WFT vs. DFT

35 downloads 101 Views 1MB Size Report
Ц basis: cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z, . .... 6-31G∗ basis; in atomic units (1 Hartree=27.21 eV) (Gill, 1993) .... 44 DFT, 1 WFT (MP2), good basis sets.
ELECTRONIC STRUCTURE FROM FIRST PRINCIPLES: WAVEFUNCTION THEORY (WFT) VS. DENSITY FUNCTIONAL THEORY (DFT)

Peter Saalfrank Universit¨ at Potsdam

¨ THE MOLECULAR SCHRODINGER EQUATION N electrons (mass me, charge −e) NA nuclei (masses MA, charges +ZAe, A = 1, . . . , NA) • Time-independent molecular Schr¨ odinger equation ³

´

Tˆe + Vee + Vek + Tˆk + Vkk Ψ(r, R) = EΨ(r, R)

r := r = (r 1, r2, . . . r N )

electron coordinates

R := R = (R1, R2, . . . RNA ) PN h ¯2 ˆ Te = − 2me i=1 ∆i P NA 1 h ¯2 ˆ Tk = − 2 A=1 M ∆A A PN PN 2 Vee = i=1 j>i 4π²e0 rij PNA PN ZA e2 Vek = − A=1 i=1 4π²0 R iA P N A P N A ZA ZB e 2 Vkk = A=1 B>A 4π²0 R

nuclear coordinates

E

total molecular energy

Ψ(r, R)

total molecular wavefunction

AB

kinetic energy operator electrons kinetic energy operator nuclei electron-electron repulsion (rij = |ri − rj |) electron-nuclear attraction nuclear-nuclear repulsion

THE BORN-OPPENHEIMER APPROXIMATION Electrons much faster than nuclei =⇒ separate nuclear from electronic motion =⇒ • Born-Oppenheimer approximation, giving: ➊ An electronic Schr¨odinger equation ³ ´ Tˆe + Vee + Vek Ψe(r; R) = Ee(R) Ψe(r; R) {z } | ˆe H

Ee(R) = electronic energy (parametrically dependent on R) Ψe(r; R) = electronic wavefunction (parametrically dependent on R)

➋ A nuclear Schr¨odinger equation 



Tˆk + Vkk (R) + Ee(R) Ψk (R) = EΨk (R) {z } | V (R)

V v

E1

R

Ev0 R0

V (R) = potential energy surface =⇒ molecular structure nuclear wavefunction, with Ψ = Ψk · Ψe Ψk =

R

ELECTRONIC STRUCTURE METHODS ˆ e Ψe,n(r; R) = Ee,n(R) Ψe,n(r; R) H n = 0 (ground state), n > 0 (excited states) electronic structure

wavefunction based

semi− empirical HMO, EHT, CNDO, AM1, ....

ab initio

density based

first principles

Hartree− Fock (HF)

DFT Kohn−Sham

post−HF

many−body corrections

CI, MPn, CASSCF, ....

GW

semi− empirical EMT, EAM LDA, GGA, B3LYP, ....

ELECTRONIC STRUCTURE METHODS • The “wavefunction” world

• The “density” world

ˆ e|Ψei Ee = Ee[Ψe(r1, . . . , r N )] = hΨe|H variational principle: opt

Ee

= minΨe Ee[Ψe(r1, . . . , r N )]

Ee = Ee[ne(r)] variational principle: opt

Ee

= minne Ee[ne(r)]

=⇒ 3N-dimensional variational problem!

=⇒ 3-dimensional variational problem!

John Pople

Walter Kohn

THE WAVEFUNCTION WORLD: WAVEFUNCTIONS • Orbitals: Eigenfunctions of 1-electron Hamiltonians χ(x) = ψ(r) · γ(ω) |{z} |{z} spatial

spin function

ˆ 1) χa(x1) = εa χa(x1) h(x

γ(ω) = α(ω) or β(ω) ω = spin coordinate (±1/2 h ¯) x = (r, ω) Example: H atom (atomic units) ˆh(x1) = − 1 ∆1 − 1 2 r1 ψa(r1) = ψnlm(r1) = s, 2px, . . . orbitals 1 (n = 1, 2 . . . ) εa = ε n = − 2 2n

• N-electron wavefunctions: Slater determinants ¯ ¯ ¯ χ1(x1) χ2(x1) · · · χN (x1) ¯ ¯ ¯ . ¯ ¯ 1 ¯ χ1(x2) χ2(x2) . ¯ = |χ1(1), . . . , χN (N )i Ψ (x1, . . . , xN ) = √ ¯ .. .. ... ¯ N! ¯ ¯ ¯ χ1(xN ) χ2(xN ) · · · χN (xN ) ¯ ➊ antisymmetric

➋ Pauli principle

➌ normalized

➍ approximate

. Every Slater determinant represents an electron configuration, e.g. (1s 22s22p2) for C

THE WAVEFUNCTION WORLD: HARTREE-FOCK • The Hartree-Fock equations

• Use single determinant |Ψ0i = |χ1(1), . . . , χN (N )i as trial wavefunction for ground state ˆe • Use full electronic Hamiltonian H ˆ e|Ψ0i = min! • Determine orbitals χi from variational principle E0HF = hΨ0|H =⇒ Hartree-Fock equations χi(1) fˆ(1) χi(1) = εHF i

; i = 1, 2, . . . , N

• Properties

• Coupled single-electron equations, with Fock operator 1 fˆ(1) = − ∆1 − 2

NA X ZA A=1

r1A

+

N ³ X b=1

|

´

ˆ b(1) Jˆb(1) − K | {z } | {z } Coulomb {z exchange }

HF potential

Vˆ HF (1)

• Nonlinear equations =⇒ iterative (self consistent field, SCF) solution • Self-interaction free

THE ROOTHAAN-HALL METHOD: LCAO-MO • LCAO-MO Spatial orbitals (MOs) are expanded in a set of K “atomic orbitals” {φ ν } (AOs): ψj (r) =

K X ν=1

Cνj · φν (r)



=⇒ linear variation problem for Cνj , εj

; ν = 1, 2, . . . , K

   











    

 









 





   

 



closed- and open-shell variants



hφµ |φν i



Cνj Sµν |{z}



ν=1



hφµ |fˆφν i



Fµν = εj |{z}

   

ν=1

Cνj

K X



K X

   

• Roothaan-Hall equations

  

• Basis sets {φν }

➊ Slater functions: e−ζr ➋ Slater-type linear comb. of Gaussians: STO-3G, 6-31G∗, . . . ; cc-pVDZ, cc-pVTZ, . . .

2 /2 ➌ Plane waves: eikr , cutoff Vc = kmax

CORRELATED METHODS

• The error ladder of ab initio quantum chemistry



    

: A 

10 ?: 2 LM >K: 8A 

JIH $ "%#$ - E FG  >: 4 8 A : 

1>0  ? JIH 8: : : Q : 9 P%O%N E FG %#$$ !" 

 ;  2 LH 7 K: A 

10 ?: 2 LM K - S(& ER E %(U

 A 

10 ?0: A > >V: A8 

JIH:  Q: - #&

*) !( 

2 : >?: AA  A I >8 >:

T10 1 >: I 2 / 8 A 2 56  >45: JIH : 8 A   Q: 10

! (&' 

 

A :

1> : 2I / >: A 2 4556  >: B: 8 Q: W) - X +, E ! "+ 

> : : >> =