11

81 downloads 663 Views 283KB Size Report
primary amines such as aniline with nitrous acid (HNO2) prepared from ... Primary aliphatic amines react with nitrous acid to give highly unstable diazonium salts.
Experiment  

11  

Synthesis  of  Sudan-­‐I  

 

Introduction    

Dyes  were  in  use  before  recorded  history.  Indigo,  a  pigment  extracted  from  a  plant,  was  

used  to  dye  burial  cloths  for  Egyptian  mummies  over  4,000  years  ago.  Indigo  is  used  today  to   dye  blue  jeans.  Tyrian  purple  was  derived  from  Mediterranean  mollusks.  Approximately  9,000   mollusks  were  needed  to  give  one  gram  of  the  dye.    

American   Indians   used   cochineal,   a   scarlet   dye   extracted   from   the   dried   bodies   of  

insects,  to  color  their  baskets  and  clothing.  The  red  dye  alizarin,  extracted  from  madder  root,   was   known   to   the   ancient   Egyptians   and   Persians.   Alizarin   was   used   to   dye   the   red   coats   of   British  soldiers  in  the  American  Revolution,  the  red  caps  and  trousers  of  French  soldiers  in  the   French   Revolution,   and   the   violins   of   Antonio   Stradivari.   Structures   for   these   dyes   are   shown   in   Figure  1.               Figure  1       Examples  of  dyes                

Colored   compounds   absorb   some,   but   not   all,   wavelengths   of   visible   light.   When   one  

looks   at   the   light   reflected   from   a   colored   object,   the   eye   sees   white   light   minus   the  

71  

wavelengths   absorbed   by   the   object.   Therefore,   a   colored   object   appears   as   the   color   complementary  to  the  wavelengths  it  absorbs.    

Functional  groups  that  absorb  light  are  called  chromophores.  They  are  typically  highly  

conjugated   systems   containing   several   double   bonds   and   one   or   more   characteristic   groups   such  as  azo  (-­‐N=N-­‐),  nitro  (-­‐NO2),  and  carbonyl  (>C=O).    

An  azo  dye  is  defined  by  having  an  azo  linkage  (-­‐N=N-­‐)  as  part  of  its  chromophore.  Azo  

dyes  are  made  in  two  steps.  First,  a  primary  aromatic  amine  is  reacted  to  give  a  diazonium  salt,   as   shown   in   Equation   1.   Second,   the   diazonium   salt   is   reacted   or   coupled   with   a   strongly   activated  aromatic  system,  such  as  phenoxide,  as  shown  in  Equation  2.  

 

 

 

The  first  step,  the  formation  of  diazonium  salts,  is  called  diazotization.  The  reaction  was   discovered  in  1858  by  Peter  Griess,  who  subsequently  discovered  several  reactions  of  this  new   compound.  The  most  important  method  for  the  preparation  of  diazonium  salts  is  treatment  of   primary  amines  such  as  aniline  with  nitrous  acid  (HNO2)  prepared  from  sodium  nitrite  (NaNO2)   and   a   mineral   acid   (e.g.   HCl) (Scheme   1).   A   detailed   diazotization   reaction   mechanism   is   shown   in  the  Scheme  2.    

 

  Scheme  1  Generation  of  nitrous  acid  and  nitric  oxide  cation  (NO+)    

72  

 

  Scheme  2  Mechanism  for  diazotization  of  primary  amine     Primary  aliphatic  amines  react  with  nitrous  acid  to  give  highly  unstable  diazonium  salts   which   spontaneously   decompose   to   N2   gas   and   carbocations   (Scheme   3).   The   carbocations   react   further   to   produce   a   mixture   of   alkenes,   alcohols   or   alkyl   halides,   with   alcohols   as   the   major  product.  This  reaction  is  of  little  synthetic  importance  because  the  diazonium  salt  is  too   unstable,  even  under  cold  conditions.    

  Scheme  3  Degradation  of  aliphatic  diazonium  salt      

Primary  aromatic  amines  can  form  diazonium  salts  which  are  stable  at  low  temperature.  

In   aqueous   solution   these   salts   are   unstable   at   temperatures   higher   than   +5   °C;   the   -­‐N+≡N   group   tends   to   leave   as   N2,   i.e.   nitrogen   gas.   One   can   isolate   diazonium   compounds   as   tetrafluoroborate   (BF4-­‐)   salts,   which   are   relatively   stable   at   room   temperature.   In   general,   diazonium   compounds   are   not   isolated   and   once   prepared,   used   immediately   in   further   reactions.    

