1 Very Large Structure numerical simulation in a ...

74 downloads 752 Views 3MB Size Report
At the center of each cell, a negative mass clump. Of course, the ... impact of dynamical friction of a 2d galaxy, surrounded by negative mass, which gives ... simulations, in a S3 closed computational space for both 3D VLS simulation and spiral.
 

1   Very  Large  Structure  numerical  simulation  in  a  compact  computational  space.     Jean-­‐Pierre  Petit1,  Gilles  d’Agostini,  Xavier  Lafont  &  Nicolas    Borrallo   ____________________________________________________________________________________________________  

Keywords  :   bimetric   model,   VLS,   joint   soap   bubbles   like   universe,   negative   mass,   runaway  phenomenon,  coupled  field  equation  system,  compact  computational  space   ____________________________________________________________________________________________________   Abstract  :   Considering   the   universe   as   a   manifold   M4   plus   two   metrics,   coupled   by   field   equations   system,   we   use   corresponding   interaction   laws   to   perform   2D   simulation   of   VLS  in  a  compact  computational  space,  S2  sphere.  Classical  Newton’s  law  is  replaced  by   gravitational   force   which   is   proportional   to   the   inverse   of   the   square   of   curvilinear   distance,  as  measured  along  a  geodesic.     ____________________________________________________________________________________________________   The  Very  Large  Structure  of  the  Universe  is  currently  considered  as  a  giant  bubble-­‐like   structure,  with  walls,  filaments  and  voids.  The  first  attempts  to  modelize  this  structure   corresponds  to  the  works  of  Ya.B.  Zel’dovitch  and    F.  Shandarin  ([1],  [2]).  This  so-­‐called   pancake  theory    is  now  abandonned.     Today  researchers  try  to  figure  VLS  through  numerical  simulations  based  on  cold  dark   matter  behaviour.  See  figure  1.      

  Fig.1  :  VLS  dark  matter  3D  simulation                                                                                                                   1  Former  research  manager  at  CNRS,  France.  Private  adresse  :  [email protected]  

 

2    

Which  is  somewhat  different  from  typical  pattern  corresponding  to  observational  data.   See  figure  2  and  3.      

    Fig.2  :  Typical  VLS  after  observational  data    

  Fig.3  :  Typical  VLS  after  observational  data  

 

3    

  A  more  suitable  model  corresponds  to  joint  bubbles’  like  design.  See  figure  4.      

  Fig.4  :  3D  VLS  structure,  shaped  as  joint  bubbles     In   the   middle   of   the   nineties   H.   El-­‐Ad   and   T.     Piràn   ([3],[4],[5],[6],[7],[8],[9])build   a   program  which  gives  bubble-­‐like  structure,  from  IRAS  observational  data.  See  figure  5.          

  Fig.5  :  After  Piràn  [6]    :  VLS  Bubble  structure,  from  IRAS  Survey     In  a  previous  paper  ([10],  [11])  we  suggested  a  scenario,  implying  interaction  between   positive   and   negative   matter.   The   model   is   based   on   a   bimetric   description   of   the   Universe,  considered  as  a  manifold  M4  plus  two  metrics   gµν(+ ) and   gµν(− ) .    

 

4  

Positive   mass   (and   positive   energy)   particles   follow   geodesics   corresponding   to   metric gµν(+ ) .   Negative   mass   (and   negative   energy)   particles   follow   geodesics   corresponding   to   metric   gµν(− ) .   As   those   two   families   are   disjoint   those   particles   cannot   encounter.   In   addition,   photons   follow   null-­‐geodesics.   Positive   energy   photons   follow   null   geodesics   as   derived   from   metric   gµν(+ ) .   Negative   energy   photons   follow   null   geodesics   as   derived   from   metric   gµν(− ) .   Positive   masses   emit   and   receive   positive   energy   photons.   Negative   masses   emit   and   receive   negative   energy   photons   So   that,   on   pure   geometrical  grounds  an  observer  made  of  positive  mass  cannot  observe  structures  made   of  negative  mass,  and  vice-­‐versa.  It  is  assumed  that  the  two  species  interact  only  through   gravitational   force,   which   is   phrased   through   the   coupled   field   equation   system,   introduced  in  ([10],  [11])  :       (1)  

