AxisVM 11 Verification Examples. 4. Software Release Number: R3. Date: 17. 10.
2012. Tested by: InterCAD. Page number: File name: beam1.axs. Thema.
Verification Examples
2012
AxisVM 11 Verification Examples
2
Linear static .............................................................................................................3 Supported bar with concentrated loads. .......................................................................................................................4 Thermally loaded bar structure.....................................................................................................................................5 Continously supported beam with constant distributed load.........................................................................................6 External prestessed beam...........................................................................................................................................9 Periodically supported infinite membrane wall with constant distributed load. ...........................................................11 Clamped beam examination with plane stress elements............................................................................................13 Clamped thin square plate..........................................................................................................................................16 Plate with fixed support and constant distributed load................................................................................................18 Annular plate. .............................................................................................................................................................19 All edges simply supported plate with partial distributed load. ...................................................................................21 Clamped plate with linear distributed load..................................................................................................................23 Hemisphere displacement. .........................................................................................................................................25
Nonlinear static......................................................................................................27 3D beam structure......................................................................................................................................................28 Plate with fixed end and bending moment..................................................................................................................30
Dynamic.................................................................................................................33 Deep simply supported beam.....................................................................................................................................34 Clamped thin rhombic plate........................................................................................................................................37 Cantilevered thin square plate....................................................................................................................................39 Cantilevered tapered membrane. ...............................................................................................................................42 Flat grillages. ..............................................................................................................................................................45
Stability ..................................................................................................................49 Simply supported beam..............................................................................................................................................50 Simply supported beam..............................................................................................................................................52
Design ...................................................................................................................53 N-M interaction curve of cross-section EC2, EN 1992-1-1:2004. ...............................................................................54 RC beam deflection according to EC2, EN 1992-1-1:2004. .......................................................................................55 Required steel reinforcement of RC plate according to EC2, EN 1992-1-1:2004……………………………...………..57 Interaction check of beam under biaxial bending EC3, EN 1993-1-1:2005…………………………...………………….59 Interaction check of beam under normal force, bending and shear force EC3, EN 1993-1-1:2005…………………...61 Buckling resistance of simply supported I beam EC3, EN 1993-1-1:2005…….…………………………………………63 Buckling resistance of simply supported T beam EC3, EN 1993-1-1:2005……………………………………………....65 Buckling of a hollow cross-section beam EC3, EN 1993-1-1:2005…………………………………………………….….67 Lateral torsional buckling of a beam EC3, EN 1993-1-1:2005……………………………………………………………..71 Interaction check of beam in section class 4. EC3, EN 1993-1-1:2005, EN 1993-1-5:2006………………………...…77 Earth-quake design using response-spectrum method. ……………………………………………………..………80
AxisVM 11 Verification Examples
Linear static
3
AxisVM 11 Verification Examples
4
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam1.axs Thema
Supported bar with concentrated loads.
Analysis Type Geometry
Linear analysis.
Side view Section Area = 1,0 m
2
Loads
Axial direction forces P1 = -200 N, P2 = 100 N, P3 = -40 N
Boundary Conditions Material Properties Element types Mesh
Fix ends, at R1 and R5. E = 20000 kN / cm ν = 0,3 Beam element
Target
R1 , R5 support forces
2
Results
Theory
AxisVM
%
R 1 [N]
-22,00
-22,00
0,00
R5 [N]
118,00
118,00
0,00
AxisVM 11 Verification Examples
5
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam2.axs Thema
Thermally loaded bar structure.
Analysis Type Geometry
Linear analysis.
Side view Sections: -4 2 Steel: AS = π x 10 m -4 2 Copper: AC = π x 10 m Loads Boundary Conditions Material Properties
Element types Target
P = -12 kN (Point load) Temperature rise of 10 °C in the structure after assembly. The upper end of bars are fixed. Steel:
ES = 20700 kN / cm , ν = 0,3 , αS = 1,2 x 10 °C 2
-5
Copper: EC = 11040 kN / cm , ν = 0,3 , αC = 1,7 x 10 °C 2
-5
-1
-1
Beam element Smax in the three bars.
Results
Theory
AxisVM
%
Steel Smax [MPa]
23824000
23847900
0,10
Cooper Smax [MPa]
7185300
7198908
0,19
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam3.axs Thema
Continously supported beam with point loads.
Analysis Type Geometry
Linear analysis.
Side view (Section width = 1,00 m, height1 = 0,30 m, height2 = 0,60 m) Loads
P1= -300 kN, P2= -1250 kN, P3= -800 kN, P4= -450 kN
Boundary Conditions
Elastic supported. From A to D is Kz = 25000 kN/m/m. From D to F is Kz = 15000 kN/m/m. 2 E = 3000 kN/cm ν = 0,3 Three node beam element. Shear deformation is taken into account.
Material Properties Element types Target Results
ez, My, Vz, Rz
Diagram ez
Diagram My
Results
6
AxisVM 11 Verification Examples
7
Diagram Vz
Diagram R
Reference
AxisVM
e [%]
eA [m]
0,006
0,006
0,00
eB [m]
0,009
0,009
0,00
eC [m]
0,014
0,014
0,00
eD [m]
0,015
0,015
0,00
eE [m]
0,015
0,015
0,00
eF [m]
0,013
0,013
0,00
Reference
AxisVM
e [%]
0,0
0,2
0,00
MC [KNm] MD [KNm] ME [KNm]
88,5 636,2
87,1 630,8
-1,58 -0,85
332,8 164,2
330,1 163,0
-0,81 -0,73
MF [KNm]
0,0
0,4
0,00
MA [KNm] MB [KNm]
AxisVM 11 Verification Examples
8
Results
VA [KN] VB [KN] VC [KN] VD [KN] VE [KN] VF [KN]
Reference
AxisVM
e [%]
0,0
0,1
0,00
112,1 646,8
113,1 647,2
0,89 0,06
335,0 267,8
334,9 267,5
-0,03 -0,11
0,0
-0,1
0,00
Reference
AxisVM
e [%]
2
145,7
154,0
5,70
2
219,5
219,4
-0,05
2
343,8
346,0
0,64
2
386,9
386,4
-0,13
2
224,5
224,7
0,09
2
201,2
200,8
-0,20
RA [KN/m ] RB [KN/m ] RC [KN/m ] RD [KN/m ] RE [KN/m ] RF [KN/m ]
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam4.axs Thema
External prestessed beam.
Analysis Type Geometry
Linear analysis.
Side view Loads
p = -50 kN /m distributed load Length change = -6,52E-3 at beam 5-6
Boundary Conditions
eY = eZ = = 0 at node 1 eX = eY = eZ = 0 at node 4
Material Properties
E = 2,1E11 N / m 2 4 Beam 1-5, 5-6, 6-4 A = 4,5E-3 m Iz= 0,2E-5 m 2 4 Truss 2-5, 3-6 A = 3,48E-3 m Iz= 0,2E-5 m 2 4 Beam 1-4 A = 1,1516E-2 m Iz= 2,174E-4 m
2
Mesh
Element types
Three node beam element, 1-5, 5-6, 6-4, 1-4 (shear deformation is taken into account) Truss element 2-5, 3-6
Target
NX at beam 6-7 My,max at beam 2-3 ez at node 2
9
AxisVM 11 Verification Examples
10
Results
2
3
5
6
2,000
4,000
4
0,600
1
2,000
8,000
Z
X
Diagram ez
ROBOT V6®
AxisVM
%
Nx [kN]
584,56
584,80
0,04
My [kNm]
49,26 -0,5421
49,60 -0,5469
0,68 0,89
ez [mm]
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plane1.axs Thema
Periodically supported infinite membrane wall with constant distributed load.
Analysis Type Geometry
Linear analysis.