An  azo  coupling  is  a  reaction  between  a  diazonium  compound  and  an  aniline,  phenol  or  

other   aromatic   compound   which   produces   an   azo   compound.   In   this   reaction   the   diazonium   salt   is   an   electrophile   and   the   activated   arene   is   a   nucleophile   in   an   electrophilic   aromatic   substitution.  In  most  cases,  including  the  example  in  Equation  2,  the  diazonium  compound  is   also  aromatic.  The  product  absorbs  longer  wavelengths  of  light  than  the  reactants  because  of   increased  conjugation.  

73  

NH 3 +Cl-

NH 2

Cl-

+N N

diazotization

HCl

(NaNO2 + HCl) aniline

Cl-

benzene diazonium chloride

anilinium chloride

+N N OH +

benzene diazonium chloride

N

NaOH

N OH

coupling β-naphthol

Sudan-1 (1-phenyl-azo-2-naphthol)  

Scheme  4  Synthesis  of  Sudan-­‐I      

In   this   experiment,   an   azo   dye   called   Sudan-­‐I   will   be   synthesized   from   aniline   and   β-­‐

naphthol   (Scheme   4).   Sudan-­‐I   is   also   commonly   known   as   CI   Solvent   Yellow   14   and   Solvent   Orange   R.   It   is   a   lysochrome,   a   diazo-­‐conjugate   dye   systematically   named   1-­‐phenylazo-­‐2-­‐ naphthol.  Sudan-­‐I  is  a  powdered  substance  with  an  orange-­‐red  appearance.  It  is  mainly  used  to   color   waxes,   oils,   petrol,   solvents   and   polishes.   Sudan   I   has   also   been   adopted   for   coloring   various  foodstuffs,  including  particular  brands  of  curry  powder  and  chili  powder,  although  the   use   of   Sudan-­‐I   in   foods   is   now   banned   in   many   countries   because   it   has   been   classified   as   a   category  3  carcinogen  by  the  International  Agency  for  Research  on  Cancer.  

  Experimental  Procedure       1)

Place  about  0.2  g  of  aniline  in  a  pre-­‐weighed  10  mL  round-­‐bottom  flask.  Record  the  actual   weight  of  aniline.  

2)

Add   1   mL   of   distilled   water   and   10   drops   of   concentrated   HCl.   Swirl   the   flask   in   an   ice-­‐ water  bath.  

3)

To  a  clean  and  dry  test  tube,  place  1  mL  of  10%  NaNO2  (from  burette).  Chill  this  solution  in   the  ice-­‐water  bath.  

4)

Weigh   0.15   g   of   β-­‐naphthol   in   a   50   mL   beaker.   Add   1   mL   of   10%   NaOH   and   2   mL   of   distilled  water.  Stir  the  mixture  with  a  glass  rod  until  a  homogeneous  solution  occurs.  Chill   this  solution  in  the  ice-­‐water  bath.  

5)

When   all   three   mixtures   are   cooled   to   about   0   °C,   use   a   dropper   to   transfer   the   NaNO2   solution   into   the   round-­‐bottom   flask   containing   the   aniline   solution.   Stir   the   mixture   74  

thoroughly.   Do   not   add   the   NaNO2   solution   too   fast   because   the   internal   temperature   should  be  below  10  °C.   6)

Transfer  the  reaction  mixture  from  the  round-­‐bottom  flask  into  the  beaker  containing  β-­‐ naphthol.  Stir  the  mixture  to  avoid  aggregation  of  red  precipitates.  

7)

Stir  the  mixture  in  the  ice-­‐water  bath  for  3-­‐5  minutes.    

8)

Vacuum  filter  the  precipitates  and  wash  the  filtrate  with  cold  water.  

9)

Allow  the  precipitates  to  dry  on  the  vacuum  filtration  set  for  a  few  minutes.  Transfer  this   product  into  a  50  mL  Erlenmeyer  flask.  

10) Recrystallize  the  crude  product  in  ethanol.   11) Vacuum  filter  the  crystals  and  wash  them  with  cold  ethanol.   12) Dry  the  crystals  on  a  pre-­‐weighed  watch  glass.     13) Weigh  and  record  the  yield  of  the  recrystallized  product.     14) Determine  the  melting  point  of  the  product.   15) Submit  the  product  in  a  plastic  bag  to  your  instructor.      

Laboratory  Safety  Precaution   1)

Wear  safety  goggles  and  lab  coat  at  all  times  while  working  in  the  laboratory.  

2)

Aniline  is  toxic  and  irritating.    

3)

Sodium  nitrite  is  a  toxic  oxidizer.    

4)

Concentrated  hydrochloric  acid  is  toxic.  β-­‐Naphthol  is  irritating.    

5)

Sodium  hydroxide  is  toxic  and  corrosive.  

6)

Ethanol  is  flammable  and  irritating.  Keep  away  from  flames  and  other  heat  sources.    

7)

Wash  your  hands  thoroughly  with  soap  or  detergent  before  leaving  the  laboratory.  

   

75