Weather pattern-based evaluation of the Intermediate Complexity ...

0 downloads 0 Views 2MB Size Report
Apr 12, 2018 - Arthur Pass. Brewster. CookIvory. Mahanga. Mueller Hut. Philistine. Raikai. Christchurch. Hokitika. Invercargill. Kaikoura. Wellington. 0.00. 0.25.
Weather pattern-based evaluation of the Intermediate Complexity Atmospheric Research Model (ICAR) Johannes Horak 1 , Marlis Hofer 1 , Fabien Maussion 1 , Ethan Gutmann 2 , Alexander Gohm 1 and Mathias W. Rotach 1 1 Department

of Atmospheric and Cryospheric Sciences Universit¨ at Innsbruck, Austria

2 National

Center for Atmospheric Research Boulder, Colorado, USA

12.04.2018 1/25

Motivation Local effects of a changing global climate

Glaciers

Hydrology

Agriculture

Cities 2/25

Motivation

Reliability of the method local variability of precipition well represented by the method?

3/25

Model Intermediate Complexity Atmospheric Research Model (ICAR) (Gutmann et al., 2016) I quantities stored on 3D grid I advected within wind field I microphysics I I

physics based downscaling computationally frugal

Wind field I calculated analytically I based in linear theory I calculated for every forcing time step ⇒ Sequence of steady states 4/25

ICAR - Windfield

U

5/25

ICAR - Windfield

U

from coarse scale forcing

6/25

ICAR - Windfield

U

from high resolution DEM

7/25

ICAR - Windfield ts af

dr up

U

ts af

dr wn do equations: Barstad and Grøn˚ as (2006) 8/25

ICAR - Windfield ts af

dr up

U

ts af

dr wn do equations: Barstad and Grøn˚ as (2006) 9/25

Study Region New Zealand

10/25

Domain - South Island of New Zealand alpine stations coastal stations topography above 1000 m model domain north-westerlies predominant

40°S

42°S

44°S

precipitation data provided by NIWA, NZ MetService, NZ University of Otago, NZ

46°S

48°S 164°E

166°E

168°E

170°E

172°E

174°E

176°E 11/25

Setup ERA-Interim forcing I

∆t = 6 h ∆A ≈ 60 × 83 km2

40°S

also used as to determine added value

downscale to I ∆t = 1 h ∆A ≈ 4 × 4 km2 I model top at ≈ 5.7 km above topography 10 year study period I 01/2006 to 12/2016 Settings I ICAR standard settings I NO tuning to observations

42°S

44°S

46°S

48°S 164°E

166°E

168°E

170°E

172°E

174°E

176°E

12/25

Weather Patterns 1000 hPa isohypses

I I I

12 synoptic weather patterns (Kidson, 2000) daily classification since 1948 by NIWA, NZ defined by 24h mean elevation of 1000 hPa lvl I I

I

example: Trough - pattern on ≈ 12% of days

linked to regional moistening / drying

100 m 50 m 0m -50 m

Trough - pattern 13/25

Weather Patterns 30 25

-42S

20 15

-44S

10

-46S

5

-48S

4E 17

2E 17

0E 17

8E 16

16

6E

0

-40S

pattern - mean (mm/day)

-42S -44S -46S -48S

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0

16 6E 16 8E 17 0E 17 2E 17 4E

mean (mm/day)

-40S

14/25

Weather Patterns

Weather patterns - ideal for investigating ICAR I not part of downscaling method I indicator of physicality Weather Pattern ⇒ local moistening and drying

can ICAR model the measured variability?

