Using open-source software for extracting ...

5 downloads 0 Views 47MB Size Report
Aug 30, 2016 - b Scott Polar Research Institute, Geography Department, University of Cambridge, England. {[email protected], [email protected], ...
Using open-source software for extracting geomechanical parameters of a rock mass from 3DPC Discontinuity Set Extractor and SMRTool

A.Riquelmea1 a b

R.Tomása2

M. Canoa3

A. Abellánb4

Civil Engineering Department, University of Alicante, Spain

Scott Polar Research Institute, Geography Department, University of Cambridge, England

{1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] }

August 30, 2016

1/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Contents

1

Methodology

2

Case of study

3

Conclusions

2/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

A brief description Open source software

Contents

1

Methodology A brief description Open source software

2

Case of study

3

Conclusions

3/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

A brief description Open source software

Do we need to use 3D point clouds when assessing a rock mass?

Figure. Source: http://www.buddygambol.com/ 4/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

A brief description Open source software

Flowchart

3D Laser Scanner

Fieldwork data

Data acquisition

Discontinuity Set Extractor Orientation of planes

Persistence & Spacing

Roughness

Discontinuity description

Rock Mass description

Calculation of RMRb SMRTool

Slope: αs & βs

SMR index

Geomechanical quality 5/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

A brief description Open source software

Discontinuity Set Extractor

Figure. Discontinuity Set Extractor Software. 6/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

A brief description Open source software

SMRTool

Figure. SMRTool Software. 7/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Contents

1

Methodology

2

Case of study Description of the site Results

3

Conclusions

8/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Description of the rock slope (b) Site Image

(a) Fieldwork

(c) 3D laser scanning

1.6667 m

(d) SfM

1.6667 m

Figure. Sedimentary rock slope: limestones. 9/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Extraction of the Discontinuity Sets 0

Poles Density Plot, Principal Poles. Isolines each 1.25% 330

30

300

60

J4 J1

J2

270

90

J3 J6

240

120

J5 210

150 180

Figure. Density of the calculated poles. Figure generated using DSE software. 10/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Discontinuity Set Extraction

Figure. Classified point cloud.

11/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Normal Spacing Analysis Spacings. J 1 . S: (1) = 0.27207; (2) = 0.1528; 21 clusters Spacings. J 2 . S: (1) = 0.24889; (2) = 0.16168; 34 clusters Spacings. J 3 . S: (1) = 0.18093; (2) = 0.1025; 28 clusters 4

8

10

(1) Non-persistent (2) Full persistent

2

1

0 -0.2

0

0.2

0.4

0.6

0.8

1

4

2

0 -0.4

1.2

(1) Non-persistent (2) Full persistent

8

6

Density function

3

Density function

Density function

(1) Non-persistent (2) Full persistent

6 4 2

-0.2

0

0.2

0.4

0.6

0.8

0 -0.2

1

0

0.2

0.4

0.6

0.8

1

Spacing Spacing Spacing Spacings. J 4 . S: (1) = 0.38061; (2) = 0.20243; 30 clusters Spacings. J 5 . S: (1) = 0.31491; (2) = 0.23885; 25 clusters Spacings. J 6 . S: (1) = 0.40703; (2) = 0.24108; 20 clusters 5

6

(1) Non-persistent (2) Full persistent

3 2

3 2 1

1

0

0.5

1

1.5

2

0 -0.5

(1) Non-persistent (2) Full persistent

2

Density function

4

0 -0.5

2.5

(1) Non-persistent (2) Full persistent

4

Density function

Density function

5

1.5 1 0.5

0

0.5

Spacing

1

1.5

2

2.5

0 -0.5

0

Spacing

0.5

1

1.5

Spacing

Figure. Density of the calculated poles.

12/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Discontinuity Set Analysis

Figure. DS 5 and 6 usually are contiguous, so they are considered as a single DS. 13/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Results

Table. Extracted discontinuity sets and main properties.

DS

Orientation

J1 J2 J3 J4 J5

114/32 268/65 298/59 242/68 343/72 Jv =

Normal spacing 0.272 0.249 0.181 0.380 0.315

Persistence (m) Dip dir Strike Max 1.653 4.083 4.083 1.490 3.516 3.516 1.287 2.783 2.783 3.234 2.498 3.234 0.995 1.733 1.733

  5 X 1 joints = 19.02 Jvi m3

(1)

i=1

RQD = 110 − 2.5 · 19.02 = 62.44

(2)

14/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Description of the site Results

Rock Mass Rating and Slope Mass Rating index Table 1. Calculation of the RM Rb for each discontinuity set. X1 to X5 are the corresponding parameters (Bieniawski, 1993). Disc. Set J1 : 114/32 J2 : 268/65 J3 : 298/59 J4 : 242/68 J5 : 343/72

Separation [mm] 1-5 1-5 1-5 1-5 1-5

Rough.

Infilling

Weath.

slightly slightly slightly slightly slightly

hard < 5 hard < 5 hard < 5 hard < 5 hard < 5

Unw. Unw. Unw. Unw. Unw.

X1 12 12 12 12 12

X2 20 20 20 20 20

X3 10 10 8 10 10

RM Rb parameters X41 X42 X43 X44 0 1 3 4 2 1 3 4 4 1 3 4 2 1 3 4 0 1 3 4

RM Rb X45 6 6 6 6 6

X5 15 15 15 15 15

71 73 73 73 71

SMR 44 78 66 84 82 84 84 82 82

Class III II II I I I I I I

Table 2. SMRTool report. Slope:(111/77). plane/wedge id J1 J2 J3 J4 J5 W12 W13 W14 W15

dip dir [°] 114 268 298 242 343 184 27 162 65

dip [°] 32 65 59 68 72 12 2 23 22

RMRb 71 73 73 73 71 71 71 71 71

A [°] 3 23 7 49 52 72.78 84.09 50.77 45.7

B [°] 32 65 59 68 72 12.19 1.82 22.78 22.41

C [°] -45 142 136 145 149 -64.81 -75.18 -54.22 -54.59

failure Planar Toppling Toppling Toppling Toppling Wedge Wedge Wedge Wedge

F1 1 0.4 0.85 0.15 0.15 0.15 0.15 0.15 0.15

F2 0.7 1 1 1 1 0.15 0.15 0.4 0.4

F3 -60 -25 -25 -25 -25 -60 -60 -60 -60

F4 15 15 15 15 15 15 15 15 15

15/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Contents

1

Methodology

2

Case of study

3

Conclusions

16/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Methodology Case of study Conclusions

Conclusions

The RMRb and SMR indexes were calculated using data extracted from 3DPC, using open source software. The geometrical analysis of the planes can be reproduced by any user if the analysis parameters are provided. Use of qualitative data acquired during the fieldwork was required.

17/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Using open-source software for extracting geomechanical parameters of a rock mass from 3DPC Discontinuity Set Extractor and SMRTool

A.Riquelmea1 a b

R.Tomása2

M. Canoa3

A. Abellánb4

Civil Engineering Department, University of Alicante, Spain

Scott Polar Research Institute, Geography Department, University of Cambridge, England

{1 [email protected], 2 [email protected], 3 [email protected], 4 [email protected] }

August 30, 2016

18/18 A. Riquelme et al; [email protected]

2016 ISRM International Symposium

Suggest Documents