.49 11.25 7.09 9.79

7.54 8.75 12.12 8.22 11.92 10.19 8.15 9.71 9.06

2.27 2.41 6.41 2.55 5.73 3.37 2.78 3.92 3.21

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.78 5.28 13.88 6.89 16.48 8.56 7.44 10.95 8.21

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

SED 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

16.49 14.46 16.14 16.49 21.76 17.53 19.59 16.25 16.99

12.77 12.94 11.71 14.87 16.38 11.31 12.18 13.72 13.11

21.34 22.36 16.86 23.30 24.37 16.84 20.29 20.18 20.98

22.93 21.29 35.96 19.40 24.11 31.38 21.01 30.43 24.07

7.16 6.82 5.70 6.59 3.96 6.77 6.73 5.75 6.56

19.31 22.12 13.63 19.35 9.42 16.20 20.21 13.68 18.31

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Appendix A Shenandoah Model Segments Results

Dep

Source

A65

Segment

200

.

. -•r^

Ill^i TIVU9

■fo

_ _ _ s. A f m/\p

Septic Load

Total Load

HTC

LTC

PAS

URB

HAY

ANHL

RES

NH3 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

3.41 2.30 1.65 2.19 1.27 2.60 3.04 2.87 2.39

5.09 2.52 4.36 4.07 3.33 5.91 5.78 3.70 4.27

6.22 2.40 4.52 4.34 4.35 7.04 7.73 3.74 4.95

8.60 5.92 3.65 5.71 3.80 9.97 10.64 7.23 6.71

1.18 0.81 0.53 0.80 0.47 1.26 1.57 0.75 0.90

3.74 1.75 1.88 1.96 1.39 4.56 3.59 3.39 2.67

4.68 4.92 3.20 4.93 3.33 6.54 7.35 5.19 4.86

1.91 1.96 1.83 2.05 1.79 3.54 3.10 2.68 2.25

0.51 0.47 0.36 0.50 0.39 0.86 0.75 0.61 0.53

64.65 76.96 77.98 73.44 79.91 57.70 56.43 69.83 70.42

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

N03 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

18.91 13.27 17.64 34.32 8.82 8.76 6.09 9.39 15.62

9.04 9.60 8.48 7.65 12.66 13.24 10.99 8.20 9.94

10.95 12.31 9.40 8.12 15.44 16.63 16.01 8.47 12.14

22.23 21.79 22.36 18.35 21.13 22.13 24.82 25.67 22.10

8.14 8.42 6.08 5.20 5.72 6.54 8.17 7.08 6.92

11.57 8.53 8.45 7.81 8.94 10.48 10.74 10.98 9.70

0.43 0.54 0.36 0.39 0.38 0.42 0.50 0.41 0.43

2.08 2.57 2.68 1.96 2.51 2.58 2.57 2.89 2.43

0.56 0.68 0.57 0.49 0.59 0.61 0.64 0.69 0.60

0.72 1.01 0.99 0.69 0.94 0.71 0.75 0.97 0.83

15.37 21.27 23.00 15.02 22.86 17.90 18.75 25.28 19.29

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ORGN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

27.58 29.65 28.64 22.89 27.44 22.99 31.62 31.50 27.83

7.31 3.85 2.20 3.88 4.03 4.67 5.35 4.65 4.89

8.02 4.53 2.08 3.49 2.46 4.22 5.59 5.00 4.97

20.31 15.61 17.11 19.44 11.80 20.73 18.65 10.74 17.64

5.34 4.45 4.36 5.10 4.06 5.58 4.96 3.27 4.81

3.34 1.83 0.54 0.91 0.39 1.11 2.51 1.82 1.86

24.59 34.78 36.39 38.40 40.66 34.68 27.29 34.97 32.32

2.04 2.97 5.23 3.45 5.18 3.64 2.42 4.87 3.32

0.10 0.14 0.20 0.15 0.22 0.15 0.11 0.20 0.14

1.38 2.23 3.27 2.31 3.77 2.19 1.50 2.98 2.19

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

TN 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

18.56 15.01 15.59 26.31 9.98 11.14 13.59 13.01 15.97

7.90 6.67 6.43 6.34 8.91 10.32 8.64 6.70 7.76

9.34 8.26 7.00 6.62 10.54 12.53 11.81 6.94 9.19

19.30 16.90 16.87 16.33 15.24 20.22 21.16 19.31 18.25

6.08 5.79 4.42 4.39 4.12 5.58 6.31 5.15 5.30

7.85 5.42 5.49 5.46 5.63 7.56 7.29 7.72 6.59

6^72 8.38 6.04 7.05 6.47 7.63 8.13 7.23 7.22

2.07 2.57 2.93 2.29 2.79 3.01 2.65 3.32 2.64

0.43 0.51 0.46 0.43 0.48 0.55 0.50 0.58 0.49

13.56 19.16 21.42 15.35 22.54 10.22 9.48 14.64 15.42

8.20 11.34 13.36 9.43 13.29 11.23 10.42 15.39 11.17

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

P04 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

1.67 1.00 0.29 0.43 0.20 0.51 1.87 0.63 0.87

8.26 12.66 11.77 12.61 14.25 16.80 13.25 8.43 12.38

12.05 13.25 12.07 13.93 19.54 22.78 16.13 8.83 15.11

13.20 12.31 9.14 11.34 5.47 9.29 14.90 12.38 11.13

5.00 2.92 1.93 2.91 1.53 3.00 3.97 1.55 2.98

13.60 5.84 7.85 9.72 3.53 11.34 12.51 12.69 9.80

5.88 6.01 4.50 5.69 4.29 4.81 5.59 4.87 5.25

1.92 1.99 2.50 1.99 2.10 1.99 1.95 2.63 2.10

0.16 0.17 0.17 0.16 0.16 0.15 0.16 0.20 0.17

38.26 43.86 49.79 41.19 48.92 29.31 29.67 47.77 40.19

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

ORGP 1984 1985 1986 1987 1988 1989 1990 1991 MEAN

5.20 6.51 5.52 4.47 5.25 4.49 7.98 6.65 5.83

15.88 10.03 5.67 9.60 10.14 11.24 13.05 11.87 11.86

16.67 11.31 5.17 8.27 5.94 9.75 13.03 12.20 11.54

29.66 26.75 29.48 32.25 19.07 33.43 30.52 17.61 28.49

5.93 5.90 5.77 6.45 5.21 6.87 6.15 4.27 5.95

6.98 4.66 1.37 2.17 0.93 2.59 5.96 4.45 4.36

9.56 16.16 16.86 17.00 18.24 14.93 11.85 15.99 14.00

2.27 3.94 6.92 4.37 6.63 4.48 3.01 6.36 4.11

0.53 0.90 1.28 0.93 1.35 0.91 0.66 1.29 0.87

7.32 13.86 21.97 14.49 27.24 11.31 7.81 19.30 13.01

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

A66

Dep

DAI nf ruini

FOR

Source

Appendix A Shenandoah Model Segments Results

Segment

200 --s. Itmnc'