Your abstract submission has been received Click

0 downloads 0 Views 670KB Size Report
Apr 30, 2015 - ... to the Si particles;; (iii) the use of fluoroethylene and vinylene carbonates (FEC/VC) ... and 0.005 V at a current density of 480 mA g-1 of Si.
30/4/2015

Submission  Completed

Your  abstract  submission  has  been  received Click   here  to  print  this  page  now. You  have  submitted  the  following  abstract  to  228th  ECS  Meeting  (October  11-­16,  2015).  Receipt  of  this  notice does  not  guarantee  that  your  submission  was  complete,  free  of  errors,  or  accepted  for  presentation. Impact  of  the  Film  Storage  Conditions  on  the  Performance  of  Si-­Based  Anodes  for  Li-­Ion Batteries C.  Reale  Hernandez  (INRS-­EMT),  Z.  Karkar  (CNRS-­IMN;;  INRS-­EMT),  D.  Guyomard,  B.  Lestriez  (CNRS-­ IMN),  and  L.  Roué  (INRS-­EMT) Abstract  Text: For  several  years,  great  attention  has  been  paid  to  silicon  as  negative  electrode  material  for  Li-­ion  batteries, due  to  its  very  high  gravimetric  capacity  (3579  mAh  g-­1)  in  comparison  to  that  of  graphite  (372  mAh  g-­1). However,  Si  electrodes  suffer  from  poor  cyclability  due  to  the  large  volumetric  expansion  (up  to  300%)  of Si  upon  its  lithiation,  resulting  in  the  electrode  architecture  disintegration,  and  in  the  instability  of  the  solid electrolyte  interphase  (SEI). We  have  recently  shown  that  low-­cost  and  high-­performance  Si-­based  electrodes  can  be  obtained  by combining  (i)  the  use  of  ball-­milled  (nanocrystalline)  Si  powder  resulting  in  a  smoother  phase  transition;;  (ii) the  processing  of  the  electrode  at  pH  3  with  carboxymethylcellulose  (CMC)  binder  favoring  the  covalent grafting  of  the  CMC  to  the  Si  particles;;  (iii)  the  use  of  fluoroethylene  and  vinylene  carbonates  (FEC/VC) electrolyte  additives  resulting  in  a  more  stable  SEI.1 In  the  present  study,  it  is  shown  for  the  first  time  that  the  storage  conditions  of  the  Si-­based  film  before assembling  in  the  electrochemical  cell  has  also  a  major  impact  on  the  electrode  performance.  This  is illustrated  in  Fig.  1  which  compares  the  evolution  of  the  discharge  capacities  with  cycling*  of  ball-­milled  Si-­ based  electrodes  prepared  after  storage  at  room  temperature  of  the  composite  film**  (a)  for  1  day  and  55 days  in  air  and  (b)  for  6  days  in  air  (10-­15%  relative  humidity)  and  in  humid  air  (70%  relative  humidity).  It clearly  appears  that  the  film  storage  in  air  has  a  very  positive  impact  on  the  electrode  cycle  life,  which  is accentuated  under  humid  atmosphere.  A  possible  explanation  is  that  during  the  film  storage,  water molecules  from  air  react  with  the  film  and  modify  the  chemical  links  between  the  Si  particles  and  the  CMC binder.  This  tends  to  be  confirmed  by  attenuated  total  reflectance  Fourier  transform  infrared  spectroscopy (ATR-­FTIR)  analysis  of  the  composite  electrodes***.  Indeed,  as  shown  in  Fig.  2,  a  significant  increase  of the  peak  centered  at  1630  cm−1  assigned  to  the  stretching  band  of  the  carboxyl  group  of  CMC  is  observed for  the  film  stored  in  humid  air,  while  the  peak  centered  at  1750  cm-­1assigned  to  a  covalent  bond  between Si  and  CMC  is  decreased.  This  suggests  an  increase  of  the  hydrogen  bonds  between  the  Si  particles  and CMC  binder  (Fig.  3),  which  could  increase  the  deformability  of  the  electrode,  favorable  to  its  mechanical stability  with  cycling.    We  believe  that  an  optimum  covalent  /  hydrogen  bond  ratio  is  required  to  obtain  a film  sufficiently  rigid  to  maintain  electronic  connections  but  flexible  enough  to  vary  in  volume  without breaking/peeling  off  during  cycling. *  Electrodes  were  cycled  in  Swagelok-­type  cells  with  Li  as  counter/ref.  electrode  at  full  capacity  between  1 and  0.005  V  at  a  current  density  of  480  mA  g-­1  of  Si.  The  electrolyte  was  LP30  +  10wt%FEC. **  (Si  +  CB  +  CMC+  pH3  buffer  salts)  in  a  weight  ratio  of  73.1/11.0/7.3/8.6.  The  Si  loading  was  1  mg/cm2. ***  Electrodes  were  dried  at  100°C  under  vacuum  prior  to  ATR-­FTIR  analysis  (same  procedure  as  prior electrode  cycling).

Reference 1.  M.  Gauthier,  D.  Mazouzi,  D.  Reyter,  B.  Lestriez,  P.  Moreau,  B.  Lestriez,  D.  Guyomard,  L.  Roué.  A  low-­ https://ecs.confex.com/ecs/228/a/papers/confirmation.cgi

1/4

30/4/2015

Submission  Completed

cost  and  high-­performance  Si-­based  electrode  for  Li-­ion  batteries.  Energy  Environ.  Sci.  6  (2013)  2145– 2155.  

https://ecs.confex.com/ecs/228/a/papers/confirmation.cgi

2/4