Side view (thickness = 20,0 cm) Loads
p = 200 kN / m
Boundary Conditions Material Properties Element types Mesh
vertical support at every 4,0 m support length is 0,4 m E = 880 kN / cm ν = 0,16 Parabolic quadrilateral membrane (plane stress)
Target
Sxx at 1-10 nodes (1-5 at middle, 6-10 at support)
2
11
AxisVM 11 Verification Examples
12
Results
Node
Analytical [kN/cm2 ]
AxisVM [kN/cm2 ]
%
1 2 3 4 5 6 7 8 9 10
0,1313 0,0399 -0,0093 -0,0412 -0,1073 -0,9317 0,0401 0,0465 0,0538 0,1249
0,1312 0,0395 -0,0095 -0,0413 -0,1071 -0,9175 0,0426 0,0469 0,0538 0,1247
-0,08 -1,00 2,15 0,24 -0,19 -1,52 6,23 0,86 0,00 -0,16
Reference: Dr. Bölcskey Elemér – Dr. Orosz Árpád: Vasbeton szerkezetek Faltartók, Lemezek, Tárolók
AxisVM 11 Verification Examples
13
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plane2.axs Thema
Clamped beam examination with plane stress elements.
Analysis Type Geometry
Linear analysis.
Side view Loads
p = -25 kN/m
Boundary Conditions Material Properties Element types Mesh
Both ends built-in. 2
E = 880 kN / cm ν=0 Parabolic quadrilateral membrane (plane stress)
0,375
1
0,500
Clamped edge
C
3,000
Z
X
Side view
0,250
AxisVM 11 Verification Examples Target
14
τxy, max at section C
Results
Diagram
τxy
5,14
791,56
Z
Y
5,28
Diagram
τxy at section C
AxisVM 11 Verification Examples V = 65,625 kN ( from beam theory ) S y' = 0,0078125 m 3 b = 0,25 m I y = 0,00260416 m 4
τ xy =
V ⋅ S y' b⋅Iy
=
AxisVM result
65,625 ⋅ 0,0078125 = 787 ,5 kN / m 2 0,25 ⋅ 0,00260416
τ xy = 791,6 kN / m2
Difference = +0,52 % AxisVM result V = ∑ n xy = 65,34 kN Difference = +0,43 %
15
AxisVM 11 Verification Examples
16
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate1.axs Thema
Clamped thin square plate.
Analysis Type Geometry
Linear analysis.
Top view (thickness = 5,0 cm) Loads
P = -10 kN (at the middle of the plate)
Boundary Conditions Material Properties Element types Mesh
eX = ez = eZ = fiX = fiY = fiZ = 0 along all edges 2
4,000
E = 20000 kN / cm ν = 0,3 Plate element (Parabolic quadrilateral, heterosis)
4,000 Y
X
Target
Displacement of middle of the plate
AxisVM 11 Verification Examples
17
Results -0,001 -0,006 -0,006
-0,012 -0,022
-0,019
-0,012
-0,043
-0,024
-0,043
-0,019
-0,084
-0,065
-0,024
-0,026
-0,065
-0,026
-0,081
-0,024
-0,087
-0,019
-0,006 -0,001
-0,022
-0,337
-0,337
-0,237
-0,084
-0,187 -0,125
-0,065
-0,012
-0,125
-0,237
-0,019 -0,024
-0,337
-0,156 -0,081
-0,006
-0,084
-0,043 -0,012
-0,187
-0,125
-0,065
-0,019
-0,337
-0,257
-0,125
-0,043
-0,006
-0,257
-0,307
-0,257 -0,156
-0,001 -0,022
-0,156
-0,237
-0,168
-0,065 -0,043
-0,043
-0,168 -0,257
-0,081
-0,006
-0,065
-0,168 -0,237
-0,168
-0,012
-0,081
-0,187
-0,156
-0,019
-0,087
-0,156
-0,087
-0,026
-0,012
-0,125
-0,081
-0,026
-0,024
-0,087
-0,125
-0,307 -0,237
-0,307
-0,383 -0,383
-0,337
-0,257
-0,237
-0,156
-0,168
-0,081
-0,087
-0,024
-0,026
-0,383 -0,337
-0,087 -0,168 -0,026 -0,257 -0,383 -0,337 -0,337 -0,156 -0,081 -0,237 -0,307 -0,257 -0,024 -0,168 -0,237 -0,187 -0,087 -0,125 -0,156 -0,065 -0,125 -0,081 -0,019 -0,026 -0,084 -0,065 -0,043 -0,024 -0,043 -0,012 -0,019 -0,022 -0,012 -0,006 -0,006 -0,257 -0,168
-0,087 -0,026
-0,001
Z X
Y
Displacements
Mode
Mesh
Book1
1 2 3 4 5
2x2 4x4 8x8 12x12 16x16
0,402 0,416 0,394 0,387 0,385
Timoshenko2
AxisVM
0,38
0,420 0,369 0,381 0,383 0,383
Diff1 [%] Diff2 [%]
4,48 -11,30 -3,30 -1,03 -0,52
10,53 -2,89 0,26 0,79 0,79
References: 1.) The Finite Element Method (Fourth Edition) Volume 2. /O.C. Zienkiewicz and R.L. Taylor/ McGraw-Hill Book Company 1991 London 2.) Result of analytical solution of Timoshenko
Convergency 15,00
10,00
Displacements
5,00
Diff1 [%]
0,00 1
2
3
-5,00
-10,00
-15,00 Mesh density
4
5
Diff2 [%]
AxisVM 11 Verification Examples
18
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate2_1.axs Thema
Plate with fixed support and constant distributed load.
Analysis Type Geometry
Linear analysis.
Top view
Loads Boundary Conditions Material Properties Element types Mesh
Target Results
(thickness = 15,0 cm) 2 P = -5 kN / m eX = eY = eZ = fiX = fiY = fiZ = 0 along all edges 2
E = 990 kN/cm ν = 0,16 Parabolic triangle plate element
Maximal eZ (found at Node1) and maximal mx (found at Node2)
Component eZ,max [mm] mx,max [kNm/m]
Nastran®
AxisVM
%
-1,613 3,060
-1,593 3,059
-1,24 -0,03
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate3.axs Thema
Annular plate.
Analysis Type Geometry
Linear analysis.
Top view (thickness = 22,0 cm) Loads
Edge load: Q = 100 kN / m 2 Distributed load: q = 100 kN / m
Boundary Conditions
Material Properties Element types
2
E = 880 kN / cm ν = 0,3 Plate element (parabolic quadrilateral, heterosis)
19
AxisVM 11 Verification Examples
20
Mesh
3,000
1,000 4,000
Y
X
Target
Smax, emax
Results
Model
Theory Smax [kN/cm2]
AxisVM Smax [kN/cm2]
%
a.) b.) c.) d.) e.) f.) g.) h.)
2,82 6,88 14,22 1,33 2,35 9,88 4,79 7,86
2,78 6,76 14,10 1,33 2,25 9,88 4,76 7,86
-1,42 -1,74 -0,84 0,00 -4,26 0,00 -0,63 0,00
Model
Theory emax [mm]
AxisVM emax [mm]
%
a.) b.) c.) d.) e.) f.) g.) h.)
77,68 226,76 355,17 23,28 44,26 123,19 112,14 126,83
76,10 220,84 352,89 23,42 44,50 123,17 111,94 126,81
-2,03 -2,61 -0,64 0,60 0,54 -0,02 -0,18 -0,02
Reference: S. Timoshenko and S. Woinowsky-Krieger: Theory of Plates And Shells
AxisVM 11 Verification Examples
21
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate4.axs Thema
All edges simply supported plate with partial distributed load.
Analysis Type Geometry
Linear analysis.
Top view (thickness = 22,0 cm) 2
Distributed load: q = -10 kN / m (middle of the plate at 2,0 x 2,0 m area)
Boundary Conditions Material Properties Element types Mesh
a.) eX = eY = eZ = 0 along all edges (soft support) b.) eX = eY = eZ = 0 along all edges ϕ = 0 perpendicular the edges (hard support) 2 E = 880 kN / cm ν = 0,3 Plate element (Heterosis)
10,000
Loads
5,000
Y
X
AxisVM 11 Verification Examples Target
mx, max, my, max
Results
a.)