15/25

Precipitation Variability at Alpine Station Ivory (z = 1390 m) Taihoro Nukurangi

(niwa.co.nz)

60 40 20

R

N W W H SE H E N E H W

H

H

TN W TS W

SW

0

T

precipitation (mm / day)

measured by

16/25

Precipitation Variability at Alpine Station Ivory (z = 1390 m)

ICAR

60 40 20 0

T SW TN W TS W H HN W W HS E HE NE HW R

precipitation (mm / day)

measured

weather pattern

17/25

Precipitation Variability at Alpine Station Ivory (z = 1390 m)

ICAR

ERAI

60 40 20 0

T SW TN W TS W H HN W W HS E HE NE HW R

precipitation (mm / day)

measured

weather pattern

18/25

Precipitation Variability at Alpine Station Ivory (z = 1390 m)

measured

r 2 = 0.80

2 1 0

T SW TN W TS W H HN W W HS E HE NE HW R

P/Pmean

3

ICAR

weather pattern

19/25

Precipitation Variability at Alpine Station Ivory (z = 1390 m)

2

ERAI

r 2 = 0.001

1 0

T SW TN W TS W H HN W W HS E HE NE HW R

P/Pmean

measured

weather pattern

20/25

Calculate for every station albert_burn

arthur_pass

brewster

cook

ivory_nv

mahanga

mueller_hut

philistine

potts

raikai

christchurch_intl_cliflo

hokitika_aerodrome_cliflo

invercargill_airpor_cliflo

kaikoura_cliflo

wellington_aero_aws_cliflo

4 2 0

4 2 0

4 2

H HE HN W HS E HW NE R SW T TN W TS W W

0

4 2

T TN W TS W W

R SW

H HE HN W HS E HW NE

T TN W TS W W

R SW

H

HE HN W HS E HW NE

T TN W TS W W

R SW

H

HE HN W HS E HW NE

0

21/25

Al b Ar ert B thu urn r Br Pas ew s st Co er ok I v M Mu aha ory ell nga e Ph r Hu ilis t Ch R tine ris aik tch ai H ur Inv okit ch erc ika Ka argi W ikou ll ell ra ing ton

r 2 (1)

Coefficients of Determination ICAR ERAI

1.00

0.75

0.50

0.25

0.00

22/25

Caveats

ICAR underestimates precipitation I ERA-Interim too dry? I strong influence of model top ⇒ further studies needed I

workaround: correction factor per site

Convection parametrizations not tested (yet)

23/25

Summary

Investigated variability of local precipitation due to synoptic weather patterns I I I I

added value of ICAR compared to ERA-Interim local variability well explained by ICAR local variability linked to synoptic situation relevant processes well approximated

⇒ ICAR suited to investigate the local effects of a future climate

24/25

Outlook I I I

extend analysis to gridded precipitation data (e.g. GPM) variability of local temperature does ERA5 explain variability better?

More details in paper later this year I skill scores (MSE and HSS based) I performance indicators for ICAR Updates / Contact: I [email protected] I or on ResearchGate.net

Thank you! 25/25

Literature I

Barstad, I. and Grøn˚ as, S. (2006). Dynamical structures for southwesterly airflow over southern norway: the role of dissipation. Tellus A, 58(1):2–18. Gutmann, E., Barstad, I., Clark, M., Arnold, J., and Rasmussen, R. (2016). The intermediate complexity atmospheric research model (icar). Journal of Hydrometeorology, 17(3):957–973. Kidson, J. W. (2000). An analysis of new zealand synoptic types and their use in defining weather regimes. International journal of climatology, 20(3):299–316.

25/25

The End

25/25

Appendix

Supplemental data and plots

25/25

Precipitation Variability w. Standard Deviation at Ivory

75 50 25 0

T SW TN W TS W H HN W W HS E HE NE HW R

precipitation (mm / day)

measured

25/25

r (1)

r (1)

0.5

Al Arbert thu Bu Br r Parn ew ss s Coter o MuMahIvorky el an Phler Hga i Ch Rlistinut ris ai e tch ka i InvHokurch i e ti Karcargka W iko ill ell u ing ra ton

Al Arbert thu Bu Br r Parn ew ss s Coter o MuMahIvorky el an Phler Hga i Ch Rlistinut ris ai e tch ka i InvHokurch e iti Karcargka W iko ill ell u ing ra ton

Correlation for permuted weather pattern data icar original data mean r of permuted data of permuted pattern data erai original data mean r of permuted data of permuted pattern data

1.0

0.0

25/25

Suggest Documents