Using open-source software for extracting geomechanical parameters of a rock mass from 3DPC Discontinuity Set Extractor and SMRTool
A.Riquelmea1 a b
R.Tomása2
M. Canoa3
A. Abellánb4
Civil Engineering Department, University of Alicante, Spain
Scott Polar Research Institute, Geography Department, University of Cambridge, England
{1
[email protected], 2
[email protected], 3
[email protected], 4
[email protected] }
August 30, 2016
1/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Contents
1
Methodology
2
Case of study
3
Conclusions
2/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
A brief description Open source software
Contents
1
Methodology A brief description Open source software
2
Case of study
3
Conclusions
3/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
A brief description Open source software
Do we need to use 3D point clouds when assessing a rock mass?
Figure. Source: http://www.buddygambol.com/ 4/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
A brief description Open source software
Flowchart
3D Laser Scanner
Fieldwork data
Data acquisition
Discontinuity Set Extractor Orientation of planes
Persistence & Spacing
Roughness
Discontinuity description
Rock Mass description
Calculation of RMRb SMRTool
Slope: αs & βs
SMR index
Geomechanical quality 5/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
A brief description Open source software
Discontinuity Set Extractor
Figure. Discontinuity Set Extractor Software. 6/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
A brief description Open source software
SMRTool
Figure. SMRTool Software. 7/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Contents
1
Methodology
2
Case of study Description of the site Results
3
Conclusions
8/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Description of the rock slope (b) Site Image
(a) Fieldwork
(c) 3D laser scanning
1.6667 m
(d) SfM
1.6667 m
Figure. Sedimentary rock slope: limestones. 9/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Extraction of the Discontinuity Sets 0
Poles Density Plot, Principal Poles. Isolines each 1.25% 330
30
300
60
J4 J1
J2
270
90
J3 J6
240
120
J5 210
150 180
Figure. Density of the calculated poles. Figure generated using DSE software. 10/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Discontinuity Set Extraction
Figure. Classified point cloud.
11/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Normal Spacing Analysis Spacings. J 1 . S: (1) = 0.27207; (2) = 0.1528; 21 clusters Spacings. J 2 . S: (1) = 0.24889; (2) = 0.16168; 34 clusters Spacings. J 3 . S: (1) = 0.18093; (2) = 0.1025; 28 clusters 4
8
10
(1) Non-persistent (2) Full persistent
2
1
0 -0.2
0
0.2
0.4
0.6
0.8
1
4
2
0 -0.4
1.2
(1) Non-persistent (2) Full persistent
8
6
Density function
3
Density function
Density function
(1) Non-persistent (2) Full persistent
6 4 2
-0.2
0
0.2
0.4
0.6
0.8
0 -0.2
1
0
0.2
0.4
0.6
0.8
1
Spacing Spacing Spacing Spacings. J 4 . S: (1) = 0.38061; (2) = 0.20243; 30 clusters Spacings. J 5 . S: (1) = 0.31491; (2) = 0.23885; 25 clusters Spacings. J 6 . S: (1) = 0.40703; (2) = 0.24108; 20 clusters 5
6
(1) Non-persistent (2) Full persistent
3 2
3 2 1
1
0
0.5
1
1.5
2
0 -0.5
(1) Non-persistent (2) Full persistent
2
Density function
4
0 -0.5
2.5
(1) Non-persistent (2) Full persistent
4
Density function
Density function
5
1.5 1 0.5
0
0.5
Spacing
1
1.5
2
2.5
0 -0.5
0
Spacing
0.5
1
1.5
Spacing
Figure. Density of the calculated poles.
12/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Discontinuity Set Analysis
Figure. DS 5 and 6 usually are contiguous, so they are considered as a single DS. 13/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Results
Table. Extracted discontinuity sets and main properties.
DS
Orientation
J1 J2 J3 J4 J5
114/32 268/65 298/59 242/68 343/72 Jv =
Normal spacing 0.272 0.249 0.181 0.380 0.315
Persistence (m) Dip dir Strike Max 1.653 4.083 4.083 1.490 3.516 3.516 1.287 2.783 2.783 3.234 2.498 3.234 0.995 1.733 1.733
5 X 1 joints = 19.02 Jvi m3
(1)
i=1
RQD = 110 − 2.5 · 19.02 = 62.44
(2)
14/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Description of the site Results
Rock Mass Rating and Slope Mass Rating index Table 1. Calculation of the RM Rb for each discontinuity set. X1 to X5 are the corresponding parameters (Bieniawski, 1993). Disc. Set J1 : 114/32 J2 : 268/65 J3 : 298/59 J4 : 242/68 J5 : 343/72
Separation [mm] 1-5 1-5 1-5 1-5 1-5
Rough.
Infilling
Weath.
slightly slightly slightly slightly slightly
hard < 5 hard < 5 hard < 5 hard < 5 hard < 5
Unw. Unw. Unw. Unw. Unw.
X1 12 12 12 12 12
X2 20 20 20 20 20
X3 10 10 8 10 10
RM Rb parameters X41 X42 X43 X44 0 1 3 4 2 1 3 4 4 1 3 4 2 1 3 4 0 1 3 4
RM Rb X45 6 6 6 6 6
X5 15 15 15 15 15
71 73 73 73 71
SMR 44 78 66 84 82 84 84 82 82
Class III II II I I I I I I
Table 2. SMRTool report. Slope:(111/77). plane/wedge id J1 J2 J3 J4 J5 W12 W13 W14 W15
dip dir [°] 114 268 298 242 343 184 27 162 65
dip [°] 32 65 59 68 72 12 2 23 22
RMRb 71 73 73 73 71 71 71 71 71
A [°] 3 23 7 49 52 72.78 84.09 50.77 45.7
B [°] 32 65 59 68 72 12.19 1.82 22.78 22.41
C [°] -45 142 136 145 149 -64.81 -75.18 -54.22 -54.59
failure Planar Toppling Toppling Toppling Toppling Wedge Wedge Wedge Wedge
F1 1 0.4 0.85 0.15 0.15 0.15 0.15 0.15 0.15
F2 0.7 1 1 1 1 0.15 0.15 0.4 0.4
F3 -60 -25 -25 -25 -25 -60 -60 -60 -60
F4 15 15 15 15 15 15 15 15 15
15/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Contents
1
Methodology
2
Case of study
3
Conclusions
16/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Methodology Case of study Conclusions
Conclusions
The RMRb and SMR indexes were calculated using data extracted from 3DPC, using open source software. The geometrical analysis of the planes can be reproduced by any user if the analysis parameters are provided. Use of qualitative data acquired during the fieldwork was required.
17/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium
Using open-source software for extracting geomechanical parameters of a rock mass from 3DPC Discontinuity Set Extractor and SMRTool
A.Riquelmea1 a b
R.Tomása2
M. Canoa3
A. Abellánb4
Civil Engineering Department, University of Alicante, Spain
Scott Polar Research Institute, Geography Department, University of Cambridge, England
{1
[email protected], 2
[email protected], 3
[email protected], 4
[email protected] }
August 30, 2016
18/18 A. Riquelme et al;
[email protected]
2016 ISRM International Symposium