22
Moment mx, max [kNm/m]
Theory
AxisVM
%
7,24
7,34
1,38
my, max [kNm/m]
5,32
5,39
1,32
Moment mx, max [kNm/m]
Theory
AxisVM
%
7,24
7,28
0,55
my, max [kNm/m]
5,32
5,35
0,56
b.)
Reference: S. Timoshenko and S. Woinowsky-Krieger: Theory of Plates And Shells
AxisVM 11 Verification Examples
23
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: plate5.axs Thema
Clamped plate with linear distributed load.
Analysis Type Geometry
Linear analysis.
Top view (thickness = 22,0 cm) 2
Loads
Distributed load: q = -10 kN / m
Boundary Conditions
eX = eY = eZ = fiX = fiY= fiZ = 0 along all edges
Material Properties
E = 880 kN / cm ν = 0,3
Element types Mesh
Plate element (Heterosis)
2
3
1
4
10,000
Y
X
2
10,000
q
AxisVM 11 Verification Examples Target
24
mx, my
Results
Results mx, 1 [kNm/m] my, 1 [kNm/m] mx, 2 [kNm/m] mx, 3 [kNm/m] my, 4 [kNm/m]
Theory
AxisVM
%
11,50 11,50 33,40 17,90 25,70
11,48 11,48 33,23 17,83 25,53
-0,17 -0,17 -0,51 -0,39 -0,66
Reference: S. Timoshenko and S. Woinowsky-Krieger: Theory of Plates And Shells
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: hemisphere.axs Thema
Hemisphere displacement.
Analysis Type Geometry
Linear analysis.
Hemisphere (Axonometric view) t = 0,04 m Loads
Point load P = 2,0 kN
C
2,0 kN
2,0 kN
A B Z
X
Y
25
AxisVM 11 Verification Examples Boundary Conditions
eX = eY = eZ = 0 at A eX = eY = eZ = 0 at B
Material Properties
E = 6825 kN / cm ν = 0,3
Element types
Shell element 1.) guadrilateral parabolic 2.) triangle parabolic ex at point A
Target
26
2
Results
e x [m] Theory
0,185
AxisVM quadrilateral AxisVM triangle
0,185 0,182
e [%] 0,00 -1,62
AxisVM 11 Verification Examples
Nonlinear static
27
AxisVM 11 Verification Examples
28
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: nonlin1.axs 3D beam structure.
Analysis Type Geometry
Geometrical nonlinear analysis.
Fy =-300,00 kN Fz =-600,00 kN
3,000 m
1,732 m
Thema
1,732 m
Fy =-300,00 kN Fz =-600,00 kN
Node1 Beam1 Y
1,732 m
3,000 m
X
D Fz =-600,00 kN
A
C
Z
Z Y
Loads Boundary Conditions Material Properties CrossSection Properties Element types Target
4,000 m
B
X
X
Py = -300 kN Pz = -600 kN eX = eY = eZ = 0 at A, B, C and D S 275 2 E = 21000 kN / cm ν = 0,3 HEA 300 2 4 4 4 Ax = 112.56 cm ; Ix = 85.3 cm ; Iy = 18268.0 cm ; Iz = 6309.6 cm Beam eX, eY, eZ, at Node1 Nx, Vy, Vz, Tx, My, Mz of Beam1 at Node1
1,732 m
AxisVM 11 Verification Examples Results
29
Comparison with the results obtained using Nastran V4 ®
Component
Nastran
AxisVM
%
eX [mm] eY [mm] eZ [mm] Nx [kN] Vy [kN] Vx [kN] Tx [kNm] My [kNm] Mz [kNm]
17,898 -75,702 -42,623 -283,15 -28,09 -106,57 -4,57 -519,00 148,94
17,881 -75,663 -42,597 -283,25 -28,10 -106,48 -4,57 -518,74 148,91
-0,09 -0,05 -0,06 0,04 0,04 -0,08 0,00 -0,05 -0,02
AxisVM 11 Verification Examples
30
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: nonlin2.axs Thema
Plate with fixed end and bending moment.
Analysis Type Geometry
Geometrical nonlinear analysis.
1,0 m
Edge1
Edge2
12,0 m
Z
Y
X
Loads Boundary Conditions Material Properties Cross Section Properties Element types
Mz = 2600 kNm (2x1300 Nm) acting on Edge2 eX = eY = eZ = fiX = fiY = fiZ = 0 along Edge1 2
E = 20000 N / mm ν=0 Plate thickness: 150 mm Rib on Edge2: circular D = 500 mm (for distributing load to the mid-side-node) Parabolic quadrilateral shell (heterosis) Rib on Edge2 for distributing load to the mid-side-node
AxisVM 11 Verification Examples Target
31
ϕZ at Edge2
Results
5,5502 rad
1,0 m
Edge1
Edge2
12,0 m
Z
Y
X
Theoretical results based on the differential equation of the flexible beam:
M M l plate I plate E plate → ϕ z = I plate E plate ϕ z = κ ⋅ l plate a b 3 1 ⋅ 0.15 3 I plate = = = 2.8125 ⋅10 −4 12 12 E plate = 2 ⋅1010 N m 2
κ =
l plate = 12 m M = 2.6 ⋅10 6 Nm
ϕz =
2.6 ⋅10 6 ⋅12 = 5.5467 rad 2.8125 ⋅10 −4 ⋅ 2 ⋅ 1010
Comparison the AxisVM result with the theoretical one:
Component fiZ [rad]
Theory
AxisVM
%
5,5467
5,5502
0,06
AxisVM 11 Verification Examples
BLANK
32
AxisVM 11 Verification Examples
Dynamic
33
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam1.axs Thema
Deep simply supported beam.
Analysis Type Geometry
Dynamic analysis.
Beam (Axonometric view) Cross section (square 2,0 m x 2,0 m)
Loads
Self-weight
Boundary Conditions
eX = eY = eZ = fiX = 0 at A eY = eZ = 0 at B
Material Properties
E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m
Element types Target
Three node beam element (shear deformation is taken into account)
2
First 7 mode shapes
34
AxisVM 11 Verification Examples
35
Results
Mode 1: f = 43,16 Hz
Mode 2: f = 43,16 Hz
Mode 3: f = 124,01 Hz
Mode 4: f = 152,50 Hz
Mode 5: f = 152,50 Hz
Mode 6: f = 293,55 Hz
Mode 7: f = 293,55 Hz
AxisVM 11 Verification Examples Results
36
Comparison with NAFEMS example
Mode 1 2 3 4 5 6 7
NAFEMS (Hz)
AxisVM (Hz)
%
42,65 42,65 125,00 148,31 148,31 284,55 284,55
43,16 43,16 124,01 152,50 152,50 293,55 293,55
-1,20 -1,20 0,79 -2,83 -2,83 -3,16 -3,16
AxisVM 11 Verification Examples
37
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam2.axs Thema
Clamped thin rhombic plate.
Analysis Type Geometry
Dynamic analysis.
Top view of plane (thickness = 5,0 cm) Loads
Self-weight
Boundary Conditions
eX = eY = fiZ = 0 at all nodes (ie: eX, eY, fiZ constained at all nodes) eZ = fiX = fiY = 0 along the 4 edges
Material Properties
E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m
Element types Mesh
Parabolic quadrilateral shell element (heterosis)
10 ,0 00
2
10,000 Y
X
AxisVM 11 Verification Examples Target
38
First 6 mode shapes
Results
Mode 1: f = 8,02 Hz
eR
eR
0,506 0,470 0,433 0,397 0,361 0,325 0,289 0,253 0,217 0,181 0,144 0,108 0,072 0,036 0
0,463 0,429 0,396 0,363 0,330 0,297 0,264 0,231 0,198 0,165 0,132 0,099 0,066 0,033 0
Mode 2: f = 13,02 Hz
eR
eR
0,520 0,483 0,446 0,409
0,486 0,451 0,416 0,382 0,347 0,312 0,278 0,243 0,208 0,174 0,139 0,104 0,069 0,035 0
Mode 3: f = 18,41 Hz
eR
0,372 0,335 0,297 0,260 0,223 0,186 0,149 0,112 0,074 0,037 0
Mode 4: f = 19,33 Hz
0,498 0,462 0,427 0,391 0,356 0,320 0,284 0,249 0,213 0,178 0,142 0,107 0,071 0,036 0
Mode 5: f = 24,62 Hz
Results
0,449 0,417 0,385 0,353 0,321 0,289 0,257 0,225 0,192 0,160 0,128 0,096 0,064 0,032 0
Mode 6: f = 28,24 Hz
Comparison with NAFEMS example
Mode 1 2 3 4 5 6
eR
NAFEMS (Hz)
AxisVM (Hz)
%
7,94 12,84 17,94 19,13 24,01 27,92
8,02 13,02 18,41 19,33 24,62 28,24
1,01 1,40 2,62 1,05 2,54 1,15
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam3.axs Thema
Cantilevered thin square plate.
