Supporting Information for 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
DOI: 10.1002/((please add manuscript number)) Article type: Communication
UV-deep blue-visible light emitting organic field effect transistors with high charge carrier mobilities Mujeeb Ullah1†,*, Robert Wawrzinek1,†, Ravi Chandra Raju Nagiri2, Shih-Chun Lo2,* and Ebinazar B. Namdas1,*
Centre for Organic Photonics & Electronics, The University of Queensland, Brisbane, QLD, 4072, Australia 1 School of Mathematics and Physics 2 School of Chemistry and Molecular Biosciences † The authors contributed equally * Correspondence:
[email protected],
[email protected],
[email protected] List of Figure Captions Figure S1. AFM images of evaporated films BTBT-C10 and Ph-BTBT-C10. Figure S2. XRD results of evaporated films BTBT-C10 and Ph-BTBT-C10. Figure S3. Molecular structure and length of BTBT-C10 and Ph-BTBT-C10. Figure S4. Fabrication process. Figure S5. Small channel OFET mobility versus gate voltage. Figure S6. Long channel OFET mobility versus gate voltage, FET and gFPP. Figure S7. Working mechanism. Figure S8. Chemical structure of visible-range emissive materials. Figure S9. Output characteristics of heterostructure LEFETs. Figure S10. Transfer characteristics of PCAN, rubrene and DMQA based single layer LEFETs. Figure S11. Current densities in heterostructure LEFETs. Table S1. Comparison with Literature Table S2. Comparison of single-layer and heterostructure LEFETs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Figure S1. AFM images (a, b) of evaporated films of BTBT-C10 and Ph-BTBT-C10 and step height of terraces (c, d).
10
5
BTBT-C10
Intensity [a.u.]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
10
4
10
3
10
2
10
1
Ph-BTBT-C10
1
2
4
8
2q
o
16
32
Figure S2. XRD results of evaporated films of BTBT-C10 (black) and Ph-BTBT-C10 (red).
Figure S3. Molecular structure and calculated length of BTBT-C10 (a) and Ph-BTBTC10 (b). (Simple MM2 geometry optimisation with PerkinElmer ChemBio3D Ultra v.14.0.0.117).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Figure S4. Fabrication process of all the devices in this study.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Figure S5. OFET mobility in saturation regime versus gate voltage for BTBT-C10 (a), and Ph-BTBT-C10 (b) transistors with channel length, L=100µm and channel width, W=14mm. Linear fit to square root of drain current in for BTBT-C10 (b) and PhBTBT-C10 (d) OFETs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Figure S6. (a) Device structure to measure gFPP mobility with channel length, L=500µm and channel width, W=1000µm. The gFPP mobility (at VDS = -10V) versus gate voltage of BTBT-C10 (b) and Ph-BTBT-C10 (c) based transistors. For direct comparison, the conventional two probe OFET mobility in linear regime (at VDS = 10V), saturation regimes (at VDS = -100V) are also plotted in the same figures.
Figure S7. Working mechanism of (a) single layer LEFET and (b) heterostructure LEFETs, in which TCA = TPBI/Cs2CO3/Ag.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
a)
b)
N
PCAN rubrene c)
O N
N O
DMQA
Figure S8. Chemical structures of visible-range emissive materials, (a) PCAN, (b) rubrene and (c) DMQA.
Figure S9. Output characteristics of heterostructure LEFETs.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
Figure S10. Transfer characteristics of single layer LEFETs based on PCAN, rubrene, and DMQA (without a BTBT-C10 transporting layer).
10
EQE %
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
0
10
-1
10
-2
10
-3
Rubrene DMQA PCAN 0
1
2
3
4 2
J [A/cm ] Figure S11. Current densities in heterostructure LEFETs.
5
6
Table S1: Comparison with Literature. 1 A comparison of the results of single-layer LEFETs previously reported and this 2 study. 3 4 This study Ref #1 Ref #2 Ref #3 Ref #4 Ref #5 5 6 7 3 terminal 3 terminal 3 terminal 3-terminal 3-terminal 3-terminal 3- terminal 8 Device Architecture 9 1-layer 1-layer 1- layer 1- layer 1-layer 1-layer 1-layer 10 11 BTBT-C10 Ph-BTBT-C10 F8BT rubrene & EFIN BSB-Me P3V2 12 Material tetracene (single (single 13 14 (single crystal) crystal) 15 crystals) 16 µhole 6 2 0.82 & 2.3 6 × 10–6 1 × 10−4 1.1 ×10-1 17 2 -1 -1 -3 (