 

 

 

(2)  

 

 

 

(+ ) Rµν −

1 (+ ) (+ ) ) (− ) R gµν = χ ( T (+ µν + T µν )   2

 

The   mentioned   system   of   equations   fits   time-­‐independent   cosmological   solutions.   Applying  Newtonian  approximation  method  we  can  derive  interaction  laws  :     -­‐

Positive  masses  mutually  attract  through  Newton’s  law  

-­‐

Negative  masses  mutually  attract  through  Newton’s  law  

-­‐

Masses  with  opposite  signs  mutually  repel  through  «  anti-­‐  Newton’s  law  »  

 

  Fig.  6  :  Bimetric  interaction  schema     This  is  different  from  H.Bondi’s  result  ([12]    ,  1957  ).  But  it  can  be  shown  that  the  system   (1)+(2)   eliminates   the   prosterous   so-­‐called   runaway   phenomenon.   In   effect,   when   one   considers   the   classical   model   of   RG   (a   manifold   M4,   plus   a   single   metric,   solution   of   Einstein’s  equation)  the  interaction  laws  are  different.     -­‐

Positive  masses  attract  anything  

-­‐

Negative  masses  repel  anything  

 

5  

 

    Fig.7  :  The  runaway  phenomenon     So   that   when   a   positive   mass   encounters   a   negative   mass,   it   escapes,   and   the   negative   mass   runs   after,   which   corresponds   to   so-­‐called   runaway   phenomenon.   This   last   disappears  when  we  shift  to  a  bimetric  description  of  the  universe.     The  bimetric  interaction  laws  makes  possible  to  build  numerical  simulations.  As  shown   in  1995  [11]  if  one  assumes  that,  after  discoupling  the  absolute  value  of  negative  mass   density   is   much   higher   that   the   one   of   positive   mass,   Jeans’   time   is   shorter   for   the   negative  species,  which  forms  a  series  of  species  first.     (3)  

t J+ =

1 4π G ρ

+

t J− =

1 4 π G ρ−

 

If   we   choose   ρ (− ) = 64 ρ (+ )   then   t J+ = 8t J− .   Negative   matter   drives   the   birth   of   VLS.   In   1995   we   showed,   through   2D   simulation,     that   coupled   structures   formed.   Negative   matter  gives  clumps,  while  positive  matter  is  confined  in  the  remnant  place.  See  figure  8.    

  Fig.  8  :  2D  simulation  of  VLS  [11]  

 

6  

Such  VLS  is  very  stable  in  time.  In  effect  the  positive  mass  lacunar  structure  prevents   negative  clusters’merging,  which  those  last  behave  like  ankors,  with  respect  to  lacunar   structure.         Compact  computational  space      In   the   above   simulation     our   computational   area   was   a   square.   We   did   not   pay   very   much   attention   to   border’s   conditions.   In   the   following   we   deal   with   closed   computational   space  :   S2   sphere.   We   replace   classical   Newton’s   law   by   an   interaction   law   based   on   the   inverse   of   the   square   of   the   curvilinear   distance   between   points.   At   short   distance,   this   is   equivalent   to   Newton’s   law   in   a   plane   (the   tangent   plane   of   the   sphere).      

    Fig.9  :  Direction  of  the  forces  along  geodesic  lines.         The   distance   is   computed,   using   quaternion   technique.   In   order   to   check   the   robustness   of   the   program   we   computed   the   path   of   a   small   positive   test   mass   orbiting   around   a   fixed  mass  M,  and  we  got  the  figure  10.        

    Fig.10  :  Precession  phenomenon  due  to  space  curvature.          