Analysis Type Geometry
Dynamic analysis.
Top view (thickness = 5,0 cm) Loads
Self-weight
Boundary Conditions Material Properties
eX = eY = eZ = fiX = fiY = fiZ = 0 along y-axis
Element types Mesh
E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m
2
Parabolic quadrilateral shell element (heterosis).
39
AxisVM 11 Verification Examples Target
First 5 mode shapes
Results
Mode 1: f = 0,42 Hz
Mode 3: f = 2,53 Hz
Mode 5: f = 3,68 Hz
40
AxisVM 11 Verification Examples
41
Mode 2: f = 1,02 Hz
Mode 4: f = 3,22 Hz
Comparison with NAFEMS example
Mode 1 2 3 4 5
NAFEMS (Hz)
AxisVM (Hz)
%
0,421 1,029 2,580 3,310 3,750
0,420 1,020 2,530 3,220 3,680
-0,24 -0,87 -1,94 -2,72 -1,87
AxisVM 11 Verification Examples
42
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam4.axs Thema
Cantilevered tapered membrane.
Analysis Type Geometry
Dynamic analysis.
Side view (thickness = 10,0 cm) Loads
Self-weight
Boundary Conditions
eZ = 0 at all nodes (ie: eZ constained at all nodes) eX = eY = 0 along y-axis
Material Properties
E = 20000 kN / cm ν = 0,3 3 ρ = 8000 kg / m
Element types Mesh
Parabolic quadrilateral membrane (plane stress)
1,000
5,000
2
10,000 Y
X
AxisVM 11 Verification Examples Target
43
First 4 mode shapes
Results
1,000 5,000
10,000 Y X
1,000
5,000
Mode 1: f = 44,33 Hz
10,000 Y
X
Mode 2: f = 128,36 Hz
AxisVM 11 Verification Examples
1,000
5,000
44
10,000 Y
X
1,000
5,000
Mode 3: f = 162,48 Hz
10,000 Y
X
Mode 4: f = 241,22 Hz Results
Comparison with NAFEMS example
Mode 1 2 3 4
NAFEMS (Hz)
AxisVM (Hz)
%
44,62 130,03 162,70 246,05
44,33 128,36 162,48 241,22
-0,65 -1,28 -0,14 -1,96
AxisVM 11 Verification Examples
45
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: dynam5.axs Thema
Flat grillages.
Analysis Type Geometry
Dynamic analysis.
Top view Loads
Self-weight
Boundary Conditions Material Properties
eX = eY = eZ = 0 at the ends (simple supported beams)
2
A = 0,004 m 4 Ix = 2,5E-5 m 4 Iy = Iz = 1,25E-5 m Three node beam element (shear deformation is taken into account)
1,000
0,500
4,500
1,000
Element types Mesh
2
2,000
Cross Section
E = 20000 kN / cm 2 G = 7690 kN / cm ν = 0,3 3 ρ = 7860 kg / m
1,500 Y
X
1,500
1,500
1,000
0,500
AxisVM 11 Verification Examples Target
46
First 3 mode shapes
1,679
1,879
1,605
1,638
1,586
1,035
1,241
1,114
Results
ZY X
1,938
2,254 0,856
-1,837
-2,065
-1,813
2,040
Mode 1: f = 16,90 Hz
Z Y X
ZY X
Mode 3: f = 51,76 Hz
-1,845
-1,992 2,040
1,585 -1,130
1,721
-1,620
-1,581
-1,667
Mode 2: f = 20,64 Hz
AxisVM 11 Verification Examples Mode 1 2 3
47
Reference
AxisVM (Hz)
%
16,85 20,21 53,30
16,90 20,64 51,76
0,30 2,13 -2,89
Reference: C.T.F. ROSS: Finite Element Methods In Engineering Science
AxisVM 11 Verification Examples
BLANK
48
AxisVM 11 Verification Examples
Stability
49
AxisVM 11 Verification Examples
50
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: buckling1.axs Thema
Simply supported beam.
Analysis Type Geometry
Buckling analysis.
Front view 2
2
7
3
20,0
6
S 1
1
8 5
9
z
y
4
1,0
G
10,0 4
4
6
Cross section (Iz =168,3 cm , It =12,18 cm , Iw =16667 cm ) Loads Boundary Conditions Material Properties Element types Mesh
Bending moment at both ends of beam MA = 1,0 kNm, MB = -1,0 kNm eX = eY = eZ = 0 at A eX = eY = eZ = 0 at B kz = kw = 1 2 E = 20600 kN / cm ν = 0,3 2 G = 7923 kg / m Parabolic quadrilateral shell element (heterosis)
AxisVM 11 Verification Examples Target
51
Mcr = ? (for lateral torsional buckling)
Results
Analytical solution
M cr =
M cr =
π 2 ⋅ E ⋅ IZ L2
IW L2 ⋅ G ⋅ I t + 2 IZ π ⋅ E ⋅ IZ
π 2 ⋅ 20600 ⋅ 168,3 16667 2002
AxisVM result Mcr = 125,3 kNm Difference +0,6%
168,3
+
2002 ⋅ 7923 ⋅ 12,18 = 12451 kNcm = 124,51 kNm π 2 ⋅ 20600 ⋅ 168,3
AxisVM 11 Verification Examples
52
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: buckling2.axs Thema
Simply supported beam.
Analysis Type Geometry
Buckling analysis.
Front view (L = 1,0 m)
1
2
5
S 1
2
G
10,0
5
S 1
2
10,0
2
G
3 3
4
4
12,0
30,0
z
y
z
y
Section A1
Section A2 Cross-sections
Loads
P = -1,0 kN at point B.
Boundary Conditions
eX = eY = eZ = 0 at A eY = eZ = 0 at B
Material Properties
E = 20000 kN / cm ν = 0,3
Element types Target
Beam element
2
Pcr = ? (for inplane buckling)
Results
P cr [kN]
Theory
AxisVM
e [%]
3,340
3,337
-0,09
AxisVM 11 Verification Examples
Design
53
AxisVM 11 Verification Examples
54
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: RC column1.axs Thema
N-M interaction curve of cross-section (EN 1992-1-1:2004).
Analysis Type Geometry
Linear static analysis+design.
2φ20
3φ28
Section: 300x400 mm Covering: 40 mm Loads Boundary Conditions Material Properties
Target Results
Concrete: 2 fcd=14,2 N/mm ec1=0,002 ecu=0,0035 (parabola-constans σ-ε diagram) Steel: 2 fsd=348 N/mm esu=0,015 Compare the program results with with hand calculation at keypoints of M-N interaction curve. N 1
2 6 5
3 4
1 2 3 4 5 6
N [kN] -2561 -1221 0 +861 0 -362
M [kNm] +61 +211 +70 -61 -190 -211
M(N) AxisVM +61,4 +209,7 +70,5 -61,4 -191,2 -209,7
Reference: Dr. Kollár L. P., Vasbetonszerkezetek I. Műegyetemi kiadó
e% +0,7 -0,6 +0,7 +0,7 +0,6 -0,6
AxisVM 11 Verification Examples Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam1.axs Thema
RC beam deflection according to EC2, EN 1992-1-1:2004.
Analysis Type Geometry
Material nonlinear analysis.
q = 17 kN/m
L = 5,60 m Side view
2φ20 35 cm
covering = 3 cm β = 0,5 4φ20
25 cm Section Loads
q = 17 kN /m distributed load
Boundary Conditions Material Properties
Simply supported beam.
Element types Target
Concrete: C25/30, ϕ = 2,1 Steel: B500B Parabolic quadrilateral plate element (Heterosis) ez, max
55
AxisVM 11 Verification Examples
56
Z
X
Diagram ez Aproximate calculation:
e = ζ ⋅ e II + (1 − ζ ) ⋅ e I = 20,06 _ mm where, eI is the deflection which was calculated with the uncracked inertia moment eII is the deflection which was calculated with the cracked inertia moment
σ ζ = 1 − β ⋅ sr σs
2
Calculation with integral of κ: e = 19,82 mm Calculation with AxisVM: e = 19,03 mm (different -4,0%)
-0,002
-5,239
-10,101
-14,242
-17,393
-19,360
-20,029
-19,360
-17,393
-14,242
-10,101
-5,239
-0,002
Results
AxisVM 11 Verification Examples
57
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: beam2.axs Thema
Required steel reinforcement of RC plate according to EC2, EN 1992-1-1:2004.
Analysis Type Geometry
Linear analysis. Szabvány : Eurocode Eset : ST1
50 kN
4,0 Y
X
Side view
Cross-section Loads
Pz = -50 kN point load
Boundary Conditions Material Properties Element types Mesh
Clamped cantilever plate. Concrete: C25/30 Steel: B500A Parabolic quadrilateral plate element (heterosis) Szabvány : Eurocode Eset : ST1
1,0
4,0
Clamped edge
Y
X
Top view
AxisVM 11 Verification Examples Target
58
AXT steel reinforcement along x direction at the top of the support
Results Lineáris számítás Szabvány : Eurocode Eset : ST1 E (W) : 1,09E-11 E (P) : 1,09E-11 E (ER) : 8,49E-13 Komp. : axf [mm2 /m]
1,0
4,0
Clamped edge
ST1, axf: 2093 mm2 /m
Z Y
X
Diagram AXT Calculation according to EC2:
500 = 435 N / mm 2 1,15
f cd =
25 = 16,6 N / mm2 1,5
ξc 0 =
c ⋅ ε cu ⋅ ES 0,85 ⋅ 0,0035 ⋅ 20000 = = 0,54 ε cu ⋅ ES + f yd 0,0035 ⋅ 20000 + 435
f yd =
d = 300 – 53 = 247 mm
x M sd = M Rd = b ⋅ xc ⋅ f cd d − c = 200 kNm 2
439 > h xc = 55
ξc =
xc 55 = = 0,22 < ξ c 0 = 0,54 Steel reinforcement is yielding d 247
AS =
b ⋅ xc ⋅ f cd 55 ⋅1000 ⋅16,6 = = 2099 mm 2 f yd 435
Calculation with AxisVM: AXT = 2093 mm2 / m Different = -0,3 %
AxisVM 11 Verification Examples
59
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_10 Plastic biaxial bending interaction.axs Thema
Interaction check of simply supported beam under biaxial bending (EN 1993-1-1).
Analysis Type Geometry
Steel Design
h = 270 mm b = 135 mm tf = 10 mm tw = 7 mm l = 6000 mm 2
A = 45,95 cm 3 W y,pl = 484,1 cm 3 W z,pl = 97 cm
IPE270 cross section Loads
qy = 1,5 kN/m qz = 20,4 kN/m
Boundary Conditions
ex = ey = ez = 0 at A ey = ez = 0 at B
Material Properties
S 235 2 E = 21000 kN/cm ν = 0,3
AxisVM 11 Verification Examples Element types Target
Beam element
Results
Analytical solution in the following book:
60
Interaction check taking into account plastic resistances
Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.10., page 28. Analitical solution
AxisVM
e[%]
My,Ed [kNm]
91,8
91,8
-
Mz,Ed [kNm]
6,75
6,75
-
Mpl,y,Rd [kNm]
113,74
113,76
+0,02
Mpl,z,Rd [kNm]
22,78
22,79
+0,04
α
2
2
-
β
1
1
-
capacity ratio [-]
0,948
0,947
-0,11
AxisVM 11 Verification Examples
61
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_12 _MNV_Interaction.axs Thema Analysis Type Geometry
Interaction check of simply supported beam under normal force, bending and shear force. (EN 1993-1-1, EN 1993-1-5) Steel Design
h = 200 mm b = 200 mm tf = 15 mm tw = 9 mm l = 1400 mm 2
A = 78,1 cm 2 Av = 24,83 cm 3 Iy = 5696 cm 3 W y,pl = 643 cm
IPE270 cross section Loads
Fz = 300 kN at thirds of beam N = 500 kN at B
Boundary Conditions
ex = ey = ez = 0 at A ey = ez = 0 at B
Material Properties
S 235 2 E = 21000 kN/cm ν = 0,3
Element types
Beam element
Target
Interaction check of axial force, shear force and bending moment.
AxisVM 11 Verification Examples Results
62
Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.12., page 31-33. Analytical solution
AxisVM results
e[%]
NEd [kN]
500
500
-
Vz,Ed [kN]
300
300
-
My,Ed [kNm]
140
140
-
Npl,Rd [kN]
2148
2148
-
capacity ratio [-]
0,233
0,233
-
Vpl,z,Rd [kN]
394,2
394,5
+0,08
capacity ratio [-]
0,761
0,761
-
Mpl,y,Rd [kNm]
176,8
176,7
-0,06
capacity ratio [-]
0,792
0,792
-
Ρ
0,273
0,271
-0,73
MV,Rd [kNm]
163,96
163,93
-0,02
N
0,233
0,233
-
A
0,232
0,232
-
MNV,Rd [kNm]
142,2
142,2
-
capacity ratio [-]
0,985
0,984
-0,10
Pure compression
Pure shear
Pure bending
Interaction check
AxisVM 11 Verification Examples
63
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_15 Központosan nyomott rúd - I szelvény.axs Thema
Buckling resistance of simply supported beam (EN 1993-1-1).
Analysis Type Geometry
Steel Design
h = 300 mm b = 250 mm tf = 14 mm tw = 8 mm l = 4500 mm 2
A = 94 cm 4 Iy = 19065,8cm 4 Iz = 3647,1 cm iy = 14,1 cm iz = 6,2 cm
“I” cross section, symmetric about y and z axis Loads Boundary Conditions Material Properties Element types Target
Normal force at point A NA= -1,0 kN ey = 0 at A ex = ey = ez = φx = φz = 0 at B kz = kw = 1 S 235 2 E = 21000 kN / cm ν = 0,3 Beam element Buckling resistance Nb,Rd = ?
AxisVM 11 Verification Examples Results
64
Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.15., P. 37-39. Analytical solution
AxisVM
e[%]
[-] *
0,673
0,673
-
[-]
0,771
0,769
-0,26
Χy [-] *
0,8004
0,7989
-0,19
Χz [-]
0,6810
0,6815
+0,07
Nb,Rd [kN]
1504,3
1505,3
+0,07
λy λz
AxisVM 11 Verification Examples
65
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_21 Központosan nyomott rúd - T szelvény.axs Thema
Buckling resistance of simply supported beam (EN 1993-1-1).
Analysis Type Geometry
Steel Design
h = 180 mm b = 250 mm tf = 16 mm tw = 16 mm l = 3000 mm 2
A = 68,8 cm 4 Iy = 2394,25cm 4 Iz = 2089,48 cm 4 Ics= 58,71 cm 6 Iw = 1108,0 cm iy = 5,90 cm iz = 5,51 cm
Loads Boundary Conditions Material Properties Element types Target
Welded “T” section, symmetric to z but not y Normal force at point A NA= -1,0 kN ey = 0 at A ex = ey = ez = φx = 0 at B kz = kw = 1 S 235 2 E = 21000 kN/cm ν = 0,3 Beam element Buckling resistance Nb,Rd = ?