 

7  

VLS  simulation  in  computational  close  space.       Using  a  PC  we  take  10,000  positive  mass-­‐points.  Each  one  represents  1012  solar  masses   and  may  be  considered  as  clusters  of  stars.  In  order  to  shorten  the  duration  of  the   calculation  we  concentrate  negative  matter  in  only  49  mass-­‐point,  each  one  figuring  1016   (negative)  solar  masses.  It  correponds  to  initial  ratio  :     (4)   t J+ = 7t J−       Perimeter  of  the  computational  space  :  3  Mpc       Duration  of  a  step  :  106  years.  After  2  h  30’  :        

 

  Fig.11  :  Net-­like  structure  of  positive  matter.   At  the  center  of  each  cell,  a  negative  mass  clump  

  Of  course,  the  chosen  characteristic  length  is  too  short  to  figure  real  Universe  conditions.   This   is   just   to   check,   through   qualitative   study   that   the   computational   technique   on   compact  space  fits  previous  results  for  VLS  [11].    This  is  the  preliminary  to  a  study  of  the   impact   of   dynamical   friction   of   a   2d   galaxy,   surrounded   by   negative   mass,   which   gives   good   looking   barred   spiral,   stable   over   20   turns   (unpublished   work).   This   has   already   been   checked   in   compact   S2   computational   space   and   will   be   soon   extended   to   3D   simulations,  thanks  to  the  opportunity  to  use  a  more  powerful  system.      

 

8  

  Fif.12  :  Unpublished  result.  2D  barred  spiral  galaxy  orbiting    in  surrounding  negative  mass,  due  to  dynamical  friction.     Stable  over  20  turns.          

  Conclusion  :    

This   result   is   encouraging,   although   schematic.   Thanks   to   the   help   of   Japanese   researchers   we   are   now   going   to   use   a   much   powerfull   system,   in   order   to   build   3D   simulations,   in   a   S3   closed   computational   space   for   both   3D   VLS   simulation   and   spiral   galaxy  formation  and  evolution.       References  :     [1]   Y.   B.   Zeldovich,   «  Gravitational   instability  :   an   approximate   theory   for   large   density   perturbations  »,  Astronomy  and  Astrophysics,  vol.  5,  1970,  p.  84–89     [2]  Sergueï  F.  Shandarin  et  Ya.  B.  Zeldovich,  «  The  large-­‐scale  structure  of  the  universe:   Turbulence,  intermittency,  structures  in  a  self-­‐gravitating  medium  »,  Reviews  of  Modern   Physics,  vol.  61,  no  2,  1989,  p.  185–220       [3]  Piran  T.    :  On  Gravitational  Repulsion,  Gen.  Relat.  and  Gravit.  Vol.  29  ,  N°  11  ,  1997     [4]  El-­‐Ad  H.  ,  Piran  T.  ,  and  da  Costa  L.N.  ,  (1996)  Astrophys.  J.  Lett.  462  L13   [5]  El-­‐Ad  H.  ,  Piran  T.  ,  and  da  Costa  L.N.  ,  (1997)  Mon.  Not.  R.  Astro.  Soc.     [6]  Piran  T.    :  On  Gravitational  Repulsion,  Gen.  Relat.  and  Gravit.  Vol.  29  ,  N°  11  ,  1997     [7]  El-­‐Ad  H.  ,  Piran  T.  ,  and  da  Costa  L.N.  ,  (1996)  Astrophys.  J.  Lett.  462  L13   [8]  El-­‐Ad  H.  ,  Piran  T.  ,  and  da  Costa  L.N.  ,  (1997)  Mon.  Not.  R.  Astro.  Soc.    

 

9  

[9]  El-­‐Ad  H.  ,  Piran  T.  (  1997  )  Astrophys.  J.     [10]  J.P.Petit  :  The  missing  mass  problem.  Il  Nuovo  Cimento  B,  109:  697–710   [11]  J.P.  Petit  (1995).  Twin  Universe  Cosmology.  Astrophysics  and  Space  Science  (226):   273–307.   [12]   H.   Bondi:   Negative   mass   in   General   Relativity,   [:   Negative   mass   in   General   Relativity.]  Rev.  of  Mod.  Phys.,  Vol  29,  N°3,1957