AxisVM 11 Verification Examples Results
66
Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.21., P. 47-49. Analitical solution
AxisVM
e[%]
zs [cm]
49,0
49,0
-
zw [cm]
4,10
4,04
-1,46
iw [cm] *
9,05
9,03
-0,22
[-]
0,542
0,542
-
Χy [-]
0,8204
0,8195
-0,11
Nb,Rd,1 [kN]
1326,4
1325,0
-0,11
[-] *
0,667
0,667
-
Χz [-] *
0,7432
0,7446
+0,19
Nb,Rd,2 [kN] *
1201,6
1203,9
+0,19
λy
λz
* hidden partial results, Axis does not show them among the steel desing results
AxisVM 11 Verification Examples
67
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: Külpontosan nyomott rúd - RHS szelvény.axs Topic
Buckling of a hollow cross-section beam (EN 1993-1-1).
Analysis Type Geometry
Steel Design
h = 150 mm b = 100 mm tf = 10 mm tw = 10 mm L = 4,000 m 2
A = 43,41 cm 4 Iy = 1209,8 cm 4 Iz = 635,7 cm iy = 52,8 mm iz = 38,3 mm 3
W el,y = 161,3 cm 3 W el,z = 127,1 cm 3 W pl,y = 205,6 cm 3 W pl,z = 154,6 cm RHS 150x100x10,0 cross section (hot rolled) Loads
Boundary Conditions Material Properties Element types Steel Design Parameters Target
Bending moment at both ends of beam and axial force NEd,C = 200 kN MEd,A = MEd,B = 20 kNm ex = ey = ez = 0, warping free at A ey = ez = 0, warping free at B S 275 2 E = 21000 kN / cm ν = 0,3 Beam element Buckling length: Ly = L Lz = L Lw = L Check for interaction of compression and bending.
AxisVM 11 Verification Examples Results
68
Analytical solution: Section class: 1. Compression – flexural buckling 2 2 π E Iy π 21000 ⋅ 1209,8 N cr, y = = = 1567,2 kN 2 Ky L 400 2 2 π E I z π 21000 ⋅ 635,7 N cr,z = = = 823,5 kN 2 Kz L 400
N pl,Rd = A ⋅ f y = 43,41 ⋅ 27,5 = 1193,8 kN λy =
λz =
N pl N cry N pl N crz
=
=
1193,8 1567,16 1193,8 823,48
= 0,8728
= 1,2040
imperfection factor based on buckling curve “a” (hot rolled RHS section):
α y = α z = 0,21 φ=
1 + α ⋅ (λ - 0.2) + λ 2
χ :=
2 1
φ + φ 2 - λ2
χ y = 0,7516 χ z = 0,5275 N b,Rd =
χ y A fy γ1
=
2 2 0,5275 ⋅ 43,41 cm ⋅ 27,5 kN/cm 1,0
= 629,72 kN > N Ed, x = 200 kN
Bending – lateral torsional buckling Wpl,y f y 205,6 cm 3 ⋅ 27,5 kN/cm 2 M pl,Rd, y = = = 56,54 kNm > M Ed = 10 kNm γ1 1,0 C1 = 1,000 k = k w =1 z
2 π E Iz M cr = C1 2 (kL)
kz kw
2
I w (kL) 2 G I t + = 2 Iz π E I z
kN 2 4 π 21000 ⋅ 635,7cm cm 2 M cr = 1,0 ⋅ 2 (400 cm) M cr = 977,41 kNm
kN 2 4 (400 cm) ⋅ 8077 ⋅ 1436,2 cm 766 cm cm 2 + 4 kN 2 4 635,7 cm π ⋅ 21000 ⋅ 635,7 cm cm 2 6
AxisVM 11 Verification Examples Wy f y
λ LT =
M cr
λLT > 0,2
3 2 205,6 cm ⋅ 27,5 kN/cm
=
977,41 kNm
69
= 0,2405
torsional buckling may occur
α LT = 0,76
φ=
1+α
(λ
- 0.2) + λ
LT
2 LT
2
χ LT := M
LT
b, Rd
1 2
φ + φ - λ LT
2
= 0,5443
= 0,9684
= χ LT ⋅ M = 0,9684 ⋅ 56,54kNm = 54,76kNm pl , Rd , y
Interaction of bending and buckling 2 2 N Rk = A ⋅ f y = 43,41 cm ⋅ 27,5 kN/cm = 1193,8 kN
M y,Rk = M pl,Rd, y = 56,54kNm Equivalent uniform moment factors according to EN 1993-1-1 Annex B, Table B.3.: φ = 1,0
C my = 0,6 + 0,4φ = 1,0 > 0,4 For members susceptible to torsional deformations the interaction factors may be calculated according to EN 1993-1-1 Annex B, Table B.2.:
N Ed < C my 1 + 0,8 χ y N Rk /γ M1 χ y N Rk /γ M1 200 200 k yy = 1,0 1 + (0,87 - 0,2) ⋅ < 1,0 1 + 0,8 ⋅ 0,7531 ⋅ 1193,78 /1,0 0,7531 ⋅ 1193,78 /1,0
k yy = C my 1 + (λ LT - 0,2)
N Ed
k yy = min (1,149 ; 1,178) = 1,149
k zy = 1 −
0,1 ⋅ λ
N Ed,x N Ed,x 0,1 z ⋅ ≥ 1 − ⋅ C − 0,25 χ z N /γ C − 0,25 χ z N /γ Rk M1 Rk M1 mLT mLT
k zy = 1 −
200 200 0,1 ⋅ 1,2040 0,1 ⋅ ≥1− ⋅ 1,0 − 0, 25 0,5275 ⋅ 1193,78 /1,0 1,0 − 0, 25 0,5275 ⋅ 1193,78 /1,0
k zy = max (0,9490 ; 0,9577) = 0,9577
AxisVM 11 Verification Examples N Ed
χ y ⋅N Rk /γ M1 =
200 0,7516 ⋅ 1193,78 N Ed
200 0,5275 ⋅ 1193,78
M y,Ed
χ y ⋅ M y,Rk /γ M1
+ 1,149 ⋅
+ k zy
χ z ⋅ N Rk /γ M1 =
+ k yy
20 0,9684 ⋅ 56,54 M y,Ed
M y,Rk /γ M1
+ 0,9577 ⋅
70
=
= 0,6426
=
20 0,9684 ⋅ 56,54
= 0,6674
Analytical solution
AxisVM
e [%]
NRk = Npl,Rd [kN]
1193,8
1193,9
-
λ y [-]
0,873
0,870
-0,3
λz
[-]
1,204
1,201
-0,2
Χy [-]
0,7516
0,7516
-
Χz [-]
0,5275
0,5274
-
Nb,Rd [kN]
629,7
629,7
-
Mc,Rd = Mpl,Rd [kNm]
56,54
56,54
-
C1
1,000
1,000
-
Mcr [kNm]
977,41
977,40
-
λ LT [-]
0,2405
0,2405
-
ΧLT [-]
0,9684
0,9684
-
Mb,Rd [kNm]
54,76
54,57
-0,3
Cmy [-]
1,0
1,0
-
kyy [-]
1,149
1,150
-
kzy [-]
0,9577
0,9577
-
Interaction capacity ratio 1 [-]
0,643
0,643
-
Interaction capacity ratio 2 [-]
0,667
0,667
-
AxisVM 11 Verification Examples
71
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: 3_26 Külpontosan nyomott rúd - I szelvény.axs Thema
Lateral torsional buckling of a beam (EN 1993-1-1).
Analysis Type Geometry
Steel Design
h = 171 mm b = 180 mm tf = 6 mm tw = 9,5 mm L = 4,000 m 2
A = 45,26 cm 4 Iy = 2510,7 cm 4 Iz = 924,6 cm iy = 74 mm iz = 45 mm 3
W el,y = 293,7 cm 3 W el,z = 102,7 cm 3 W pl,y = 324,9 cm 3 W pl,z = 156,5 cm Iw = 58932 cm 4 It = 15 cm HEA180 Loads
Boundary Conditions Material Properties Element types
Axial force at B: Nx = -280 kN Point load in y direction at the thirds of the beam: Fy = 5 kN Distributed load in z direction: qz = 4,5 kNm ex = ey = ez = 0, warping free at A ey = ez = 0, warping free at B S 235 2 E = 21000 kN / cm ν = 0,3 Beam element
6
AxisVM 11 Verification Examples Steel Design Parameters
72
The elastic critical load factor is: αcr = 4,28 As αcr = 4,28 < 15 II. order analysis is required. For this, the beam element needs to be meshed. Divison of the beam element into 4. Buckling length: Ly = L Lz = L LT buckling length: Lw = L
Target
Buckling check for interaction of axial force and bi-axial bending.
Results Internal forces from the second order analysis
NEd,x = 280 kN
MEd,y = 9,84 kNm MEd,z = 8,81 kNm
VEd,y = 6,50 kN VEd,z = 9,61 kN
AxisVM 11 Verification Examples
73
Analytical solution: Section class: 1. Normal force 2
N cr,y =
N cr,z =
π
E Iy
=
Ky L
π
2
E Iz
2
21000 ⋅ 2510,7 400
π 2 21000 ⋅ 924,6
=
Kz L
π
400
= 3252,3 kN
= 1197,7 kN
N pl,Rd = A ⋅ f y = 45,26 ⋅ 23,5 = 1063,6 kN
λ = y
λ = z
N pl N cry N pl N crz
=
1063,6
=
1063,6
3252,3
1197,7
= 0,5719
= 0,9424
based on buckling curve “b” in y direction and “c” in z direction: χ y = 0,8508
χ z = 0,5741 χ y A fy
N b,Rd,1 = N b,Rd,2 =
γ1 χz A fy γ1
=
=
2 2 0,8508 ⋅ 45,26cm ⋅ 23,5kN/cm
= 904,92 kN > N Ed,x = 280 kN
1,0
2 2 0,5741 ⋅ 45,26cm ⋅ 23,5kN/cm 1,0
= 610,62 kN > N Ed,x = 280 kN
Bending
M pl,Rd, y = M pl,Rd,z =
Wpl,y f y
γ1 Wpl,z f y
γ1
=
=
3 2 324,9 cm ⋅ 23,5 kN/cm 1,0 3 2 156,5 cm ⋅ 23,5 kN/cm 1,0
= 76,35 kNm > M Ed, y = 9,84 kNm = 36,78 kNm > M Ed,z = 8,81 kNm
Calculation of the critical moment:
C1 = 1,132
(due to the My moment diagram)
2 π E Iz M cr = C1 2 (kL) M cr = 1,132
2
k z I w (kL) 2 G I t + = 2 k w Iz π E Iz
2 2 4 π 21000 kN/cm ⋅ 924,6 cm 2 (400 cm)
M cr = 174,1 kNm
58932 cm 924,6 cm
6 4
+
2 2 4 (400 cm) ⋅ 8077 kN/cm ⋅ 15 cm 2 2 4 π ⋅ 21000 kN/cm ⋅ 924,6 cm
AxisVM 11 Verification Examples
74
For rolled section, the following procedure may be used to determine the reduction factor (EN 1993-1-1,Paragraph 6.3.2.3.):
Wy f y
λ LT =
φ=
M cr
1+α
(λ
LT
174,10 kNm - 0.4) + 0.75 ⋅ λ
b, Rd
1 2
φ + φ - 0.75 ⋅ λ LT
= 0,6622
2 LT
2
χ LT := M
LT
3 2 324,9 cm ⋅ 23,5 kN/cm
=
= 0,7090
= 0,8881
2
= χ LT ⋅ M = 0,8881 ⋅ 76,35kNm = 67,81kNm pl , Rd , y
Interaction of axial force and bi-axial bending
N Rk = N pl,Rd = 1063,6 kN M y,Rk = M pl,Rd, y = 76,35 kNm M z, Rk = M pl,Rd, z = 36,78 kNm
Equivalent uniform moment factors according to EN 1993-1-1 Annex B, Table B.3.:
ψ = 0, α = 0 in both directions C
my
=C
mLT
= 0,95 + 0,05α = 0,95
C mz = 0,90 + 0,10α = 0,90
k yy = C my 1 + (λ - 0,2) y
(distributed load)
(concentrated load)
N Ed,x ≤ C my 1 + 0,8 χ y N Rk /γ M1 χ y N Rk /γ M1 N Ed,x
k yy = 0,95 ⋅ 1 + (0,5719 - 0,2) ⋅
280 ≤ 0,95 ⋅ 1 + 0,8 ⋅ 0,8508 ⋅ 1063,6 /1,0 0,8508 ⋅ 1063,6 /1,0 280
k yy = min (1,0593 ; 1,1851) = 1,0593
k zy = 1 −
0,1 ⋅ λ
N Ed,x N Ed,x 0,1 z ⋅ ≥ 1 − ⋅ C − 0,25 χ z N /γ C − 0, 25 χ z N /γ Rk M1 Rk M1 mLT mLT
k zy = 1 −
280 280 0,1 ⋅ 0,9424 0,1 ⋅ ≥1− ⋅ 0,95 − 0,25 0,5741 ⋅ 1063,6 /1,0 0,95 − 0, 25 0,5741 ⋅ 1063,6 /1,0
k zy = max (0,9383 ; 0,9345) = 0,9383
AxisVM 11 Verification Examples k zz = C
75
N Ed,x 1 + (2 ⋅ λ - 0,6) ≤ C mz mz z χ z N Rk /γ M1
k zz = 0,90 1 + (2 ⋅ 0,9424 - 0,6)
N Ed,x 1 + 1,4 χ z N Rk /γ M1
280 ≤ 0,90 1 + 1,4 0,5741 ⋅ 1063,6 /1,0 0,5741 ⋅ 1063,6 /1,0 280
k zz = min (1,4303 ; 1,478) = 1,4303 k yz = 0,6 k
zz
= 0,8582
N Ed,x
+ k yy
χ y ⋅N Rk /γ M1 =
280 0,8508 ⋅ 1063,6 N Ed,x
χ z ⋅ N Rk /γ M1 =
0,5741 ⋅ 1063,6
χ
⋅ M y,Rk /γ M1 LT
+ 1,0593 ⋅
+ k zy
280
M y,Ed
9,84 0,8881 ⋅ 76,35
+ 0,8582 ⋅
M y,Ed
χ
⋅ M y,Rk /γ M1 LT
+ 0,9383 ⋅
9,84 0,8881 ⋅ 76,35
+ k yz
k zz
M z,Ed M z,Rk /γ M1 8,81 36,78
= 0,3094 + 0,1537 + 0,2056 = 0,6687
M z,Ed M z,Rk /γ M1
+ 1,4303 ⋅
8,81 36,78
=
=
= 0, 4586 + 0,1362 + 0,3426 = 0,9374
AxisVM 11 Verification Examples
*
76
Analytical solution
AxisVM
e [%]
Npl,Rd [kN]
1063,6
1063,6
-
Ncr,y [kN]
3252,3
3252,4
-
Ncr,z [kN]
1197,7
1197,7
-
λy, rel [-]
0,5719
0,5719
-
λz, rel [-]
0,9424
0,9424
-
Χy [-]
0,8508
0,8509
-
Χz [-]
0,5741
0,5741
-
Mpl,Rd,y [kNm]
76,35
76,36
-
Mpl,Rd,z [kNm]
36,78
36,78
-
C1 [-]
1,132
1,125
-0,6*
Mcr [kNm]
174,1
173,0
-0,63
λLT, rel [-]
0,6622
0,6644
+0,3
ΧLT [-]
0,8881
0,8887
+0,1
Mb,Rd [kNm]
67,81
67,73
-0,1
Cmy = CmLt [-]
0,95
0,95
-
Cmz [-]
0,90
0,95
+5,5**
kyy
1,0593
1,0593
-
kzz
1,4303
1,5096
+5,5***
kyz
0,8582
0,9058
+5,5***
kzy
0,9383
0,9383
-
Interaction capacity ratio 1
0,6687
0,6801
+1,7***
Interaction capacity ratio 2
0,9374
0,9564
+2,0***
AxisVM calculates this factor using a closed form expression, while in the hand calculation C1 was derived from a table. The effect of this on the final result -4 (efficiency) is 10 , thus on the safe side. ** See EC3 Annex B, Table B.3: the difference is due to the fact, that AxisVM calculates the equivalent uniform moment factor (Cmy, Cmz, CmLT) for both uniform load and concentrated load, and then takes the higher value. The effect on the final result (efficiency) is +1~2%. *** the difference is due to the different Cmz value
AxisVM 11 Verification Examples
77
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: Double-symmetric I - Class 4.axs Thema
Interaction check of beam in section class 4 (EN 1993-1-1, EN 1993-1-5)
Analysis Type Geometry
Steel Design
h = 1124 mm tw = 8 mm b = 320 mm tf = 12 mm L = 8,000 m 2
A = 164,8 cm 4 Iy = 326159,4 cm 3 W el,y = 5803,6 cm
Double-symmetric welded I shape Loads
Boundary Conditions Material Properties
Element types Target
Axial force at B: N Ed,C = 700 kN Distributed load in z direction: qz = 162,5 kNm The internal forces in the mid-section: MEd,y = 1300 kNm, NEd,x = - 700 kN ex = ey = ez = 0 at A ey = ez = 0 at B S 355 2 E = 21000 kN / cm ε=0,81 ν = 0,3 Beam element Check the strength capacity ratios for axial force, bending and interaction.
AxisVM 11 Verification Examples Results
78
Analytical solution in the following book: Dunai, L., Horváth, L., Kovács, N., Verőci, B., Vigh, L. G.: “Acélszerkezetek méretezése az Eurocode 3 alapján, Gyakorlati útmutató” (Design of steel structures according to Eurocode 3, ) Magyar Mérnök Kamara Tartószerkezeti tagozata, Budapest, 2009. Exercise 3.4., P. 14-16. Exercise 3.6., P. 19-21. Exercise 3.13., P. 34. Analytical solution
AxisVM
e [%]
0,43
0,43
-
0,831
0,858
+3,1
0,931
0,910
-2,3
140,0
142,0
+1,4
4
4
-
2,957
2,975
+0,6
0,313
0,311
-0,6
340,8
342,4
+0,5
99,98
97,46
-2,6
3549
3460
+2,6
0,2
0,2
-
0,43
0,43
-
0,831
0,858
+3,1
0,931
0,910
-2,3
139,95
142,0
+1,4
-0,969
-0,959
+1,0
23,09
22,84
-1,1
1,231
1,245
+1,1
0,739
0,731
-1,1
408,6
410,4
+0,4
5131
4976
-3,1
1821,5
1766,5
-3,1
0,71
0,74
+4,1
0,91
0,94
+3,3
Uniform compression
Uniform bending
Small differences occur because AxisVM does not take into account welding when calculating the effective section sizes.
AxisVM 11 Verification Examples
79
AxisVM 11 Verification Examples
80
Software Release Number: R3 Date: 17. 10. 2012. Tested by: InterCAD Page number: File name: Earthquake-01-EC.axs Thema
Earth-quake design using response-spectrum method.
Analysis Type Geometry
Linear frequency analysis with 5 modes. Linear static analysis. C ode : Euroco de C ase : FR +
5,0
00
90,0° 5,1 96
6,000
90,0°
30,0°
7,000 Y
X
Top view
4,000
3,500
C ode : Eurocode C ase : F R +
Z
X
Front view
8,0
00
AxisVM 11 Verification Examples
81
Code : Eurocode Case : ST1
All nodal masses are Mx=My=Mz =100000 kg
All beams 60x40 cm Inertia about vertical axis is multiplied by 1000.
Node D
All columns 60x40 cm
Column B
Column A
Support C
All supports are constrained in all directions. eX=eY=eZ=fiX=fiY=fiZ=0
Z Y
X
Perspective view Section beams: 60x40 cm Ax=2400 cm2 Ay=2000 cm2 Az=2000 cm2 Ix=751200 cm4 Iy=720000 cm2 Iz=320000000 cm4 Section columns: 60x40 cm Ax=2400 cm2 Ay=2000 cm2 Az=2000 cm2 Ix=751200 cm4 Iy=720000 cm2 Iz=320000 cm4 Loads
Nodal masses on eight nodes. Mx=My=Mz=100000 kg Model self-weight is excluded. Spectrum for X and Y direction of seismic action: T[s]
Sd
1 2 3 4 5
0 0,2000 0,6000 1,3000 3,0000
1,150 2,156 2,156 0,995 0,300
6
4,0000 ...
0,300 ...
S d [m/s 2 ] 2,156
1,150
0,709
0,300
2,0000
Boundary Conditions
Nodes at the columns bottom ends are constrained in all directions. eX=eY=eZ=fiX=fiY=fiZ=0
Material Properties
C25/30 E=3050 kN/cm2 ν =0,2 ρ = 0
T[s]
AxisVM 11 Verification Examples Element types Target
Results
82
Three node straight prismatic beam element. Shear deformation is taken into account. Compare the model results with SAP2000 v6.13 results. The results are combined for all modes and all direction of spectral acceleration. CQC combination are used for modes in each direction of acceleration. SRSS combination are used for combination of directions. Period times of first 5 modes Mode T[s] SAP2000 1 0,7450 2 0,7099 3 0,3601 4 0,2314 5 0,2054
T[s] AxisVM 0,7450 0,7099 0,3601 0,2314 0,2054
Modal participating mass ratios in X and Y directions Mode Difference εX εX % SAP2000 AxisVM 1 0,5719 0,5719 0 2 0,3650 0,3650 0 3 0 0 0 4 0,0460 0,0460 0 5 0,0170 0,0170 0 Summ 1,0000 1,0000 0
Difference [%] 0 0 0 0 0
εY SAP2000 0,3153 0,4761 0,1261 0,0131 0,0562 0,9868
Internal forces at the bottom end of Column A and Column B Column A Column A Difference Column B SAP2000 AxisVM % SAP2000 Nx [kN] 315,11 315,15 +0,01 557,26 Vy [kN] 280,34 280,34 0 232,88 Vz [kN] 253,49 253,49 0 412,04 Tx [kNm] 34,42 34,41 -0,03 34,47 My [kNm] 625,13 625,12 -0,002 1038,74 Mz [kNm] 612,31 612,31 0 553,41
εY AxisVM 0,3154 0,4760 0,1261 0,0131 0,0562 0,9868
Difference % +0,03 -0,02 0 0 0 0
Column B AxisVM 557,29 232,88 412,04 34,46 1038,70 553,41
Difference % +0,005 0 0 -0,03 -0,004 0
Support forces of Support C Support C SAP2000 Rx [kN] 280,34 Ry [kN] 253,49 Rz [kN] 315,11 Rxx [kNm] 625,13 Ryy [kNm] 612,31 Rzz [kNm] 34,42
Support C AxisVM 280,34 253,49 315,15 625,12 612,31 34,41
Difference % 0 0 +0,01 -0,002 0 -0,03
Displacements of Node D Node D SAP2000 eX [mm] 33,521 eY [mm] 19,944 eZ [mm] 0,229 0,00133 ϕX [rad] 0,00106 ϕY [rad] 0,00257 ϕZ [rad]
Node D AxisVM 33,521 19,945 0,229 0,00133 0,00106 0,00257
Difference % 0 +0,005 0 0 0 0
AxisVM 11 Verification Examples Normal forces:
83
AxisVM 11 Verification Examples Bending moments:
84
AxisVM 11 Verification Examples
85
AxisVM 11 Verification Examples Displacements:
86